Fast Nested Key Equation Solvers for
Generalized Integrated Interleaved Decoder

Zhenshan Xie and Xinmiao Zhang, Senior Member, IEEE,

Abstract—Generalized integrated interleaved (GII) codes nest
Reed-Solomon (RS) or BCH sub-codewords to generate code-
words belonging to stronger RS or BCH codes. Their hyper-
speed decoding and good error-correction capability make them
one of the best candidates for next-generation terabit/s digital
storage and communications. The key equation solver (KES)
in the nested decoding stage causes clock frequency bottleneck
and takes a large portion of the GII decoder area. Recent
architectures reduce the critical path to two multipliers and rely
on the application of the slow-down technique to further reduce
it to one. The slow-down technique requires two sub-codewords
to be interleaved in the nested KES. However, most of the time,
the nested decoding only needs to be carried out on one sub-
codeword and half of the clock cycles are wasted. This paper
proposes two fast nested KES algorithms, both of which have one
multiplier in the critical path without applying slow-down and
accordingly reduce the latency of the nested KES to almost a half.
The short critical path is achieved by algorithmic reformulations
that enable the pre-computation of the scalars in parallel with
polynomial updating. Our second design adopts scaled versions
of the polynomials to enable product term sharing so that the
number of multipliers in each pair of processing elements is
reduced from 8 as in the first design to 4. Novel scaling and
combined scalar computations are developed to keep the critical
path one multiplier. For an example GII code over GF(2%) that
has 3 nested codewords, our designs achieve 49.9% reduction on
the number of clock cycles needed in the nested KES compared
to prior designs. Besides, our second design requires 22% less
area than the first one under the same timing constraint.

Index Terms—Error-correcting codes, Generalized integrated
interleaved codes, Nested decoding, Key equation solver, Reed-
Solomon codes.

I. INTRODUCTION

Next-generation terabit/s storage and digital communica-
tions, such as Flash memories, storage class memories, and
optical communications, require error-correcting codes with
not only hyper-speed decoding but also good correction capa-
bility. These requirements can be addressed by the generalized
integrated interleaved (GII) codes [1]-[3], which nest a set of
Reed-Solomon (RS) or BCH [4] sub-codewords to generate
codewords of stronger RS or BCH codes. Most of the time,
the errors are corrected by decoding individual sub-codewords
and very high throughput can be reached. Besides, the nested
codewords can be utilized to correct more errors. The GII
decoding locality can be further improved by three-layer [5]
nesting schemes.

The authors are with the Department of Electrical and Computer Engineer-
ing, The Ohio State University, Columbus, OH 43210 USA. This work is
supported in part by Kioxia Corporation and the National Science Foundation
under Award No. 2011785.

The GII decoding includes two stages [2]. The first stage
is the traditional RS or BCH decoding on individual sub-
codewords. The key equation solver (KES) step of the de-
coding iteratively computes error locator and evaluator poly-
nomials using syndromes. Each iteration of the Berlekamp-
Massey (BM) [6] KES algorithm first computes a discrepancy
coefficient using a large multiplier-adder tree. Then the dis-
crepancy coefficient is used for polynomial updating, which
introduces another multiplier and an adder to the data path.
The achievable clock frequency is limited by the long crit-
ical path. The reformulated inversionless Berlekamp-Massey
(riBM) algorithm [7] initializes a discrepancy polynomial
using syndromes and updates this polynomial simultaneously
with the other polynomials. The discrepancy coefficient is just
a coefficient of the discrepancy polynomial. As a result, the
critical path is reduced to one multiplier and one adder.

In the second stage, higher-order syndromes acquired from
the nested codewords are utilized to correct more errors.
Although the KES of the nested decoding can continue from
the KES results of sub-codeword decoding [2] to incorporate
higher-order syndromes if the BM algorithm is used, the riBM
algorithm cannot be applied to the nested KES, since the
higher-order syndromes are not available at the very beginning
of sub-codeword decoding to initialize the discrepancy poly-
nomial. It was proposed in [8] to re-initialize the discrepancy
polynomial at the beginning of the nested KES. This approach
requires many large multiplier-adder trees and also leads to
long critical path. The discrepancy coefficient computation was
reformulated in [9] to incorporate one higher-order syndrome
in each iteration so that the KES for the nested decoding
can continue from the previous results and the critical path is
reduced to two multipliers and two adders. The area is reduced
by the scaled nested KES algorithm in [10] through scaling the
polynomials and sharing product terms. Further area reduction
can be achieved by eliminating the higher processing elements
(PEs) of the nested KES with negligible degradation on the
error-correcting performance [11].

It was proposed in [9]-[11] to apply the slow-down and re-
timing architectural transformation techniques [12] to reduce
the critical path of the nested KES architecture by a half to
one multiplier and a couple of adders. The application of the
slow-down technique requires to interleave the decoding of
two sub-codewords. However, with very high probability, there
is only one sub-codeword with extra errors that requires the
nested decoding, in which case dummy zeros are inserted and
half of the clock cycles are wasted.

This paper proposes two fast nested KES algorithms that
indeed have one multiplier in the critical path and do not rely

on the slow-down technique. Using our new algorithms, the
latency of the nested KES is reduced to almost a half. In
previous designs [9]-[11], one multiplier in the critical path
is used to compute the polynomial scalars, and the other is
contributed by multiplying the scalars to the polynomials. By
analyzing the data dependencies, algorithmic reformulations
are developed in this paper to pre-compute the scalars. More-
over, the pre-computation is carried out with one multiplier
in the data path in parallel with the polynomial updating of
previous iterations. As a result, the critical path is reduced
to one multiplier. In our second design, a scaled fast nested
KES algorithm is proposed to enable polynomial product
term sharing and accordingly reduce the area substantially.
Different from the scaling scheme in [10], the scalar pre-
computation with one multiplier in the data path brings many
new challenges. Alternative scaling strategies are developed
to simplify the combined scalars and modified scalars are
adopted to enable the pre-computation using one multiplier in
the critical path without large area overhead. Additionally, the
methodologies for adjusting the polynomial updating scalars in
the cases that the scalars introduced for product term sharing
are zero are re-designed. Besides, a novel modification is
proposed to enable the usage of the results from our scaled
algorithm in the Horiguchi-Koetter (HK) formula [13] for error
magnitude computation, which helps to further reduce the
number of PEs in the scaled nested KES architecture with
very small error-correcting performance degradation.

In summary, this paper has the following major contribu-
tions.

o Algorithmic reformulations are proposed to pre-compute
the scalars in the nested KES with one multiplier in
the data path in parallel with the polynomial updating
of previous iterations. As a result, the critical path is
reduced to one multiplier and two adders without using
architectural transformations.

e Novel scaling schemes and combined scalar pre-
computations are developed to enable the sharing of
product terms. Accordingly, the number of multipliers in
each PE pair is reduced from 8 to 4 with one multiplier
and three adders/multiplexers in the critical path.

« Non-trivial methodologies are proposed to adjust the
polynomial updating in the cases of zero scalars and make
up for the scalars of the polynomials to be used in the
following error magnitude computation.

« Efficient architectures are developed to implement the
proposed schemes and detailed hardware complexity
analyses are carried out.

For an example GII code over GF(28) that has 8 sub-
codewords and 3 nested codewords, both of the proposed
designs reduce the average nested KES latency to almost a
half in terms of the number of clock cycles compared to the
designs in [9], [10]. Moreover, synthesis results show that the
second design achieves 22% area reduction over the first one
and has smaller area than the prior design [9] under the same
timing constraint.

This paper is organized as follows. Section II introduces the
decoding of GII codes. The proposed fast nested KES algo-

Received word

; - Sl :
22 . s
$g Nested syndrome NS
= computation <9
ag =3
¥
Syndrome

Syndrome

conversion

Nested KES
S

codeword

computation

Chien search

codeword

Fig. 1. Data flow of GII decoding.

rithm and architecture are detailed in Section III. The scaled
fast nested KES algorithm and architecture are described in
Section IV. Section V provides hardware complexity analyses
and comparisons. Conclusions are drawn in Section VI.

II. GII CODES AND DECODING

LetC, CCy_q1 C ---CCy CCybewv+1RS or BCH
codes over GF(29). A GII codeword consists of m sub-
codewords cg, ¢y, ,cm_1 € Co, and v codewords ¢; € C,,_;
of higher correction capabilities are formed by nesting the m
sub-codewords. The GII code can be defined as [1], [2]

m—1
Cé{C:[C(),' SN Cmfl] 1Cq 6007 61220[“@ ECH, O§l<’l}} s

i=0

ey
where « is a primitive element of GF'(27). Although GII codes
have been alternatively described by the parity check matrix
[14], the decoding complexity is much higher.

