GENERICALLY FREE REPRESENTATIONS III:
EXTREMELY BAD CHARACTERISTIC

SKIP GARIBALDI AND ROBERT M. GURALNICK

ABSTRACT. In parts I and II, we determined which faithful irreducible rep-
resentations V' of a simple linear algebraic group G are generically free for
Lie(G), i.e., which V have an open subset consisting of vectors whose sta-
bilizer in Lie(G) is zero, with some assumptions on the characteristic of the
field. This paper settles the remaining cases, which are of a different nature
because Lie(G) has a more complicated structure and there need not exist
general dimension bounds of the sort that exist in good characteristic.

Let G be a simple algebraic group over an algebraically closed field k. In case
k = C, it has been known for more than 40 years which irreducible representations
V of G are generically free, i.e., have the property that the stabilizer in G of a
generic v € V is the trivial group scheme. Recent applications of this to the theory
of essential dimension have motivated the desire to extend these results to arbitrary
k. We did this in previous papers — | I, 1 |, and parts I | ] and
IT | ] — except for a handful of cases that we address here, completing the
solution to the problem. In particular we prove the following, which was announced
at the end of part I.

Theorem A. Let p: G — GL(V) be a faithful irreducible representation of a simple
algebraic group over an algebraically closed field k.

(1) G, is finite étale for generic v € V if and only if dimV > dimG and
(G, chark, V') does not appear in Table 1.

(2) G acts generically freely on'V if and only if dim V' > dim G and (G, char k, V)
appears in neither Table 1 nor Table 3.

We say that p is faithful if ker p is the trivial group scheme. This hypothesis is
harmless in the sense that (i) every generically free representation is faithful and
(ii) every irreducible representation p: G — GL(V) canonically gives a faithful
irreducible representation G/(ker p) — GL(V).

The hypothesis that p is faithful in Theorem A excludes those representations
that factor through a special isogeny of G. The hypothesis that p is faithful also
excludes those representations that occur as the Frobenius twist of some other rep-
resentation, since in that case ker p contains the first Frobenius kernel. Nonetheless,
we do consider such representations in detail in this paper. (To apply Theorem A
in the latter case, note that the first Frobenius kernel G is contained in ker p. One
obtains from p a representation of the group G/G1, which is isomorphic to G [J,
1.9.5], and can check whether that representation is faithful.)

Recall that an algebraic group H is finite étale if Lie(H) = 0.
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G char k rep’n dimV dimg, H G chark high weight dimV dimg,
SLs /14 2 A 70 3 Spg 3 0100 40 2
SLg /3 3 A3 84 2 Spy 5 11 12 1
Spinyg / pa 2 half-spin 128 4 SLy podd O01p®, e>1 24 1
SLy4 /o 2 012¢, e > 2 24 1

TABLE 1. Irreducible and faithful representations V' of simple G
with dim V' > dim G that are not generically free for g, up to graph
automorphism. For each, the stabilizer g, of a generic v € V is a
toral subalgebra. The weights on the right side are numbered as

in Table 2.

1 2 3 -2 (-1 £ 1 2 3 -2 4—-1 4
(F4) —e—>» o (GQ) —s

1 2 3 4 1 2

TABLE 2. Dynkin diagrams of the non-simply-laced simple root
systems, with simple roots numbered as in [L].

G char k 1% dim V H G chark \% dim V
Ay £2,3 s? 41 Ay #2,3 s? 10
Ay #2,3 s* 50 Az #2 L(2ws) 20 — ¢
Ag #£3 A3 84| Ay #£2 A4 70
Az 3 L(wi +ws) 16| Ac p#0 L(wi +p'wp), (£+1)
L(w; + p'wy)
By (£>2) #2 L(2wy) 22 +30—¢ || Cy  #2 “spin” 42 — ¢
D, (0>4) #2 L(2w)) 2024+(0—1—¢| Dy #2 half-spin 128

TABLE 3. Irreducible faithful representations V' of simple G with
dimV > dim G such that G, is finite étale and # 1 for generic
v € V, up to graph automorphism, adapted from | ]. The
symbol & denotes 0 or 1 depending on the value of char k.

The remaining cases of the theorem that need to be covered in this paper are
those where char k is special’ for G, meaning that G has type G2 and chark = 3
or G has type B, (n >2), C,, (n > 2), or Fy and chark = 2. These are the cases
where the Dynkin diagram of G has a multiple bond of valence char k. Equivalently,
these are the cases where G possesses so called “special” isogenies, which are neither
central nor the Frobenius, cf. | , 83].

In a future work, we combine Theorem A with the results of | ] to prove the
existence of a stabilizer in general position for every action of a simple algebraic
group on an irreducible representation.

A special case of Theorem A is the following:

IThis choice of vocabulary imitates [S]; we have written instead the more illuminating “ex-
tremely bad characteristic” in the title. The hypothesis “char k special” is properly more restrictive
than “char k very bad”, in that 2 is very bad but not special (i.e., not extremely bad) for type Ga.
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Theorem B. Let G be a simple linear algebraic group over an algebraically closed
field k such that chark is special, and let p: G — GL(V) be an irreducible and
faithful representation. Then V is generically free for g if and only if dimV >
dimG.

Large, possibly reducible representations. Regardless of whether p is faithful,
the stabilizer g, of a generic v € V contains ker dp. We say that g acts virtually freely
on V if g, = kerdp; this is the natural generalization of the notion of “generically
free” to include the case where p need not be faithful.

In part I, | ], we proved a general bound when G is simple and char k is
not special: if V199 = 0 and dim V is big enough, then g acts virtually freely on
V. However, Example 9.3 shows that such a result does not hold when char & is
special. Rather than producing a possibly complicated statement that encompasses
both cases, we give instead the separate statements Proposition 6.1, Corollary 7.10,
and Proposition 8.4 for the cases where char k is special. Note that these results
have no requirements that G acts irreducibly or faithfully. Roughly speaking, for n
the Lie algebra of the kernel of the very special isogeny as in §1, we give results for
those V' on which n acts as zero (nV = 0) or without fixed points (V" = 0).

Irreducible representations. Recall that every irreducible representation V' of
G has a highest weight \. Write A as a sum A = ) c,w where the sum runs
over the fundamental dominant weights w. One says that A is restricted when
p:=chark # 0if 0 < ¢, < p for all w. (In case chark = 0, all dominant weights
are, by definition, restricted.)

Our next result is a variation on Theorem B, where we add the hypothesis that
the highest weight of p is restricted and drop the hypothesis that p is faithful.

Theorem C. Let G be a simple linear algebraic group over an algebraically closed
field k. Let p: G — GL(V') be an irreducible representation for G with a restricted
highest weight.

(1) If g does not act virtually freely on V, then dimV < dim G or g, is a toral
subalgebra for generic v € V.

(2) Suppose char k is special for G and p is not the trivial representation. Then
g acts virtually freely on V' if and only if dimV > dim G, except for those
cases where (G, char k, V') appears in Table /.

G chark V  dimV dimkerdp

Spg 2 spin 8 14

Sps (but not PSpg) 2 spin 16 27
Sp1o 2 spin 32 44

Spis or PSpyy 2 spin 64 65

TABLE 4. The nontrivial restricted irreducible representations of
simple G with dim V' < dim G that are virtually free for g.

