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Abstract. Structured demographic models are among the most common and useful tools
in population biology. However, the introduction of integral projection models (IPMs) has
caused a profound shift in the way many demographic models are conceptualized. Some
researchers have argued that IPMs, by explicitly representing demographic processes as contin-
uous functions of state variables such as size, are more statistically efficient, biologically realis-
tic, and accurate than classic matrix projection models, calling into question the usefulness of
the many studies based on matrix models. Here, we evaluate how IPMs and matrix models dif-
fer, as well as the extent to which these differences matter for estimation of key model outputs,
including population growth rates, sensitivity patterns, and life spans. First, we detail the steps
in constructing and using each type of model. Second, we present a review of published demo-
graphic models, concentrating on size-based studies, which shows significant overlap in the
way IPMs and matrix models are constructed and analyzed. Third, to assess the impact of var-
ious modeling decisions on demographic predictions, we ran a series of simulations based on
size-based demographic data sets for five biologically diverse species. We found little evidence
that discrete vital rate estimation is less accurate than continuous functions across a wide range
of sample sizes or size classes (equivalently bin numbers or mesh points). Most model outputs
quickly converged with modest class numbers (≥10), regardless of most other modeling deci-
sions. Another surprising result was that the most commonly used method to discretize growth
rates for IPM analyses can introduce substantial error into model outputs. Finally, we show
that empirical sample sizes generally matter more than modeling approach for the accuracy of
demographic outputs. Based on these results, we provide specific recommendations to those
constructing and evaluating structured population models. Both our literature review and sim-
ulations question the treatment of IPMs as a clearly distinct modeling approach or one that is
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inherently more accurate than classic matrix models. Importantly, this suggests that matrix
models, representing the vast majority of past demographic analyses available for comparative
and conservation work, continue to be useful and important sources of demographic informa-
tion.

Key words: demography; elasticity; integral projection model; IPM; lambda; life span; matrix projection
model; structured population.

INTRODUCTION

Demographic models have yielded profound insights in
many areas of ecology and evolution, including life-his-
tory theory, population dynamics, resource management,
and conservation biology. Studies using demographic
approaches include some of the most influential papers in
ecology (e.g., Cole 1954, Gillespie 1977, Shaffer 1981,
Lande 1982, Pulliam 1988). Primary reasons for this
influence are the ability of demographic models to link
short term individual performance to both lifetime fitness
and population growth. In addition, these models facili-
tate broad comparisons that can highlight trade-offs and
limitations that structure diverse life-history patterns
(Stearns 1992). Standardized metrics from demographic
models have spurred the development of general classifi-
cation frameworks, such as the fast-slow continuum or
the survival-growth-fecundity triangle (Silvertown et al.
1993, Franco and Silvertown 1996, Sæther and Bakke
2000, Gamelon et al. 2014, Salguero-G�omez et al. 2016b).
Demographic modeling has also transformed approaches
to conservation by allowing more quantitative assess-
ments of population risk and potential management
strategies (Schemske et al. 1994, Carroll et al. 1996, Biek
et al. 2002, Morris and Doak 2002, Jongejans et al. 2008,
Doak et al. 2015). Some of the most influential manage-
ment plans for threatened, invasive, or economically
important species have used demographic models to tar-
get specific life-history stages (Crouse et al. 1987, McEvoy
and Coombs 1999) or to quantify the risk of extinction
(Shaffer 1983, Lande 1988). Thus, demographic models
are a cornerstone of both population biology and conser-
vation management (Shea 1998, Caswell 2001, Morris
and Doak 2002, Bakker and Doak 2009).
While demographic analyses need not involve distinc-

tions between different types of individuals, the majority
of such studies, even of annual species, fall within the
realm of “structured” population models. These models
are structured in the sense that individuals are classified
by one or more “state variables,” traits that are used to
distinguish between individuals that are believed to have
different demographic fates. State variables typically
include age or size, but can also include many other pre-
dictors of fate, including life-history stage, sex, micro-
habitat, or even symbiotic relationships or pathogen
load (e.g., Palmer et al. 2010, Wilber et al. 2017).
While the underlying approach of demographic mod-

eling has remained largely the same since the work of
Leslie (1945) and Lefkovitch (1965), over the last two
decades there has been a slow revolution in how many
demographic models are conceptualized, symbolically

presented, fit, and, to a lesser extent, interpreted. This is
particularly true when species are described by one or
more continuously varying state variables, many of
which are descriptors of individual size. In these cases,
integral projection models (IPMs), which describe popu-
lations according to a continuous state variable (Easter-
ling et al. 2000), have begun to replace classic matrix
models that begin by explicitly dividing populations into
discrete categories corresponding to ranges of state vari-
able values (Caswell 2001). Acknowledgement and
understanding that discretizing continuous measures of
size or other descriptors of state is a simplifying assump-
tion of convenience goes back to the first uses of size-
based demography in ecology (Vandermeer 1978, Molo-
ney 1986), but the IPM literature has revived discussion
of this simplification and suggested it can be of para-
mount importance. The development and widespread
adoption of IPMs has been motivated in part by argu-
ments that a continuous approach is more biologically
realistic and statistically efficient, particularly when
applied to limited data sets (Easterling et al. 2000, Ellner
and Rees 2006, Zuidema et al. 2010, Ozgul et al. 2012).
Correspondingly, matrix models have been increasingly
criticized as artificial, statistically inefficient, and prone
to bias (Ramula et al. 2009, Salguero-G�omez and Plot-
kin 2010, Picard and Liang 2014).
In the last few years, several reviews have emphasized

the superiority of IPMs (Merow et al. 2014, Rees et al.
2014); these claims have not, however, been critically or
thoroughly evaluated. Previous tests of the relative accu-
racy of IPMs have been limited to comparisons that have
ignored the multiple aspects of model estimation and
development that can be used to formulate demographic
models, and have also compared IPMs only with matrix
models built with extremely few classes (Ramula et al.
2009). Further, most claims for the superior representa-
tion of the biology of species, due to the avoidance of
artificial stage classes, ignore that in their actual imple-
mentation virtually all IPMs are analyzed as moderate-
to high-dimension matrix models (Ellner and Rees 2006,
Merow et al. 2014a). This means that their structure dif-
fers more quantitatively than qualitatively from tradi-
tional matrix models. Finally, there are potentially
important biological simplifications inherent in the IPM
approach that have not been carefully examined in the
ecological literature, in particular the limitations
imposed by representing vital rates as fairly simple con-
tinuous functions of the state variable.
An important consequence of the discussion sur-

rounding the accuracy of IPMs and classic matrix
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models is that past studies using older methods could be
perceived as providing little to no useful demographic
information. Traditionally, fit matrix models represent
the vast majority of demographic data available for com-
parative studies (e.g., those in the COMPADRE and
COMADRE databases; Salguero-G�omez et al. 2015,
2016a) or with which to assess the viability and manage-
ment of species of conservation concern. Indeed, even as
the accuracy of matrix models has been questioned,
many synthetic reviews that reanalyze matrix models
have recently appeared in the literature (Katz 2016,
Csergo et al. 2017, Yokomizo et al. 2017). Thus, it is
important to more carefully evaluate whether and when
matrix models accurately capture population dynamics,
and under what circumstances IPMs may do so with less
bias and more precision. Finally, some of us (D. F.
Doak, W. F. Morris, M. B. Garcia, personal observation)
have seen an increasing tendency of reviewers and edi-
tors to dichotomize these two approaches, considering
matrix models as out of fashion and failing to recognize
the considerable gray zone between the two model types
as well as some of the subtler advantages and disadvan-
tages of each.
Our goals in this paper are to (1) explain the ways that