GII encoding data flow and architectures can be found in
[15], [16]. The GII decoding includes two stages as shown in
Fig. 1. Let the error-correction capability of C; be ¢; (0 < i <
v). The first stage is the traditional RS or BCH decoding on
individual sub-codewords, which can correct up to £, errors in
each sub-codeword. Denote a received sub-codeword by y(x).
In traditional RS decoding, first, 2ty syndromes are computed
as Sj = y(ad ™) (0 < j < 2tp). If all 2t syndromes are zero,
y(z) has no error. Otherwise, a KES, such as the BM algorithm
[6], takes the 2ty syndromes and iteratively determines an error
locator polynomial A(x) and an error evaluator polynomial
Q(x) satisfying Q(z) = A(z)S(z) mod z2%, where S(z) =
> jt:”O_ ! S;x7. Then the error locations and magnitudes can
be calculated by carrying out the Chien search on A(x) and

Define a sub-codeword with more than ¢y errors as an
exceptional sub-codeword. The second-stage nested decoding
is activated when the number of exceptional sub-codewords,
b, is between one and v. 2¢ syndromes are required by the
BM algorithm to correct ¢ errors. To correct more than ¢
errors in a sub-codeword, higher-order syndromes can be
derived from the nested codewords since they belong to
more powerful codes. Syndromes of the nested codewords
are computed as 5']@ = Giladtl) = S P aly(adth)
(0<1<9v,0<j<2t,;), where y;(x) is the i-th received
sub-codeword. Since all nested codewords are at least ¢1-error-
correcting, 2t; — 2tg higher-order syndromes can be computed
for each of the nested codewords. Syndromes are evaluation

+0.998

e
&

5 0.996

e,
5

10.994

10.992

15 |
10 10.99

Un-nested RS(255,223) code 10.988

——Gll[8,2]
—<—Gli[8,3]
—b—Gill[8,4]
—A—GlI[8,5]
—8— GlI[8,2] % of one excp. sub-cw
—*%— GII[8,3] % of one excp. sub-cw
—6— GlI[8,4] % of one excp. sub-cw

10-20 b

Frame Error Rate (FER)

+0.986

Percentage of nested decoding with
only one exceptional sub-codeword

10.984
10—25 £

0.982

10
0.01 0.015 0.02

Symbol Error Rate (SER)

Fig. 2. FERs of GII codes over GF(28) with m = 8, v = 2,3,4 and
percentage of nested decoding with only one exceptional sub-codeword.

0.
0.025

values of the codewords. Hence, the syndromes of the nested
codewords are connected to those of the sub-codewords by the
same nesting defined in (1). As a result, 2¢; — 2¢(higher-order
syndromes for each of the b exceptional sub-codewords can
be converted from the nested syndromes as
. . . T - - ~ T
|:SJ(-ZO)7S](-’LI), . 7S§1b—1)] —A! [SJ(-O),S](-U, L ,Sj(-b 1)) ’
2
where ‘1" denotes transpose and %g,%1,--- ,%—1 are the
indices of the b < v exceptional sub-codewords. The entry
of A in the p-th row and g-th column is oP% according to
the nesting defined in (1). Then the KES step computes the
error locator and evaluator polynomials according to the 2¢;
syndromes of the sub-codewords, followed by the Chien search
for error location and magnitude calculations. Assume that
after the sub-codewords with up to ¢; errors are corrected,
b < b exceptional sub-codewords remain. Next 2t — 2t;
higher-order syndromes, S‘J(»l) O <1 <V2t) <j <2
are computed utilizing nested codewords ¢;. These nested
syndromes are converted to sub-codeword syndromes using
an equation similar to (2) to correct the exceptional sub-
codewords with up to 5 errors. This process is repeated for
up to b < v rounds until all exceptional sub-codewords are
corrected.

Sort the number of errors in the exceptional sub-codewords
as ep > e} > --- > ep—1. The nested decoding succeeds if
e; < ty—; for 0 < i < b [1], [2]. Fig. 2 plots the frame
error rates (FERs) of example GII codes over GF(2%) with
m = 8 and v = 2, 3, 4 over a range of input symbol error rates
(SERs). The length of each sub-codeword is 255 symbols and
the overall code rate is 87.45% for all codes in this figure. For
reference, the FER of a conventional un-nested RS (255, 223)
code of the same rate is also plotted. It can be observed that the
FERs of the GII codes are several orders of magnitude lower
compared to that of the conventional RS code. The overall
decoder hardware complexities have been compared in [9] for
the GII code with v = 3 and RS code shown in Fig. 2. It
was found that, besides the several orders of magnitude lower
FER, the GII decoder also achieves 18% higher throughput at
the cost of only less than 30% area overhead.

The KES is the most complicated step of the sub-codeword
decoding. In the r-th iteration of the BM algorithm [6], a

discrepancy coefficient 6" = 22‘0) AET)ST,i, where LX)
is the length of A(")(z), is first computed. Then the polyno-
mials are updated using 6("). A large multiplier-adder tree
is needed to compute 6() and the following polynomial
updating contributes to another multiplier and an adder in
the data path. Such a long data path limits the achievable
clock frequency of the overall decoder. For sub-codeword
decoding, the riBM algorithm [7] reduces the critical path
of the KES through introducing a discrepancy polynomial
A (z) = AW (2)S(x) /2", which is initialized as A©) (z) =
S(z). 6) simply equals the constant coefficient of A" (z),
denoted by Aér). Besides, A(") (x) is updated in parallel with
the other polynomials as a linear combination. As a result, the
critical path is reduced to one multiplier and one adder. To
cover 2t syndromes, 2t iterations are needed in both the BM
and riBM algorithms.

The KES of the second-stage nested decoding does not
have to restart. Using the BM algorithm, it can continue
from the results of the sub-codeword decoding and only
more iterations are needed to incorporate the higher-order
syndromes. However, the critical path of the BM algorithm is
long. On the other hand, the riBM algorithm cannot be used
to continue the iterations since the higher-order syndromes
are not available at the very beginning of the sub-codeword
decoding to initialize the discrepancy polynomial. Although
the discrepancy polynomial can be re-initialized according
to the higher-order syndromes as proposed in [8], such re-
initialization requires multiple large multiplier-adder trees,
which lead to long critical path and large area overhead.

Algorithm 1: Nested KES Algorithm

input: AW (z), BW(z), A®(z), 6W(z), v, k) from

previous KES; S; (u <i < w); S,y =0

initialization:

AW (z) = AW (z) + S, A™ (z)

0™ (z) = 6 (z) + S, B™ (z)

forr=u,u+1,--- ,w—1

. AT (z) = yOAO (2) + AP 2B (2)

2. AT (z) = 7O (A0 (@) /2 + S, 41 A0 (@)

+AT (OO (2) + Spp12B0 ()

if (A # 0 and k) > 0)

3). BUD(z) = A ()

4). 6t (z) = A (z) /2 + S, 1 AT ()

5). AT+ = A(()T); B+ — g 1
else

6). B+ (z) = 2B (x)

. Ot (z) = 60 (2) 4+ S, 412BM) (z)

8) P}/(T+1) ,Y(T)’ k(""+1) = k(T) +]_

Reformulations on the discrepancy coefficient computation
for the nested KES have been proposed in [9] to continue
from the riBM results of the sub-codeword decoding or
previous nested decoding round without requiring multiplier-
adder trees. This reformulated nested KES algorithm is listed
in Algorithm 1. It incorporates higher-order syndromes S;
(u < ¢ < w) one at a time into the discrepancy poly-
nomial. B(z) and ©(x) are auxiliary polynomials used to

k— iteration r-1 N r N r+1 J
+++[Scalar comp] Poly mult. [Scalar comp] Poly mult. [Scalar comp] Poly mult. |+«
@

k- -1 k- r r+l
+++ [Poly mult. | Poly mult. | Poly mult. |+«
«++ [Scalar comp/Scalar compJScalar comp] - --

(b)

Fig. 3. Dependency of data in (a) previous nested KES; (b) proposed fast
nested KES.

update A(x) and A(z), respectively. The scalars for A (z)
and B(")(z) in Line 2 of Algorithm 1 are (S, ; and
ABT)S,.H, respectively. Hence the critical path of the hardware
architecture implementing Algorithm 1 has a few adders and
two multipliers, one for computing the combined scalars and
the other for multiplying the scalars to the polynomials. The
complexity of Algorithm 1 is reduced by adopting scaled
versions of the polynomials to enable product term sharing in
[10], which also has two multipliers in the critical path. It was
proposed in [9], [10] to apply the slow-down technique [12]
with a factor of two so that each register in the architecture is
replaced by two registers, and then move the registers around
by the re-timing technique [12] to cut the critical path to a
half.

III. FAST NESTED KES ALGORITHM

The previous nested KES architectures in [9], [10] rely
on the application of the slow-down technique to reduce the
critical path to one multiplier and a couple of adders. The
application of the slow-down requires two sub-codewords to
be interleaved. In the case that there is only one sub-codeword
requiring nested decoding, dummy zeros are inserted after each
data symbol. This means that half of the clock cycles of the
nested KES are wasted. On the other hand, the majority of
the nested decoding only involves one sub-codeword. The
percentage of the cases that there is only one exceptional
sub-codeword over all the cases that the nested decoding is
activated is also plotted in Fig. 2 for example GII codes over
GF(2%) with m = 8 and v = 2, 3,4. It can be observed that
the cases with only one exceptional sub-codeword dominate
all cases of nested decoding. To further reduce the latency
of the nested KES, it is essential to develop architectures
that have short critical path without applying the slow-down
technique so that no clock cycle is wasted when there is only
one exceptional sub-codeword.