We remark that, in the setting of Theorem C and on the level of abstract groups,
G, (k) is always finite when dim V' > dim G by | ]

The organization of the paper is as follows. We first (§1) recall properties of g and
the irreducible representations of G, focusing on the case of special characteristic.
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A short section (§2) then recalls results used to constrain the size of g, for generic
v € V. Section 3 studies the case where G has type A; X --- x Ay, which arises in
handling types B and C. Sections 4 and 5 prove some results on generic stabilizers
by leveraging the Lie algebras of the long and short root subgroups. The next
several sections are devoted to groups by type, each under the assumption that
char k is special: Fy and G2 in §6, B,, in §7, and C,, in §8. In each section, we prove
that, under various hypotheses on the representation V', if dim V is large enough,
then g acts virtually freely on V. We prove Theorem C(2) for each group in its
section. The results based on dim V are far from uniform, so we provide in §9 an
example to show that the uniform result from part I is false as stated if one drops
the hypothesis that char k is not special. We prove Theorem C(1) in a short section
10. To prove Theorem B, it remains to treat the case where the highest weight is
not restricted, which we do in §11. Finally, we prove Theorem A in §12.

We assume throughout that the field k is algebraically closed, as in the first
line of the paper. This hypothesis is used, for example, in Lemma 2.5 and various
results from parts I and II.

Acknowledgements. The referees deserve thanks for their detailed and helpful
comments. We thank Brian Conrad for his advice on group schemes. Guralnick
was partially supported by NSF grants DMS-1600056 and DMS-1901595.

1. STRUCTURE OF g AND V

In this section, we assume that G is a semisimple linear algebraic group over k,
and put g := Lie(G).

Structure of g. We refer to [Hi], [Ho], or [P, §1] for properties of g := Lie(G)
when G is simple. For example, when G is simply connected, we have: (1) g/3(g) is
a reducible G-module if and only if chark is special, and (2) g has a unique proper
mazimal G-submodule, which we denote by m. Statement (2) can be seen by direct
computation as in [Ho] or because g is a Weyl module of G in the sense of [J], the
one whose highest weight is the highest root.

Irreducible representations of G when char k # 0. Fix a pinning for G, which
includes the data of a maximal torus T and a choice of simple roots A. Then
irreducible representations p: G — GL(V) (up to equivalence) are in bijection with
the set of dominant weights A € T*, i.e., those X such that (\,§¥) > 0 for all § € A.

Suppose now that p := chark # 0. Write A = Ay + p"\; for some r > 1, where
X =, cwand 0 <c¢, <p"forall w. If \p and p" "\ belong to T* (e.g., if
G is simply connected), then L(A\) = L(\o) @ L(p"~' ;)P [J, 11.3.16], the tensor
product of L()\g) and a Frobenius twist of L(p""'A;). As a representation of g
(forgetting about the action of G(k)), this is the direct sum of dim L()A1) copies of
L(X\o).-

The case where chark is special. For the remainder of this section, suppose
that G is simple and simply connected and char k is special for G.

There is a very special isogeny 7 that sends G to a simply connected group
whose root system is inverse to the root system of G, see [ , §7.1] or [S, §10]
for a concrete description. We put N := ker 7 and n := Lie(V) = kerdn. As N is
normal in G, it follows that the subspace

Vti={veV|dp(x)v =0 for all z € n}
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is a G-invariant submodule of V for every representation p: G — GL(V).

Put gshort (resp., giong) for the subspace of g spanned by the subalgebras g, for
« a short (resp., long) root. Put t := Lie(T") and tshort for the subspace spanned by
[0a;8—q] for a a short root.

Examining the tables in [ITi] and [[Ho] and the description of g in [ , §7.1],
we find that n = tsport D Pshort as a T-module and the following:

Lemma 1.1. Let G be a simple and simply connected split algebraic group over
a field k whose characteristic is special for G. If L is a nonzero and proper G-
invariant subspace of g, then L is one of 3(g), n, or m. In particular, every G-
invariant subspace of g is contained in 3(g) or contains n.

Remark 1.2. The subspace g« := t ® gsnort is a Lie p-subalgebra of g; it is the Lie
algebra of the subgroup G of G generated by T and the short root subgroups, see
§5. As a representation of T, g/g< has weights the long roots and g/m has weights
the long roots and possibly zero (with some multiplicity), so trivially m C g.. Note
that g« need not be G-invariant.

Remark 1.3. By definition of m, it contains 3(g) and n. It turns out that dimm/n <
1, compare Lemma 4.1. Beyond this, much variation is possible. For example, for
G = Spyy, n does not contain 3(g) for odd ¢ > 3 and g« = m for £ > 2.

Irreducible representations of G when char k is special. Now suppose that
char k is special for G, so in particular A has two root lengths. Write a dominant
weight A as A = > csws, where ¢ > 0 and ws is the fundamental weight dual to ¢V
for § € A. We write A = Ag + A\ where A\; = > 5 . csws and A\g = D 5 long C8Ws)
ie., (As,0Y) =0 for § long and (A\,d") = 0 for § short. Steinberg [S] shows that,
when G is simply connected, L(\) = L(\;) ® L(As) and that furthermore L(\;)
factors through the very special isogeny.

Suppose now that A is restricted. Then L(\;) is irreducible as a representation of
n [S, p. 52], so Lemma 1.1 shows that the kernel of this representation is contained
in 3(g) if As # 0. Similarly, as an n-module, L(\) is a direct sum of dim L(\;) copies
of L(\s), and again the kernel of the representation is contained in 3(g) if A; # 0.

In summary, for A restricted and G simply connected, we have either (1) A\; =0
and kerdp D n, or (2) As # 0 and kerdp C 3(g).

2. LEMMAS FOR COMPUTING g,
Choose a representation p: G — GL(V). For x € g, put
V*:={veV|dp(z)v =0}

and 2 for the G-conjugacy class Ad(G)z of z. Recall the following from part I:
Lemma 2.1. Forz € g,
(2.2) t%Ng, =0 for genericveV
is 1mplied by:
(2.3) dim 2% + dim V* < dim 'V,
which is implied by:

(2.4) There exist e > 0 and x1,...x, € & such that the subalgebra s of g
’ generated by x1,...,x. has VS =0 and e - dim2% < dim V.
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We use this in combination with Lemma 2.5 below.

For us, g = Lie(G) and char k = p # 0, so the Frobenius morphism on G induces
a p-operation z — z[P! on g, see [SF] for properties. When G is a sub-group-scheme
of GL,, and z € g, the element z!P! is the p-th power of 2 with respect to the typical,
associative multiplication for n-by-n matrices, see [DG, §11.7, p. 274].

An element z € g is nilpotent if z!P!" = 0 for some n > 0, toral if ") = z, and
semisimple if 2 is contained in the Lie p-subalgebra of g generated by z[P!, cf. [SF,

§2.3]. We recall from part I:

Lemma 2.5. Suppose G is semisimple over an algebraically closed field k of char-
acteristic p > 0, and let i be a subspace of g.

(1) If (2.2) holds for every toral or nilpotent x € g\ b, then g, C b for generic

veV.
(2) If b consists of semisimple elements and (2.2) holds for every x € g\ h with
zlPl € {0, 2}, then g, C b for generic v in V. a

One typical application of part (2) of the lemma is when h = 3(g).

3. A HEISENBERG LIE ALGEBRA

Let G = Spiny,,,, for some n > 2 over a field & (always assumed algebraically
closed) of characteristic 2. The short root subalgebras of g generate a “Heisenberg”
Lie algebra b of dimension 2n + 1 such that [b, b] is the 1-dimensional center 3(h).
The algebra b is the image of s[5" under a central isogeny SLy™ — SLS" /Z where
7 is isomorphic to 1S "V, and the quotient /3(h) is the image of sIX™ — pglX".