matrix models and IPMs do and do not differ in their
implementation, (2) articulate the potential pitfalls and
advantages of each approach, and (3) use simulations
based on real data sets to critically assess which model-
fitting decisions do and do not matter for common
demographic outputs. To accomplish these ends, we start
with an outline of the main steps in fitting matrix models
and IPMs, highlighting the similarities and differences
between these two approaches. Second, we review the
demographic literature to document how population
biologists fit these different models in practice, with the
goal of evaluating how distinct they really are. Third, we
present results from an extensive set of simulations based
on five real demographic data sets. We use these simula-
tions to compare the relative accuracy of matrix models
and IPMs across a range of sample sizes, model-fitting
strategies, and matrix dimensions that reflect the diverse
approaches used by biologists. We conclude with a dis-
cussion of the merits and potential limitations of differ-
ent demographic modeling strategies and
recommendations for future demographic work.

TWO APPROACHES TO FITTING DEMOGRAPHIC MODELS

Both matrix models and IPMs seek to represent
demographic heterogeneity within a population due to
variation in individual state variables, such as age or size,
that influence performance. Matrix models have tradi-
tionally been approached with the assumption that indi-
viduals can reasonably be divided into classes (also
called categories, stages, or bins; we use “classes” in the
subsequent text). These classes are based on subdivisions
of the state variable, even when there is clear under-
standing that the underlying state variable is continuous

(Hartshorn 1975, Vandermeer 1978, Moloney 1986). In
contrast, IPMs explicitly seek to treat state variables as
continuous.
In this section, we describe the four steps in formulat-

ing either kind of model: (1) characterizing individual
states, (2) estimating fates, (3) assembling these estimates
of fates into a full demographic model, and (4) generat-
ing outputs from these models to assess individual fit-
ness or population behavior. In Fig. 1, we diagram these
basic model-fitting procedures for “classic” matrix mod-
els and IPMs, illustrating the steps they share and those
that differ between these approaches. We also use this
diagram and discussion to highlight differences in the
terminology used in both modeling strategies, as well as
the similarities that can be disguised by these notational
differences. Following sections on the four steps in
demographic analysis, we discuss in more detail some of
the features that most separate IPM and matrix models,
and also some of the less obvious issues with using either
approach.

Characterizing individual states

Both methods require the same basic demographic
data: individual-level survival, growth, and reproduction
rates, recruitment data, along with measurements of one
or more state variables that capture heterogeneity in
these rates; these are called demographic or vital rates
(Caswell 2001, Morris and Doak 2002, Franco and Sil-
vertown 2004; note that some authors use vital rates to
refer only to survival and reproduction). State variables
may be chosen a priori based on feasibility or natural
history, or selected from multiple variables by comparing
regressions of vital rates on alternative state variables to
find the ones with the highest predictive power (Morris
and Doak 2002). In a matrix model, a state variable is
either already discrete (e.g., age classes for a sharply sea-
sonally breeding species or the discrete life-history stages
of many arthropods) or is divided into discrete cate-
gories of a continuous state variable (e.g., size classes).
In the latter case, there are several algorithms for choos-
ing the number and boundaries of classes (Vandermeer
1978, Moloney 1986), although in practice, the structure
of most matrix models has been decided based on natu-
ral history and data exploration (e.g., looking for sharp
changes in vital rates; Caswell 2001, Ramula et al. 2020).
In an IPM, the primary state variable is regarded as con-
tinuous, although additional discrete state variables such
as age, sex, seedling state, dormancy state, breeding sta-
tus, or others can also be included (Ellner and Rees
2006, Rees et al. 2006, Williams 2009, Jacquemyn et al.
2010). We note that age is commonly treated both as
continuous and discrete in demographic models. This
depends on data availability and whether reproduction
occurs during well-defined time periods, generating dis-
crete cohorts (i.e., birth-pulse), or offspring are produced
more continuously throughout the year. However, state
variables that reflect some aspect of size are most often
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used in IPMs (Fig. 5) and can give rise to the largest dif-
ferences in IPM and matrix-model treatments, so we
concentrate on these throughout the rest of the paper.

Characterizing individual fates

Both matrix models and IPMs use state variables to
capture variation in vital rates: the fates of individuals,
based on their state. While there are many ways to make
such estimates, all fall into two general approaches. The
first is used in the construction of many matrix models,
where a separate estimate of each vital rate is required
for each discrete class. These estimates come from sepa-
rately analyzing the subset of data falling within that
class to calculate, for example, mean survival or mean
reproductive output. In other words, the vital rate for a
given class is estimated independently of the rates for

other classes. This includes approaches that take the
observed transition frequencies for a given class as well
as methods that fit statistical models that treat class as a
categorical variable (e.g., some mark–recapture analy-
ses). The central problem facing parameterization under
this strategy is that more, narrower classes reduce the
amount of data available for estimating each vital rate,
whereas fewer, broader classes pool together individuals
that may have very different fates. This trade-off has
long been recognized (Vandermeer 1978, Moloney 1986,
Ramula and Lehtil€a 2005), and can mean that multiple
iterations are needed to find a model structure that bal-
ances sampling and estimation error.
The second approach to estimating fates is used in the

construction of some matrix models based on continu-
ous state variables, as well as all IPMs. In this approach,
demographers use continuous regression models of vital

1. Demographic data
Vital rates (e.g., individual growth, survival, and reproduction) 
One or more state variables (e.g., size, age, life history stage)

M3. Divide continuous state 
variables into discrete classes
- Natural history (age to reproduction) 
- Algorithms (Vandermeer 1978; Moloney 1986)  
- Data exploration, natural breaks in vital rates 

I2. Fit demographic functions 
of continuous state variable
- Established functional forms (logistic, normal) 
or complex nonlinear functions (splines, GAMs) 

- Model selection to test for covariates 
(e.g., age, sex) and/or nonlinearity in vital rates 

M4. Estimate transition rates 
among classes
- Observed frequencies within a class 
(less data per estimate with more classes) 

- Discretize functions of an originally continuous 
state variable to estimate rates within classes 

I3. Combine functions into a 
projection kernel
- Projects the number and state of individuals 
across a time step

- Includes a survival/growth kernel and a 
fecundity kernel 

I4. Discretize projection kernel 
into bins
- State variable divided into many narrow bins
 within a biologically plausible range

- Kernel integration to estimate transition rates
 among bins (midpoint rule, median) 

M2. Choose state variables & 
create life-cycle graph

- Can combine discrete and continuous state 
variables (e.g. seeds, seedlings, plant size)  

5. Matrix analysis
- IPMs are analyzed as large matrix models  
- Population growth rate, sensitivities, elasticities, etc. 

