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Abstract—The generalized integrated interleaved (GII) codes
nest BCH sub-codewords to form codewords of more power-
ful BCH codes. They can achieve hyper-throughput decoding
with excellent error-correcting performance and are among the
most suitable codes for next-generation memories. However, the
new storage class memories require high code rate and short
codeword length. In this case, the sub-codewords have small
correction capability. The miscorrections of the sub-codewords
lead to much more severe degradation on the GII error-correcting
performance compared to the miscorrections of classic BCH
codes. This letter investigates the miscorrections in GII decoding.
Three low-complexity methods are developed to identify and miti-
gate the miscorrections by utilizing the nested syndromes, adding
one single parity to each sub-codeword, and keeping track of the
error locator polynomial degree. Besides, formulas for estimating
the miscorrection rates are given. Using the proposed mitigation
methods, the actual GII decoding performance becomes very
close to that of the case without any miscorrections.

Index Terms—BCH codes, Miscorrection, Generalized inte-
grated interleaved codes, Storage class memories

I. INTRODUCTION

Generalized integrated interleaved (GII) codes [1], [2] nest
BCH or Reed-Solomon (RS) sub-codewords to form code-
words of stronger BCH or RS codes. The decoding is carried
out on individual sub-words most of the time and hence
very high decoding throughput can be achieved with low
complexity. Besides, more errors are correctable through the
nested codewords and GII codes have much better error-
correcting performance than individual BCH or RS codes that
can achieve similar throughput. The hyper throughput and
excellent random bit error-correction capability of GII-BCH
codes make them among the best candidates for storage class
memories (SCMs). Alternative nesting schemes of the GII
codes are available in [3]-[5].

Other types of codes have been proposed recently to enable
localized decoding and parity sharing. The partial maximum
distance separable codes [6] allow more flexible usage of
the shared parities. However, explicit constructions are lim-
ited to special cases and large finite fields are needed. The
codes in [7] also require the finite field order to be at least
the code length. Parity check matrices of shorter codes are
concatenated to form a larger parity check matrix in the
generalized concatenated types of codes in [8]. Solving the
equations specified by the parity check matrix for decoding
leads to high implementation complexity. In the extended
product codes (EPCs) [9], data symbols in a two-dimensional
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array are encoded in a concatenated manner row and column-
wise using RS codes. The EPCs are further extended to codes
over any field in the extended integrated interleaved (EII)
codes [10]. However, repeated row-wise re-encoding is needed
in the decoding process of these codes. Also when the row and
column-wise codes are different types of codes or are defined
over different finite fields, separate decoders are needed.

The new SCMs have much shorter sensing latency than
Flash memories. To take advantage of the fast SCMs, codes
with relatively short length, e.g. several thousand bits, and
low redundancy, e.g. 10%, are needed. In this case, the error-
correction capability of individual sub-codewords is small,
such as ty = 3, and the miscorrections of the sub-codewords
are non-negligible. For traditional BCH codes, a corrupted
codeword may be decoded as another codeword, especially
when the correction capability and hence the minimum dis-
tance of the code is small. This is referred to as the miscor-
rection. The formulas for estimating the miscorrection rate of
BCH codes are given in [11]. However, the miscorrections for
GII codes have not been investigated. From our simulations,
miscorrections cause several orders of magnitude degradation
on the error-correcting performance of a GII code with ¢9=3
sub-codewords. This is much more severe compared to that
of a 3-error-correcting BCH code. The reason is that GII
codes are capable of correcting more errors using the nested
codewords. However, the nested decoding will not be helpful
if the miscorrections of the sub-codewords are not identified.
It was proposed in [12] to mitigate miscorrections by cor-
recting errors directly on the nested words. The correctable
error patterns are quite limited and there is still substantial
performance degradation. [13] sends the first sub-word whose
number of errors found from the sub-word decoding equals ¢
to the nested decoding. This scheme does not lead to much
performance improvement when ¢y = 3.