For G = Sp,,, for some n > 2 over the same k, the very special isogeny 7 :
SPy, — Sping,, , has dm(spy,) = b, so we may identify h with g/ ker dz.

Lemma 3.1. Suppose p: G — GL(V) is a representation of G = Sping, ., or
Spy, - In the latter case, assume additionally that dp vanishes on kerdm.

(1) If 4n +dim V3 < dim V, then dim € + dim V* < dim V' for all nonzero
z €Dh.

(2) If VY =0 and 4n? < dimV, then dimz% + dim V* < dim V' for all non-
central x € h.

Proof. For x nonzero central, dim 2% + dim V?* = dim V3" verifying (1), so sup-
pose x is noncentral.

In case (1), there is a g € G(k) so that [z, 29] is nonzero central in §, so dim V* <
#(dim V 4 dim Vi), As dimz© < 2n + 1, the claimed inequality follows.

In case (2), the Weyl group of G acts transitively on groups of a given length, so
2n conjugates of x generate h, and therefore to prove the claim it suffices to note
that 2n - dimz® < dim V (Lemma 2.1). O

4. SUBGROUP GENERATED BY THE LONG ROOTS

Suppose G is simple and simply connected and char k is special for G. Fix a
maximal torus T in G. The long root subgroups of G (relative to T') generate
a subgroup G- that is also simply connected and the type of (Gs,G) is one of
(A2, G2), (D4, Fy), (D, By) for n > 2, or (A},C,,) forn > 2, | , Prop. 7.1.7].
We put g- := Lie(G), which as a vector space is a direct sum t @ giong-

Lemma 4.1. In the notation of the preceding paragraph,
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(1) The composition g~ — g — g/n is onto.
(2) 3(g>) + n=m, the unique mazimal G-invariant subspace of g.
(3) 9> Nm=3(g>).

Proof. (1) is obvious because g = g @ gshort as T-modules and gghort C n.
For (3), as m and g are T-invariant and giong Nm = 0, we have mNgs C t. For
z € gs Nm and z, a root element in gs, [z,2,] € M, so z € 3(g>), i.e., (3) holds.
Finally, we have g = g~ @ gshort = g> + 1, where the second sum is not direct.
Hence m = (g~ Nm) + n, and (3) implies (2). O

Long Root Proposition 4.2. Let G be a simple and simply connected algebraic
group such that char k is special for G. Suppose that p: G — GL(V) vanishes on
the kernel of the very special isogeny. If V' has a subquotient W such that W8 =0
and

64 if G=Fy

20 if G =Gy

30 if G = Spin,

4n? if G = Spiny,, ., withn >4 or G = Sp,,, with n > 2,

dim W >

then g, C m for genericv € V.
Proof. We verify, for « € g \ 3(g>) such that z[?) € {0, z}, that
(4.3) dim 2> 4+ dim W* < dim W.

For G = Sp,,, with n > 2, we apply Lemma 3.1(2). Otherwise, note that G~
is simple and not Sp,,, for any n > 1, so [gs,g>] = g>. Therefore, Wg>-0>] —
W9> = W8 = 0. For G = Gy, Fy, or Spiny,,; for n > 3, we have (4.3) by | ,
Th. 12.2], where in case Spin, we use the identity Sping = SLy.

Because (4.3) holds, we deduce that dim %> + dimV? < dimV (elementary,
see [ , Example 2.1]). As g=~ N'm = 3(g>) consists of semisimple elements, it
follows that (gs), € m for generic v € V| whence g, C m. O

5. SUBGROUP GENERATED BY THE SHORT ROOTS

Continue the notation of the preceding section. In particular, G is assumed
simply connected and char k is special for G. The root subgroups in G correspond-
ing to short roots generate a subgroup G, and the type of (G.,G) is (42, G2),
(Dy, Fy), (A}, B,,) for n > 2, or (D,,C,) for n > 2 | , Prop. 7.1.7]. We put
g< := Lie(G.), compare Remark 1.2.

Lemma 5.1. For G simply connected of type Ga, Fy, or C,, with n > 3 such that
char k is special, we have [g<,g<] = n.

Proof. Put Z:? for the simply connected cover of G.. Because G is simple and

not Sp,,, for any n > 1, [g<,g<] is the image of Lie(az) in ge [ , Lemma
3.1], and in particular it is the subalgebra generated by the root subalgebras of g
corresponding to short roots, which is n. (|

Short Root Proposition 5.2. Let G be a simple and simply connected algebraic
group such that char k is special for G, and let V be a representation of G. If V
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has a subquotient W such that W" =0 and

64 ifG=F,
dimw > {20 YE=0z
30  if G = Spg

4n® if G = Spiny,,,; withn > 2 or G = Sp,,, with n > 4,
then n, C 3(g<) for genericv € V.
For G = Spiny,, 1, n = b and 3(g<) = Lie(Z(SLS" /3" V) = 3(0).

Proof. Let = € n satisfy 2Pl € {0,z}. If G = Spin,, ., for n > 2, we apply Lemma
3.1(2) to see that

(5.3) dim %< + dim W < dim W

if  is not central in n. In the other cases, Wl8<:9<l = W™ = 0, and we apply
[ , Th. 12.2] to find (5.3) if « is not central in g..
Then dim 2¢< + dim V® < dim V. So, for generic v € V, it follows that n, C

3(9<)- 0
6. TYPE F;y OR G>

Suppose G has type Fy or G2 and chark = 2 or 3 respectively. The maximal
ideal m equals the kernel n of the very special isogeny; it is the unique nonzero and
proper ideal of g. Both n and g/n, as Lie algebras, are the simple quotient g/3(g),
where g = sping or sl3 respectively.

The arguments used in the previous two sections can be extended slightly to give
a result that will be sufficient to handle the cases where G = F or Gs.

Proposition 6.1. Let G be a simple algebraic group of type Fy or Go over a field
k such that chark = 2 or 3 respectively. Let p: G — GL(V') be a representation of
G. If V has a G-subquotient W with W™ = 0 and dim W > 240 or 48 respectively,
then for genericv €V, g, = 0.

Proof. We will first verify that, for = € g\ n with 2Pl € {0, 2}, we have
(6.2) dim z% + dim W*® < dim W.

Suppose first that € g\ n is a long root element, and in particular there is
a maximal torus T so that x is a root element in the long root subalgebra g-.
Then e G~-conjugates of z suffice to generate g, where (G,e) = (Fy,4) or (Gs,3)
by [ , Prop. 104, 6.4]. As a representation of G-, g is a sum of g- and
three inequivalent 8-dimensional representations (for type Fy) or two inequivalent
3-dimensional representations (type Gz), so e + 1 G-conjugates of = will generate
g. As

(e 4+ 1)dimz% < (e +1)(dim G — rank G) < dim W,
(6.2) follows.

If £ € g\ n is nilpotent, then as in | , Remark 11.3] there is a long root
element ¥ in the closure of . By the previous paragraph, e + 1 G-conjugates of
y generate g, and as in | , Lemma 4.3(1)] the same holds for x. Again (6.2)
follows.

If x € g\ nis toral, then it can be expressed as > coh, where the sum ranges
over the simple roots « and h,, € Lie(T') corresponds to the coroot a¥. As z & n,
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cg # 0 for some long simple root 8. Arguing as in | , Example 4.1] we deduce
that a long root element x4 lies in the closure of 2% and again we have verified
(6.2).

As the nilpotent and toral elements of g, lie in n for generic v € V, so does all
of g,. Finally we apply the Short Root Proposition 5.2, to see that g, = 0. (]

Restricted irreducible representations. Let G = F,; and chark = 2 or G = G>
and char k = 3, and suppose p: G — GL(V) is an irreducible representation with
restricted highest weight A\. Here we prove Theorem C(2) in this case.