Matrix 
model  

Integral projection 
    model (IPM) 

Iterate to balance sampling
    & estimation error  

Iterate to stabilize estimates 
     & avoid evictionParameter 

estimation  

Matrix 
dimension 

 Key steps

FIG. 1. Diagram of the key steps and considerations in fitting either a matrix model or Integral Projection Model (IPM). Both
approaches begin and end with the same steps (yellow boxes) but may differ in their methods of parameter estimation (blue boxes)
and resulting matrix dimensions (green boxes).
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rates, fit to the entire data set, to estimate stage-depen-
dent vital rate functions. Researchers generally use
established functional forms for each vital rate: general-
ized linear models with binomial errors are often used
for vital rates that inherently represent probabilities (i.e.,
survival, dormancy, or flowering) while those with Pois-
son or negative binomial errors have frequently been
used for offspring numbers; general linear models have
typically been used for growth rates. In some cases,
splines or generalized additive models have been used to
represent more complex relationships between vital rates
and state variables (Dahlgren et al. 2011). Functions
may be chosen a priori, or model selection methods,
such as the Akaike information criterion (AIC), may be
used to select from among several candidate models
(e.g., linear vs. quadratic functions of state). One key dif-
ference between this strategy and the direct use of dis-
cretized data for vital rate estimation is the elegant way
that size changes are treated (Easterling et al. 2000).
First, a model is chosen to characterize the mean size at
the end of a time interval, given a starting size. Next, the
squared residuals from this relationship are predicted in
a second model and then used to predict the variance in
ending sizes (although both the mean and variance can
be fit simultaneously as well; Ellner and Rees 2006, Ell-
ner et al. 2016).

Assembling a projection model

When building matrix models, the matrix elements are
constructed from the best vital rate values for each class,
either using the discrete vital rate estimates or an esti-
mate for each size class taken from a continuous vital
rate function (Batista et al. 1998, Morris and Doak
2002, Gross et al. 2005). This is straightforward if the
vital rate estimates are made discretely for each class. If
continuous functions have been estimated, different rules
can be used to estimate the average value of a vital rate
that is applied to a size class. Most commonly, the vital
rate estimate corresponding to the midpoint size in the
class is used, but other approaches, such as the vital rate
of the mean or median size of individuals falling within
a class, can also be employed (Morris and Doak 2002).
In either case, the growth, survival, and reproductive
rates estimated for each class are combined to form the
elements of the matrix, aij, which represent the average
number of individuals in class i at time t + 1 that result
from an individual of class j at time t.
In IPMs, most vital rates are estimated by fitting con-

tinuous functions of one or more state variables. When
building an IPM, these fitted functions are then com-
bined into density kernels. These are usually a sur-
vival/growth kernel that describes the distribution of an
individual’s state in the next time step, given survival
and growth, and a reproduction kernel that describes the
number and state distribution of an individual’s off-
spring. These kernels are then combined into an overall
kernel that projects the number and distribution of

individuals’ states across a time step. In this kernel, kij is
identical in interpretation to the matrix element aij,
except that the i and j states are assumed to apply to size
classes for the matrix model and to point values of the
state variable for IPMs. Proponents of IPMs emphasize
that this regression-based approach avoids artificial bin-
ning together of individuals with differing states and, by
including all individuals in the model-fitting step, allows
more efficient use of scarce data (Easterling et al. 2000,
Ellner and Rees 2006, Ramula et al. 2009, Zuidema et al.
2010, Merow et al. 2014b).
Beyond these common ways of building either type of

model, several other complexities and complications can
arise. Most commonly, additional state variables (e.g.,
sex, age class, widowing status; Miller and Inouye 2011,
Bakker et al. 2018) or other covariates (e.g., climate, soil
chemistry; Dahlgren and Ehrl�en 2009, Doak and Morris
2010, Hunter et al. 2010, Diez et al. 2014, Merow et al.
2014b) may have important effects on individual fates
and can be included in either discrete or continuous
approaches to vital rate estimation (e.g., through addi-
tional or combined classes, or by inclusion in continuous
vital rate functions). In addition, both matrix models
and IPMs can be either deterministic or stochastic,
including the influence of demographic and environmen-
tal stochasticity on vital rates to estimate effects on fit-
ness, growth rates, or extinction risk. There are also
increasingly sophisticated methods to incorporate model
and parameter uncertainty into the predictions of these
models, which is an especially important topic when
models are being used to address applied questions
(Bakker et al. 2009, Elderd and Miller 2016). Finally, it
is worth noting that there are many other subtle and
not-so-subtle decisions that must be made when formu-
lating either a matrix model or an IPM (detailed in Cas-
well 2001, Morris and Doak 2002, and Ellner et al.
2016), and numerous mistakes are commonly made in
model construction. A recent review by Kendall et al.
(2019) found that a substantial fraction of matrix models
constructed for animals contained at least one common
error in model structure. Among the most common of
these mistakes are failing to include survival in repro-
ductive rates, introducing incorrect delays into the life
history, and incorrectly calculating transition rates from
stages with known duration (Kendall et al 2019).

Analysis of demographic models

Once constructed, matrix models are used to compute
multiple biologically important outputs. Most com-
monly, these include one of several measures of popula-
tion growth rate, including asymptotic or transient
measures of deterministic or stochastic population
growth (Caswell 2001). Additional outputs include the
stable stage distribution, damping ratio, life span mea-
sures, and the sensitivity and elasticity of population
growth or of other outputs (e.g., stable stage distribu-
tions; Caswell 2001, Morris and Doak 2002, Haridas
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and Tuljapurkar 2005) to either matrix elements or vital
rates. If models are built with continuous vital rate func-
tions, sensitivities can also be estimated for responses to
changes in parameters of vital rate functions (e.g., the
intercept or slope of reproduction as a function of size)
rather than to discrete class-specific values (Griffith
2017). Caswell (2001) provides a thorough review of the
many outputs of matrix models, and multiple computing
packages facilitate these analyses (e.g., popbio in R;
Stubben and Milligan 2007).
How does one get comparable predictions from an

IPM, which is not a matrix, but a density kernel? IPMs
are actually analyzed in the same way as matrix models,
using discretized matrices, although IPM nomenclature
often obscures this fact. In practice, numerical integra-
tion methods are used to approximate an IPM kernel as
a transition matrix, most often based on discrete “mesh
points,” which are starting and ending values of the state
variable. This analysis method divides the state variable
into many classes, centered on the mesh points, within a
biologically plausible range and then uses the values of
each of the different vital rate functions at each mesh
point to estimate the transition rate from each class to
each other class. The result is a moderately sized to large
matrix with many narrow, discrete classes and transition
rates estimated from the vital rate functions underlying
the IPM kernel. It would be possible to analyze IPMs
without discretization, but it would be a far more for-
midable analytical challenge for arbitrarily defined ker-
nels (Ellner et al. 2016), while the methods of linear
algebra make the analysis of the approximating matrix
straightforward.
Both modeling approaches result in large to very large

numbers of certain outputs, such as sensitivities and
elasticities of population growth to size specific vital
rates or matrix elements. To deal with these sometimes
daunting numbers of values and to provide more suc-
cinct and biologically informative results, for both types
of models practitioners frequently condense results into
mean or summed values for fewer categories (e.g., Silver-
town et al 1993, Zuidema et al. 2010).

