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Abstract. In parts I and II, we determined which faithful irreducible rep-

resentations V of a simple linear algebraic group G are generically free for
Lie(G), i.e., which V have an open subset consisting of vectors whose sta-

bilizer in Lie(G) is zero, with some assumptions on the characteristic of the

field. This paper settles the remaining cases, which are of a different nature
because Lie(G) has a more complicated structure and there need not exist

general dimension bounds of the sort that exist in good characteristic.

Let G be a simple algebraic group over an algebraically closed field k. In case
k = C, it has been known for more than 40 years which irreducible representations
V of G are generically free, i.e., have the property that the stabilizer in G of a
generic v ∈ V is the trivial group scheme. Recent applications of this to the theory
of essential dimension have motivated the desire to extend these results to arbitrary
k. We did this in previous papers — [GaGu 17], [GuL], and parts I [GaGu I] and
II [GaGu II] — except for a handful of cases that we address here, completing the
solution to the problem. In particular we prove the following, which was announced
at the end of part I.

Theorem A. Let ρ : G→ GL(V ) be a faithful irreducible representation of a simple
algebraic group over an algebraically closed field k.

(1) Gv is finite étale for generic v ∈ V if and only if dimV > dimG and
(G, char k, V ) does not appear in Table 1.

(2) G acts generically freely on V if and only if dimV > dimG and (G, char k, V )
appears in neither Table 1 nor Table 3.

We say that ρ is faithful if ker ρ is the trivial group scheme. This hypothesis is
harmless in the sense that (i) every generically free representation is faithful and
(ii) every irreducible representation ρ : G → GL(V ) canonically gives a faithful
irreducible representation G/(ker ρ)→ GL(V ).

The hypothesis that ρ is faithful in Theorem A excludes those representations
that factor through a special isogeny of G. The hypothesis that ρ is faithful also
excludes those representations that occur as the Frobenius twist of some other rep-
resentation, since in that case ker ρ contains the first Frobenius kernel. Nonetheless,
we do consider such representations in detail in this paper. (To apply Theorem A
in the latter case, note that the first Frobenius kernel G1 is contained in ker ρ. One
obtains from ρ a representation of the group G/G1, which is isomorphic to G [J,
I.9.5], and can check whether that representation is faithful.)

Recall that an algebraic group H is finite étale if Lie(H) = 0.
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G char k rep’n dimV dim gv G char k high weight dimV dim gv

SL8 /µ4 2 ∧4 70 3 Sp8 3 0100 40 2
SL9 /µ3 3 ∧3 84 2 Sp4 5 11 12 1

Spin16 /µ2 2 half-spin 128 4 SL4 p odd 01pe, e ≥ 1 24 1
SL4 /µ2 2 012e, e ≥ 2 24 1

Table 1. Irreducible and faithful representations V of simple G
with dimV > dimG that are not generically free for g, up to graph
automorphism. For each, the stabilizer gv of a generic v ∈ V is a
toral subalgebra. The weights on the right side are numbered as
in Table 2.

(B`) r r r· · · r r< r
1 2 3 `−2 `−1 `

(C`) r r r· · · r r> r
1 2 3 `−2 `−1 `

(F4) r r> r r
1 2 3 4

(G2) r> r
1 2

Table 2. Dynkin diagrams of the non-simply-laced simple root
systems, with simple roots numbered as in [Lü].

G char k V dimV G char k V dimV

A1 6= 2, 3 S3 4 A2 6= 2, 3 S3 10
A1 6= 2, 3 S4 5 A3 6= 2 L(2ω2) 20− ε
A8 6= 3 ∧3 84 A7 6= 2 ∧4 70
A3 3 L(ω1 + ω2) 16 A` p 6= 0 L(ω1 + piω`), (`+ 1)2

L(ω1 + piω1)
B` (` ≥ 2) 6= 2 L(2ω`) 2`2 + 3`− ε C4 6= 2 “spin” 42− ε
D` (` ≥ 4) 6= 2 L(2ω`) 2`2 + `− 1− ε D8 6= 2 half-spin 128

Table 3. Irreducible faithful representations V of simple G with
dimV > dimG such that Gv is finite étale and 6= 1 for generic
v ∈ V , up to graph automorphism, adapted from [GuL]. The
symbol ε denotes 0 or 1 depending on the value of char k.

The remaining cases of the theorem that need to be covered in this paper are
those where char k is special1 for G, meaning that G has type G2 and char k = 3
or G has type Bn (n ≥ 2), Cn (n ≥ 2), or F4 and char k = 2. These are the cases
where the Dynkin diagram of G has a multiple bond of valence char k. Equivalently,
these are the cases where G possesses so called “special” isogenies, which are neither
central nor the Frobenius, cf. [BoTi, §3].

In a future work, we combine Theorem A with the results of [GuL] to prove the
existence of a stabilizer in general position for every action of a simple algebraic
group on an irreducible representation.

A special case of Theorem A is the following:

1This choice of vocabulary imitates [S]; we have written instead the more illuminating “ex-
tremely bad characteristic” in the title. The hypothesis “char k special” is properly more restrictive

than “char k very bad”, in that 2 is very bad but not special (i.e., not extremely bad) for type G2.
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Theorem B. Let G be a simple linear algebraic group over an algebraically closed
field k such that char k is special, and let ρ : G → GL(V ) be an irreducible and
faithful representation. Then V is generically free for g if and only if dimV >
dimG.

Large, possibly reducible representations. Regardless of whether ρ is faithful,
the stabilizer gv of a generic v ∈ V contains ker dρ. We say that g acts virtually freely
on V if gv = ker dρ; this is the natural generalization of the notion of “generically
free” to include the case where ρ need not be faithful.

In part I, [GaGu I], we proved a general bound when G is simple and char k is
not special: if V [g,g] = 0 and dimV is big enough, then g acts virtually freely on
V . However, Example 9.3 shows that such a result does not hold when char k is
special. Rather than producing a possibly complicated statement that encompasses
both cases, we give instead the separate statements Proposition 6.1, Corollary 7.10,
and Proposition 8.4 for the cases where char k is special. Note that these results
have no requirements that G acts irreducibly or faithfully. Roughly speaking, for n
the Lie algebra of the kernel of the very special isogeny as in §1, we give results for
those V on which n acts as zero (nV = 0) or without fixed points (V n = 0).

Irreducible representations. Recall that every irreducible representation V of
G has a highest weight λ. Write λ as a sum λ =

∑
ω cωω where the sum runs

over the fundamental dominant weights ω. One says that λ is restricted when
p := char k 6= 0 if 0 ≤ cω < p for all ω. (In case char k = 0, all dominant weights
are, by definition, restricted.)

Our next result is a variation on Theorem B, where we add the hypothesis that
the highest weight of ρ is restricted and drop the hypothesis that ρ is faithful.

Theorem C. Let G be a simple linear algebraic group over an algebraically closed
field k. Let ρ : G→ GL(V ) be an irreducible representation for G with a restricted
highest weight.

(1) If g does not act virtually freely on V , then dimV < dimG or gv is a toral
subalgebra for generic v ∈ V .

(2) Suppose char k is special for G and ρ is not the trivial representation. Then
g acts virtually freely on V if and only if dimV > dimG, except for those
cases where (G, char k, V ) appears in Table 4.

G char k V dimV dim ker dρ

Sp6 2 spin 8 14
Sp8 (but not PSp8) 2 spin 16 27

Sp10 2 spin 32 44
Sp12 or PSp12 2 spin 64 65

Table 4. The nontrivial restricted irreducible representations of
simple G with dimV ≤ dimG that are virtually free for g.

We remark that, in the setting of Theorem C and on the level of abstract groups,
Gv(k) is always finite when dim V > dimG by [GuL].