If dim V < dim G, then by A.50 and A.49 in [L.ii], V is either the natural module
(of dimension 26 or 7, respectively) or the irreducible quotient g/n of the adjoint
representation. For p the natural module, kerdp = 0 and a generic vector has
stabilizer of type D4 or Ay respectively (of dimension 28 or 8 respectively). Note
that this stabilizer has dimension larger than dim g/n, so it meets n, the image of g
under the very special isogeny. It follows that composing the natural representation
with the very special isogeny gives a representation with kerdp = n that is not
virtually free; this is g/n.

If dim V' > 240 or 48 respectively, then V is virtually free by Proposition 6.1.
Table A.50 in [Lii] shows that we have considered all restricted irreducible repre-
sentations of Fy, so the proof of Theorem C(2) is complete in that case.

For Gy, there are two remaining possibilities for p, according to Table A.49.
The first, with highest weight 2wy (numbered as in Table 2), has dimension 27
and kerdp = 0. It factors through the representation of SO7 on the irreducible
component of S*(k7). As that representation is generically free for so7 by [ ,
Lemma 13.1], so is dp. Alternatively, one can verify that this dp is virtually free
using a computer.

The last possibility for p, with highest weight 2w;, is obtained by composing
the representation in the preceding paragraph with the very special isogeny. This
representation is virtually free by the considerations in the previous paragraph, or
by Prop. 4.2, completing the proof of Theorem C(2) for G of type G.

7. TYPE B,, WITH n > 2

For G = Spin,, ; for some n > 2 over a field k of characteristic 2, the Lie
algebra g is uniserial where the subalgebra n is the Heisenberg Lie algebra § from
§3.

Any representation of G is a direct sum V; ¢ Vo where Vf’(g) = 0 and 3(g) acts
trivially on Va; these are just the eigenspaces of 3(g).

Representations with V3(8) =,

Example 7.1 (spin representation). The spin representation V := L(w;) of G
(where we number the weights of G as in Table 2) is generically free if and only if
n>7] ], if and only if dim V' > dim G. We remark that one can check with
a computer that for n = 2,3,4,5,6, a sum of 4,4,3,2,2 copies of V is generically
free for spiny,, ;.

Example 7.2. If V is an irreducible representation of G and V3 = 0, then
V = L(w) ® W for some irreducible representation W. This follows from the
discussion in section 1 because d; is the only short simple root.
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Example 7.3. Suppose & € §09,4; has /2 = 0 and rank r > 0. The largest
possible conjugacy classes for x have a 4-dimensional indecomposable summand
W(2) or a 3-dimensional indecomposable summand D(2) (following the notation

in [Ie] or [LiS, §5.6]), and the centralizer in SOg,1 of one of these largest classes
has dimension
r 2n+1—r
2n+1—r r
2(2—1 ,—1) = .
Sai-n+ > @-= (") ()
=1 1=r+1
Consequently, dim 25927+ < r(2n 4+ 1 — 7). (Compare | , Example 10.5] for

SOs,.)

Lemma 7.4. Let G = Spiny,, for some n > 2 over a field k of characteristic 2,
and suppose that V is a representation of G such that V3@ = 0. Then:
(1) For noncentral x € g, dimV?® < 2 dim V.
(2) If dimV > 4n? +4n, then (a) dimz® + dim V® < dim V' for all noncentral
x € g such that 1 € {0,2} and (b) V is generically free for g.
(3) If n > 17, then V is generically free for g.

Proof. We first prove (1). By passing to orbit closures, it suffices to prove this in
case x is nilpotent. The crux case is where V is the spin representation, where the

claim holds if n = 2 (because dim V' = 4) and if n > 3 by | , Prop. 2.1(1)].
If V is irreducible, then it is L(w;) ® W for some irreducible W. In this case,
dim V* < (dim L(w1)*)(dim W) as in | , Lemma 11.1], proving the claim.

Finally, for a composition series 0 = Vo C V4 C --- C V,, = V of V, we have
(V;i/Vi_1)3®) = 0 because 3(g) acts semisimply on V and dim(V’)* < 3dimV for
V' :=&V;/V;_1, so also for V, proving that dim V* < %dim V.

To prove (2), fix noncentral = € g such that 2l € {0,2}. If 2] = 0, then the
image T € 09,41 of © — as a (2n + 1)-by-(2n + 1) matrix — has rank r > 0 so
dim z5927+1 < (2n —r +1), whence dim 25P™2n+1 < (20 — 74 1) because the map
spiny,, .| — 502,41 is injective on nilpotents. (Indeed, if x and x + z are square-zero
and z is central in spiny,,;, then 0 = (z + 2)l = 2Bl s0 2 = 0.) If 2[% = 2, then
T has even rank r, and the centralizer of x has type D, 3 x B,,_, /o for some r; we
find the same formula for dim2%. The upper bound on dimz¢ is maximized at
r=mn-+1/2, so dimz% < n? 4+ n. Thus, (a) holds, and (b) follows as in §2.

Suppose now that n > 7. If V' is the spin representation, then it is generically
free (Example 7.1). If V is irreducible but not the spin representation, i.e., V =
(spin) ® W for some nontrivial W, then dim V' > 2n2" > 4n? + 4n, and again V is
generically free. For general V', each irreducible representation in its composition
series is generically free (by the preceding), so V' is as well. (]

Note the following corollary.

Corollary 7.5. Let G = Spiny,, .| for some n > 2 over a field k of characteristic
2, and suppose that V is an irreducible representation of G such that V39 =0. If
dimV > dim G, then V is generically free.

Proof. Write V = L(w;) ® W as in Example 7.2. If W is trivial, then the claim
is from Example 7.1. If n > 7, then the claim is Lemma 7.4. So suppose W is
nontrivial and 2 < n < 7. As dim W > 2n, we have dim V' > 4n? + 4n unless n = 2
or 3 and dim W = 2n.
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So suppose n = 2 or 3 and W is the orthogonal module or a nontrivial Frobenius
twist of it. In the latter case, V is a direct sum of 2n copies of the spin module
and so is generically free (Example 7.1). In the former case, one can verify with
a computer that V is generically free, as was recorded in | , Examples 5.2,
5.3]. |

Note that the only irreducible modules with V38 = 0 and dimV < dim G are
the spin modules for n < 6.

Representations killed by j3(g). We have dealt with those representations V'
of G such that V3(®) = 0. If 3(g)V = 0, then the highest weight of each of the
composition factors of V' lies in the root lattice. We have:

Lemma 7.6. In a root system of type By, (n > 2), for A in the root lattice and o
a short Toot, (aV,\) is an even integer.

Proof. Because the Weyl group acts transitively on short roots, we may assume
that « is the short simple root. Because the expression («¥,\) is linear in A, we
may assume that A is a simple root. Then the claim follows from looking at the
Cartan matrix. (I

‘We note for later use:

Lemma 7.7. If chark = 2 and p: SOg,+1 — GL(V) is an irreducible representa-
tion for somen > 2, then p is not faithful and the composition of spiny, 1 — §02,41
with dp vanishes on n.

Proof. The highest weight A of p is in the root lattice (because SOg, 41 is adjoint),
so Lemma 7.6 shows that A vanishes on coroots corresponding to short roots. Thus
by [5, Th. 11.1] the composition spin,, ,; — 502,41 — gl(V') vanishes on the ideal
n of spin,y,, , for n as in §1, which has nonzero image in $02y,41. g

Remark 7.8. Lemma 7.6 can be viewed, by way of the duality between the root
systems of types B and C, as equivalent to the statement that for type C' every
long root is 2 times a weight. From this perspective, Lemma 7.7 is the analogue for
type B of the well-known fact that, when char k¥ = 2, Cartan subalgebras in sp,,,
are properly larger than maximal toral subalgebras.