Comparing the two approaches

The IPM literature has emphasized two shortcomings
of matrix models: (1) the statistical inefficiency of sepa-
rately estimating vital rates for each class and (2) the use
of a small number of classes to represent inherently con-
tinuous state variation, a situation that can lead to mis-
characterization of the true values of individual fates.
IPMs solve these problems by using all individuals to
estimate continuous vital rate functions and then by
using many classes of small width in the final analysis
phase. However, there are reasons to question whether
matrix models and IPMs are truly as different as they
are usually portrayed. First, as noted above, demogra-
phers have used continuous vital rate functions to char-
acterize patterns in vital rates and then parameterize

matrix models, even well before IPMs were developed
(e.g., Siler 1977, Eberhardt 1985, Barlow and Boveng
1991, Batista et al. 1998, Bernal 1998, Zuidema 2000,
Morris and Doak 2002, Matsuda and Nichimori 2003,
Gross et al. 2005, Rogers-Bennett and Rogers 2006,
Chien et al. 2008). Second, in practice IPMs are ana-
lyzed by discretizing the underlying kernel to parameter-
ize a matrix model, although that matrix is usually
moderately to very large (typically many dozens to hun-
dreds of classes). Thus, rather than describing matrix
models and IPMs as completely distinct methods, it is
more accurate to view structured population models as
varying along at least two axes: the method of parameter
estimation (categorical vs. continuous functions, blue
boxes in Fig. 1) and the dimensionality of the resulting
matrix (number of classes or mesh points, green boxes in
Fig. 1). Whether these two frameworks are distinct or
not, the problems that have been identified with discrete
parameterization and with modeling continuous state
variables with few classes can potentially have serious
effects on model predictions. In the rest of this section,
we briefly review important considerations arising from
these two aspects of model-fitting, as well as several
other potential issues.

Class number.—IPM practitioners seek to reduce the
effects of discretization by using many narrow classes
(Merow et al. 2014a). However, many classes make for
larger matrices and reduce computational efficiency,
especially when there are multiple state variables (Ellner
et al. 2016). There is also little information about the
number of classes necessary to adequately approximate a
continuous demographic process for real life histories.
Several iterations may be required to determine the num-
ber and range of classes needed to yield stable estimates
(Ellner and Rees 2006, Zuidema et al. 2010) and avoid
eviction (the removal of individuals from the range of
model sizes due to estimates of growth or shrinkage out-
side this range; Williams et al. 2012). The fact that most
matrix models have far fewer classes than the large
matrices used by IPMs has been viewed as a key advan-
tage of IPMs (Ramula et al. 2009, Zuidema et al. 2010,
Merow et al. 2014a). However, in the few studies of
which we are aware that test for class number effects on
demographic outputs, increasing classes beyond 10–20
has little effect on model results (e.g., Jacquemyn et al.
2010, Shriver et al. 2012, Dibner et al. 2019).
One factor that is likely to influence the number of

classes needed for accurate or stable predictions is the
way that continuous vital rate functions are discretized.
The most common approach in IPMs is to use the “mid-
point rule” to evaluate the vital rate functions across
mesh points, each representing the midpoint of a class of
the state variable, to obtain point estimates of the sur-
vival and fecundity rates that contribute to the kij values
in the discretized kernel. There are two important varia-
tions on this method that directly relate to the number
of mesh points (or, analogously, classes) necessary for a
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reasonable approximation. First, it has been suggested
that it may be more accurate to characterize the vital
rates of a class by using either the median or mean state
value (Morris and Doak 2002) of the individuals in a
data set falling within a class, rather than the midpoint.
A similar approach is to estimate an empirical density
function for individual states to estimate mean or med-
ian values, which can provide estimates even for classes
in which few or no individuals were censused (Gross
et al. 2005).
A second issue is the way that the transition probabili-

ties between state values (e.g., growth and shrinkage
probabilities for a size-based model) are discretized
(Fig. 2). The most commonly used approach in the IPM
literature (Ellner and Rees 2006, Metcalf et al. 2013,
Merow et al. 2014a, Elderd and Miller 2016) approxi-
mates the probability density function (PDF) describing
state at the next time step, conditional on starting state,
by evaluating the probability density at each mesh point
and then multiplying this value by the class width
(Fig. 2b). A more accurate method, but one that is not
featured in most descriptions of IPMs or in the software
to run these models (e.g., IPMpack; Metcalf et al. 2013)
is to use the cumulative density function (CDF) to inte-
grate the probability density across the entire class
(Fig. 2c). Although these two methods will converge
with infinitely many classes (Fig. 2d), the first may
require many more classes to produce stable estimates,
particularly if the variance in size is small relative to the
width of the classes for at least some starting sizes
(Fig. 2e; Ellner et al. 2016). Although the second
method has been used, including by the authors (e.g.,
Louthan et al. 2018, Montero-Serra et al. 2018), in both
matrix and IPM models, the method of discretizing indi-
vidual changes in state (e.g., growth) is virtually never
reported in the methods of published studies (M. L.
Peterson, personal observation). We thus have no quanti-
tative estimate of the relative frequency of these two
approaches, despite their potential to influence the accu-
racy of model predictions. We also note that there is a
third option to discretize size transition data, the “bin-
to-bin” method (Ellner et al. 2016: section 6.8), which
uses the integral over both the starting and ending sizes
included in a transition to estimate total transition prob-
ability.

Vital rate estimation.—We next consider other aspects of
using continuous vital rate (CVR) functions vs. discrete
vital rate (DVR) estimates that may be less obvious, but
are important in generating accurate models. The statis-
tical advantages of fitting continuous functions are clear:
using all individuals to fit a single function is more effi-
cient than separately estimating vital rates based on a
subset of individuals within each of many classes. In par-
ticular, it has been argued that this approach is more
accurate than using discretely estimated rates in matrix
models, given small data sets (Ramula et al. 2009). Dis-
crete estimation also means that outliers or other quirks

in the finite data used may have undue influence on the
model structure and predictions (e.g., estimating zero or
perfect survival for some classes).
On the other hand, there is also a potential cost of

continuous vital rate function estimation that has
received less attention. The functions used to explain
vital rate variation are often quite simple, usually lin-
ear or perhaps quadratic functions of a single state
variable (Merow et al. 2014), and thus can easily over-
simplify or misrepresent how vital rates vary as a func-
tion of the state variable. In contrast, matrix models
that separately estimate vital rates within each cate-
gory make no such distributional assumptions (Shi-
matani et al. 2007). For example, a matrix model can
estimate sharp discontinuities in survival probabilities
between size classes or survival rates that asymptote
well below 1, whereas IPMs usually model survival as
a smooth logistic function of size with an asymptote
of 1 (see Yau et al. 2014). Simple transformations of
size variables, such as logging, may solve some, but
not all, of these issues. For these reasons, some have
advocated using non-parametric methods (Ellner et al.
2016: section 10.1.5) or fitting more complex func-
tions, such as splines. However, these approaches can
also be influenced by outliers and/or low sample sizes
at extreme state variable values (Shimatani et al. 2007,
Dahlgren et al. 2011, Rees et al. 2014). A related issue
when using either approach is how best to account for
estimation uncertainty and thus isolate process vari-
ance in vital rates.
Another issue with vital rate estimation is the nearly