In this section, a fast nested KES algorithm is proposed
to break the data dependency and reduce the critical path to
one multiplier and two adders, which is just one adder longer
compared to that of the slowed-down and re-timed nested KES
architecture in [9]. As mentioned previously, there are two
multipliers in the critical path for the nested KES algorithm
in Algorithm 1. One is resulted from computing the combined
scalars, such as V(T)STH in Line 2, and the other is contributed
by multiplying the scalars to the polynomials. This data de-
pendency is shown in Fig. 3(a). Essentially, our idea is to pre-
compute the combined scalars by algorithmic reformulations,
so that all the combined scalars needed for iteration r are
ready before the beginning of iteration r as illustrated in Fig.
3(b). Then the polynomial scaling is completed in iteration 7
with one multiplier in the data path. Besides, the scalar pre-
computation is done in parallel with the polynomial updating

and should also have at most one multiplier in the data path
although it can be accomplished in multiple clock cycles.
In this case, the overall critical path would have only one
multiplier. Such reformulation and pre-computation are made
possible by analyzing the data dependencies and utilizing the
fact that any computation on the syndromes can be carried out
in advance since all syndromes are available before the nested
KES starts.

In Algorithm 1, the scalars of polynomials for iteration
r include ~("), A(()T), Sr11s 'y(T)STH, and A(()T)STH. The
first three are always available at the beginning of iteration
r. Next, we will find out how to compute the other two,
which are combined scalars, before iteration r» with no more
than one multiplier in the data path. From Lines 5 and 8 of
Algorithm 1, it can be observed that v(") equals either (" ~1)
or AéT_l), which is available at the beginning of iteration
r—1. Hence, V(T)STH can be computed as either 'y(r’l)SH_l
or AéT'_l)SrJrl in iteration r — 1 with one multiplier in the
data path in parallel with the polynomial updating in iteration
r — 1. From Line 2 of Algorithm 1,

Aér)sr-i-l = ’Y(T_l)Sr-ﬁ-lAYil) + 'Y(r_l)SrSr+1AE)T71)

A (r A (r 3)
+Aér I)ST+1®ér 1).

The three components on the right side of (3) can be computed
as follows with one multiplier in the data path:

i) Compute v("~1) S, ; in iteration 7 — 2 as either 7("=2) 5,
or A7 5, . Then the product is multiplied with A{"™"
in iteration r — 1.

il) S.S.41 can be calculated in advance. Similarly,
W(T_I)STSTH is derived in iteration r — 2 as either
A,(fﬂ)(SrS,«H) or 7("=2(S,.S,41). In iteration 7 — 1,
(=188, 1 is multiplied to Aér_l).

iii) If Lines 3-5 of Algorithm 1 were executed in iteration r—2,
S0 =8, AT (8,15,)AU TP If Lines 6-
8 were executed, S’Hlé)or_l = STH(:)(()T_Q). In either case,
ST+166T_1) can be computed in iteration » — 2 with one
multiplier in the data path. Then it is multiplied to A{"™"
in iteration r — 1.

The three components are added up in iteration r — 1 to derive
AE)T)STH. Although the above scalar pre-computations are
spread out over iterations 7 — 2 and r — 1, the data path only
consists of one multiplier and two adders. Accordingly, our
fast nested KES algorithm is developed as in Algorithm 2.

Algorithm 2 has the same inputs and outputs as Algo-
rithm 1 and also requires w — wu iterations to incorporate
w — u syndromes. In this algorithm, 7’ = 7S, ,; and
5? = A(()T)STH. They are computed according to the ex-
planations above with the assistance of intermediate values
h(lr_l), hg_l), 0(;_1), gY_l), and gg_l). All the scalars
and intermediate results are updated in parallel with the
polynomials. None of the lines in Algorithm 2 requires more
than one multiplier and two adders in the data path.

The overall architecture for implementing the fast nested
KES of Algorithm 2 is shown in Fig. 4. Since the degrees
of the polynomials are at most t,, t, + 1 pairs of PEs are
employed to update the polynomials. PEOs are used to update

A0
. B0

[Dkoa] | s o] |

| keee AT eeed]
[b] (7 [0 g3 s g [O]
PIEﬁllo — PIEE1|1 oee R eeeq PI%’t ki —— PU CTRL
k— kooo 5+1 eoed]
TTT
7w~ K ".[B(*)é“)]. s I
OTTTI—/'TTTﬁ’” oo TTTp @ 3 g
Kooe 1) eee 11 VA Sraa
— ¥ 4 2
(D] - (D] e e (0] -
cee) eee
o] | PEOo (] PEO, 117 1) 11§ PEO,,
oDl [[[0 pre s o (0] B
k—

keoe & eeed

Fig. 4. Overall architecture for fast nested KES.

A(x) and B(z) and PEls handle A(z) and ©(x). All the
scalars are computed in the pre-processing unit (PU) and one
single PU is needed. The register in the bottom left corner is
initialized with B") and then feeds ‘0’ to PEO, and PU in later
clock cycles. This architecture requires w —u+ 1 clock cycles
to finish the nested KES for one sub-codeword. One clock
cycle is used for initialization, and the others are spent on the
w — u iterations. Comparatively, prior designs [9], [10] take
2(w —wu) + 2 clock cycles. It was found in [11] that a number
of higher PEls can be eliminated with negligible degradation
on the error-correcting performance if the HK formula is used
for the following error magnitude computation. This technique
directly applies to our fast nested KES architecture.

Algorithm 2: Fast Nested KES Algorithm

input: AW (), B® (), A (z), 6 (), v, k) from
previous KES; S; (v < i < w); Spts =00 <5< 3)

initialization:

V) = 7 S0t

5?@ = Su+14§“> + Sur1SuA(”

91 = Su-l-lSu-&-S; g = u+2Su+3

}}gU) = 7(u)§u+2; héu) = 7(u)5u+15u+2

AW (z) = A (z) + §,A™ (z)

0 (z) = 0™ (x) + S, B™ (x)

forr=u,u+1,--- ,w—1

D, AT (z) = yMAO () + Al a:B(’”)(x)

2. A (@) =4 OAN (@) /2 + 17 AO (7)

+APOM) (2) + %B ") (z)

3). 5%’"“) = BVAY + hOAT + A6
4). 91 Y - ST+QST+4’ gé T) - ST+SST+4
1f(A # 0 and k(") > 0)
5. BU(@) = AO(a)
6) Oilts) = B0)z 4 A1)
7). G(T“) Syt A (T)Agf)
8). ! TH A(T) (Hl) = AOT)STH
9) hgr+1 _ A(()T)ST 5 hgTJrl) _ Agr)gér)
10). B+ —)]
else
11). 5(r+1)(x) = @B(T) (2)
12, 60 (2) =6 (@) + 5,128 ()
13). 057 = 8,450,
14). 7(r+1) = ~(); 7<7’+1> S, Ly
15). R = 408 b = 4 gl
16). k) = 0 {1

A0 —i A
e Hﬁk—@(—%@« i)
y(Y)

PE1;

A —T
JlLiireN

) 5
817165

A(Or] O/Bu(“)ﬁsr) @‘()r)
I I I I

v

()
[oH
QM @ 50

Bl(r)

PEO;

)
Blfl

Fig. 5. PE and PU architectures for fast nested KES.

The details of the i-th PEs and the PU are illustrated in Fig.
5. The syndromes are available in advance and S, Sy 41, -
are sent into the PU serially starting three clock cycles ahead of
the nested KES. In the initialization clock cycle of the nested
KES, the polynomial coefficients A\ and B(”1 are loaded

into the registers in PEO;, and AE: and @E w are loaded into
the registers in PE1;. The polynomial and scalar initialization
are carried out by routing v(*) and A(()") through the two
multiplexers on the right side of PU and setting the registers
in the PU according to the initialization lines of Algorithm
2. The other multiplexers in the PU and PEs are controlled
by the ‘¢’ signal, which is ‘I’ when A £ 0 and £ > 0
and is ‘0’ otherwise. At the begmmng of the r-th iteration
of the nested KES, ~ (r), A(r) 'ys , and 5(are available in
the PU. They are sent to the PEs to compute A(TH) @ (r+1)
AETH) and BZ-(TJr) according to Lines 1, 2, 5, 6, 11, and
12 of Algorithm 2. At the same time, v("+1, 47 and
5g+1) are generated in the PU according to Lines 3, 4, 7-9,
and 13-15 of Algorithm 2 to be used in iteration r + 1. In
the PU architecture, the signals gy), 927) h(r), and h(;) are
labeled so that the correspondence between the architecture
and Algorithm 2 can be easily traced. The critical path of
the fast nested KES architecture has one multiplier and two
adders as highlighted by the thicker wires in Fig. 5. It is only
one adder longer compared to the critical path of the slowed-
down and re-timed nested KES architecture in [9] and is the
same as that of the design in [10]. When there is only one
sub-codeword that requires nested decoding, which happens
in most cases, the proposed architecture reduces the nested
KES latency to a half in terms of the number of clock cycles,
since no dummy zero needs to be inserted.