By the way, Lemmas 7.6 and 7.7 also apply to type A;, mutatis mutandis. See
[ , Example 3.3] for the version of Lemma 7.7.

The very special isogeny G = Spin,, | — Sp,,, is another way of viewing the
trivial statement that the alternating bilinear form on the natural module of G is
G-invariant. It factors through Spin,,,; — SOg,41, and the image g/n of g in
5Po,, is isomorphic to the derived subalgebra of sos,, which is a simple G-module
(i.e., n = m) if n is odd and has a 1-dimensional center if n is even (i.e., n has
codimension 1 in m).

Lemma 7.9. Let p : Spiny, . ; — GL(V) be a representation over a field of
characteristic 2, for some n > 3. If p factors through the very special isogeny,
VePinanes = (0, and dim V' > 4n?, then sping,  and 503,41 act virtually freely on
V.

Proof. By hypothesis, p factors through Spin,,,; — SO2,41 — Spy,,. The image
of 502,41 in §py,, is §02,, the unique maximal Sp,,,-invariant ideal in sp,, and the
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Lie algebra of a subgroup SOs,, C Sp,,,. It suffices to verify that sos,, acts virtually
freely on V.

The image of spin,, ; in §02, is [502,,502,], so VIs02n:5020] = 0. Applying now
[ , Th. A] gives the claim. O

Corollary 7.10. Let V be a representation of G := Sping,, .| for some n > 2 and
assume chark = 2. If V8 = 0 and dimV > 8n? + 4n, then a generic v € V has
gy C m and g acts virtually freely on V.

Proof. Write V =V, @V, as at the start of this section. If dim Vi > 4n? +4n, then
V1 and so V is generically free. Otherwise dim Vo > 4n? and the group of type D
has generic stabilizer contained in its center by | ] O

One can do better by intersecting the generic stabilizers for V; and V5.

Example 7.11 (natural representation). Here we treat the natural module, V :=
L(wy,) for n > 2. We have dimV = 2n < dim G. As in the proof of Lemma 7.9, the
image of 609,41 in gl(V) is a copy of s0y,, which acts on V with generic stabilizer
509,—1, hence 505,41 acts on V with kernel n and generic stabilizer n + so09,, 1.
Note that V8 = V*°2» = 0. For W := @°V with ¢ > 2n, Lemma 7.9 says that
W is virtually free. (Compare [ , Example 10.3] for the case char k # 2.)

Example 7.12 (adjoint representation). Here we treat V := L(wy_1) for n > 3,
the irreducible quotient of the Weyl module spin,, ;. As in §4, the long root
subalgebra g~ is spin,,, and spiny,,; = n + spiny,. This V is the irreducible
quotient of the spin,,-module spin,,,. By [ , Example 3.4], the stabilizer in
spin,,, of a generic vector v € V' is Lie(T') for T' a maximal torus depending on v
and we conclude that g, = n + Lie(T"). (Alternatively, this representation factors
through the very special isogeny and one can find g, by pulling back the stabilizer
in sp,,, described in Example 8.7.)

Restricted irreducible representations. Let V' be a restricted irreducible rep-
resentation of a group G of type B,, for some n > 2 over a field k of characteristic
2; we prove Theorem C(2) for this G. The highest weight A = Y7 | cw; of V has
¢; € {0,1} for all 7. If A = 0, equivalently ker dp = g, then there is nothing to do.

If ¢; # 0, then we are in the case of Example 7.2 and Corollary 7.5, so ker p =0
and there is nothing more to do.

So assume that ¢; = 0. Thus, the highest weight A belongs to the root lattice
and the representation p factors through not just SOs,41 but Sp,,. To prove
Theorem C(2), it suffices to show that (1) spin,, ; does not act virtually freely
when dim V' < dim G and (2) $02,,+1 does act virtually freely when dim V' > dim G.

Assume first that n > 11. Applying Lemma 7.9, we may assume that dimV <
4n?, so dimV < n3. By [Lii], V is either the 2n-dimensional representation L(w,,)
as in Example 7.11 or it is L(w,—1) as in Example 7.12.

Next consider 4 < n < 11. Applying again Lemma 7.9, we may assume that
dim V' < 4n?. Examining the tables in [I.ii], we find that the only possibilities for
V' that have not yet been considered are the cases where n =4 or 5, A = w,,_2, and
dim V' = 48 or 100 respectively. In both cases, n is in the kernel of the representation
and computer calculations with Magma as in [ ] produce a vector in V' with
stabilizer n. Note that dim V' > dim G in both cases.

If n = 2, the only restricted irreducible module is the orthogonal 4-dimensional
module and clearly the result holds.
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If n = 3, the only irreducible restricted modules with ¢; = 0 are the orthogonal
module (Example 7.11), the module with high weight wy of dimension 14 (Example
7.12), and the module with high weight ws + w3 of dimension 64. We verify with a
computer that Theorem C(2) holds in the latter case.

Example 7.13 (Sping). For later reference, we examine more carefully the spin
representation V' of G = Sping when chark = 2. The stabilizer G, of a generic

vector v € V is isomorphic to Spin; | ] and is contained in a subgroup Sping
in G (generated by long root subgroups as in §4) in such a way that the composition
Spin; C Sping C Sping — SOy is injective. (See for example [V] for a discussion of

the first inclusion in the case k = R.) In particular, 3(spin;) # 3(sping).

Now 3(sping) C 3(sping), where the terms have dimensions 1 and 2 respectively.
We claim that furthermore 3(spin;) C 3(sping) so 3(spin;) + 3(sping) = 3(sping). To
see this, restrict V' to Sping to find a direct sum V; @ V5 of inequivalent 8-dimensional
irreducible representations. One V; restricts to be the spin representation of Spin-
and the other is uniserial with composition factors of dimension 1, 6, 1, correspond-
ing to the inclusion SO7 C SOg. From this we can read off the action of the central
o of Spin, on V' and we find that it is central in Sping, proving the claim.

We have spingNm = 3(sping) by Lemma 4.1 and sping Nn = 3(sping). Using that
g, = spin., we conclude that n, = 0 and m, = 3(spin,).

8. TypE C,, WITH n > 3

Alternating bilinear forms. The simply connected group Sps,, of type C,, can
be viewed as the automorphism group of a nondegenerate alternating bilinear form.
We now recall some facts about this correspondence.

Example 8.1. Suppose b is a nondegenerate alternating bilinear form on a finite-
dimensional vector space V over a field F (of any characteristic). This gives an
“adjoint” involution o : Endpr(V) — Endp(V) such that b(Tv,v") = b(v,o(T)v")
for all T € Endp(V) and v,v’ € V. If z € Endpr(V) is such that o(z) = +uz,
then we find an equation b(xv,v’) = +b(v,zv’). By taking v € kerx or (imx)*
and allowing v’ to vary over V we find each of the containments between ker x and
(imz)t, ie., kerz = (imx)*. If additionally 22 = x (i.e., x is a projection), then
V is an orthogonal direct sum (ker z) & (imz).

If x € Endp(V) is such that o(x)x = 0, then b(xv,zv") = 0 for all v,v’ € V and
we find that imz C (imz)%, i.e., im z is totally singular.