ubiquitous assumption in IPMs of normally dis-
tributed growth rates on the scale of the state variable
(Peterson et al. 2019). This assumption means that
growth is modeled as symmetric around an average
size transition, whereas, for many species, the distribu-
tion of growth is skewed. For example, high shrinkage
may be more likely than high growth due to dieback,
breakage, or starvation (reviewed in Peterson et al.
2019); the opposite pattern may occur in woody spe-
cies measured using diameter at breast height (Need-
ham et al. 2018). More generally, the use of growth
models with infinite tails, like normal distributions,
will predict some chance of growth and shrinkage to
sizes well outside the range of reality, resulting in the
problem of eviction (Williams et al. 2012) as well as
unrealistic changes in state even within the bounds of
otherwise realistic sizes.
There are multiple statistical methods to account for

any of the complexities just discussed, but very few
empirical demographic studies employ these. In addi-
tion, it is important to note that the goal of model devel-
opment is not to represent every nuance of reality, but
instead to get the important aspects right enough to
yield useful representations of the patterns and dynamics
of interest. But, as this perspective emphasizes, neither
matrix model nor IPM approaches are a priori more
compelling than the other. Both make some
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simplifications and smooth over some patterns in the
data, though they do so in different ways. It is not clear
whether and under what circumstances continuous func-
tions will produce more accurate vital rate estimates
compared to separately estimating vital rates within dis-
crete classes, nor is it clear when and why the use of
many narrow classes will fundamentally change model
predictions. With this in mind, we next turn to how the
two modeling approaches have actually been used in
recent demographic studies.

HOWARE IPMS AND MATRIX MODELS USED IN PRACTICE?

As we argue above, IPMs and matrix models are not
sharply distinct. Here we document the range of meth-
ods used to fit these models in the literature, including
different parameter estimation approaches and matrix
dimensions. We conducted a literature search on 23
October 2018 of studies included on Web of Science
using the search terms “demograph*” and “matrix” and
either “ecology” or “conservation” for the period 2002–

FIG. 2. Comparison of methods used to calculate probabilities of growing from a given starting size into a given size bin (x). (a)
The probability density of size at time t + 1 can be discretized into classes (defined by black lines) with midpoint sizes (circles). (b)
The probability of growing into a particular class is most often approximated by the midpoint method, by evaluating the probability
density at the midpoint and multiplying by the class width (h). (c) Alternatively, the probability of growing into a class is given exactly
by the difference in the cumulative probability function (CDF) values at the bin edges. The approximation in panel b is accurate with
many narrow bins relative to the variance in growth (d), but can be poor if classes are wide relative to the variance in growth (e). The
actual growth probabilities based on differences in the cumulative density function or CDF (red dots) sum to 1, whereas the approxi-
mated growth probabilities based on point estimates from the PDF (blue dots) may be less than or greater than 1.
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2018. We believe that these search terms capture the vast
majority of matrix models used for ecological or life-his-
tory analyses. We also included Web of Science results
that had cited any of the papers originally developing
the IPM approach, including Easterling et al. (2000),
Ellner and Rees (2006), and Rees and Ellner (2009);
because terminology, and hence key words, are less uni-
form for IPMs, we felt that using citations of these
founding articles would capture studies that might other-
wise be missed. The starting year for our review is some-
what arbitrary, but was chosen to include virtually the
entire period during which IPMs have been conducted.
We only included papers that fit new models to demo-
graphic data, excluding strictly theoretical papers or
reviews that relied on previously published models. For
each paper, we determined the state variable (age, size,
stage, or other [including size 9 age models]), method
of parameter estimation (categorical, continuous, or a
combination), the type of model as it was identified by
the authors (matrix vs. IPM, stochastic vs. determinis-
tic), and the dimension of the resulting matrix (number
of classes, bins, or mesh points used to construct the
matrix or discretized IPM kernels). For papers with mul-
tiple species, we identified these criteria for each species
separately. Ambiguous papers were reviewed by at least
two people. We identified 794 publications and 1,271
demographic models across a range of taxonomic groups
(Table 1) that fit all of our criteria. Most of the demo-
graphic studies in our database examined plants and
other autotrophs (N = 698), followed by vertebrates
(N = 486) and invertebrates (N = 87). The full results of
this literature review are available in Data S1: Literature
Review.
Matrix models represent the majority (~79%) of

demographic models published between 2002 and 2018
(Table 1). Over this period, 57% of all studies were

deterministic matrix models, followed by stochastic
matrix models at 22%. 21% of demographic models were
identified by the authors as IPMs (16% deterministic
IPMs, 5% stochastic IPMs). Although IPMs are a smal-
ler fraction of published demographic models, this pro-
portion has increased over time (Fig. 3a; logistic
regression of proportion of models: year coeffi-
cient = 0.31, Z = 12.81, P < 0.001). This increase can
be attributed to the publication of several reviews of the
method (Ellner and Rees 2006, Rees and Ellner 2009,
Rees et al. 2014, Merow et al. 2014a) as well as the devel-
opment of IPMpack, an R package for constructing
IPMs (Metcalf et al. 2013, R Core Development Team
2015).
Almost all IPMs are built for size-based models. A

total of 67% are only structured by size and an addi-
tional 29% use size in conjunction with one or more
other state variables (e.g., birth date, age, growth rate,
dormancy, developmental stage, etc.); 26% of IPMs use
age as one state variable, while only 2% use something
other than age or size as the primary state variable (e.g.,
infection load; Wilber et al. 2017). In contrast to IPMs,
matrix models are commonly used for stage and age-
based analyses as well as size-based models; 20% use a
size-based state variable, 28% use age, and 52% use a
measure of stage (Appendix S1: Fig. S1A,B). In addi-
tion, the great majority of published IPMs have been for
perennial plant studies, while a wider range of taxa and
life histories have been the subjects of matrix models
(Appendix S1: Fig. S1C,D). Given these differences, in
the rest of our review we concentrate on comparisons
between matrix models and IPMs that are based on size.
The time trends of just these studies are similar to those
of all demographic models (Fig. 3).
In general, size-based IPMs used higher dimension

matrices in their final analyses than matrix models

TABLE 1. Summary of studies included in the literature review.