IV. SCALED FAST NESTED KES ALGORITHM

The fast nested KES architecture developed in the previous
section reduces the critical path by around a half to one
multiplier and two adders without applying the slow-down
technique. However, it has 8 multipliers in each pair of
PEs instead of 4 as in the scaled nested KES design [10].
Finite field multipliers are area-consuming. Borrowing the
idea from [10], the number of multipliers can be reduced
by utilizing scaled polynomials to enable the sharing of
intermediate results among polynomial updating. However,
this inevitably makes the scalars more complicated and consist
of more components. Different from the scaling scheme in
[10], the scalars need to be pre-computed and the data path

can only have one multiplier to achieve fast KES. The data
dependency and the more complicated scalars make the scalar
pre-computation very challenging.

This section proposes a scaled fast nested KES algorithm
that reduces the number of multipliers in each pair of PEs
from 8 to 4 with only one more gate in the critical path.
Different from the scaling scheme in [10], our new scaling
scheme was developed to not only enable product term sharing
but also allow the combined scalars to be pre-computed
with one multiplier in the critical path. Alternative scaling
strategies and modified scalars are developed to enable such
a scaled algorithm. In the following, subsection A) and B)
present the scaling of the polynomials in two categories since
different approaches are utilized to keep the critical path
short. Subsection C) presents the scaled fast nested KES
algorithm and necessary adjustments to handle zero scalars and
enable the application of the HK formula. The implementation
architectures are detailed in Subsection D).

A. Scaling by Syndromes

It can be observed that the sum of fyg)A(”)(a:) and
5(ST)xB(T)(x) in Line 2 of Algorithm 2 is S, 1A+ (),
Hence, if the scaled A0tV (z) = S, AT+ (2) is used,
the two multipliers in each PEO for computing the products in
Line 1 of Algorithm 2 can be eliminated. To keep the decoding
results the same, every polynomial needs to be multiplied by
the same overall scalar. The approach adopted in [10] is to
multiply additional scalars to the polynomials to make up
for the difference and these additional scalar multiplications
are put off until the next iteration to save multipliers. As
a result, a scalar in [10] for iteration r is combined from
three components: i) the scalar introduced to enable product
term sharing for iteration r; ii) the additional scalar needed
to make the overall scaling the same for every polynomial
from iteration r — 1; iii) the scalar that was originally in
the algorithm for iteration r. The data dependency already
made the scalar pre-computation complicated as shown in
Section III. Adding more components to the combined scalars
will make the calculations even more difficult. Fortunately,
all computations on the syndromes, include inverse, can start
in advance and do not pose bottlenecks on the critical path.
Therefore, to simplify the scalar pre-computation, .S, +11 is
multiplied back to A(z) in the next iteration to reverse the
scaling. Since B(x) and A(z) are linearly combined in the
polynomial updating, B(z) needs to be scaled by the same
factor as A(z). Hence, B'tD(z) = S, 1B"tV(z) is
utilized and the inverse scalar S, is multiplied back to B(x)
in the next iteration. Since the overall scalars for A(z) and
B(x) are ‘1’, no additional scalars need to be multiplied to
O(z) and A(x), whose combined scalar computations are the
most complicated.

From the above discussions, the polynomials can be updated
as follows.

N (@) = (1§78 HA O (@) + (655,12 B W (x) @)
A(r+1)($) — ’Y(T)A(T) (Jc)/a: + (yg)Sfl)A’(r) (x)

T

(1) 2 (5)
+ A0 () + (658712 B M ()

TABLE I
SCALARS FOR POLYNOMIALS IN THE FAST NESTED KES

[A/(r+1)(x)[@/(r+1)(x)[A’(T""l)(z) [B/(T'H)(x)

scalars introduced to 1 'y(r) Sr41 'y(T)ST_H
enable term sharing or A(()T) or A(()T)SH_l
additional 'y(f) 1 ’YET)S’F_+11 S;rll
scalars or AE)T) or AS)”S;_SI

1t A #£ 0 and k) >0

O () = AW (2) / + (8415, A (2)

6
Ba) = (5,187 1A @) ©

else

60 () = O0) (&) + (415, e B ()
B (@) = (8,418,)2 B (x)

To keep one multiplier in the critical path, the combined
scalars (’y(ST)S;l) and (5(574)5;1) in (4) and (5) need to be com-
puted before iteration r starts. (7{)S1) = 4((S,15:1)
and can be computed in iteration 7 — 1 with one multiplier in
the data path as either A" (S, 157 1) or v~ (8,41 S71),
since (S,415,1) can be made available before this iteration.
Also (55.;)5,,,_1) = AV(8,.1571) and it is calculated in a
similar way as AOT)STH as explained in Section III. There are
6 different product terms in (4), (5), (6), and (7). Therefore,
using these formulas, the number of multipliers in each pair
of PEs can be reduced from 8 as in the fast nested KES
architecture presented in Section III to 6.

(7

B. Scaling by Discrepancy Coefficients

To further reduce the complexity of the PEs, more polyno-
mials need to be computed by sharing product terms. Note that
'yé” =~S, 1 and 6g) = A{"S, ;1. Hence the O+ ()
in (6) scaled by ~(") and that in (7) scaled by A((]T) equal
the sums of the first two and last two terms, respectively, on
the right side of (5). Similarly, the B’"+1)(z) in (6) and (7)
do not need extra product terms to compute if it is scaled by
4" and A(T), respectively. If these scaled polynomials are
used, then each pair of PEs would only need 4 multipliers. As
explained previously, the overall scalar for every polynomial
needs to be the same. However, multiplying back the inverse
of 7 or A{" in the next iteration as in the approach of
Subsection A) will lead to long critical path. This is because
that the inversions of (") or Aér) cannot start early and get
pipelined as those of the syndromes. Therefore, v(") or AE)T)
needs to be multiplied to the other polynomials as additional
scalars to make up for the difference. The scalars introduced
to enable product term sharing and the additional scalars for
making the overall scaling the same are listed in the first and
second rows of Table I, respectively.

To differentiate the notations, ¢’ is added to all polynomials
and related scalars in the following for the scaled algorithm. As
mentioned previously, the additional scalars for iteration r — 1
are combined with the scalars needed to enable product term

sharing for iteration r and those already in the polynomial
updating formulas for iteration r. Take the scalar of A’(z)
as an example. If (6) was executed in every previous itera-
tion, it can be derived that the combined scalar for A'(")(z)
on the right side of (5) accumulated over the iterations is
(vgr)g;l)y(r—l) ceyW) = =D)L g 6L
To keep one multiplier in the critical path, the multiplication
of 4/(") ~(r=1) ... should be taken care of one at a time in
iteration r—1,r—2, - - - . This means that 7’(“)5}“5;1 should
be computed at initialization. When there are w — u higher-
order syndromes and hence w —wu iterations in the nested KES,
w — u such values need to be computed at the initialization.
Moreover, they are multiplied by v/(“+1) 4/(v+2) ... over the
iterations until the combined scalar is consumed in iteration
r. This initialization and updating bring large area overhead.
Such an issue does not exist in the design of [10] since it has
two multipliers in the critical path. One is used to multiply
the latest « and the other is used to multiply the syndrome.

To simplify the combined scalar computation, we propose
to drop 7/("=2) ... /(") and use p(sr) = A/(Myr=1g 81
as the accumulated scalar of A’(")(z) for iteration r. /(")
and 7"~ cannot be further eliminated because they are
the original scalar for iteration r and additional scalar from
iteration 7 — 1, respectively. Define ¢ =2 = ~/(r=2) ... /(%)
If (7) was executed in iteration 7 < r, then the ~/ (@) in ¢r—2
is replaced by A" and ¢"=2 can still be eliminated from the
scalar. Besides, following Lines 8 and 14 of Algorithm 2, it can
be derived that »/("~/("=1) always equals to A()‘HWO"—U
no matter whether (6) or (7) was executed. Hence

pg) — AS(T_l),yl(rfl)SerlSTfl' (8)

To keep the decoding results unchanged, the four terms on
the right side of (5) for A’(x) updating should be scaled by the
same factor. Hence, 05_2 also needs to be eliminated from the
other three scalars. This also ensures that the other polynomial
updatings are done correctly since the other formulas are
partial results from (5). From (6), the difference between the
scalars for A'")(x)/z and A')(z) is S,,1S;'. Hence, if
c"=2 is removed from the scalar of A’(")(x), the modified
scalar for A’(")(z) /x should be

p(r) _ A6(7-_1),_Y/(r71).)
The additional scalar for ©'(z) is always ‘1’ as
shown in Table I. From (5), it can be derived
that A:)(T) _ ,Y/(rfl),y/('r’fZ) . ,yl(u)All(T_l) +

A/ (r=D)a(r=2) . ,,y/(u)srs;_llAg(Tfl) + Ag(rfl)éi)ﬁ*l)
if (6) was executed in every previous iteration. Define
g1 O,V /(y/"= ...4/(W)) Then the scalar for
©'(")(z) after ¢/ ~2 is eliminated is
6(7«) _ VI(T_l)All(ril)+’Y/(r_1)STS;_IIAB(T71)+A6(T71>¢("_1)
) (10)
From (7), the scalars for ©'(") () and 2 B'(")(z) are different
by a factor of S,;1S.'. Hence, the modified scalar for

B’ (z) should be
65! =05, 8"
_ ’Y/(T_l) (57-+1ST_1)AI1(T71) + 7/(7“—1)57'_’_157”—_111\6(7‘71)

+ AFT (Sr 57 g

(11

In the case that (7) was executed in some previous iterations,

similar analyses apply and the same scalar formulas as in (10)
and (11) are derived.