The organization of the paper is as follows. We first (§1) recall properties of g and
the irreducible representations of G, focusing on the case of special characteristic.
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A short section (§2) then recalls results used to constrain the size of gv for generic
v ∈ V . Section 3 studies the case where G has type A1 × · · · × A1, which arises in
handling types B and C. Sections 4 and 5 prove some results on generic stabilizers
by leveraging the Lie algebras of the long and short root subgroups. The next
several sections are devoted to groups by type, each under the assumption that
char k is special: F4 and G2 in §6, Bn in §7, and Cn in §8. In each section, we prove
that, under various hypotheses on the representation V , if dimV is large enough,
then g acts virtually freely on V . We prove Theorem C(2) for each group in its
section. The results based on dim V are far from uniform, so we provide in §9 an
example to show that the uniform result from part I is false as stated if one drops
the hypothesis that char k is not special. We prove Theorem C(1) in a short section
10. To prove Theorem B, it remains to treat the case where the highest weight is
not restricted, which we do in §11. Finally, we prove Theorem A in §12.

We assume throughout that the field k is algebraically closed, as in the first
line of the paper. This hypothesis is used, for example, in Lemma 2.5 and various
results from parts I and II.

Acknowledgements. The referees deserve thanks for their detailed and helpful
comments. We thank Brian Conrad for his advice on group schemes. Guralnick
was partially supported by NSF grants DMS-1600056 and DMS-1901595.

1. Structure of g and V

In this section, we assume that G is a semisimple linear algebraic group over k,
and put g := Lie(G).

Structure of g. We refer to [Hi], [Ho], or [P, §1] for properties of g := Lie(G)
when G is simple. For example, when G is simply connected, we have: (1) g/z(g) is
a reducible G-module if and only if char k is special, and (2) g has a unique proper
maximal G-submodule, which we denote by m. Statement (2) can be seen by direct
computation as in [Ho] or because g is a Weyl module of G in the sense of [J], the
one whose highest weight is the highest root.

Irreducible representations of G when char k 6= 0. Fix a pinning for G, which
includes the data of a maximal torus T and a choice of simple roots ∆. Then
irreducible representations ρ : G→ GL(V ) (up to equivalence) are in bijection with
the set of dominant weights λ ∈ T ∗, i.e., those λ such that 〈λ, δ∨〉 ≥ 0 for all δ ∈ ∆.

Suppose now that p := char k 6= 0. Write λ = λ0 + prλ1 for some r ≥ 1, where
λ0 =

∑
ω cωω and 0 ≤ cω < pr for all ω. If λ0 and pr−1λ1 belong to T ∗ (e.g., if

G is simply connected), then L(λ) ∼= L(λ0) ⊗ L(pr−1λ1)[p] [J, II.3.16], the tensor
product of L(λ0) and a Frobenius twist of L(pr−1λ1). As a representation of g
(forgetting about the action of G(k)), this is the direct sum of dimL(λ1) copies of
L(λ0).

The case where char k is special. For the remainder of this section, suppose
that G is simple and simply connected and char k is special for G.

There is a very special isogeny π that sends G to a simply connected group
whose root system is inverse to the root system of G, see [CGP, §7.1] or [S, §10]
for a concrete description. We put N := kerπ and n := Lie(N) = ker dπ. As N is
normal in G, it follows that the subspace

V n := {v ∈ V | dρ(x)v = 0 for all x ∈ n}
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is a G-invariant submodule of V for every representation ρ : G→ GL(V ).
Put gshort (resp., glong) for the subspace of g spanned by the subalgebras gα for

α a short (resp., long) root. Put t := Lie(T ) and tshort for the subspace spanned by
[gα, g−α] for α a short root.

Examining the tables in [Hi] and [Ho] and the description of g in [CGP, §7.1],
we find that n = tshort ⊕ gshort as a T -module and the following:

Lemma 1.1. Let G be a simple and simply connected split algebraic group over
a field k whose characteristic is special for G. If L is a nonzero and proper G-
invariant subspace of g, then L is one of z(g), n, or m. In particular, every G-
invariant subspace of g is contained in z(g) or contains n.

Remark 1.2. The subspace g< := t⊕ gshort is a Lie p-subalgebra of g; it is the Lie
algebra of the subgroup G< of G generated by T and the short root subgroups, see
§5. As a representation of T , g/g< has weights the long roots and g/m has weights
the long roots and possibly zero (with some multiplicity), so trivially m ⊆ g<. Note
that g< need not be G-invariant.

Remark 1.3. By definition of m, it contains z(g) and n. It turns out that dimm/n ≤
1, compare Lemma 4.1. Beyond this, much variation is possible. For example, for
G = Sp2`, n does not contain z(g) for odd ` ≥ 3 and g< = m for ` ≥ 2.

Irreducible representations of G when char k is special. Now suppose that
char k is special for G, so in particular ∆ has two root lengths. Write a dominant
weight λ as λ =

∑
cδωδ, where cδ ≥ 0 and ωδ is the fundamental weight dual to δ∨

for δ ∈ ∆. We write λ = λs + λ` where λs =
∑
δ short cδωδ and λ` =

∑
δ long cδωδ,

i.e., 〈λs, δ∨〉 = 0 for δ long and 〈λ`, δ∨〉 = 0 for δ short. Steinberg [S] shows that,
when G is simply connected, L(λ) ∼= L(λ`) ⊗ L(λs) and that furthermore L(λ`)
factors through the very special isogeny.

Suppose now that λ is restricted. Then L(λs) is irreducible as a representation of
n [S, p. 52], so Lemma 1.1 shows that the kernel of this representation is contained
in z(g) if λs 6= 0. Similarly, as an n-module, L(λ) is a direct sum of dimL(λ`) copies
of L(λs), and again the kernel of the representation is contained in z(g) if λs 6= 0.

In summary, for λ restricted and G simply connected, we have either (1) λs = 0
and ker dρ ⊇ n, or (2) λs 6= 0 and ker dρ ⊆ z(g).

2. Lemmas for computing gv

Choose a representation ρ : G→ GL(V ). For x ∈ g, put

V x := {v ∈ V | dρ(x)v = 0}
and xG for the G-conjugacy class Ad(G)x of x. Recall the following from part I:

Lemma 2.1. For x ∈ g,

(2.2) xG ∩ gv = ∅ for generic v ∈ V
is implied by:

(2.3) dimxG + dimV x < dimV,

which is implied by:

(2.4)
There exist e > 0 and x1, . . . xe ∈ xG such that the subalgebra s of g
generated by x1, . . . , xe has V s = 0 and e · dimxG < dimV .



6 S. GARIBALDI AND R.M. GURALNICK

We use this in combination with Lemma 2.5 below.
For us, g = Lie(G) and char k = p 6= 0, so the Frobenius morphism on G induces

a p-operation x 7→ x[p] on g, see [SF] for properties. When G is a sub-group-scheme
of GLn and x ∈ g, the element x[p] is the p-th power of x with respect to the typical,
associative multiplication for n-by-n matrices, see [DG, §II.7, p. 274].

An element x ∈ g is nilpotent if x[p]
n

= 0 for some n > 0, toral if x[p] = x, and
semisimple if x is contained in the Lie p-subalgebra of g generated by x[p], cf. [SF,
§2.3]. We recall from part I:

Lemma 2.5. Suppose G is semisimple over an algebraically closed field k of char-
acteristic p > 0, and let h be a subspace of g.

(1) If (2.2) holds for every toral or nilpotent x ∈ g \ h, then gv ⊆ h for generic
v ∈ V .

(2) If h consists of semisimple elements and (2.2) holds for every x ∈ g\h with
x[p] ∈ {0, x}, then gv ⊆ h for generic v in V . �

One typical application of part (2) of the lemma is when h = z(g).

3. A Heisenberg Lie algebra

Let G = Spin2n+1 for some n ≥ 2 over a field k (always assumed algebraically
closed) of characteristic 2. The short root subalgebras of g generate a “Heisenberg”
Lie algebra h of dimension 2n+ 1 such that [h, h] is the 1-dimensional center z(h).
The algebra h is the image of sl×n2 under a central isogeny SL×n2 → SL×n2 /Z where

Z is isomorphic to µ
×(n−1)
2 , and the quotient h/z(h) is the image of sl×n2 → pgl×n2 .