This letter investigates the error patterns leading to mis-
corrections in GII decoding and develops three methods to
identify the miscorrections. Accordingly, the miscorrected sub-
words are sent to further nested decoding to correct more
errors. Our proposed schemes have low overheads in hardware
implementation. The first scheme utilizes the higher-order
syndromes of the nested words to detect miscorrections among
all the sub-words. To help identify exactly which sub-words
are miscorrected, our second scheme adds one extra parity
bit to each sub-codeword. The third approach further reduces
the miscorrection rate by keeping track of the error locator
polynomial degree. Adopting the proposed methods, the actual
performance of the GII codes is improved by several orders of
magnitude and becomes very close to that of the case where no
miscorrection occurs. Moreover, by analyzing the dominating
error patterns leading to miscorrections, formulas are given to



estimate the frame error rate (FER) of GII codes. For example
GII codes with tg=3 BCH sub-codewords, simulation results
match the formulas well.

This letter is organized as follows. Section II introduces the
GII codes. The three proposed methods for identifying and
mitigating miscorrections are detailed in Section III. Section
IV summarizes the proposed GII decoding algorithm and
conclusions follow in Section V.

II. GII-BCH CODES AND MISCORRECTIONS

Let C, C Cy—1 C C Cp C Cy be binary BCH
codes defined over GF'(29) of length n and error-correction
capabilities ¢, > t,_1 > -+ > t1 > to. A GII-BCH [m,v]
code is defined as [2]
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In (1), ¢;(x) (0<i<m) is referred to as a sub-codeword
and ¢ (z) (0<i<w) is called a nested codeword. « is a
primitive element of GF(27) and o (z) is the standard basis
representation of ! in polynomial format [2].

GII-BCH decoding has two stages. The first stage is
the traditional BCH decoding on each received sub-word
yi(x)=c;(x)+e;(x) for correcting up to to errors. Here e;(x)
is the error polynomial for the i-th sub-word. In this pro-
cess, 2ty syndromes are first computed as S;l):yz-(aj“)
(0<j5<2tp). If some syndromes are nonzero, a key equation
solver (KES), such as the Berlekamp-Massey (BM) algorithm,
computes the error locator polynomial A(x) iteratively using
the 2ty syndromes. If the number of distinct roots of A(x)
equals the degree of A(x), denoted by deg(A(x)), the decod-
ing is considered successful and error locations are inverses
of the roots. Otherwise, the decoding of the sub-word fails.

The second-stage nested decoding is activated when the
first-stage decoding on some sub-words fails. 2¢ syndromes are
needed to correct ¢ errors by the BM algorithm. To correct the
sub-words with more than t; errors, higher-order syndromes
are needed and they can be derived from the nested words

m—1
() =Y a(x)yi(x). (2)
i=0
From (1), El(m)zzz’gl a(z)c;(x)€C,—;, which is t, ;-
error-correcting. Hence higher-order syndromes of the
nested word §;(x) can be computed as S;l):gjl(aj+1) for
2tn<j<2t,_;. Let the indices of the b<wv sub-words that failed
the first-stage decoding be ig,%1,--- ,%,—1. Then from (2),
for each of these sub-words, the higher-order syndromes with
2tp<j<2t; can be computed as
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3)
The entry of A in the u-th row and v-th column is a/v*U+1
[2]. Once 2t; syndromes are available, the BM algorithm can
be utilized to correct up to ¢; errors for each of the b sub-
words. If there are b’ sub-words remain to be corrected, then

A
o
w 10’55 -d
L -
a
[} -
© Pag
14 L8
5 " Pig
w1910 -
£ St
E //”/ — -x—-BCH(704, 674, 3) - theory
-] —&— BCH(704, 674, 3) - miscorrect
- — - - GII-BCH [4,3] - theory
101F - - —~A— GII-BCH [4,3] - miscorrect
P
[i:4 L

12 14 1618 2
%107

0.4 0.6 0.8 1
Bit Error Rate (BER)
Fig. 1. FERs of BCH and GII-BCH codes over BSC