All the four modified combined scalars in (8), (9), (10), and
(11) for A (z), A" () /z, @) () and zB'(") (z), respec-
tively, can be pre-computed before iteration r with one multi-
plier in the critical path. Specifically, for (8), v/("~1) S, 15!
is computed as either 7" (5,15 1) or A2 (5,1 571
in iteration r — 2 with one multiplier in the data path. Then
the multiplication with A{f’“*” is completed in iteration r — 1.
The computation of (9) is even simpler. Besides, both (10) and
(11) are in a similar format as (3). Hence, they can be also
computed in advance with one multiplier in the critical path
as explained in Subsection A).

C. Scaled Fast Nested KES Algorithm

Algorithm 3: Scaled Fast Nested KES Algorithm
input: A’(“)(x), B’<“)(m), A/(u)(x), @/(M(m), 7/(u), AN p(u),
§<“), A ¢><“), 5(“>, C(“), 77<“) from previous KES;
Si(u<i<w) Swti =00 <0< 4)
set S = S, if S; # 0, set S; = 1 otherwise (u < i < w + 4)
initialization:
AW (z) = AW (z) + S, A" (z)
0’ (z) = 6™ (z) + S, B ™ (x)
AW (z) = SN (2)
B'™(z) = S, B"™ (x)
execute Subroutine 1
forr=u,u+1,--- ,w—1
D. it (A7 = 0)set p =1, pf) = gi”, € =) =0
2. N (@) = p PN (2) + 602 (2)
3. AC(@) = p A (@) /x4 p N (a)
+MO) (2) + 607 2B) (w)
(set p7) = €0 = 0/if S, 11 = 0)
4). execute Subroutine 2
if (A" # 0 and k) > 0)

5). B+ (z) = pI A0 (1)
6). Ot () = pMIA M) () Ja 4 p TN ()
(set p&) =0 if S,p1 = 0)
7). execute Subroutine 3
8). EOHD = () 1
else

9). if (A =0)set € =1, ¢ = g{"

10). B (g) = ¢ 2B (1)

11). Ot () = MO (z) + ¢V xB) (x)
(set €57 = 0/if Sp1 = 0)

12). execute Subroutine 4

13). D = k() 41

Applying the scaling schemes discussed in the above two
subsections, the proposed scaled fast nested KES algorithm

is developed as shown in Algorithm 3. The initialization and
updating of the scalars are detailed in the four subroutines.

Subroutlne 1: Scalar initialization

D. g S;+1S/ 1’ g§u> = S;+2S/+1v géu) S:L+3S'u+1
gi“) = Sa3Si3h: 05 = Sl aSh: 0 = gi gl
2). B =405l st p () = gl st
hgu) _ 'y’(“)S’ 25«;111
3). p(su> — g(u)p(u)
4) ggu) _ g§u)£(u) _’_ggu)su)\(u)

5). g(u) — g(u) + S A
6). 65" = gi o™ + g8 5,8
7. ¢(u) ¢(u) + S, B(u)

Subroutine 2: Scalar updating
1), gD = A OA i (AL # 0)

MM otherwise
2) p(r-tl) — hi(’:T)AE](T) if (AE)(M 7é O)
s R ¢ otherwise
3) £(T+l) — fyl(r)éll(T> + h:flT)Ag(T) + A:)(T)(b(r) if (ST'+1 # 0)
' 7/(T)A/1<T> + Ag(r)qﬁ(” otherwise
o oo [EOAD LD L RO i (50 £0)
s RAL 4+ A g0 otherwise
5). C(r+1) _ p(”AEf” if (AB(” #0)
¢ otherwise
6). AU+ = p{rI A"
" g<(tll>> “)> (:11)) aiay = (+I+4S/J(12
9 = S;+55'T+4 9s
Subroutine 3: Scalar updating in ‘if’
1) 'VI(T+1) _ Ag(r)
2). B Z AN), D AT g, k) AT ()
Al(r T (r .
3). p(r+D) = éf : +9§)Ao(b (Srt1 #0)
' Al otherwise
4). 60tV = gf[)é'lm + gAY i (S #£0)
nre gSIALm otherwise
5). 8D = g{” A"
6. 1 = 0 A
Subroutine 4: Scalar updating in ‘else’
D. ,yl('r-t-l) — ,Y/(T)
2). h%i; = 7;(2)95”; By = A/ gl BT = gl
3). 9" =9
4). 95T = g7 0"
5). gt =

6). 7](r+1) — g(f)n(r)

In Algorithm 3, p, &, A, ¢, and 3 are scaled versions of ~,
Ao, Ao, @0, and By of Algorithm 2, respectively. (is used
to adjust the polynomial updating scalars when the scalars
introduced for product term sharing are zero. n is needed to
enable error magnitude computation using the HK formula.
More details about these two variables are provided later in

this section. To show that all computations can be broken
down to one multiplication at a time, gf)g) = Sp4285,. Jrllgb(r),
gzm (1 <i<6), and hzm (1 < i < 3) are used to denote
intermediate values in Algorithm 3. Essentially, g§), gé), gy),
gz(lr)’ géT)a and ger) equal S~ Sr—t-lv Sr+15r+2’ Sr+1S7"+3’
ST+QST+3, Sr+35 4, and S LS, +1ST,+2S,«+3, respectively,
and hg’ , hg), and h(T) are 7" S1S, 1, ¥/ (MS1S, 5, and
(ng— +1Sr+2’ respectlvely

It can be observed that there are only four different polyno-
mial product terms in Algorithm 3. As a result, the number of
multipliers in each pair of PEs is reduced to 4 from 8 as needed
by the fast nested KES algorithm (Algorithm 2). Although the
scalars need to be computed and updated according to the
many lines in the four subroutines, the calculations are done
over individual coefficients instead of polynomials. Hence, the
overall area requirement is reduced substantially.

Algorithm 3 can also start from the KES results of either the
sub-codeword decoding or the previous nested decoding round.
In the former case, A'(*)(z), B’ (), A’ (), ') (z), and
~'(®) are set to A (z), B™(z), A (z),) (z), and 4,
respectively, from the sub-codeword decoding. p(*), § () (),
oW, g ¢ and n™) are set to (¥, A(") Ay (w) @(u
B(") (“), and 7(“), respectively. For a later round of the
nested KES, the inputs of Algorithm 3 are just the outputs
of the previous round. Sy,4+; (0 < i < 4) are not part of the
higher-order syndromes that are available. They are set to 0 in
Algorithm 3 to make the formulas uniform for each iteration.

As shown in Table I, fy("), syndromes, and discrepancy
coefficients are introduced as scalars of polynomials in our
scaled fast nested KES algorithm. Following Algorithm 1,
it can be easily derived that v(") is never zero. However,
syndromes and discrepancy coefficients may be zero, in which
case the corresponding scalars need to be adjusted to eliminate
their effects on the polynomial updating. If a syndrome is not
part of the original scalar in Algorithm 2, then it should be
replaced by ‘1’ in the corresponding lines of Algorithm 3 when
it is zero. For example, S,.;1 is not a scalar in Lines 1, 5, and
11 of Algorithm 2. Hence if S, ng = 0, then it should be
replaced by ‘1’ in the p) and 5 ¢ scalars in Lines 2, 5, and
10 of Algorithm 3. The replacements are done through the
four subroutlnes On the other hand, the terms p(”A’ ") (x)
and f xB’(r)() in Lines 3, 6, and 11 of Algorithm 3 should
be zero when S,;; = 0, since the computations in Lines 2,
6, and 12 of Algorithm 2 originally have the factor S, 1.

When A'(T) = 0, €7 and f(") in Lines 2 and 3 of
Algorithm 3 should be zero since A(" s originally part of
the corresponding scalars in Lines 1 and 2 of Algorithm 2.
Similarly, if Ag(” is not originally part of a polynomial scalar,
such as the £() and fg) in Lines 10 and 11 of Algorithm 3,
then the scalar should be adjusted. However, the other factors
of £€) and s) are not computed and the adjusted scalars
cannot be derived by setting A ") to “1” as in the adjustments
of the scalars involving S, 1. Instead the adjusted scalars can
be decided according to the requirement that all the product
terms involved in a linear combination, such as that in Line
3 of Algorithm 3, should be scaled by the same factor in

each iteration. Since £(") = fg) = 0 when A’O(r) = 0, and
pg) = Sr415, 1p(") this requirement can be satisfied by
replacing the p(") and p(;) in Lines 2 and 3 of Algorithm 3
with *1” and g{") = S,,1577, respectively. Similarly, the £
and fg) in Lines 10 and 11 of Algorithm 3 are also replaced
by ‘1° and ¢\", respectively.