For G = Sp2n for some n ≥ 2 over the same k, the very special isogeny π :
Sp2n → Spin2n+1 has dπ(sp2n) = h, so we may identify h with g/ ker dπ.

Lemma 3.1. Suppose ρ : G → GL(V ) is a representation of G = Spin2n+1 or
Sp2n. In the latter case, assume additionally that dρ vanishes on ker dπ.

(1) If 4n+ dimV z(h) < dimV , then dimxG + dimV x < dimV for all nonzero
x ∈ h.

(2) If V h = 0 and 4n2 < dimV , then dimxG + dimV x < dimV for all non-
central x ∈ h.

Proof. For x nonzero central, dim xG + dimV x = dimV z(h), verifying (1), so sup-
pose x is noncentral.

In case (1), there is a g ∈ G(k) so that [x, xg] is nonzero central in h, so dimV x ≤
1
2 (dimV + dimV z(h)). As dimxG < 2n+ 1, the claimed inequality follows.

In case (2), the Weyl group of G acts transitively on groups of a given length, so
2n conjugates of x generate h, and therefore to prove the claim it suffices to note
that 2n · dimxG < dimV (Lemma 2.1). �

4. Subgroup generated by the long roots

Suppose G is simple and simply connected and char k is special for G. Fix a
maximal torus T in G. The long root subgroups of G (relative to T ) generate
a subgroup G> that is also simply connected and the type of (G>, G) is one of
(A2, G2), (D4, F4), (Dn, Bn) for n ≥ 2, or (An1 , Cn) for n ≥ 2, [CGP, Prop. 7.1.7].
We put g> := Lie(G>), which as a vector space is a direct sum t⊕ glong.

Lemma 4.1. In the notation of the preceding paragraph,
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(1) The composition g> → g→ g/n is onto.
(2) z(g>) + n = m, the unique maximal G-invariant subspace of g.
(3) g> ∩m = z(g>).

Proof. (1) is obvious because g = g> ⊕ gshort as T -modules and gshort ⊆ n.
For (3), as m and g> are T -invariant and glong ∩m = 0, we have m∩ g> ⊆ t. For

z ∈ g> ∩m and xα a root element in g>, [z, xα] ∈ m, so z ∈ z(g>), i.e., (3) holds.
Finally, we have g = g> ⊕ gshort = g> + n, where the second sum is not direct.

Hence m = (g> ∩m) + n, and (3) implies (2). �

Long Root Proposition 4.2. Let G be a simple and simply connected algebraic
group such that char k is special for G. Suppose that ρ : G → GL(V ) vanishes on
the kernel of the very special isogeny. If V has a subquotient W such that W g = 0
and

dimW >


64 if G = F4

20 if G = G2

30 if G = Spin7

4n2 if G = Spin2n+1 with n ≥ 4 or G = Sp2n with n ≥ 2,

then gv ⊆ m for generic v ∈ V .

Proof. We verify, for x ∈ g> \ z(g>) such that x[p] ∈ {0, x}, that

(4.3) dimxG> + dimW x < dimW.

For G = Sp2n with n ≥ 2, we apply Lemma 3.1(2). Otherwise, note that G>
is simple and not Sp2n for any n ≥ 1, so [g>, g>] = g>. Therefore, W [g>,g>] =
W g> = W g = 0. For G = G2, F4, or Spin2n+1 for n ≥ 3, we have (4.3) by [GaGu I,
Th. 12.2], where in case Spin7 we use the identity Spin6 = SL4.

Because (4.3) holds, we deduce that dim xG> + dimV x < dimV (elementary,
see [GaGu I, Example 2.1]). As g> ∩m = z(g>) consists of semisimple elements, it
follows that (g>)v ⊆ m for generic v ∈ V , whence gv ⊆ m. �

5. Subgroup generated by the short roots

Continue the notation of the preceding section. In particular, G is assumed
simply connected and char k is special for G. The root subgroups in G correspond-
ing to short roots generate a subgroup G<, and the type of (G<, G) is (A2, G2),
(D4, F4), (An1 , Bn) for n ≥ 2, or (Dn, Cn) for n ≥ 2 [CGP, Prop. 7.1.7]. We put
g< := Lie(G<), compare Remark 1.2.

Lemma 5.1. For G simply connected of type G2, F4, or Cn with n ≥ 3 such that
char k is special, we have [g<, g<] = n.

Proof. Put G̃< for the simply connected cover of G<. Because G< is simple and

not Sp2n for any n ≥ 1, [g<, g<] is the image of Lie(G̃<) in g< [GaGu I, Lemma
3.1], and in particular it is the subalgebra generated by the root subalgebras of g
corresponding to short roots, which is n. �

Short Root Proposition 5.2. Let G be a simple and simply connected algebraic
group such that char k is special for G, and let V be a representation of G. If V
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has a subquotient W such that W n = 0 and

dimW >


64 if G = F4

20 if G = G2

30 if G = Sp6

4n2 if G = Spin2n+1 with n ≥ 2 or G = Sp2n with n ≥ 4,

then nv ⊆ z(g<) for generic v ∈ V .

For G = Spin2n+1, n = h and z(g<) = Lie(Z(SL×n2 /µ
×(n−1)
2 )) = z(g).

Proof. Let x ∈ n satisfy x[p] ∈ {0, x}. If G = Spin2n+1 for n ≥ 2, we apply Lemma
3.1(2) to see that

(5.3) dimxG< + dimW x < dimW

if x is not central in n. In the other cases, W [g<,g<] = W n = 0, and we apply
[GaGu I, Th. 12.2] to find (5.3) if x is not central in g<.

Then dimxG< + dimV x < dimV . So, for generic v ∈ V , it follows that nv ⊆
z(g<). �

6. Type F4 or G2

Suppose G has type F4 or G2 and char k = 2 or 3 respectively. The maximal
ideal m equals the kernel n of the very special isogeny; it is the unique nonzero and
proper ideal of g. Both n and g/n, as Lie algebras, are the simple quotient g̃/z(g̃),
where g̃ = spin8 or sl3 respectively.

The arguments used in the previous two sections can be extended slightly to give
a result that will be sufficient to handle the cases where G = F4 or G2.

Proposition 6.1. Let G be a simple algebraic group of type F4 or G2 over a field
k such that char k = 2 or 3 respectively. Let ρ : G→ GL(V ) be a representation of
G. If V has a G-subquotient W with W n = 0 and dimW > 240 or 48 respectively,
then for generic v ∈ V , gv = 0.

Proof. We will first verify that, for x ∈ g \ n with x[p] ∈ {0, x}, we have

(6.2) dimxG + dimW x < dimW.

Suppose first that x ∈ g \ n is a long root element, and in particular there is
a maximal torus T so that x is a root element in the long root subalgebra g>.
Then e G>-conjugates of x suffice to generate g>, where (G, e) = (F4, 4) or (G2, 3)
by [GaGu I, Prop. 10.4, 6.4]. As a representation of G>, g is a sum of g> and
three inequivalent 8-dimensional representations (for type F4) or two inequivalent
3-dimensional representations (type G2), so e + 1 G-conjugates of x will generate
g. As

(e+ 1) dimxG ≤ (e+ 1)(dimG− rankG) < dimW,

(6.2) follows.
If x ∈ g \ n is nilpotent, then as in [GaGu I, Remark 11.3] there is a long root

element y in the closure of xG. By the previous paragraph, e + 1 G-conjugates of
y generate g, and as in [GaGu I, Lemma 4.3(1)] the same holds for x. Again (6.2)
follows.

If x ∈ g \ n is toral, then it can be expressed as
∑
cαhα where the sum ranges

over the simple roots α and hα ∈ Lie(T ) corresponds to the coroot α∨. As x 6∈ n,
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cβ 6= 0 for some long simple root β. Arguing as in [GaGu I, Example 4.1] we deduce
that a long root element xβ lies in the closure of xGmG and again we have verified
(6.2).

As the nilpotent and toral elements of gv lie in n for generic v ∈ V , so does all
of gv. Finally we apply the Short Root Proposition 5.2, to see that gv = 0. �

Restricted irreducible representations. Let G = F4 and char k = 2 or G = G2

and char k = 3, and suppose ρ : G → GL(V ) is an irreducible representation with
restricted highest weight λ. Here we prove Theorem C(2) in this case.