Taxon No. models No. species

Deterministic proportion Stochastic proportion

Matrix IPM Matrix IPM

Annual forbs 24 24 0.75 0.0 0.25 0
Perennial forbs 314 236 0.46 0.18 0.27 0.08
Woody plants 255 222 0.45 0.28 0.19 0.08
Algae, lichen, and mosses 13 12 0.31 0 0.69 0
Other non-woody plants† 92 64 0.39 0.40 0.12 0.09
Total autotrophs 698 558 0.46 0.24 0.22 0.08
Amphibians 20 19 0.55 0.15 0.30 0.0
Reptiles 29 24 0.69 0.03 0.24 0.03
Fishes 63 45 0.62 0.22 0.13 0.03
Birds 134 108 0.68 <0.01 0.31 <0.01
Mammals 240 175 0.78 0.03 0.18 0.01
Total vertebrates 486 371 0.71 0.06 0.22 0.01
Invertebrates 87 72 0.69 0.10 0.15 0.06
Total 1271 1001 0.57 0.16 0.22 0.05

†Including ferns, graminoids, and Cactaceae.
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(Fig. 4; linear model of class number: t = 10.65,
P < 0.001). However, IPM papers reported using an
astonishingly wide range of classes, from 39 to 2,400, to
discretize their projection kernel (mean = 242.5,
median = 200, SD = 308.3, N = 83) whereas size-based
matrix models varied from 2 to 67 classes (mean = 7.3,
median = 5.5, SD = 6.7, N = 194). However, only 43%
of IPM studies reported the number of classes or mesh
points used for the discretization of the kernel. This may
reflect the philosophical view that IPMs should be con-
ceptualized as continuous, despite their ultimate dis-
cretization, or may simply be viewed as an unimportant
detail by those publishing results of these models.
Regardless, we could not determine the number of
classes for over half of published IPMs, although we
note that the R package IPMpack uses 50 classes as the
default setting (Metcalf et al. 2013) and 10.3% of IPMs
reviewed that did not report the number of classes used
IPMpack. We were further unable to determine the
method used to discretize the IPM kernel for over one-
third (36%) of published IPMs. Of those that reported
the discretization method, 96% used the midpoint rule
and only 4% used an alternative integration method
(e.g., Simpson’s Rule, Gauss-Legendre quadrature;
Ureta et al. 2012, White et al. 2016, Molowny-Horas

et al. 2017). Given that the lack of discretization is fre-
quently discussed as an advantage of IPMs, but that
models are in fact analyzed with discretization, we urge
that discretization information should be included in the
description of any IPM analysis, since this is a key analy-
sis step for these models.
Population biologists followed a variety of workflow

paths from data to final matrix analysis (Fig. 5). Most
demographic models used information on individuals’
stages to estimate vital rates categorically and construct
deterministic matrix models (Fig. 5). However, 7% of all
matrix models, and 25% that used size as their state vari-
able, estimated at least one vital rate using a continuous
function of state. Interestingly, the proportion of matrix
models using continuous vital rate estimation appears to
have peaked and then declined over time (Fig. 3b; logis-
tic regression of proportion of models: year coeffi-
cient = 141.89, z = 3.69, P < 0.001, year2

coefficient = �0.035, z = �3.69, P < 0.001). This could
reflect an increased awareness of continuous approaches
to vital rate estimation following examples in Morris
and Doak (2002) and the initial development of IPM
methods (Easterling et al. 2000, Ellner and Rees 2006),
with a later decline as IPMs were increasingly adopted
to model data sets suitable for continuous vital rate esti-
mation. When comparing size-based matrix models, we
found that models tended to use more classes when at
least one vital rate was estimated using a continuous
function (mean = 11.0, median = 7, range = 3–67,
N = 48) relative to models with discrete vital rate estima-
tion (mean = 6.1, median = 5, range = 2–27, N = 146;
linear model of class number: t = 4.65, P < 0.001).
However, we found no relationship between class num-
ber and minimum sample size for discrete size-based
matrix models (r = 0.17, P = 0.16, N = 67;
Appendix S1: Fig. S2). Of all demographic models using
continuous vital rate estimation, 22% were matrix mod-
els. Thus, any advantages of continuous vital rate esti-
mation have not been limited to IPMs in the
demographic literature.

ASSESSING THE CONSEQUENCES OF DIFFERENT MODEL-
MAKING DECISIONS

Two key characteristics of structured population mod-
els, the number of classes into which the state variable is
divided and the method of parameter estimation (con-
tinuous vital rate functions [CVRs] vs. discrete vital rate
estimates [DVRs]), are often assumed to covary between
“pure” matrix vs. “pure” IPM approaches. But as we
show in our literature review, they are not necessarily
logically connected and many published models combine
relatively small class numbers with CVR functions.
There are also three other decisions that require care-

ful thought when turning data into a structured demo-
graphic model, but are rarely discussed. First is the exact
way that class boundaries are delineated. For most
IPMs, class boundaries are set at regular intervals, while
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FIG. 3. Changes in published demographic models over
time. Circles are the proportion of (a) models that are described
as IPMs vs. matrix models, and (b) matrix models that use con-
tinuous vital rate (CVR) estimation published between 2002
and 2018, with fitted relationships over time. Proportions are
shown for all models (open circles, dashed lines) or only size-
based models (filled circles, solid lines). Circle size is propor-
tional to the total number of models.
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for matrix models, there are often decisions made
regarding sample size issues and where size breaks make
the most biological sense. A second decision is how best
to characterize the average vital rate value for a given
class or, using IPM terminology, how to define the mesh
points used to evaluate the CVRs to create a discretized
matrix. Mesh points are most often chosen as the mid-
point of a class, but alternative approaches could use the
mean, median, or the distribution of state values
observed in each class. The third consideration, if using
continuous functions, is how the transition probabilities
between states conditioned on survival (e.g., growth) are
discretized. This is distinct from the discretization of
other vital rates, such as survival or fecundity, because
an individual will have a distribution of possible states at
the next time step (vs. a point estimate of survival proba-
bility or offspring number), and it is this continuous
probability density that must be discretized (Fig. 2a).
One approach is to use the point estimate of the proba-
bility density evaluated at each mesh point, multiplied
by the class width (Fig. 2c). Alternatively, the probabil-
ity density can be integrated across the entire range of
states within each class, by taking the difference between
cumulative distribution function (CDF) values at the
upper- and lower-class boundaries (Fig. 2a and b).
Other approaches, including the Ellner et al. (2016) “bin-
to-bin” method or direct parameterization of discretized

growth probabilities (Shriver et al. 2019) can also be
used, but none of these alternatives have been commonly
employed to date. All of these decisions have the poten-
tial to interact with the number of classes and methods
of estimating vital rates to shape model outputs.
To test how these different aspects of demographic

modeling influence model predictions we used large
demographic data sets from five diverse organisms: a
long-lived subtidal Mediterranean gorgonian coral
(Paramuricea clavata, Plexauridae), a long-lived rupi-
colous plant (Borderea chouardii, Dioscoreaceae), a
moderately long-lived arctic/alpine geophytic plant
(Polygonum viviparum, Polygonaceae), a relatively short-
lived epiphytic lichen (Vulpicida pinastri, Parmeliaceae),
and a short-lived fish, the Trinidadian guppy (Poecilia
reticulata, Poeciliidae). While these species do not span
the entire range of life histories seen in plants, animals,
and fungi, they do represent a broad array of key life-
history patterns. In all these data sets, organism size is
used to structure the populations, but the species differ
in multiple aspects of their ecology and capture a range
of population size distributions (Fig. 6).
In our analyses, we varied five aspects of model con-