2(te — t1) higher-order syndromes are computed for each of
them using the syndromes of the first b’ nested words, each of
which is at least ¢5-error-correcting, using an equation similar
to (3). This process is repeated for up to v rounds. Sort the
number of errors in the received sub-words before the first-
stage decoding as 79>7;>- - - >7,,,. The errors are correctable
if ;<t,_; for 0<I<w [2]. Equivalently, if there are more than
v+1-l sub-words remain to be corrected in the [-th nested
decoding round, overall GII decoding failure is declared.
Denote the input bit error rate (BER) by py. ¢ =
(")p (1—py)" " is the probability of having w errors among

n bits. Then ]
J
6l =3 du

is the probability of having 7 to j errors among n bits. The
theoretical FER of GII decoding without miscorrections can
be estimated by the following formula [2]
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Consider codes that protect 2560 data bits with around 256
parity bits for SCM applications. To achieve a good tradeoff on
error-correcting performance and decoding complexity, GII-
BCH [4,3] codes over GF(2!%) can be used. In this case,
the length of each sub-codeword is (2560+256)/4=704 bits.
The 256 parity bits can be allocated among Cp,Cy,--- in
different ways and the corresponding FER can be calculated
using (4). It was found that among all possible allocations of
parities, the FER for the GII-BCH [4,3] code is the lowest
when [to,t1, 1o, t3]=[3,5,6,11]. Accordingly, ko=674. Fig. 1
plots the FER of this GII-BCH code over the binary symmetric
channel (BSC). For reference, the FER of the Cy (704, 674)
3-error-correcting BCH code is also included.

For a t-error-correcting BCH code, when the number of
errors is larger than ¢, the distance between the received
word and another codeword may not exceed t. In this case,
the decoding result is the other codeword and miscorrection
occurs. Such probabilities are much higher for smaller t.
Formulas for the miscorrection rate of BCH codes are available
in [11]. For a classic (704, 674) BCH code, the miscorrection
rate is around 5.4% of the FER and it is hardly observable in
Fig. 1.

Miscorrections lead to much more significant degradation
on the FER of GII codes. The nested decoding process of
GII codes can correct more errors. However, if the sub-words



are miscorrected but undetected, then they are not sent to the
nested decoding. As a result, the errors that are correctable
by the GII codes become uncorrected. From simulations, the
miscorrections increase the FER of the GII-BCH [4,3] code
by several orders of magnitude as shown in Fig. 1.

III. MISCORRECTION MITIGATION FOR GII-BCH CODES

The performance degradation of GII codes caused by
miscorrections can be mitigated by properly detecting the
miscorrected sub-words and sending them to further nested
decoding to have more errors corrected. In this section, three
low-complexity methods are proposed to detect and mitigate
the miscorrections through using syndromes of the nested
words, adding an extra parity bit to each sub-codeword, and
keeping track of the degree of the error locator polynomial.

A. Method 1: Nested Syndromes Checking

Miscorrections happen when the recovered sub-word is
another codeword. Hence, for ty-error-correcting sub-word
decoding, miscorrections cannot be detected from the 2t,
syndromes. However, the nested words are linear combinations
of the sub-words and they have higher correction capabilities.
Therefore, miscorrections on the sub-words can be detected if
any higher-order syndromes of the nested words are nonzero.

A sufficient number of nested syndromes need to be com-
puted to ensure that the probability of detection failure is much
smaller than the theoretical FER of GII codes. For random
and independent input errors, a nested syndrome is a random
value over GF'(27) and can be zero with probability around
2749, Undetected miscorrections from nested decoding round
I—1 only cause degradation on the FER when nested decoding
round ! indeed needs to be carried out and the errors are
correctable overall. Hence, a loose upper bound of the FER
degradation caused by miscorrections that are undetectable by
checking o; nested syndromes before nested decoding round
[ can be written as

v1—1

D=3 ()@, e, )
j=1

Then o; can be chosen to make D; much smaller than
the theoretical FER of GII decoding. For the example
code with [to, tl, tg, t3]=[37 57 6, 11], [0'1, g9, 0'3}=[4, 3, 3] make
D;<1.3x10716, Note that no more higher-order nested syn-
dromes can be computed to check for miscorrections after the
last nested decoding round. Since each nested word includes
the contributions from every sub-word, it does not matter from
which nested words the syndromes are computed.