If dimV ≤ dimG, then by A.50 and A.49 in [Lü], V is either the natural module
(of dimension 26 or 7, respectively) or the irreducible quotient g/n of the adjoint
representation. For ρ the natural module, ker dρ = 0 and a generic vector has
stabilizer of type D4 or A2 respectively (of dimension 28 or 8 respectively). Note
that this stabilizer has dimension larger than dim g/n, so it meets n, the image of g
under the very special isogeny. It follows that composing the natural representation
with the very special isogeny gives a representation with ker dρ = n that is not
virtually free; this is g/n.

If dimV > 240 or 48 respectively, then V is virtually free by Proposition 6.1.
Table A.50 in [Lü] shows that we have considered all restricted irreducible repre-
sentations of F4, so the proof of Theorem C(2) is complete in that case.

For G2, there are two remaining possibilities for ρ, according to Table A.49.
The first, with highest weight 2ω2 (numbered as in Table 2), has dimension 27
and ker dρ = 0. It factors through the representation of SO7 on the irreducible
component of S2(k7). As that representation is generically free for so7 by [GaGu I,
Lemma 13.1], so is dρ. Alternatively, one can verify that this dρ is virtually free
using a computer.

The last possibility for ρ, with highest weight 2ω1, is obtained by composing
the representation in the preceding paragraph with the very special isogeny. This
representation is virtually free by the considerations in the previous paragraph, or
by Prop. 4.2, completing the proof of Theorem C(2) for G of type G2.

7. Type Bn with n ≥ 2

For G = Spin2n+1 for some n ≥ 2 over a field k of characteristic 2, the Lie
algebra g is uniserial where the subalgebra n is the Heisenberg Lie algebra h from
§3.

Any representation of G is a direct sum V1 ⊕ V2 where V
z(g)
1 = 0 and z(g) acts

trivially on V2; these are just the eigenspaces of z(g).

Representations with V z(g) = 0.

Example 7.1 (spin representation). The spin representation V := L(ω1) of G
(where we number the weights of G as in Table 2) is generically free if and only if
n ≥ 7 [GaGu 17], if and only if dim V > dimG. We remark that one can check with
a computer that for n = 2, 3, 4, 5, 6, a sum of 4, 4, 3, 2, 2 copies of V is generically
free for spin2n+1.

Example 7.2. If V is an irreducible representation of G and V z(g) = 0, then
V ∼= L(ω1) ⊗ W for some irreducible representation W . This follows from the
discussion in section 1 because δ1 is the only short simple root.
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Example 7.3. Suppose x ∈ so2n+1 has x[2] = 0 and rank r > 0. The largest
possible conjugacy classes for x have a 4-dimensional indecomposable summand
W2(2) or a 3-dimensional indecomposable summand D(2) (following the notation
in [He] or [LiS, §5.6]), and the centralizer in SO2n+1 of one of these largest classes
has dimension

r∑
i=1

2(i− 1) +
2n+1−r∑
i=r+1

(i− 1) =

(
2n+ 1− r

2

)
+

(
r

2

)
.

Consequently, dim xSO2n+1 ≤ r(2n+ 1− r). (Compare [GaGu I, Example 10.5] for
SO2n.)

Lemma 7.4. Let G = Spin2n+1 for some n ≥ 2 over a field k of characteristic 2,

and suppose that V is a representation of G such that V z(g) = 0. Then:

(1) For noncentral x ∈ g, dimV x ≤ 3
4 dimV .

(2) If dimV > 4n2 + 4n, then (a) dimxG + dimV x < dimV for all noncentral
x ∈ g such that x[2] ∈ {0, x} and (b) V is generically free for g.

(3) If n ≥ 7, then V is generically free for g.

Proof. We first prove (1). By passing to orbit closures, it suffices to prove this in
case x is nilpotent. The crux case is where V is the spin representation, where the
claim holds if n = 2 (because dimV = 4) and if n ≥ 3 by [GaGu 17, Prop. 2.1(i)].

If V is irreducible, then it is L(ω1) ⊗W for some irreducible W . In this case,
dimV x ≤ (dimL(ω1)x)(dimW ) as in [GaGu II, Lemma 11.1], proving the claim.
Finally, for a composition series 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vr = V of V , we have
(Vi/Vi−1)z(g) = 0 because z(g) acts semisimply on V and dim(V ′)x ≤ 3

4 dimV for

V ′ := ⊕Vi/Vi−1, so also for V , proving that dimV x ≤ 3
4 dimV .

To prove (2), fix noncentral x ∈ g such that x[2] ∈ {0, x}. If x[2] = 0, then the
image x̄ ∈ so2n+1 of x — as a (2n + 1)-by-(2n + 1) matrix — has rank r > 0 so
dim x̄SO2n+1 ≤ r(2n− r+ 1), whence dim xSpin2n+1 ≤ r(2n− r+ 1) because the map
spin2n+1 → so2n+1 is injective on nilpotents. (Indeed, if x and x+z are square-zero

and z is central in spin2n+1, then 0 = (x+ z)[2] = z[2], so z = 0.) If x[2] = x, then
x̄ has even rank r, and the centralizer of x has type Dr/2 ×Bn−r/2 for some r; we

find the same formula for dim xG. The upper bound on dim xG is maximized at
r = n+ 1/2, so dimxG ≤ n2 + n. Thus, (a) holds, and (b) follows as in §2.

Suppose now that n ≥ 7. If V is the spin representation, then it is generically
free (Example 7.1). If V is irreducible but not the spin representation, i.e., V ∼=
(spin)⊗W for some nontrivial W , then dimV ≥ 2n2n > 4n2 + 4n, and again V is
generically free. For general V , each irreducible representation in its composition
series is generically free (by the preceding), so V is as well. �

Note the following corollary.

Corollary 7.5. Let G = Spin2n+1 for some n ≥ 2 over a field k of characteristic

2, and suppose that V is an irreducible representation of G such that V z(g) = 0. If
dimV > dimG, then V is generically free.

Proof. Write V = L(ω1) ⊗W as in Example 7.2. If W is trivial, then the claim
is from Example 7.1. If n ≥ 7, then the claim is Lemma 7.4. So suppose W is
nontrivial and 2 ≤ n < 7. As dimW ≥ 2n, we have dimV > 4n2 + 4n unless n = 2
or 3 and dimW = 2n.



GENERICALLY FREE REPRESENTATIONS: EXTREMELY BAD CHARACTERISTIC 11

So suppose n = 2 or 3 and W is the orthogonal module or a nontrivial Frobenius
twist of it. In the latter case, V is a direct sum of 2n copies of the spin module
and so is generically free (Example 7.1). In the former case, one can verify with
a computer that V is generically free, as was recorded in [GaGu II, Examples 5.2,
5.3]. �

Note that the only irreducible modules with V z(g) = 0 and dimV ≤ dimG are
the spin modules for n ≤ 6.

Representations killed by z(g). We have dealt with those representations V
of G such that V z(g) = 0. If z(g)V = 0, then the highest weight of each of the
composition factors of V lies in the root lattice. We have:

Lemma 7.6. In a root system of type Bn (n ≥ 2), for λ in the root lattice and α
a short root, 〈α∨, λ〉 is an even integer.

Proof. Because the Weyl group acts transitively on short roots, we may assume
that α is the short simple root. Because the expression 〈α∨, λ〉 is linear in λ, we
may assume that λ is a simple root. Then the claim follows from looking at the
Cartan matrix. �

We note for later use:

Lemma 7.7. If char k = 2 and ρ : SO2n+1 → GL(V ) is an irreducible representa-
tion for some n ≥ 2, then ρ is not faithful and the composition of spin2n+1 → so2n+1

with dρ vanishes on n.