struction. Most fundamentally, we varied the method
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used to estimate vital rates (blue boxes, Fig. 1) and the
class number of the resulting matrix (green boxes,
Fig. 1). Previous comparisons of matrix dimension and
parameterization methods have only included matrix
models with a few classes (four to six) and discrete
parameter estimation, and compared them to IPMs
using continuous functions discretized into large matri-
ces (100 classes; Ramula et al. 2009). In contrast, we var-
ied parameter estimation method independently from
class number to ask how each affects model accuracy. In
addition, we tested the effects of the three other model-
ing decisions just mentioned: (1) use of midpoint or esti-
mated median individual sizes for CVR estimation of
average vital rates per class; (2) even or sample-size-ad-
justed class boundaries; and (3) the ways in which dis-
cretized growth probabilities were estimated from CVR

models (Fig. 2). While other issues also influence model
structure and results (see Two Approaches to Fitting
Demographic Models), here we concentrate on this short
list of issues that will influence virtually all models.
We tested the effects of these decisions on three com-

mon demographic outputs: deterministic individual fit-
ness or population growth (lambda, k), individual
longevity (age at which 1% of individuals starting in the
smallest class are still alive), and damping ratio (the
ratio of the magnitudes of the dominant and subdomi-
nant eigenvalues), a measure of the strength and dura-
tion of transient dynamics for populations not at a
stable stage distribution (Caswell 2001). While multiple
other measures of longevity and also of the strength and
length of transient dynamics exist, the measures we
employee have been widely used in the ecological
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literature. We also present a more limited comparison of
how sensitivities and elasticities of k vary as a result of
different modeling approaches. Finally, we test how data
quantity interact with these alternative modeling deci-
sions, in particular asking if some modeling approaches
are more robust when data are scarce.

Study species and data sets

We compiled data used in published studies for each
of our study species, supplemented with some unpub-
lished information needed to employ flexible and auto-
mated model-fitting routines; all data were collected by
the authors. While all of the original studies of our spe-
cies included effects of temporal and/or spatial variation
in demography, in our simulations we used all transition
data at once to construct single deterministic models.
This simplification allowed us to use large numbers of
observations to construct single models, as well as to rar-
ify our data sets over a wide range of sample sizes to
check the effects of data quantity on the relative merits
of different modeling strategies.
We briefly outline the most relevant information about

each species’ life history and details about the data and
modeling protocols used here:
Polygonum viviparum, the alpine bistort (hereafter, bis-

tort), is an arctic/alpine perennial plant for which demo-
graphic data were collected annually from 2001–2011 at
four populations on Niwot Ridge in Colorado, USA
(Doak and Morris 2010), for a total of 11,882 plant-
transitions of data. Size, reproduction, and survival data
were recorded for all plants (see methods in Doak and
Morris 2010). Size is measured as the square root of esti-
mated leaf area in square millimeters; on an untrans-
formed scale, sizes in the main data set (not including
recruit sizes) range from 4.39 to 3,600, after truncating
five large values that created a long sparse tail that cre-
ated problems for some of our analyses (similar trunca-
tion was done for all data sets besides Borderea).
Reproduction is exclusively via asexual bulbils that are
produced on inflorescences, and our measure of repro-
duction is the size-dependent product of the probability
of producing one or more inflorescences and the esti-
mated number of bulbils produced if reproducing
(derived from a continuous measurement of the length
of the inflorescence-bearing bulbils). We pooled data
across all years and sites to yield one estimate of the
number of new recruits (bulblings) seen a year later per
bulbil produced (0.00676). Bulbling sizes were also
pooled and used to characterize the size distribution of
bulblings as normally distributed with a single mean
(4.00) and SD (0.886) for CVR models, and were directly
used to get frequencies of sizes for DVR models.
Paramuricea clavata, the Mediterranean red gor-

gonian (henceforth, gorgonian), is a slow-growing, long-
lived arborescent octocoral that typically occurs from 15
to 60 m depth. Demographic data for individual colo-
nies (the unit of demographic analysis) were collected

annually at three Mediterranean sites for 2–4 yr each
from 1999–2004 (Linares et al. 2007, Linares and Doak
2010), for a total of 4,877 colony-transitions of data.
Size is quantified as colony height; sizes in the main data
set range from 0.2 to 74.9 cm. Size-dependent reproduc-
tion was estimated as the production of oocytes per col-
ony, estimated from the relationship between gonad
number and size derived from data in Coma et al. (1995:
Table 5) and the estimated average oocyte number result-
ing from a gonad (2.77774 9 10�6). We estimated a
common first year survival of new recruits across all
years and sites as 0.667, the mean of colony survival in
the smallest size class from Linares et al. (2007). Surviv-
ing recruits were assumed to have a uniform size distri-
bution ranging between 0.3 and 3.0 mm height.
Vulpicida pinastri (henceforth, Vulpicida), is a rela-

tively short-lived epiphytic lichen that grows on several
species of trees and shrubs. Data on individual thalli
were collected annually from 2004 to 2009 in the Kenni-
cott Valley in Alaska, USA on individuals growing on
Alnus stems in a mixed spruce–alder forest, for a total of
1,621 individual transitions of data. Size and survival
data were collected in each thallus, with the square root
of thallus area in square centimeters used as the measure
of size (see Shriver et al. [2012] for methods); on an
untransformed scale sizes in the data set range from 0.15
to 47.61. Reproduction was estimated as proportional to
the circumference of a thallus, which bears the majority
of asexual propagules. The number of recruits per mm of
circumference necessary to achieve a stable population
was estimated as 0.047 in the original study of this spe-
cies (Shriver et al. 2012), and we used this estimate as a
fixed value in our models. New thalli sizes were esti-
mated to have a uniform distribution ranging between
0.124 and 0.50, which reflect the range of smallest thal-
lus sizes encountered in the field.
Borderea chouardii (henceforth Borderea) is a rare,