A" is a factor of p™+1) and pT ™ for iteration
r 4+ 1. These two scalars also need to be adjusted when
AB(T) = 0. £&0*tD and f(STH) can be computed accord-
ing to (10) and (11). Then p"*Y) and pgﬂ) can be de-
rived by satisfying the requirement that all product terms
involved in the linear combination of Line 3 of Algorithm
3 should have the same factor. From (10) and the fact
that A’ (z) and S-'A’")(z) have the same scalar, it can
be derived that ¢ +D/ATTY = AN /AL holds,
From Line 3 of Algorithm 3 and Line 3 of Subroutine
2, it can be derived that AE)(T) = pr=1) //r=1¢() - Ac-
cordingly, (€D JATTV) = 4/ plr=1) 5/ (r=D)(¢(r) JALD),
To make the four product terms in Line 3 of Algo-
rithm 3 scaled by the same factor, (p("t1/4(r+1)) =
A1) p(r=1) /47 r=1)(p(1) /4(")) should be satisfied. v("+1) =
7(") when AB(T) = 0. Hence, the requirement is reduced
to prt) = /) pr=1) /4/(r=1) h(r) " From (9), p(" =
,yl(r—l)A:)(Tfl)' Hence p(r-l-l) _ ,y/(r)p(r—l)Ag(T’*l). Both
p"=1) and Ag(r_l) are available at iteration r — 1. Hence
their product can be computed at iteration 7 — 1. Then /(")
is multiplied at iteration r. These computations are completed
with only one multiplier in the critical path.

In the case that AG(T'H) is also ‘0’ for ¢+ = 1,2,--- K, it
can be easily derived that p(r+it1l) = *y’(’”“)p(”_l)Ag(T*l).
Define (") = p(r—l)AgT—l). Then p(+itD) = 4/(r+i) ()
for : =1,2,--- ,k, and it can be always computed with one
multiplier in the critical path. Similarly, p(SH'H_l) is computed
as Syyit25, 11 p"H Y. These updatings are summarized
in Lines 1, 2, and 5 of Subroutine 2.

Traditionally, the error magnitudes are calculated using
A(z) and A(z) [7] according to the Forney’s formula. The
error magnitudes can be also computed by using A(z) and
B(x) according to the HK formula. It also was discovered
in [11] that the higher coefficients of A(xz) and ©(z) can be
eliminated and hence the number of PEs for updating these two
polynomials in the nested KES architecture can be reduced by
a significant portion with negligible degradation on the error-
correcting performance. However, due to the scalings of the
polynomials in our scaled fast nested KES algorithm, further
adjustments are necessary in order to enable the application
of the HK formula.

For t-error-correcting decoding, the pair of A(x) and B(x)
in the iteration that the length of B(z) reaches ¢ can be used to
limit the length of B(x) [17]. Assume this happens in iteration
r = K — 1. For unscaled algorithms, the HK formula for

computing the error magnitude of the j-th position is
Y; = (YO a7) /(B (a)AL (7)), (12)

where A,44(x) is the polynomial consisting of the odd-degree
terms of A(z). Ag and ~ are for the normalization of A,qq(x)

and B(z), respectively. In our scaled fast nested KES algo-
rithm, AL and A’ (x) are A and Aogq(x), respectively,
scaled by the same factors. Hence A/ () and AB(T) can be
directly used in (12). However, B'(")(z) is not always scaled
by the same factor as 7'(") in our scaled algorithm and its
normalization needs to be reformulated.

In our scaled algorithm, A’(")(z) has the same scalar as
SYA'™) (). If Line 5 of Algorithm 3 is executed in iteration
r, Bt (z) = p"S, .1 (S A" (z)). The normalization
coefficient of B'("*1)(z) should be the constant coefficient
of BUHD(@)S(2)/a7 = p1S,11(S; N (@))S(x) /a,
where S(z) = Z;:o S;x3. Therefore, the coefficient for
normalizing B’V (z) should be p™ S, 1AL In the
case that Line 10 is executed in iteration r, B’ (z) =
fg)a:B’(T)(x) = ¢S, 18 1aB' ™" (x). Hence, the nor-
malization coefficient in this case is the normalization co-
efficient for iteration r — 1 scaled by £(S,, 1S, Let
r* < r be the last iteration that Line 5 was exe-
cuted. Then the normalization coefficient for B'"*1(z) is
(681871 x (UYL) X e x (TS e 050)X
(0T Sy i1 ALY = Gy €= gD p) AL et
T+ = p(T*)Agr*). Then the normalization coefficient
can be computed iteratively through using n("+1) = £()y(r),
These computations are carried out according to Line 6 of
Subroutine 3 and 4, and S,;; is multiplied at the end. In
summary, if our scaled fast nested KES algorithm is adopted,
the HK formula should be adjusted to

Yy = (Sxn A aI5) J(B'F) (0=)AL (a77)). (13)

Similar to the zero scalar adjustment, if Sk = 0, then it is
replaced by ‘1’ in the above formula.

D. Scaled Fast Nested KES Architecture

The overall architecture of the scaled fast nested KES
algorithm is very similar to that in Fig. 4. It consists of ¢, + 1
pairs of PEs and one PU. The architectures of the PEs and
PU for the scaled algorithm are illustrated in Fig. 6(a) and
(b), respectively. PEls update A’(z) and ©’(z) and PEOs
handle A’(z) and B’(z) according to Algorithm 3. The scalar
initialization and updating in the four subroutines are carried
out in the PU. Using these architectures, the nested KES also
takes w — u + 1 clock cycles: one clock cycle is spent on the
initialization and each iteration takes one clock cycle.

The syndromes are sent in serially to the PU four clock
cycles ahead of the nested KES so that the computations on the
syndromes in Subroutine 1 can start early. In the initialization
clock cycle of the nested KES, the input polynomials are
loaded into the registers of the PEs. A(*), £(®) and ~/(*) are
routed through the three multiplexers in the PU and the regis-
ters in the PU are set to accomplish the scalar and polynomial
initialization according to Subroutine 1 and Algorithm 3. At
the beginning of iteration r, the combined scalars p("), p(;),
£, and fgr) computed by the PU are sent to the PEs to update
the polynomials according to the formulas in Lines 2, 3, 5,
6, 10, and 11 of Algorithm 3. Simultaneously, the combined
scalars for the next iteration are generated in the PU based on

SO OHD e g oo e o w0
p[r) N o o)
pe1, | DB [P .
£ N @;(r)o
S

PEO ﬁ% B Arfr)

i 10 O

© %Y

57 () 637 5 <

Ps

S

20

f(’)(.

&4

B

D
¢(7)

Fig. 6. Architectures for scaled fast nested KES: (a) PEs; (b) PU.

the polynomial coefficients, Ag(r), Ag(r), and A'l(r), sent from
PEOQy, PElg, and PEl;, respectively. The glm (1 <i<6)
signals as labeled in Fig. 6(b) are updated according to Line
7 of Subroutine 2. h(lrﬂ), hgﬂ), and hg'ﬂ) are derived by
multiplying A" or v/ t0 ¢, ¢{”, and g, respectively.
The combined scalars are computed according to Subroutines
2, 3, and 4. Pipelining is applied to the finite field inverter in
the bottom right corner of the PU so that its data path is no
longer than that of the rest of the architecture. In the PE and
PU architectures, the control signals of the white multiplexers,
except the three multiplexers in the PU used for initialization,
are set to ‘1’ or ‘0’ when the condition (Ag(” £0& k(™M >0)
is true or false, respectively. The gray multiplexers are used
to adjust the scalars when S,;1 or Ag(r) is ‘0.

Sy+1 is not part of the original scalars in Lines 1, 5, and 11
of Algorithm 2, which correspond to the p(sr) and 5? scalars
in Lines 2, 5, and 10 of Algorithm 3. Hence, when S, 11 = 0, it
is substituted by ‘1’ in the p(sr) and S(ST) computations through
the dark gray multiplexer in the bottom right corner of the PU
architecture. On the other hand, S, is a component of the
original scalars corresponding to the pg) and 55;) in Lines
3, 6, and 11 of Algorithm 3. Therefore, the corresponding
product terms are eliminated from the polynomial updating
by passing ‘0’ through the dark gray multiplexers in the PEs
of Fig. 6(a). Sy41 is also a part of 2\, A, ¢\, and g{".
Similarly, when it is ‘0’, the corresponding terms in Lines 3
and 4 of Subroutine 2 and the same lines of Subroutine 3 are
eliminated by passing ‘0’ through the dark gray multiplexers

in the PU.

Since AE)(T) is originally part of the scalars corresponding to
the £(") and 5(57') in Lines 2 and 3 of Algorithm 3, the product
terms multiplied by these two scalars should be excluded from
the polynomial updating when AE)(T) = 0. For the polynomial
updating in Line 2, this is done by passing ‘0’ through the

TABLE II
COMPLEXITIES OF NESTED KES ARCHITECTURES
Add.Mult.|Reg.|Mux.|| Total ||Crit. path/| Latency
XORs|| # gates ||ave. # clks
Nested KES from [8] 429|474 | 90 | 45 || 52404 11 7.21
Nested KES [9] 116| 174 |240| 58 || 24204 7 14.39
Scaled Nested KES [10]| 116 | 121 |274| 147 || 20186 8 14.39
Fast Nested KES 177242 | 129| 63 || 28732 8 7.21
(Algorithm 2)
Scaled Fast Nested KES| 122 | 135 (170 161 || 19369 9 7.21
(Algorithm 3)

light gray multiplexer in PEO. For the updating in Line 3, the
two product terms are excluded by setting the leftmost register
in PE1 to ‘0’ to save a multiplexer. The computations of &(")
and fg') for Lines 10 and 11, as well as the calculations of the
scalars that are dependent on whether Ag(” = 0, are taken care
of by using the light gray multiplexers in the PU architecture.