Proof. The highest weight λ of ρ is in the root lattice (because SO2n+1 is adjoint),
so Lemma 7.6 shows that λ vanishes on coroots corresponding to short roots. Thus
by [S, Th. 11.1] the composition spin2n+1 → so2n+1 → gl(V ) vanishes on the ideal
n of spin2n+1 for n as in §1, which has nonzero image in so2n+1. �

Remark 7.8. Lemma 7.6 can be viewed, by way of the duality between the root
systems of types B and C, as equivalent to the statement that for type C every
long root is 2 times a weight. From this perspective, Lemma 7.7 is the analogue for
type B of the well-known fact that, when char k = 2, Cartan subalgebras in sp2n
are properly larger than maximal toral subalgebras.

By the way, Lemmas 7.6 and 7.7 also apply to type A1, mutatis mutandis. See
[GaGu I, Example 3.3] for the version of Lemma 7.7.

The very special isogeny G = Spin2n+1 → Sp2n is another way of viewing the
trivial statement that the alternating bilinear form on the natural module of G is
G-invariant. It factors through Spin2n+1 → SO2n+1, and the image g/n of g in
sp2n is isomorphic to the derived subalgebra of so2n, which is a simple G-module
(i.e., n = m) if n is odd and has a 1-dimensional center if n is even (i.e., n has
codimension 1 in m).

Lemma 7.9. Let ρ : Spin2n+1 → GL(V ) be a representation over a field of
characteristic 2, for some n ≥ 3. If ρ factors through the very special isogeny,
V spin2n+1 = 0, and dimV > 4n2, then spin2n+1 and so2n+1 act virtually freely on
V .

Proof. By hypothesis, ρ factors through Spin2n+1 → SO2n+1 → Sp2n. The image
of so2n+1 in sp2n is so2n, the unique maximal Sp2n-invariant ideal in sp2n and the
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Lie algebra of a subgroup SO2n ⊂ Sp2n. It suffices to verify that so2n acts virtually
freely on V .

The image of spin2n+1 in so2n is [so2n, so2n], so V [so2n,so2n] = 0. Applying now
[GaGu I, Th. A] gives the claim. �

Corollary 7.10. Let V be a representation of G := Spin2n+1 for some n ≥ 2 and
assume char k = 2. If V g = 0 and dimV > 8n2 + 4n, then a generic v ∈ V has
gv ⊆ m and g acts virtually freely on V .

Proof. Write V = V1⊕V2 as at the start of this section. If dim V1 > 4n2 + 4n, then
V1 and so V is generically free. Otherwise dim V2 > 4n2 and the group of type D
has generic stabilizer contained in its center by [GaGu I]. �

One can do better by intersecting the generic stabilizers for V1 and V2.

Example 7.11 (natural representation). Here we treat the natural module, V :=
L(ωn) for n ≥ 2. We have dimV = 2n < dimG. As in the proof of Lemma 7.9, the
image of so2n+1 in gl(V ) is a copy of so2n which acts on V with generic stabilizer
so2n−1, hence so2n+1 acts on V with kernel n and generic stabilizer n + so2n−1.

Note that V g = V so2n = 0. For W := ⊕cV with c > 2n, Lemma 7.9 says that
W is virtually free. (Compare [GaGu II, Example 10.3] for the case char k 6= 2.)

Example 7.12 (adjoint representation). Here we treat V := L(ωn−1) for n ≥ 3,
the irreducible quotient of the Weyl module spin2n+1. As in §4, the long root
subalgebra g> is spin2n, and spin2n+1 = n + spin2n. This V is the irreducible
quotient of the spin2n-module spin2n. By [GaGu I, Example 3.4], the stabilizer in
spin2n of a generic vector v ∈ V is Lie(T ) for T a maximal torus depending on v
and we conclude that gv = n + Lie(T ). (Alternatively, this representation factors
through the very special isogeny and one can find gv by pulling back the stabilizer
in sp2n described in Example 8.7.)

Restricted irreducible representations. Let V be a restricted irreducible rep-
resentation of a group G of type Bn for some n ≥ 2 over a field k of characteristic
2; we prove Theorem C(2) for this G. The highest weight λ =

∑n
i=1 ciωi of V has

ci ∈ {0, 1} for all i. If λ = 0, equivalently ker dρ = g, then there is nothing to do.
If c1 6= 0, then we are in the case of Example 7.2 and Corollary 7.5, so ker ρ = 0

and there is nothing more to do.
So assume that c1 = 0. Thus, the highest weight λ belongs to the root lattice

and the representation ρ factors through not just SO2n+1 but Sp2n. To prove
Theorem C(2), it suffices to show that (1) spin2n+1 does not act virtually freely
when dimV ≤ dimG and (2) so2n+1 does act virtually freely when dim V > dimG.

Assume first that n > 11. Applying Lemma 7.9, we may assume that dim V ≤
4n2, so dimV < n3. By [Lü], V is either the 2n-dimensional representation L(ωn)
as in Example 7.11 or it is L(ωn−1) as in Example 7.12.

Next consider 4 ≤ n ≤ 11. Applying again Lemma 7.9, we may assume that
dimV ≤ 4n2. Examining the tables in [Lü], we find that the only possibilities for
V that have not yet been considered are the cases where n = 4 or 5, λ = ωn−2, and
dimV = 48 or 100 respectively. In both cases, n is in the kernel of the representation
and computer calculations with Magma as in [GaGu II] produce a vector in V with
stabilizer n. Note that dimV > dimG in both cases.

If n = 2, the only restricted irreducible module is the orthogonal 4-dimensional
module and clearly the result holds.
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If n = 3, the only irreducible restricted modules with c1 = 0 are the orthogonal
module (Example 7.11), the module with high weight ω2 of dimension 14 (Example
7.12), and the module with high weight ω2 + ω3 of dimension 64. We verify with a
computer that Theorem C(2) holds in the latter case.

Example 7.13 (Spin9). For later reference, we examine more carefully the spin
representation V of G = Spin9 when char k = 2. The stabilizer Gv of a generic
vector v ∈ V is isomorphic to Spin7 [GaGu 17] and is contained in a subgroup Spin8

in G (generated by long root subgroups as in §4) in such a way that the composition
Spin7 ⊂ Spin8 ⊂ Spin9 → SO9 is injective. (See for example [V] for a discussion of
the first inclusion in the case k = R.) In particular, z(spin7) 6= z(spin9).

Now z(spin9) ⊂ z(spin8), where the terms have dimensions 1 and 2 respectively.
We claim that furthermore z(spin7) ⊂ z(spin8) so z(spin7) + z(spin9) = z(spin8). To
see this, restrict V to Spin8 to find a direct sum V1⊕V2 of inequivalent 8-dimensional
irreducible representations. One Vi restricts to be the spin representation of Spin7

and the other is uniserial with composition factors of dimension 1, 6, 1, correspond-
ing to the inclusion SO7 ⊂ SO8. From this we can read off the action of the central
µ2 of Spin7 on V and we find that it is central in Spin8, proving the claim.

We have spin8∩m = z(spin8) by Lemma 4.1 and spin8∩n = z(spin9). Using that
gv = spin7, we conclude that nv = 0 and mv = z(spin7).

8. Type Cn with n ≥ 3

Alternating bilinear forms. The simply connected group Sp2n of type Cn can
be viewed as the automorphism group of a nondegenerate alternating bilinear form.
We now recall some facts about this correspondence.

Example 8.1. Suppose b is a nondegenerate alternating bilinear form on a finite-
dimensional vector space V over a field F (of any characteristic). This gives an
“adjoint” involution σ : EndF (V ) → EndF (V ) such that b(Tv, v′) = b(v, σ(T )v′)
for all T ∈ EndF (V ) and v, v′ ∈ V . If x ∈ EndF (V ) is such that σ(x) = ±x,
then we find an equation b(xv, v′) = ±b(v, xv′). By taking v ∈ kerx or (imx)⊥

and allowing v′ to vary over V we find each of the containments between ker x and
(imx)⊥, i.e., ker x = (imx)⊥. If additionally x2 = x (i.e., x is a projection), then
V is an orthogonal direct sum (ker x)⊕ (imx).