We may view Sp,,, as the subgroup of GLs,, preserving the bilinear form b(v,v’) :=
v Jv' where J = (_%1 Ié"). The Lie algebra sp,, of Sp,, consists of matrices
(é 7?1’) for A,B,C € gl, such that BT = B and CT = C, compare | ,
§25.A]. In the notation of Example 8.1, o(g) = —Jg'J and sp,,, consists of those
x € gly, such that o(x) +z = 0. (In particular, kerz = (imz)* for z € sp,,,. If
moreover char k = 2 and 2% = 0, then o(z)z = z[? = 0, so im z is totally singular.)

The group GSp,,, of similarities of b is the sub-group-scheme of GLjg,, generated
by Sps,, and the scalar transformations. Its Lie algebra consists of those = € gl,,,
such that o(x) + z € kla,, ie., x of the form (é#LEAT> for A,B,C € gl,

and u € k, where BT = B and CT = C. Then sp,, C gspy,, the quotient
GSp,,, /Gy, = Sp,,, /2 is the adjoint group PSp,,,, and the natural map gsp,,, —
psp,,, is surjective.
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The preceding two paragraphs apply to any field k; we now explicitly assume
char k = 2 and describe the toral elements in gsp,,, i.e., those x such that 2% = z.
As such an z is a projection, it gives a decomposition of k" as a direct sum of
vector spaces (kerz) @ (imz). If x belongs to sp,,, then this is an orthogonal
decomposition as in Example 8.1 where the restrictions of b to ker x and im z are
nondegenerate. Otherwise, o(x) + x = Iy, so

b(zv, 2v") = b((Izn — o(z))v,20") = b(v,z0") — b(v,2%0') =0 (v,v' € V).

That is, im x is totally isotropic. Analogously, 1 —x € gsp,,, is toral and so ker z =
im(1 — x) is also totally isotropic. In sum, we find that ker z and im = are maximal
totally isotropic subspaces.

Dimension bounds. For the remainder of this section, we set G = Sp,,, with
n > 3 over a field k of characteristic 2. We first make some remarks about nilpotent
elements of square 0.

Lemma 8.2. Let x € sp,, for n > 3 have 212 = 0 and rank r > 0. Then
dim 2520 < r(2n + 1) — 2.

Proof #1. Fix a totally singular r-dimensional subspace W of the natural module
V and let P be the maximal parabolic subgroup of Sp,,, stabilizing W. Let C be
the set of elements y in g with y? = 0 and imy C W. As above, kery = (imy)~*
and in particular ker y O W=. So we see that C'is the center of the nilpotent radical
of Lie(P) and can be identified with the space of r-by-r symmetric matrices. In
particular, dim C' = r(r + 1) /2.

Now let 2 € g with 22/ = 0 and imz = W. Consider the map f : GxC — g given
by f(g,y) = Ad(g)y. Every fiber has dimension at least dim P, since f(PxC) = C.
Thus the dimension of the image of f is at most dim C + dim G/P = r(r + 1) +
2r(n —r) = r(2n + 1) — r2. Since z¢ is contained in the image of f, we obtain the
same inequality for dim z¢.

We remark that, by Richardson, the Levi subgroup of P has a dense orbit on
C, whence the largest such class has dimension precisely r(2n + 1) — 2. Note also
that the fact that im x is totally singular shows that x is a sum of commuting root
elements. If r is odd, then we can always take z to be a sum of commuting long
root elements. If r is even, then we can always take x to be either a commuting sum
of long root elements (the larger class) or a sum of commuting short root elements.
Note that the smaller class is contained in the closure of the larger class. It is well
known (cf. [LiS, Chap. 4]) that if 2 € g has even rank and 2l = 0, then z is an
element of 509,. [l

Proof #2. There are two possibilities for the conjugacy class of x in case r is even,
see [He, 4.4] or [LiS, p. 70]. We focus on the larger class; regardless of the parity
of r we may assume that the restriction of the natural module to x includes a 2-
dimensional summand denoted by V'(2) in [LiS]. For this z, the function denoted by
X in the references amounts to 1 — 0 and 2 — 1. The formulas in these references
now give that the centralizer of z in Sp,,, has dimension

i(211)+2§fz’2nr+<2"2_r>+(;>. O

=1 i=r+1



GENERICALLY FREE REPRESENTATIONS: EXTREMELY BAD CHARACTERISTIC 15

The Lie algebra g = sp,,, has derived subalgebra m = so0s,, of codimension 2n;
it is the unique maximal G-invariant ideal in g. The subalgebra n = kerdn has
codimension 1 in m and is [m, m]. The quotient g/n is the Heisenberg Lie algebra
from section 3. The unique maximal ideal m also contains 3(g) (dimension 1). The
center 3(g) is contained in n if and only if n is even.

Lemma 8.3. Let G = Sp,,, for some n > 3 over a field k of characteristic 2, and
let x € sp,,, be noncentral.
(1) If x is toral, then max{4, [n/s]} conjugates of x suffice to generate a sub-
algebra containing n, where 2s is the dimension of the smallest eigenspace.
(2) If 22 = 0 and = has even rank 2s > 0 or odd rank 2s +1 > 3, then
max{4, [n/s]} conjugates of x generate a subalgebra containing n.
(3) If #1% = 0 and x has rank 1, then max{8,2n} conjugates of x generate a
subalgebra containing n.

Proof. If x is toral, or is nilpotent with even rank, then x is in m = s04,, (cf. the
remarks in proof #1 of Lemma 8.2), and the claim is [ , Prop. 10.4].

If 21 = 0 and z rank 25 + 1 > 3, the description of the classes given in the
proof of Lemma 8.2 shows that the closure of 25P2n contains a y of rank 2s such
that yl? = 0. As max{4, [n/s]} conjugates of y suffice to generate a subalgebra
containing n, the same holds for x.

If 22 = 0 and z has rank 1, we choose y conjugate to x such that (x+ y)m =0
and x + y has rank 2. By (2), max{4,n} conjugates of z + y generate a subalgebra
containing n, whence (3) holds. O

Proposition 8.4. Let (V,p) be a representation of G = Sp,,, or PSp,,, with n > 3
over a field k of characteristic 2. If V* =0 and

48 if G = Spg or PSpg (i.e., n=3)
dimV > 2 if G = Spy;
80 if G = PSpg; and

6n%2 —6n ifn > 5,
then g acts virtually freely on V.

In the statement, in case G = PSp,,,, p induces a representation of Sp,,, and so
it still makes sense to speak of the action of n C sp,,, on V.

Proof. For noncentral x € g such that 22 € {0,2}, we check that 2 does not meet
gy for generic v € V, and therefore that g, C 3(g).

Case G = Sp,,, for n > 4. Suppose first that 22/ = z, or z[?l = 0 and z has even
rank. Then x belongs to m = so09, and is not itself central in m. The Short Root
Proposition 5.2 gives that for dim V' > 4n?, = does not meet m, for generic v € V.

We may assume that 22 = 0 and z has odd rank r = 2s + 1, where dim z© is
bounded as in Lemma 8.2. We find an e > 0 such that e conjugates of x generate
a subalgebra of g containing the image of n and such that e - dim 2% is at most
the right side of the inequality in the statement. This verifies by Lemmas 2.1 and
2.5(2) that  does not meet g, for generic v € V.

If r = 1, then applying Lemma 8.3(3) gives that e - dim 2% < 4nmax{4,n}.