The nested syndromes tell if some sub-words are miscor-
rected but do not tell which ones. Note that only up to v+1—1
sub-words can be sent to the [-th nested decoding round to
correct more errors. First, the sub-words that failed in the
previous decoding round are chosen for further decoding. If
there are less than v+1—[ of them, the other sub-words are
considered for further decoding. From our simulations, for a
received sub-word with more than ¢ errors, deg(A(x)) equals
t, t—1, - -- with decreasing probability. Hence, sub-words can
be chosen according to decreasing deg(A(z)) to fill the v+1—1
quota so that potentially miscorrected sub-words go through
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further decoding. In the case that there is a tie on deg(A(x)),
the sub-words with the lowest indices can be chosen instead
of trying all possible combinations of the sub-words to reduce
the hardware complexity. Picking any sub-words with a tie on
deg(A(z)), such as those with the highest indices, leads to
equal probability of decoding failure.

It is possible that some of the miscorrected sub-words are
not selected for further decoding if they are chosen according
to decreasing deg(A(z)) and lowest indices. GII decoding
failure happens in this case. The FER degradation caused by
such cases can be estimated by analyzing the corresponding
dominating error patterns, which are found from simulations to
be that one sub-word is miscorrected in the first-stage decoding
but is not selected for nested decoding. For a GII-BCH [m,v]
code, assume that y,(x) is miscorrected (0<h<m). Besides,
it has ¢ (to<i<t,) errors and deg(A(z))=j (0<j<tp) from
the KES in the first-stage decoding. If yy(x) is not chosen
for nested decoding, there must be at least v sub-words that
failed the first-stage decoding, have higher deg(A(x)), or have
deg(A(x))=j but lower indices. Next, the probabilities of hav-
ing b of these sub-words from the set [yn+1(z),* , Ym—1()]
and the rest from [yo(z),- - ,yn—1(z)] are estimated.

A sub-word whose index is higher than h will be selected
for nested decoding only if decoding fails in its first-stage
decoding or decoding success is declared but its deg(A(x))>.
On the other hand, if the error pattern is correctable and yy, ()
has more than t; errors, then at most v — 1 remaining sub-
words can have more than ¢, errors. Let b=min(v—1,b) and
m=m—1—h. The probability of having b sub-words chosen
from [yp+1(z), -, ym—1(x)] is upper bounded by

gtv) = () (%‘)m-b(i( )20 ( > 6:F)"), (6)
P

=0 P r=to+1

where F; is the probability that a received sub-word has 7
errors and decoding failure has been declared from its ¢(-error-
correcting decoding. F; can be determined from simulations
over a limited number of samples, such as 107 for the example
GII-BCH [4,3] code. In (6), the second term on the right side is
the probability of having m—b sub-words with up to j errors.
The terms in the big parenthesis denote the probability that
the rest b sub-words either have first-stage decoding success
with deg(A(z))>j or decoding failure. The upper bound of
the last sum is ¢, since no sub-word can have more than ¢,
errors in an error pattern correctable by GII decoding.

b



An upper bound of the probability of having at least
v=max(v—>b,0) received sub-words chosen from the set

[yo(x), - ,yn—1(z)] can be derived similarly as
o= 3 (o ()5 or)
30,7 _k:’a k 0 part p j o LT )

_ 7
where k=min(v—1, k). Different from the sub-words W(ltl’)l

indices higher than &, a sub-word with index lower than h can
be chosen for nested decoding if it has deg(A(z))>j instead
of deg(A(x))>j. As a result, the subscripts and superscripts
of the # terms are changed accordingly as in (7).

Multiplying the probabilities from (6) and (7) and adding
up the product for each possible value of b, the extra FER
resulted from not sending the miscorrected sub-word to the
nested decoding is upper bounded by

—1 t, to m

A-Y Yy

h=0 i=tg+1 j=1 b=max(v—h,0)

G;,; is the probability of an i-error-corrupted sub-word mis-
corrected with deg(A(xz))=j in the first-stage decoding and
it can be derived from simulations over a limited number
of samples. Similar equations can be derived for the FER
degradation brought by sending the wrong sub-words to later
nested decoding rounds. However, they are much smaller and
can be ignored. For the example GII-BCH [4,3] code, at
BER=10"3, the extra FER degradations resulted from sending
the wrong sub-words to the first and second nested decoding
rounds are 7.5x 1077 and 2.1x10'3, respectively. Checking
o; nested syndromes, where o; is computed from (5), can
detect if there are miscorrected sub-words with almost 100%
accuracy. Hence, the FER of GII-BCH decoding that checks
nested syndromes for miscorrections and picks the sub-words
with the highest deg(A(z)) and lowest indices for further
nested decoding can be estimated as Py+P;. This estimation
is plotted in Fig. 2 for the example code. Simulations have
also been carried out and the results match the estimation well
as shown in the figure. It was proposed in [13] to send the
first sub-word with ¢, errors for further nested decoding. This
miscorrection mitigation approach leads to much less FER
improvement for codes with small ¢y as shown in Fig. 2.