If x ∈ EndF (V ) is such that σ(x)x = 0, then b(xv, xv′) = 0 for all v, v′ ∈ V and
we find that im x ⊆ (imx)⊥, i.e., im x is totally singular.

We may view Sp2n as the subgroup of GL2n preserving the bilinear form b(v, v′) :=

v>Jv′ where J =
(

0 In
−In 0

)
. The Lie algebra sp2n of Sp2n consists of matrices(

A B
C −A>

)
for A,B,C ∈ gln such that B> = B and C> = C, compare [KMRT,

§25.A]. In the notation of Example 8.1, σ(g) = −Jg>J and sp2n consists of those
x ∈ gl2n such that σ(x) + x = 0. (In particular, ker x = (imx)⊥ for x ∈ sp2n. If
moreover char k = 2 and x[2] = 0, then σ(x)x = x[2] = 0, so imx is totally singular.)

The group GSp2n of similarities of b is the sub-group-scheme of GL2n generated
by Sp2n and the scalar transformations. Its Lie algebra consists of those x ∈ gl2n

such that σ(x) + x ∈ kI2n, i.e., x of the form
(
A B
C µIn−A>

)
for A,B,C ∈ gln

and µ ∈ k, where B> = B and C> = C. Then sp2n ⊂ gsp2n, the quotient
GSp2n /Gm ∼= Sp2n /µ2 is the adjoint group PSp2n, and the natural map gsp2n →
psp2n is surjective.
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The preceding two paragraphs apply to any field k; we now explicitly assume
char k = 2 and describe the toral elements in gsp2n, i.e., those x such that x2 = x.
As such an x is a projection, it gives a decomposition of k2n as a direct sum of
vector spaces (ker x) ⊕ (imx). If x belongs to sp2n, then this is an orthogonal
decomposition as in Example 8.1 where the restrictions of b to kerx and imx are
nondegenerate. Otherwise, σ(x) + x = I2n, so

b(xv, xv′) = b((I2n − σ(x))v, xv′) = b(v, xv′)− b(v, x2v′) = 0 (v, v′ ∈ V ).

That is, imx is totally isotropic. Analogously, 1−x ∈ gsp2n is toral and so ker x =
im(1− x) is also totally isotropic. In sum, we find that ker x and imx are maximal
totally isotropic subspaces.

Dimension bounds. For the remainder of this section, we set G = Sp2n with
n ≥ 3 over a field k of characteristic 2. We first make some remarks about nilpotent
elements of square 0.

Lemma 8.2. Let x ∈ sp2n for n ≥ 3 have x[2] = 0 and rank r > 0. Then
dimxSp2n ≤ r(2n+ 1)− r2.

Proof #1. Fix a totally singular r-dimensional subspace W of the natural module
V and let P be the maximal parabolic subgroup of Sp2n stabilizing W . Let C be
the set of elements y in g with y[2] = 0 and im y ⊆ W . As above, ker y = (im y)⊥

and in particular ker y ⊇W⊥. So we see that C is the center of the nilpotent radical
of Lie(P ) and can be identified with the space of r-by-r symmetric matrices. In
particular, dimC = r(r + 1)/2.

Now let x ∈ g with x[2] = 0 and imx = W . Consider the map f : G×C → g given
by f(g, y) = Ad(g)y. Every fiber has dimension at least dimP , since f(P×C) = C.
Thus the dimension of the image of f is at most dimC + dimG/P = r(r + 1) +
2r(n− r) = r(2n+ 1)− r2. Since xG is contained in the image of f , we obtain the
same inequality for dim xG.

We remark that, by Richardson, the Levi subgroup of P has a dense orbit on
C, whence the largest such class has dimension precisely r(2n+ 1)− r2. Note also
that the fact that im x is totally singular shows that x is a sum of commuting root
elements. If r is odd, then we can always take x to be a sum of commuting long
root elements. If r is even, then we can always take x to be either a commuting sum
of long root elements (the larger class) or a sum of commuting short root elements.
Note that the smaller class is contained in the closure of the larger class. It is well
known (cf. [LiS, Chap. 4]) that if x ∈ g has even rank and x[2] = 0, then x is an
element of so2n. �

Proof #2. There are two possibilities for the conjugacy class of x in case r is even,
see [He, 4.4] or [LiS, p. 70]. We focus on the larger class; regardless of the parity
of r we may assume that the restriction of the natural module to x includes a 2-
dimensional summand denoted by V (2) in [LiS]. For this x, the function denoted by
χ in the references amounts to 1 7→ 0 and 2 7→ 1. The formulas in these references
now give that the centralizer of x in Sp2n has dimension

r∑
i=1

(2i− 1) +
2n−r∑
i=r+1

i = 2n− r +

(
2n− r

2

)
+

(
r

2

)
. �
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The Lie algebra g = sp2n has derived subalgebra m = so2n of codimension 2n;
it is the unique maximal G-invariant ideal in g. The subalgebra n = ker dπ has
codimension 1 in m and is [m,m]. The quotient g/n is the Heisenberg Lie algebra
from section 3. The unique maximal ideal m also contains z(g) (dimension 1). The
center z(g) is contained in n if and only if n is even.

Lemma 8.3. Let G = Sp2n for some n ≥ 3 over a field k of characteristic 2, and
let x ∈ sp2n be noncentral.

(1) If x is toral, then max{4, dn/se} conjugates of x suffice to generate a sub-
algebra containing n, where 2s is the dimension of the smallest eigenspace.

(2) If x[2] = 0 and x has even rank 2s > 0 or odd rank 2s + 1 ≥ 3, then
max{4, dn/se} conjugates of x generate a subalgebra containing n.

(3) If x[2] = 0 and x has rank 1, then max{8, 2n} conjugates of x generate a
subalgebra containing n.

Proof. If x is toral, or is nilpotent with even rank, then x is in m = so2n (cf. the
remarks in proof #1 of Lemma 8.2), and the claim is [GaGu I, Prop. 10.4].

If x[2] = 0 and x rank 2s + 1 ≥ 3, the description of the classes given in the
proof of Lemma 8.2 shows that the closure of xSp2n contains a y of rank 2s such
that y[2] = 0. As max{4, dn/se} conjugates of y suffice to generate a subalgebra
containing n, the same holds for x.

If x[2] = 0 and x has rank 1, we choose y conjugate to x such that (x+ y)[2] = 0
and x+ y has rank 2. By (2), max{4, n} conjugates of x+ y generate a subalgebra
containing n, whence (3) holds. �

Proposition 8.4. Let (V, ρ) be a representation of G = Sp2n or PSp2n with n ≥ 3
over a field k of characteristic 2. If V n = 0 and

dimV >


48 if G = Sp6 or PSp6 (i.e., n = 3)

72 if G = Sp8;

80 if G = PSp8; and

6n2 − 6n if n ≥ 5,

then g acts virtually freely on V .

In the statement, in case G = PSp2n, ρ induces a representation of Sp2n and so
it still makes sense to speak of the action of n ⊂ sp2n on V .

Proof. For noncentral x ∈ g such that x[2] ∈ {0, x}, we check that x does not meet
gv for generic v ∈ V , and therefore that gv ⊆ z(g).

Case G = Sp2n for n ≥ 4. Suppose first that x[2] = x, or x[2] = 0 and x has even
rank. Then x belongs to m = so2n and is not itself central in m. The Short Root
Proposition 5.2 gives that for dim V > 4n2, x does not meet mv for generic v ∈ V .

We may assume that x[2] = 0 and x has odd rank r = 2s + 1, where dim xG is
bounded as in Lemma 8.2. We find an e > 0 such that e conjugates of x generate
a subalgebra of g containing the image of n and such that e · dimxG is at most
the right side of the inequality in the statement. This verifies by Lemmas 2.1 and
2.5(2) that x does not meet gv for generic v ∈ V .