If » = 3, then dim2% < 6(n — 1). Applying Lemma 8.3(2) gives edimz% <
6(n — 1) max{4,n}.
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Suppose 7 > 5 (so also n > 5). If s > n/4, then 4 conjugates suffice to generate
a subalgebra containing n. As dimz® < 2r(n — s), it suffices to bound 8r(n — s).
This is maximized at »r =n + % and so we obtain a bound of 4n2 + 4n.

If s < n/4, then it suffices to bound (n/s + 1)(2r)(n — s) = (n? — s?)(2r/s) <
5n? — 552 < 5n? — 20.

Case G = Spg. As in the n > 4 case, we may reduce to the case where 22 = 0 and
x has odd rank.

If = has rank 3, then dim 2% < 12 and we get a bound of 48. If z is a long root
element, then 6 conjugates suffice to generate spg (by reducing to the rank 2 case
and using generation by 3 conjugates). Then 6 dim ¢ = 36 and the result holds.

Case G = PSp,,, forn > 3. For GSpy,, := (Sps,, XG,)/ e, the group of similarities
of the bilinear form, we have a natural surjection GSp,,, — PSp,,, whose differential
gsPa, — PSP,,, is surjective and has central kernel k, the scalar matrices. Let
T € gspy, be noncentral such that 2l € {0,2}. If 2 belongs to sp,,, we have
already verified that x cannot lie in (sp,,), for generic v € V. So assume that x
is toral and does not belong to sp,,,, i.e., is the projection on a maximal totally
isotropic subspace as in the paragraph preceding the statement. Up to conjugacy
we may assume that x is (82 (}Z ) The nilpotent linear transformation y := (8Z (I)Z )
belongs to sp,,,, has rank n and satisfies y!2 = 0. Note that = + ty is conjugate to
x for any scalar t. It follows that ¥ is in the closure of &=,

Lemma 8.3 gives that 4 conjugates of y suffice to generate a subalgebra of sp,,,
containing n. Take M = n = [s02,,502,] and N = 3(n), so M/N is the irreducible
representation L(w,_1) of G whose highest weight is the highest short root. As

dim gsp,y, /M =2n+1 < 2n? —n — 1 < dim M/N,

[ , Lemma 4.3(3)] says that 4 conjugates of x also suffice to generate a sub-
algebra of sp,, containing n. On the other hand, dim2%5P2n = n? + n, giving
e - dim 295P2n < 4n? + 4n. Therefore, it suffices to take the bound for PSp,, to be
the maximum of 4n? + 4n and the bound for Sp,,,. O

Restricted irreducible representations. Let V be a restricted irreducible rep-
resentation of an algebraic group G of type C,, with n > 3 over k of characteristic
2; we aim to prove Theorem C(2) for this G. The highest weight A = Y | ¢;w;,
numbered as in Table 2, has ¢; € {0,1} for all . If A = 0, equivalently kerdp = g,
then there is nothing to do.

Example 8.5 (“spin” representation). Put G’ := Spiny, ;. Composing the very
special isogeny Sp,,, — G’ with the (injective) spin representation of G’ of dimen-
sion 2" yields the irreducible representation (V,p) = L(w;) of Sp,,. Forn > 7,
dim V' > dim G and the stabilizer (g’), of a generic v € V is zero | , Th. 1.1],
S0 (8Pg,, )y = ker dp.

For 3 <n < 7,dim V < dim Sp,,, and one can check using a computer that there
exist vectors in V' whose stabilizer is ker dp, therefore, sp,,, acts virtually freely on
V. Alternatively, for n = 3,5,6 and generic v € V, (Sping,, 1), is Ga, SLs XZ/2,
(SL3 x SL3) x Z/2 respectively | ]; each of these has a Lie algebra that is a
direct sum of simples, and so it can not meet the solvable ideal that is the image
of spy,, in sping,, ;.

For n even, the representation factors through PSp,,. For n > 8 and n = 6,
psp,,, acts virtually freely as in the preceding two paragraphs. For n = 4, the
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image of pspg in sping is the maximal proper Sping-submodule, for which a generic
vector v in the spin representation has a 1-dimensional stabilizer (Example 7.13),
i.e., dim(pspg),/kerdp =1, i.e., pspg does not act virtually freely.

Therefore, we have addressed the cases where A\; = 0, i.e., A € {0,w;1}, so we
now assume that A; # 0, whence, V" = 0. As this excludes all the representations
in Table 4, our task is to prove that (1) sp,,, does not act virtually freely if dim V' <
2n2 +n and (2) psp,,, acts virtually freely if dim V' > 2n? + n.

Example 8.6 (natural representation). Here we treat V := L(w,), the natural
representation of Sp,,, which has dimV = 2n < dimSp,,. In this case Sp,,, is
transitive on all nonzero vectors and so we see the generic stabilizer is the de-
rived subalgebra of the maximal parabolic subalgebra that is the stabilizer of a
1-dimensional space.

Example 8.7 (“A?” representation). Let V := L(w,_1), which has dim V < dim G.
We will show that the generic stabilizer in Sp,,, is 41 X --- X A; (more precisely
the stabilizer of n pairwise orthogonal two-dimensional non-degenerate subspaces),
so V is virtually free for neither sp,, nor for psp,,,.

Let M be the natural module for Sp,,,, of dimension 2n. Let W = A2M which
we can identify with the set of skew adjoint operators on M, i.e., the linear maps
T: M — M with (Tv,v) =0 for all v € M. If nis odd, then W 2 k@ V. If
n is even, then W is uniserial with 1-dimensional socle and head with V as the
nontrivial composition factor. The unique submodule Wy of codimension 1 in each
case consists of those elements T' with reduced trace equal to 0.

It follows as in | ] or [ , Example 8.5] that a generic element T of
W (or Wy) is semisimple and has n distinct eigenvalues each of multiplicity 2. It
follows that, as a group scheme, the stabilizer of such an element is as given and so
the result holds for n odd.

Assume that n > 4 is even. Note that a generic element T of W also has the
property that the n(n — 1)/2 differences of the eigenvalues of T are distinct. It
follows easily that the stabilizer of such an element in V = W,/WSP2n is the same
as in Wy and the result follows.

If n > 11 and dim V < 6n% — 6n, then V is L(w,) or L(w,_1) by [Lii], so we may
assume 3 < n < 11. Therefore we are reduced to considering Tables A.32-A.40
in [LL11], one table for each value of n. In those tables, the representations V' not
already handled by Prop. 8.4 or Examples 8.5, 8.6, 8.7 are: L(w,_2) (“A3”) for
Spsy,, with n = 4,5 and the representation L(w; + ws) of PSpg of dimension 48. A
computer check verifies that g acts virtually freely on these representations.

As we have verified Theorem C(2) for groups of type C (in this section), B (in
section 7), and Fy and Gy (in section 6), the proof is complete.

9. A LARGE REPRESENTATION THAT IS NOT VIRTUALLY FREE

In this section, G is a simple and simply connected algebraic group over k and
char k is special for G. The main theorem of part I includes a statement of the
following type: If chark is not special and V is a G-module with a subquotient X
such that X991 = 0 and dim X is big enough, then g acts virtually freely on V.
Example 9.3 below shows that such a result does not hold verbatim when char & is
special.
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As in §1, we put n for the kernel of the (differential of the) very special isogeny
in g = Lie(G).

Lemma 9.1. For any representation V of any Lie algebra 9, we have: (V/V?)® C
VIRV In particular, if © = [0,9], then (V/V?)® = 0.

Proof. Suppose for some v € V that zv € V? for all z € 2. For z,y € 0, we have
[m,y]v = x(yv) — y(gw) =0,ie,v € Vol -

Lemma 9.2. For G simple and simply connected but not Sp, over a field k such
that char k is special, we have:

(1) n s not virtually free as an n-module.
(2) n/nle:8l £ 0 and (n/nlo-8l)lesl =,

We ignore what happens in the omitted case of Sp,.