¢1G17f(h7 b,j)g(h, bv]) (8)

B. Method 2: Utilizing Extended BCH Sub-Codewords

Checking the nested syndromes does not tell exactly which
sub-words are miscorrected. Among the sub-words with the
same deg(A(x)), always picking the ones with the lowest
indices does not close the performance gap as shown in Fig. 2.
To further improve the actual performance, the miscorrected
sub-words need to be better identified. The most likely case
for miscorrection is that a sub-word with ¢+1 errors ends up
with deg(A(x))=t. To identify this case, this letter proposes
to utilize extended BCH (eBCH) codes [14] for GII code
construction. (z-+1) is multiplied to the generator polynomial
of each C; (0<i<w). This leads to only one extra parity bit for
each sub-codeword and the weight of every sub-codeword is
even. Hence, XORing the bits of a received sub-word tells the
parity of the number of errors. If this parity is different from
that of deg(A(x)), then miscorrection happens. By excluding
the miscorrections in which the parities of the received word

and deg(A(x)) do not match from (8), the FER degradation
caused by miscorrections after nested syndrome checking and
utilizing eBCH codes is upper bounded by

m—1 ty to m
P=3 > > > 6iGif(hb)g(hb.g). (9

h=0 i=tg+1 j=1 b=max(v—~h,0)
7 odd/even

where the third summation is carried out on even and odd
7 when ¢ is even and odd, respectively. Now the FER can be
estimated as Py+P, and it is plotted in Fig. 2 for the example
code. This estimation also matches our simulation results well.

C. Method 3: Tracking Error Locator Polynomial Degree

Still there is a significant gap between the actual and
theoretical performance of the GII decoding. The following
scheme helps to further identify the miscorrections that cannot
be detected by the previous two approaches. In BCH decoding,
deg(A(z))>t only happens when there are more than ¢ errors.
Having deg(A(z))>t in a t-error-correcting decoding means
that the decoding result is incorrect. However, traditional ¢-
error-correcting BCH decoders, such as that in [15], only keep
the A(z) coefficients whose degrees are up to ¢. Miscorrections
happen when the number of the roots of the truncated A(x)
equals its degree. This is the major contributor to the miscor-
rections undetected by the previous two approaches. At lower
input BER, this contribution becomes even more significant.
To address this issue, this letter proposes to keep the full error
locator polynomial and keep track of its degree. The first-
stage sub-word decoding can be considered as nested decoding
round 0. If deg(A(x))>t; is detected in nested decoding round
l, decoding failure is declared. Utilizing all the three proposed
approaches, the probability of extra decoding failure caused
by miscorrections is reduced to

m—1 ty to m
Py= > 6i(Gi,j — G ;) f(h,b,5)g(h, b, ).
h=0 i=tp+1 ) j=1 b=max(v—h,0)

Here G/i, ; 1s the probability of an ¢-error-corrupted sub—wo(r)3
having deg(A(x))>to and the truncated A(z) is a degree-j
polynomial with j distinct roots. G’;’ ; can be also determined
from simulations over a limited number of samples.

The GII decoding FER incorporating the three proposed
miscorrection detection/mitigation schemes estimated using
(10) is shown in Fig. 2. It matches our simulation results
well too. Utilizing the proposed methods, the actual de-
coding performance of the GII code is brought very close
to that of the miscorrection-free decoding. Estimations and
simulations have also been done for a GII-BCH [5,3] code
with [to, 1, t2,t3]=[3,4,6,9]. It is observed that our proposed
schemes can detect and mitigate almost all miscorrections too
and simulation results match the estimation results well.