If r = 1, then applying Lemma 8.3(3) gives that e · dimxG ≤ 4nmax{4, n}.
If r = 3, then dim xG ≤ 6(n − 1). Applying Lemma 8.3(2) gives e dimxG ≤

6(n− 1) max{4, n}.
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Suppose r ≥ 5 (so also n ≥ 5). If s ≥ n/4, then 4 conjugates suffice to generate
a subalgebra containing n. As dimxG ≤ 2r(n − s), it suffices to bound 8r(n − s).
This is maximized at r = n+ 1

2 and so we obtain a bound of 4n2 + 4n.

If s < n/4, then it suffices to bound (n/s + 1)(2r)(n − s) = (n2 − s2)(2r/s) ≤
5n2 − 5s2 ≤ 5n2 − 20.

Case G = Sp6. As in the n ≥ 4 case, we may reduce to the case where x[2] = 0 and
x has odd rank.

If x has rank 3, then dim xG ≤ 12 and we get a bound of 48. If x is a long root
element, then 6 conjugates suffice to generate sp6 (by reducing to the rank 2 case
and using generation by 3 conjugates). Then 6 dim xG = 36 and the result holds.

Case G = PSp2n for n ≥ 3. For GSp2n := (Sp2n×Gm)/µ2, the group of similarities
of the bilinear form, we have a natural surjection GSp2n → PSp2n whose differential
gsp2n → psp2n is surjective and has central kernel k, the scalar matrices. Let
x ∈ gsp2n be noncentral such that x[2] ∈ {0, x}. If x belongs to sp2n, we have
already verified that x cannot lie in (sp2n)v for generic v ∈ V . So assume that x
is toral and does not belong to sp2n, i.e., is the projection on a maximal totally
isotropic subspace as in the paragraph preceding the statement. Up to conjugacy
we may assume that x is

(
0n 0n
0n In

)
. The nilpotent linear transformation y :=

(
0n In
0n 0n

)
belongs to sp2n, has rank n and satisfies y[2] = 0. Note that x+ ty is conjugate to
x for any scalar t. It follows that y is in the closure of xGmG.

Lemma 8.3 gives that 4 conjugates of y suffice to generate a subalgebra of sp2n
containing n. Take M = n = [so2n, so2n] and N = z(n), so M/N is the irreducible
representation L(ωn−1) of G whose highest weight is the highest short root. As

dim gsp2n/M = 2n+ 1 < 2n2 − n− 1 ≤ dimM/N,

[GaGu I, Lemma 4.3(3)] says that 4 conjugates of x also suffice to generate a sub-
algebra of sp2n containing n. On the other hand, dim xGSp2n = n2 + n, giving
e · dimxGSp2n ≤ 4n2 + 4n. Therefore, it suffices to take the bound for PSp2n to be
the maximum of 4n2 + 4n and the bound for Sp2n. �

Restricted irreducible representations. Let V be a restricted irreducible rep-
resentation of an algebraic group G of type Cn with n ≥ 3 over k of characteristic
2; we aim to prove Theorem C(2) for this G. The highest weight λ =

∑n
i=1 ciωi,

numbered as in Table 2, has ci ∈ {0, 1} for all i. If λ = 0, equivalently ker dρ = g,
then there is nothing to do.

Example 8.5 (“spin” representation). Put G′ := Spin2n+1. Composing the very
special isogeny Sp2n → G′ with the (injective) spin representation of G′ of dimen-
sion 2n yields the irreducible representation (V, ρ) = L(ω1) of Sp2n. For n ≥ 7,
dimV > dimG and the stabilizer (g′)v of a generic v ∈ V is zero [GaGu 17, Th. 1.1],
so (sp2n)v = ker dρ.

For 3 ≤ n < 7, dimV < dim Sp2n and one can check using a computer that there
exist vectors in V whose stabilizer is ker dρ, therefore, sp2n acts virtually freely on
V . Alternatively, for n = 3, 5, 6 and generic v ∈ V , (Spin2n+1)v is G2, SL5 oZ/2,
(SL3× SL3) oZ/2 respectively [GaGu 17]; each of these has a Lie algebra that is a
direct sum of simples, and so it can not meet the solvable ideal that is the image
of sp2n in spin2n+1.

For n even, the representation factors through PSp2n. For n ≥ 8 and n = 6,
psp2n acts virtually freely as in the preceding two paragraphs. For n = 4, the
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image of psp8 in spin9 is the maximal proper Spin9-submodule, for which a generic
vector v in the spin representation has a 1-dimensional stabilizer (Example 7.13),
i.e., dim(psp8)v/ ker dρ = 1, i.e., psp8 does not act virtually freely.

Therefore, we have addressed the cases where λs = 0, i.e., λ ∈ {0, ω1}, so we
now assume that λs 6= 0, whence, V n = 0. As this excludes all the representations
in Table 4, our task is to prove that (1) sp2n does not act virtually freely if dim V ≤
2n2 + n and (2) psp2n acts virtually freely if dim V > 2n2 + n.

Example 8.6 (natural representation). Here we treat V := L(ωn), the natural
representation of Sp2n, which has dimV = 2n < dim Sp2n. In this case Sp2n is
transitive on all nonzero vectors and so we see the generic stabilizer is the de-
rived subalgebra of the maximal parabolic subalgebra that is the stabilizer of a
1-dimensional space.

Example 8.7 (“∧2” representation). Let V := L(ωn−1), which has dimV < dimG.
We will show that the generic stabilizer in Sp2n is A1 × · · · × A1 (more precisely
the stabilizer of n pairwise orthogonal two-dimensional non-degenerate subspaces),
so V is virtually free for neither sp2n nor for psp2n.

Let M be the natural module for Sp2n, of dimension 2n. Let W = ∧2M which
we can identify with the set of skew adjoint operators on M , i.e., the linear maps
T : M → M with (Tv, v) = 0 for all v ∈ M . If n is odd, then W ∼= k ⊕ V . If
n is even, then W is uniserial with 1-dimensional socle and head with V as the
nontrivial composition factor. The unique submodule W0 of codimension 1 in each
case consists of those elements T with reduced trace equal to 0.

It follows as in [GoGu] or [GaGu 15, Example 8.5] that a generic element T of
W (or W0) is semisimple and has n distinct eigenvalues each of multiplicity 2. It
follows that, as a group scheme, the stabilizer of such an element is as given and so
the result holds for n odd.

Assume that n ≥ 4 is even. Note that a generic element T of W also has the
property that the n(n − 1)/2 differences of the eigenvalues of T are distinct. It
follows easily that the stabilizer of such an element in V = W0/W

Sp2n is the same
as in W0 and the result follows.

If n > 11 and dimV ≤ 6n2−6n, then V is L(ωn) or L(ωn−1) by [Lü], so we may
assume 3 ≤ n ≤ 11. Therefore we are reduced to considering Tables A.32–A.40
in [Lü], one table for each value of n. In those tables, the representations V not
already handled by Prop. 8.4 or Examples 8.5, 8.6, 8.7 are: L(ωn−2) (“∧3”) for
Sp2n with n = 4, 5 and the representation L(ω1 + ω3) of PSp6 of dimension 48. A
computer check verifies that g acts virtually freely on these representations.

As we have verified Theorem C(2) for groups of type C (in this section), B (in
section 7), and F4 and G2 (in section 6), the proof is complete.

9. A large representation that is not virtually free

In this section, G is a simple and simply connected algebraic group over k and
char k is special for G. The main theorem of part I includes a statement of the
following type: If char k is not special and V is a G-module with a subquotient X
such that X [g,g] = 0 and dimX is big enough, then g acts virtually freely on V .
Example 9.3 below shows that such a result does not hold verbatim when char k is
special.
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As in §1, we put n for the kernel of the (differential of the) very special isogeny
in g = Lie(G).

Lemma 9.1. For any representation V of any Lie algebra d, we have: (V/V d)d ⊆
V [d,d]/V d. In particular, if d = [d, d], then (V/V d)d = 0.

Proof. Suppose for some v ∈ V that zv ∈ V d for all z ∈ d. For x, y ∈ d, we have
[x, y]v = x(yv)− y(xv) = 0, i.e., v ∈ V [d,d]. �

Lemma 9.2. For G simple and simply connected but not Sp4 over a field k such
that char k is special, we have:

(1) n is not virtually free as an n-module.
(2) n/n[g,g] 6= 0 and (n/n[g,g])[g,g] = 0.