It can be observed that the number of multipliers is reduced
by a half from 8 as in the pair of nested KES PEs in Fig. 5
to 4 in Fig. 6(a). Although the PU for the scaled algorithm
in Fig. 6(b) has more multipliers compared to that in Fig. 5,
only one PU is needed. Therefore, substantial area reduction
is achieved. The critical path of the architectures in Fig. 6 is
highlighted by the thicker wires. It consists of one multiplier
and three adders/multiplexers and is only one multiplexer
longer than that of the architecture in Fig. 5.

V. COMPLEXITY ANALYSES AND COMPARISONS

The hardware complexities of the proposed fast and scaled
fast nested KES architectures are analyzed and compared with
prior designs in this section using an example GII code over
GF(28) with m = 8, v = 3, n = 255, and error-correction
capabilities [to,t1,t2,t3] = [13,16,19,28]. The FER of this
code is plotted in Fig. 2 and this code is also used for
complexity analyses in [9], [10].

The hardware complexities of our designs from architectural
analysis are listed in Table II. For the fast nested KES
(Algorithm 2) architecture shown in Fig. 5, each pair of PEO
and PEl1 have 8 multipliers, 6 adders, 4 registers, and 2
multiplexers. The PU has 10 multipliers, 3 adders, 11 registers,
and 5 multiplexers. As shown in Fig. 4, ¢, + 1 = 29 pairs of
PEs and one PU are included in the overall architecture. Each
adder over GF(2%) is implemented by 8 XOR gates and each
8-bit multiplexer requires around the same area as 8 XORs to
implement. An 8-bit register with preset and clear requires the
area of around 24 XORs. A general multiplier over GF(2%)
can be implemented by the area of 98 XOR gates with 6
gates in the critical path using composite field arithmetic [9].
Utilizing these hardware components, the logic complexity of
the proposed fast nested KES architecture can be estimated as
shown in Table II and its critical path has 8 gates. Since the
control logic contributes to a negligible portion of the overall
area, its complexity is omitted.

The scaled fast nested KES (Algorithm 3) architecture also
consists of ¢, + 1 pairs of PEs and one PU unit. However,
as it is shown in Fig. 6(a), the number of multipliers in each
pair of PEs is reduced by a half to 4 compared to that in the

TABLE III
SYNTHESIS RESULTS OF NESTED KES ARCHITECTURES USING TSMC
65nm PROCESS UNDER T' = 0.8ns TIMING CONSTRAINT

TABLE IV
POSSIBLE NUMBERS OF SUB-CODEWORDS IN EACH ROUND OF THE
NESTED KES AND CORRESPONDING PROBABILITIES AT SER=0.02

Nested |Scaled Nested| Fast Nested |Scaled Fast Nested

KES [9]| KES [10] |KES (Alg. 2)| KES (Alg. 3)
area (um?)] 90569 78385 109746 85461
power(uW)| 176868 168852 177198 154636

3rd round

1 sub-CW (1.58%)
0 sub-CW (98.42%)

1st round [2nd round [

1 sub-CW (2.67%)
0 sub-CW (97.33%)

1 sub-CW (99.7468%)

fast nested KES PEs in Fig. 5. Also, the number of adders
is reduced from 6 to 4. Although one more register and three
more multiplexers are needed in each pair of PEs to adjust
the polynomial scaling, they account for a small portion of
the overall area. Moreover, each multiplexer with a ‘0’ or ‘1’
input takes only around one half the complexity of a general
multiplexer since it can be implemented as bit-wise AND
or OR. As a result, the complexity of the PEs is reduced
significantly by the scaled fast nested KES scheme. Despite
that the complexity of the PU in Fig. 6(b) is much larger than
that in Fig. 5, only one PU is needed. Overall, the scaled fast
nested KES architecture achieves substantial area reduction
compared to the fast nested KES architecture at the cost of
only one more gate in the critical path.

For comparisons, the complexities of a simplified version of
the nested KES design in [8] and those from [9], [10] are also
included in Table II. Instead of using m t,-error-correcting
riBM architectures shared between the sub-codeword and
nested decoding as in [8], only 3(¢, —to) extra PEs for nested
decoding is counted towards the complexity of the nested KES
architecture from [8] in Table II. Even with this simplification,
the nested KES design from [8] is more than twice larger
and has much longer critical path due to the multiplier-adder
trees needed for re-initialization. Slow-down and re-timing
have been adopted in the nested KES architecture [9] and the
scaled nested KES architecture [10] to reduce the critical paths
to those listed in Table II. The application of the slow-down
with a factor of two duplicates every register and requires
the interleaving of two sub-codewords. Both our new scaled
fast nested KES and the design in [10] have 4 multipliers in
each pair of PEs. Although our scaled fast design has more
multipliers in the PU, the larger area is offset by the duplicated
registers in the design of [10]. As a result, our scaled fast
design has similar area as that from [10]. Nevertheless, our
new designs do not require the interleaving of two sub-
codewords.

To further verify the complexity of the proposed designs,
they are synthesized using TSMC 65nm process under 7' =
0.8ns timing constraint. The total area and power consumption
are listed in Table III. The ratio between the areas of the
proposed fast nested KES and the scaled nested KES [10]
is very similar to the ratio between the total gate numbers in
Table II estimated from architectural level. The ratios between
the areas of the scaled fast nested KES and other designs
are larger than the ratios between the gate counts in Table
IT because the scaled fast nested KES has longer critical
path. Compared to the fast nested KES design, the scaled
fast nested KES architecture achieves 1-85461/109746=22%
area reduction under the same timing constraint from the

failure (0.02%)
1 sub-CW (3.09%)
0 sub-CW (96.89%)
1 sub-CW (1.57%)
0 sub-CW (98.43%)

2 sub-CW (0.07%)

2 sub-CW (0.2528%)

1 sub-CW (5.21%)
0 sub-CW (94.72%)

failure (0.002%)

failure (0.02%)
1 sub-CW (3.09%)
0 sub-CW (96.89%)
1 sub-CW (1.57%)
0 sub-CW (98.43%)

2 sub-CW (0.208%)

3 sub-CW (0.0004%)

1 sub-CW (7.611%)
0 sub-CW (92.179%)

TABLE V
NUMBER OF CLOCK CYCLES NEEDED IN THE NESTED KES ROUNDS
[Istround [2nd round [3rd round
1 sub-CW 1 sub-CW 1 sub-CW
Designs in [9], [10] | 4(t1-to)+2 | 4(t2-t1)+2 | 4(t3-t2)+2
proposed designs 2(t1-to)+1 2(to-t1)+1 2(t3-t2)+1
2 sub-CW 2 sub-CW
Designs in [9], [10] | 4(t1-to)+2 | 4(t2-t1)+2
proposed designs A(t1-tg)+2 | 4(ta-t1)+2
3 sub-CW
Designs in [9], [10] | 8(t1-to)+4
proposed designs 6(t1-t0)+3

synthesis reports. To evaluate the maximum achievable clock
frequencies of the designs, syntheses with tighter timing
constraints have also been carried out. The shortest timing
constraints that can be met without negative slack are 0.57ns,
0.60ns, 0.66ns, and 0.66ns, for the designs in [9], [10], fast
nested KES, and scaled fast nested KES, respectively. The
minimum achievable clock period of the fast nested KES
design is relatively longer than that analyzed based on the
number of gates in the critical path. Possible reasons include
i) the fast nested KES is larger and hence the wire delay is
longer; ii) the adders in its critical path cannot be combined
easily with other logic as the multiplexers in the critical paths
of the scaled nested KES [10] and the proposed scaled fast
nested KES architectures.

For the example GII code with v = 3, the nested KES
will be activated when there are 1, 2, or 3 exceptional sub-
codewords. Up to v nested decoding rounds are carried out. In
the i-th round (¢ = 1,2, -+ , v), if there are more than v—i+1
sub-codewords remain to be corrected, then the decoding will
not be successful. In this case, decoding failure is declared
and the rest decoding rounds are not carried out. Table IV
lists the possible numbers of sub-codewords in each round
of the nested KES. The probabilities of having each number
of sub-codewords in each round at input SER=0.02 are also
listed. As it is shown in this table and mentioned previously,
the nested decoding is dominated by the case that there is

only one exceptional sub-codeword. Besides, the exceptional
sub-codewords most likely get corrected in the first nested
decoding round.

The numbers of clock cycles needed to carry out the nested
KES for different numbers of sub-codewords over the nested
decoding rounds are listed in Table V. For both the proposed
fast nested KES designs, 2(¢t; — t;—1) + 1 clock cycles are
needed to incorporate 2(¢; — ¢;—1) higher-order syndromes
for each sub-codeword in the i-th nested decoding round.
The additional one clock cycle is used for initialization.
The designs of [9], [10] require two sub-codewords to be
interleaved and two clock cycles for initialization. If there is
only one sub-codeword remaining in a nested decoding round,
then dummy zeros are inserted and the latency of the nested
KES for one sub-codeword is the same as that for two sub-
codewords in that round.