IV. MODIFIED ALGORITHM AND OVERHEAD ANALYSES

The proposed GII decoding with miscorrection handling is
summarized in Algorithm 1. In this algorithm, [ is the set of
sub-words and 1°={0,..,m—1}\I. I"' is the set of sub-words
that satisfy the conditions in Line 2. Basically, they are the sub-
words whose decoding seems to be successful in the current



Algorithm 1: GII-eBCH Decoding Algorithm
Input: received sub-words y;(z) (0<i<m); t; (0<i<v)
Initialization: 7 = {0,1,--- ,m —1}; I°=0; I' =)
fi=XOR of all bits in y;(z)
for /[ =0,1,--- ,v do
if (I=0), compute 2¢; syndromes for each y;(x)€l
if all are zero, declare decoding success; stop
1: else derive 2¢;—2t;_; higher-order syn. for each y;(xz)el
for each i € I do
carry out KES on y;(x); d;<=deg(A;(z))
2: if (d;<t;) & (d; mod 2=f;) & (d;=root # of A;(x)),
It=T1tUi; I =1\i

end
if (|I|>v—1), declare decoding failure; stop
3. if (|I|=0), compute o;; nested syndromes
if (I=v) or (all these ;41 nested syndromes are zero),
I¢ =T1°U T use A;(z) to correct each y;(z) € I¢
declare decoding success; stop
while |7|<v—I do

4: find least ¢€I® with maximum d;; I=1 Ui; I*=T1%\i
end
Ic=I°Ult; It=0

end

round. Since I* is small, the sorting in Line 4 incurs negligible
complexity. At the end of round /, if there are more than v—I[
uncorrected sub-words, GII decoding failure is declared. If
every sub-word seems to be corrected, 04 nested syndromes
are computed as in Line 3 to check for miscorrections. These
computations are not carried out in the last round since no
more higher-order nested syndromes can be computed.

The three proposed schemes can be implemented with very
low overheads. In hardware implementations of GII decoders,
such as [13], [16], units are already available for computing
the higher-order nested syndromes for Line 1 of Algorithm
1. They can be utilized to compute the nested syndromes
for miscorrection checking. For longer codes, the code rate
loss caused by using eBCH codes is negligible since only one
extra parity bit is added to each sub-codeword. The additional
factor (x+1) multiplied to the generator polynomials of eBCH
codes only requires one additional tap in the linear feedback
shift register encoder architecture [17]. For the decoding, the
bit-wise XOR of each received sub-word is only computed
once. The same number of syndromes are computed and the
decoding is carried out in the same way. Hence, the overheads
for adopting eBCH codes are negligible. Although eBCH
codes with more parity bits can be utilized to identify and
mitigate miscorrections, they do not lead to much additional
performance gain and require higher complexity. In ¢-error-
correcting decoding, deg(A(x)) can become t + 17, where 7
is typically a small number, such as 2 or 3, when there are
more than ¢ errors. Although our third approach needs to keep
longer A(z), the overheads brought to the overall GII decoding
complexity are also very small, considering that syndrome
computation and exhaustive root search also require many
calculations [16].

When the alternative nesting scheme in [3] is used, the
syndromes of the nested word that includes the contribution of
every sub-word should be chosen for miscorrection detection.
The proposed methods can be also extended to GII codes with
more layers [4], [5] with minor modifications on the sub-word
selection when nested syndromes are nonzero. Due to the non-
binary symbols, RS codes for correcting ¢ symbols have lower
miscorrection rate compared to BCH codes correcting ¢ bits
of errors. Nevertheless, similar approaches can be also applied
to mitigate the miscorrections of GII-RS codes.

V. CONCLUSIONS

This letter proposes low-complexity methods to detect and
mitigate the miscorrections in GII-BCH decoding. The nested
syndromes are utilized to detect if there are miscorrections
among the received sub-words. The specific sub-words that
are miscorrected are further identified by using eBCH codes
and keeping track of the degree of the error locator polynomial.
Besides, formulas are provided to estimate the actual FERs.
Combining the three proposed schemes, the error-correcting
performance degradation of the GII decoding caused by the
miscorrections is almost completely eliminated. Future work
will study the implementation of GII decoders.
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