We ignore what happens in the omitted case of Sp4.

Proof. We first verify (1). If G has type G2 or F4, then n is the simple quotient of
sl3 or spin8 by its center. Thus n acts on n with trivial kernel and the stabilizer of
a generic element of n is the image of a maximal torus in sl3 or spin8, of dimension
1 or 2.

If G has type Cn with n ≥ 3, then n = [so2n, so2n], of codimension 1 in
[g, g] = so2n. Then n[g,g] = n ∩ z(so2n) and the quotient n/n[g,g] is the irreducible
representation of so2n with highest weight the highest root. Since the quotient is
not virtually free for n as in [GaGu I, Example 3.4] (using that G 6= Sp4), neither
is n itself. (Note that this also gives (2) in this case.)

If G has type Bn with n ≥ 2, then n = h, the Heisenberg algebra from §3. For a
generic h ∈ h, the map x 7→ [x, h] ∈ z(h) is a nonzero linear map, so has kernel of
codimension 1, completing the proof of (1).

Now consider (2). In the remaining cases where G has type Bn with n ≥ 3, G2,
or F4, the algebra g is perfect (immediately giving the second claim by Lemma 9.1),
so n[g,g] = ng = n ∩ z(g), which is zero for type G2 and F4 and has codimension 2n
in n for type Bn. �

Example 9.3. Let G be as in Lemma 9.2 and let U be a representation of G on
which g acts with kernel n. For G of type Bn with n ≥ 3, we take U to be the
natural irreducible representation of dimension 2n. For type G2 and F4, we take
U = g/n. For type Cn with n ≥ 3, g/n is the Heisenberg subalgebra in spin2n+1

and we take U to be the spin representation. Note that for types Bn, F4, and G2,
the algebra g is perfect and U is irreducible so U [g,g] = 0. For type Cn, [g, g] maps
to the center of spin2n+1, and again we have U [g,g] = 0.

Now take W to be a finite sum of enough copies of U so that g acts virtually
freely on W , compare Example 7.11 for type Bn and Example 7.1 for type Cn. For
types F4 and G2, take W = U ⊕ U .

Let V = n⊕
⊕m

W for W as in the preceding paragraph. The subquotient X =
V/V [g,g] = n/n[g,g]⊕

⊕m
W has, by Lemma 9.2, X [g,g] = 0 and dimX > m dimW

can be made arbitrarily large by increasing m. On the other hand, for a generic
vector v = (n,w1, . . . , wm) ∈ V , the stabilizer gv equals nn, so by Lemma 9.2 g
does not act virtually freely on V .
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10. Proof of Theorem C(1)

We now prove claim (1) of Theorem C. Recall that ρ : G → GL(V ) is assumed
irreducible with restricted highest weight and g does not act virtually free on V .

If char k is special, we apply part (2) of Theorem C to see that dim V ≤ dimG.
If char k is not special, then the kernel of dρ is a central toral subalgebra, so we
can assume ρ is faithful, and apply Theorem A from [GaGu II] (quoted here as the
case of Theorem A where char k is not special), which says that dim V ≤ dimG or
(G, char k, V ) belongs to Table 1, in which case gv is a toral subalgebra.

It remains to treat the case where dimG = dimV . The tables in [Lü] show that
V is the adjoint representation and char k is not special, so gv is a toral subalgebra
for generic v. �

11. Proof of Theorem B

The goal of this section is to complete the proof of Theorem B, so we adopt its
hypotheses. In particular, char k is assumed to be special for G and ρ is faithful.
Note that V n = 0; otherwise, as V is irreducible, V n = V and dρ would not be
faithful.

Write the highest weight λ of ρ as λ0+pλ1 where λ0, λ1 are dominant, p = char k,
and λ0 is restricted. Assume λ1 6= 0 for otherwise we are done by Theorem C,
because the representations in Table 4 are not faithful. As G acts faithfully, it
follows as in [GaGu II, Lemma 1.1] that λ0 6= 0 and dimV > dimG. We will verify
that g acts generically freely on V .

As λ ∈ T ∗ and pλ1 is in the root lattice hence in T ∗, it follows that λ0 is
also in T ∗. Therefore, the representations L(λ0) and L(pλ1) are representations of
G. The representation L(λ0) ⊗ L(pλ1) is a representation of G that is irreducible
(because its restriction to the simply connected cover of G is the representation
L(λ0)⊗ L(λ1)[p]) and has highest weight λ, so it is equivalent to V .

We will repeatedly use below that for any representation X of G and any e > 0,
the representation X ⊗X [p]e is virtually free for g, see [GaGu II, Lemma 10.2].

Type C. Suppose first that G has type Cn for some n ≥ 3. The smallest nontrivial
irreducible representation of Sp2n is the natural representation of dimension 2n. If
dimL(λ0) = dimL(pλ1) = 2n, then G = Sp2n and L(pλ1) is a Frobenius twist of
L(λ0), so V is generically free as in the preceding paragraph. Otherwise, at least
one of dimL(λ0), dimL(pλ1) is greater than 2n. The second smallest nontrivial
irreducible representation of Sp2n is L(ωn−1) of dimension

s(n) =

{
2n2 − n− 1 if n is odd;

2n2 − n− 2 if n is even.

So dimV ≥ 2n s(n), the values of which are as follows:

n 3 4 ≥ 5
2n s(n) 84 208 > 6n2 + 6n

Therefore, G acts generically freely by Prop. 8.4.

G simply connected. We are reduced to considering G of type Bn for n ≥ 2, F4, or
G2. By Lemma 7.7, G is simply connected, and therefore V ∼= L(λ0)⊗L(λ1)[p]. As
a representation of g, this is a sum of dimL(λ1) copies of L(λ0), and in particular
L(λ0) is itself faithful. Put m for the dimension of the smallest nontrivial irreducible
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representation of G, which is 2n (type Bn), 26 (type F4), or 7 (type G2). Then V
contains the g-submodule X := ⊕mL(λ0) on which g acts faithfully, and we will
show that g acts generically freely on X.

If dimL(λ0) = m, then X is isomorphic to L(λ0) ⊗ L(λ0)[p] as g-modules, and
we are done, so assume dimL(λ0) > m. For m′ for the dimension of the second
smallest nontrivial irreducible representation, we have dimL(λ0) ≥ m′, whence
dimX ≥ mm′.

If G has type F4 or G2, then m′ = 246 or 27 respectively, and Prop. 6.1 shows
that g acts generically freely on X.

So suppose G = Spin2n+1 for some n ≥ 2. The smallest faithful irreducible
representation of G is the spin representation L(ω1) of dimension 2n, so dimV ≥
m2n = n2n+1. If n ≥ 4, then dimV > 4n2+4n, and we are done by Lemma 7.4. For
n = 2, 3, a sum of 2n copies of the spin representation is generically free (Example
7.1), so we may assume that λ0 6= ω1. The next smallest faithful representation
of Spin2n+1 is L(ω1 + ωn) of dimension 16 for n = 2 or 48 for n = 3. Therefore,
dimX ≥ 2n · dimL(ω1 + ωn) > 4n2 + 4n and again we are done by Lemma 7.4,
completing the proof of Theorem B. �

12. Proof of Theorem A

Theorem A now follows quickly from what has gone before. We repeat the
argument given at the end of part I for the convenience of the reader.

The stabilizer Gv of a generic v ∈ V is finite étale if and only if the stabilizer
gv of a generic v ∈ V is zero, i.e., if and only if g acts generically freely on V . By
Theorem A in [GaGu II] (for which the case where char k is special is Th. B in this
paper), this occurs if and only if dim V > dimG and (G, char k, V ) does not appear
in Table 1, proving Theorem A(1).

For Theorem A(2), we must enumerate in Table 3 those representations V such
that dimV > dimG, V does not appear in Table 1, and the group of points Gv(k) is
not trivial. Those V with the latter property are enumerated in [GuL], completing
the proof of Theorem A(2). �
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