Multiplying the probabilities of each case in Table IV with
the corresponding clock cycle numbers in Table V, the average
latency of the nested KES can be derived as shown in the
last column of Table II. Our proposed designs do not need to
interleave sub-codewords and require half of the clock cycles
compared to the designs in [9], [10] when there is one sub-
codeword, which dominates the cases of the nested KES. As
a result, our proposed designs reduce the average number
of clock cycles needed in the nested KES to almost a half.
Besides, the maximum achievable clock frequencies of the
proposed designs are only slightly lower than those of the
architectures in [10].

Essentially, the proposed designs require a smaller number
of clock cycles than the designs in [9], [10] when the number
of sub-codewords to be corrected in a nested decoding round
is odd and have the same number of clock cycles when there
are even sub-codewords remaining. Even if the number of
exceptional sub-codewords is not odd in the beginning, the
number of remaining sub-codewords will be odd in a later
decoding round with high probability. Hence, the proposed
designs also reduce the nested KES latency in most cases.
Consider the worst case that there are three exceptional sub-
codewords, and two and one sub-codewords remain to be
corrected in the second and third nested decoding rounds,
respectively. It can be calculated from Table V that the nested
KES latency of such a case is 80 clock cycles using the designs
from [9], [10]. Using the proposed designs, this worst-case
latency is reduced to 54 clock cycles.

If A(z) and B(z) are used for error magnitude computation,
the number of PEls can be reduced at the cost of error-
correcting performance degradation. Following the analysis
in [11], it can be computed that the extra FER resulted by
keeping 21 instead of 29 PEls does not exceed 3.3 x 10714
at input SER=0.02 for the example code. This extra FER is
negligible compared to the FER of the code at this SER, which
is 2.1 x 107! as shown in Fig. 2. This PE1-reduction scheme
can be applied to both the proposed designs as well as the
architectures from [9], [10]. In this case, the new scaled fast
nested KES is still much smaller than the fast nested KES
architecture and has similar or smaller gate counts than the
designs in [9], [10] from architectural analyses.

The area saving achievable by the proposed scaled fast

nested KES scheme (Algorithm 3) over the unscaled algorithm
(Algorithm 2) depends on the numbers of PEs and the relative
complexity of the multipliers compared to the other hardware
components. The scaled algorithm reduces the complexity
of each pair of PEs while having higher complexity in the
single PU unit. Hence, for codes with larger error-correction
capability t,, the achievable area reduction is more significant,
since the PU would account for a smaller percentage of
the overall area. The complexity of finite field multipliers
generally increases faster with field order compared to the
complexities of the other arithmetic units. Besides, the mul-
tipliers account for a smaller portion of the overall area in
the scaled fast nested KES architecture. Therefore, for codes
constructed over larger fields, the scaled fast nested KES
architecture achieves more significant area saving over the
unscaled architecture. Additionally, the increase of one gate
in the critical path accounts for a smaller percentage since
the data path of higher-order finite field multipliers is longer.
Although the percentage of cases with only one exceptional
sub-codeword changes with the input SER as shown in Fig.
2, it is very high for the SER in practical range. Accordingly,
both of the proposed fast designs achieve close to 50% average
latency reduction in terms of the number of clock cycles
compared to prior architectures for various SERs.

VI. CONCLUSIONS

Two fast nested KES algorithms and architectures are
proposed in this paper. Novel algorithmic reformulations are
developed to pre-compute the scalars simultaneously with the
polynomial updating in the nested KES with one multiplier in
the critical path. As a result, the latency of our proposed KES
architectures is only about a half most of the time compared
to that of the previous designs. Our second design keeps one
multiplier in the critical path and substantially reduces the
area requirement. The area reduction is achieved by developing
new scaling schemes to enable product term sharing and novel
methods to pre-compute the combined scalars. Additionally,
non-trivial adjustments have been proposed to eliminate the ef-
fects of the introduced zero scalars and enable the application
of alternative error magnitude computation formula for further
area reduction. Future work will study the simplifications of
the other components of GII decoders.

REFERENCES

[1] X. Tang and R. Koetter, “A novel method for combining algebraic
decoding and iterative processing,” in Proc. IEEE Int. Symp. Info. Theory,
Seattle, WA, USA, Jul. 2006, pp. 474-478.

[2] Y. Wu, “Generalized integrated interleaved codes,” IEEE Trans. Info.
Theory, vol. 63, no. 2, pp. 1102-1119, Feb. 2017.

[3] Y. Wu, “Generalized integrated interleaving BCH codes,” Proc. IEEE Intl.
Symp. Info. Theory, pp. 1098-1102, Barcelona, Spain, Jul. 2016.

[4] S. B. Wicker and V. K. Bhargava, Ed. Reed-Solomon Codes and Their

Applications, IEEE Press, 1994,

X. Zhang, “Generalized three-layer integrated interleaved codes,” IEEE

Commun. Lett., vol. 22, no. 3, pp. 442-445, Mar. 2018.

[6] E. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968.

[7] D. V. Sarwate and N. R. Shanbhag, “High-speed architectures for Reed-
Solomon decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 9, no. 5, pp. 641-655, Oct. 2001.

[8] W. Li, J. Lin, and Z. Wang, “A 124-Gb/s decoder for generalized
integrated interleaved codes,” IEEE Trans. Circuits and Syst.-1: Regular
Papers, vol. 66, no. 8, pp. 3174-3187, Aug. 2019.

[5

—

[9] X. Zhang and Z. Xie, “Efficient architectures for generalized integrated
interleaved decoder,” IEEE Trans. Circuits and Syst.-I: Regular Papers,
vol. 66, no. 10, pp. 4018-4031, Oct. 2019.

[10] Z. Xie and X. Zhang, “Scaled nested key equation solver for generalized
integrated interleaved decoder,” IEEE Trans. Circuits and Syst.-1I, 2019.

[11] Z. Xie and X. Zhang, “Reduced-complexity key equation solvers for
generalized integrated interleaved BCH decoders,” IEEE Trans. Circuits
and Syst.-1, in press.

[12] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation, John Wiley & Sons, 1999.

[13] R.E. Blahut, Algebraic Codes for Data Transmission, Cambridge, U.K.:
Cambridge Univ. Press, 2003.

[14] M. Blaum, J. L. Hafner, and S. R. Hetzler, “Nested multiple erasure
correcting codes for storage arrays,” U.S. Patent 8 433 979, Apr. 30,
2013.

[15] Y. Wu, “A new encoding method for integrated-interleaved codes,” Proc.
IEEE Intl. Symp. Info. Theory, pp. 983-987, Austin, Texas, USA, Jun.
2010.

[16] X. Zhang, “Systematic encoder of generalized three-layer integrated
interleaved codes,” Proc. of IEEE Intl. Conf. on Commun., Shanghai,
China, May 2019.

[17] Y. Wu, “New scalable decoder architectures for Reed-Solomon codes.”
IEEE Trans. Commun., vol. 63, no. 8, pp. 2741-2761, Aug. 2015.

Zhenshan Xie received the B.S. degree in infor-
mation engineering from East China University of
Science and Technology, Shanghai, China, in 2014,
and the M.S. degree in communications and infor-
mation system from University of Chinese Academy
of Sciences, Beijing, China, in 2017. He is currently
pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering, The Ohio
State University, Columbus, OH, USA.

His current research focuses on the design of high-
performance very-large-scale integration (VLSI) ar-
chitectures for error-correcting codes.

Xinmiao Zhang received her Ph.D. degree in Elec-
trical Engineering from the University of Minnesota.
She joined The Ohio State University as an Asso-
ciate Professor in 2017. Prior to that, she was a Tim-
othy E. and Allison L. Schroeder Assistant Profes-
sor 2005-2010 and Associate Professor 2010-2013
at Case Western Reserve University. Between her
academic positions, she was a Senior Technologist
at Western Digital/SanDisk Corporation. Dr. Zhang’s
research spans the areas of VLSI architecture design,
digital storage and communications, security, and

signal processing.

Dr. Zhang received an NSF CAREER Award in January 2009. She is also
the recipient of the Best Paper Award at 2004 ACM Great Lakes Symposium
on VLSI and 2016 International SanDisk Technology Conference. She au-
thored the book “VLSI Architectures for Modern Error-Correcting Codes”
(CRC Press, 2015), and co-edited “Wireless Security and Cryptography:
Specifications and Implementations" (CRC Press, 2007). She was elected
to serve on the Board of Governers of the IEEE Circuits and Systems
Society for the 2019-2021 term. She is a Co-Chair of the Data Storage
Technical Committee (2017-2020), and a member of the CASCOM and
VSA technical committees and DISPS technical committee advisory board
of IEEE. She served on the technical program and organization committees
of many conferences, including ISCAS, SiPS, ICC, GLOBECOM, GlobalSIP,
and GLSVLSI. She has been an associate editor for the IEEE Transactions
on Circuits and Systems-I 2010-2019 and IEEE Open Journal of Circuits and
Systems since 2019.