Proof. We first verify (1). If G has type Gy or Fy, then n is the simple quotient of
sl or sping by its center. Thus n acts on n with trivial kernel and the stabilizer of
a generic element of n is the image of a maximal torus in sl3 or sping, of dimension
1 or 2.

If G has type C,, with n > 3, then n = [s03,,502,], of codimension 1 in
g, 8] = 502,. Then nl®8 = nNj3(s0s,) and the quotient n/nl®9) is the irreducible
representation of s0o, with highest weight the highest root. Since the quotient is
not virtually free for n as in | , Example 3.4] (using that G # Sp,), neither
is n itself. (Note that this also gives (2) in this case.)

If G has type B, with n > 2, then n = b, the Heisenberg algebra from §3. For a
generic h € b, the map = +— [z, h] € 3(h) is a nonzero linear map, so has kernel of
codimension 1, completing the proof of (1).

Now consider (2). In the remaining cases where G has type B,, with n > 3, Ga,
or Fy, the algebra g is perfect (immediately giving the second claim by Lemma 9.1),
sonl®dl =ns =n N 3(g), which is zero for type G2 and Fj and has codimension 2n
in n for type B,. O

Example 9.3. Let G be as in Lemma 9.2 and let U be a representation of G on
which g acts with kernel n. For G of type B,, with n > 3, we take U to be the
natural irreducible representation of dimension 2n. For type G5 and Fy, we take
U = g/n. For type C,, with n > 3, g/n is the Heisenberg subalgebra in spin,,
and we take U to be the spin representation. Note that for types By, Fy, and G,
the algebra g is perfect and U is irreducible so U991 = 0. For type C,,, [g, g] maps
to the center of spin,,, ,;, and again we have Uls:al = 0.

Now take W to be a finite sum of enough copies of U so that g acts virtually
freely on W, compare Example 7.11 for type B,, and Example 7.1 for type C,,. For
types Fy and Gg, take W =U @ U.

Let V=na @™ W for W as in the preceding paragraph. The subquotient X =
V)Vl = n/nlo:8l & @™ W has, by Lemma 9.2, X[99] = 0 and dim X > m dim W
can be made arbitrarily large by increasing m. On the other hand, for a generic
vector v = (n,wi,...,wy) € V, the stabilizer g, equals n,, so by Lemma 9.2 g
does not act virtually freely on V.
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10. PROOF OF THEOREM C(1)

We now prove claim (1) of Theorem C. Recall that p: G — GL(V) is assumed
irreducible with restricted highest weight and g does not act virtually free on V.

If char k is special, we apply part (2) of Theorem C to see that dim V' < dim G.
If char k is not special, then the kernel of dp is a central toral subalgebra, so we
can assume p is faithful, and apply Theorem A from | ] (quoted here as the
case of Theorem A where char k is not special), which says that dim V' < dim G or
(G, char k, V') belongs to Table 1, in which case g, is a toral subalgebra.

It remains to treat the case where dim G = dim V. The tables in [L.ii] show that
V' is the adjoint representation and char k is not special, so g, is a toral subalgebra
for generic v. O

11. PROOF OF THEOREM B

The goal of this section is to complete the proof of Theorem B, so we adopt its
hypotheses. In particular, char k is assumed to be special for G and p is faithful.
Note that V" = 0; otherwise, as V is irreducible, V* = V and dp would not be
faithful.

Write the highest weight A of p as Ag+pA; where Ag, A; are dominant, p = char k,
and )\ is restricted. Assume A; # 0 for otherwise we are done by Theorem C,
because the representations in Table 4 are not faithful. As G acts faithfully, it
follows as in [ , Lemma 1.1] that A\g # 0 and dim V' > dim G. We will verify
that g acts generically freely on V.

As A € T* and pA; is in the root lattice hence in 7%, it follows that Ag is
also in T*. Therefore, the representations L(\g) and L(p)\;) are representations of
G. The representation L(Ag) ® L(pA1) is a representation of G that is irreducible
(because its restriction to the simply connected cover of G is the representation
L(X\o) ® L(\)P)) and has highest weight \, so it is equivalent to V.

We will repeatedly use below that for any representation X of G and any e > 0,
the representation X ® X" is virtually free for g, see [ , Lemma 10.2].

Type C. Suppose first that G has type C,, for some n > 3. The smallest nontrivial
irreducible representation of Sp,,, is the natural representation of dimension 2n. If
dim L(A\g) = dim L(pA1) = 2n, then G = Sp,,, and L(pA1) is a Frobenius twist of
L(X\g), so V is generically free as in the preceding paragraph. Otherwise, at least
one of dim L(\p), dim L(pA;) is greater than 2n. The second smallest nontrivial
irreducible representation of Sp,,, is L(w,—1) of dimension

202 —n—1 ifnis odd;
s(n) = o
2n? —n —2 if nis even.
So dimV > 2n s(n), the values of which are as follows:

n ‘ 3 4 >5
2ns(n) | 84 208 > 6n” +6n

Therefore, G acts generically freely by Prop. 8.4.

G simply connected. We are reduced to considering G of type B, for n > 2, Fy, or
Gy. By Lemma 7.7, G is simply connected, and therefore V 2 L(A\o) @ L(A)P!. As
a representation of g, this is a sum of dim L(\;) copies of L()g), and in particular
L(Xo) is itself faithful. Put m for the dimension of the smallest nontrivial irreducible
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representation of G, which is 2n (type B,,), 26 (type F4), or 7 (type G3). Then V
contains the g-submodule X := @™L()\g) on which g acts faithfully, and we will
show that g acts generically freely on X.

If dim L(\o) = m, then X is isomorphic to L(\g) ® L(A\o)P! as g-modules, and
we are done, so assume dim L(Ag) > m. For m’ for the dimension of the second
smallest nontrivial irreducible representation, we have dim L()\g) > m/, whence
dim X > mm/.

If G has type Fy or G, then m’ = 246 or 27 respectively, and Prop. 6.1 shows
that g acts generically freely on X.

So suppose G = Spiny,, ,; for some n > 2. The smallest faithful irreducible
representation of G is the spin representation L(w;) of dimension 2", so dimV >
m2" = n2"+1 If n > 4, then dim V > 4n?+4n, and we are done by Lemma, 7.4. For
n = 2,3, a sum of 2n copies of the spin representation is generically free (Example
7.1), so we may assume that Ao # w;. The next smallest faithful representation
of Spiny,, 1 is L(w; + wy) of dimension 16 for n = 2 or 48 for n = 3. Therefore,
dim X > 2n - dim L(w; + wy,) > 4n? + 4n and again we are done by Lemma 7.4,
completing the proof of Theorem B. O

12. PROOF OF THEOREM A

Theorem A now follows quickly from what has gone before. We repeat the
argument given at the end of part I for the convenience of the reader.

The stabilizer G, of a generic v € V is finite étale if and only if the stabilizer
g, of a generic v € V is zero, i.e., if and only if g acts generically freely on V. By
Theorem A in [ ] (for which the case where char k is special is Th. B in this
paper), this occurs if and only if dim V' > dim G and (G, char k, V') does not appear
in Table 1, proving Theorem A(1).

For Theorem A(2), we must enumerate in Table 3 those representations V' such
that dim V' > dim G, V does not appear in Table 1, and the group of points G,, (k) is

not trivial. Those V' with the latter property are enumerated in [ ], completing
the proof of Theorem A(2). O
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