extremely long-lived, rupicolous plant that naturally
inhabits a single population in Spain, where it grows in
shaded crevices of north-facing limestone walls and
overhangs. Data were collected on individual plants
from 1995 to 2002 at two sites in the Spanish Pyrenees,
for a total of 2,682 plant-transitions of data. Size is mea-
sured as the length of the largest leaf in millimeters; sizes
in the main data set range from 2 to 10.8 mm. Reproduc-
tion is quantified as the number of seeds produced per
female plant. While the species is dioecious, we use the
mean seeds per plant of a given size, averaged across the
sexes, as our measure of reproduction (see Garcia 2003
for more details of sampling and life history). Reproduc-
tion was quantified as the size-dependent product of the
probability of producing one or more inflorescences and
the estimated number of seeds produced if reproducing.
For CVR models, observed seedling sizes were used to
estimate a mean (4.66) and SD (0.46) and sizes were
assumed to be normally distributed, while the set of
observed sizes were directly used to get frequencies of
sizes for DVR models.
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Poecilia reticulata (henceforth, guppy) is a short-lived
freshwater fish native to streams and rivers in Trinidad.
We used capture–mark–recapture data from monthly
sampling of a site on the Caigual River that spanned
January 2009 to June 2011, for a total of 4,880 unique
individuals over the entire study. At each sampling inter-
val, a comprehensive capture of all fish within the stream
reach was attempted, with size (g wet mass) and sex
recorded for all individuals. Sizes in the data set range
from 0.042 to 0.904. While recapture rates are extremely
high (Fitzpatrick et al. 2016), they are not perfect. To
produce a simplified data set for our analyses, we there-
fore considered a fish dead at the first census it was not
captured, if it was not captured for at least one subse-
quent sampling period (thus, we did not include data
from the final two sampling intervals). We also linearly
interpolated size for fish that were not sampled in a
month, but were sampled in the months bracketing the
missing capture. We built a model for females only.
Reproduction was quantified as the size-dependent pro-
duct of the probability of producing any offspring times
the number of daughters produced if there was repro-
duction. Offspring number was estimated from genetic
data and is the estimated number of female offspring
produced that survived until the second census following
birth (newborns were not large enough to reliably catch
until approximately 1–2 months of age; Fitzpatrick et al
2020). New offspring sizes were pooled and used to char-
acterize an empirical distribution function for use in
CVR models, and were directly used to get frequencies
of sizes for DVR models. The survival rate of fish in each
of their first two months was estimated as the mean sur-
vival estimated for newly observed fish, based on a logis-
tic regression of monthly survival vs. size fit to all fish.
We do not include in our analyses data on the genetic
origin or hybrid status of the fish (see Fitzpatrick et al.
2016 and Fitzpatrick et al. 2020 for more details of the
study). As the data set only allowed estimates of repro-
duction from months 5–14 of the study, we used demo-
graphic data only from these months, for a total of nine
individual transitions of data and 2,366 individual
monthly transitions. In keeping with the data collection
and also the limited life span of the species, and unlike
the annual time steps used in the models for all other
focal species, all data analysis and modeling for guppies
was done using a monthly time step.

Methods

We fit demographic models to the data from each spe-
cies using combinations of the following alternative
approaches:

(1) Discrete vital rate estimation for each class vs. contin-
uous functions for vital rate estimation. When esti-
mating continuous vital rate functions (CVRs), we
fit separate size-dependent models for survival,
mean growth, variance in growth, and reproductive

rates for each species (see Appendix S1: Table S1).
For each vital rate, we fit two or three models with
alternative size-dependent functions and used the
Akaike information criterion corrected for sample
size (AICc) to choose the best model. Specifically,
we fit models with linear vs. quadratic size effects for
all vital rates, and for mean growth we also fit a
power function, to potentially better capture differ-
ent shapes of non-quadratic, but nonlinear shifts in
growth with size. These functions are all commonly
used in analyses employing CVRs.

(2) Number of classes for model construction. For dis-
crete vital rate estimation, the number of classes
directly influences the parameter estimation, while
for continuous vital rate functions, it only influences
the final construction of the matrix for analysis. We
made models with class numbers that ranged from 3
to 100 classes for most analyses, using 3, 4, 5, 6, 8,
10, 15, 25, 35, . . .100 classes. With discrete vital rate
estimation, at the upper end of this range we rapidly
reached class numbers that resulted in low samples
for at least one class; we did not make models if the
smallest class-specific sample size was <3. While this
is a very lenient standard (we do not advocate mak-
ing models based on such low sample sizes per
class), we used a low threshold in order to make
DVR models with the largest possible range of class
numbers given the data we had. In our rarefaction
tests, described below, we also directly tested the
effects of having very low class-specific samples on
DVR model outputs. Statistics on per class sample
sizes for each species are given in Appendix S1:
Figs. S13-S17.

(3) Proportional vs. even size-class delineation. We
employed two approaches to defining boundaries of
size classes, which characterize two extreme
approaches seen in demographic studies. With even
class divisions, all classes were the same width on
the scale of the size metric (see above for definition
of the size scale used for each species). For propor-
tional class divisions, we used the classes function in
R package binr (Sergei 2015) to create class divisions
that had as nearly equal numbers of starting individ-
uals as possible. This approach has the general effect
of creating many narrow classes of smaller or mid-
sized individuals and fewer wide classes for the lar-
ger and in some cases also small individuals,
depending on the size distribution of the data (see
Fig. 6). While in many matrix models, class bound-
aries are, and should be, made with more attention
to biological breakpoints, to automate the process
of choosing class boundaries, we used only these
two approaches.

(4) Discretizing CVRs. For most vital rates, a single
point estimate is required for each size class (e.g.,
survival probability, number of offspring/parent).
We used one of two approaches to estimate the rep-
resentative vital rate value for each size class when
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using the CVR approach. First, and most simply, we
used the midpoint size within a class (the mean of
the two bounding values for the class). This method
is by far the most common one used when making
large matrices to numerically integrate IPM models,
and is also used in many matrix models employing
CVRs. However, two of us have argued that it is
more representative to use a size that reflects the
average individual within a class, not the midpoint
of the class boundaries (Morris and Doak 2002).
This estimation can be accomplished in several ways.
Most simply, an estimate can come by taking a sim-
ple median or mean starting value of all individuals
within a class, or, when data are scarce in some size
ranges, by fitting an empirical density function to all
individuals in the population and then using this
function to create a weighted median size for each
class; we used this latter approach in our simula-
tions. We refer to these two approaches as midpoint-
or median-based CVRs, respectively.

(5) Discretizing continuous growth distributions. Lastly,
we compared two approaches to discretizing contin-
uous distributions that summarize changes in size
when using the CVR approach (Fig. 2), using both
simulated and real data sets. First, we took the com-
mon approach employed in the IPM literature of
using the point estimates of the probability density
for the midpoints of all of the size classes, multiplied
by the class width, to approximate the probability
density function (PDF) of size at the next time step
conditioned on current size. We call this the “mesh
point method.” Second, we used the cumulative den-
sity function (CDF) for growth to get the probability
of reaching each size class at the next time step con-
ditioned on starting size. We call this the “CDF dif-
ference method.” While other approaches have been
proposed, in particular the Ellner et al. (2016) “bin-
to-bin” approach, we only tested these two most
commonly used methods here. For either, there is a
concern that some substantial fraction of the total
probability of growth will fall outside the upper and
lower limits for size defined in the model (the evic-
tion problem; Williams et al. 2012). There are multi-
ple ways to correct the estimated growth
probabilities so that, for any starting size (or size
class), they sum to 1 (Williams et al. 2012). We do so
by renormalizing the growth probabilities for a given
starting size by the difference of the CDFs for the
minimum and maximum sizes used in the model (as
in Williams et al. 2012). While this correctly stan-
dardizes total growth rates for the CDF difference
method, it is a more error-prone exercise for the
mesh point method, as we discuss in Results.

Appendix S1: Table S1 lists the vital rates fit for each
species, including non-size-dependent vital rates used in
all models. Appendix S1: Figs. S3–S7 show the best-sup-
ported vital rate functions for each species. As these

figures show, the species span a range of patterns in
growth, survival, and reproduction. In particular, Bor-
derea (Appendix S1: Fig. S4) and guppies
(Appendix S1: Fig. S7) show a pattern of declining mean
and variance in growth at larger sizes, while the other
species show declining mean but increasing or relatively
stable variance as size increases.
For each model constructed from each data set, we

estimated k, damping ratio, and longevity. We also
explored the effects of class number and discrete vs. con-
tinuous vital rate estimation on elasticity values, con-
trasting DVR models with 20 evenly spaced size classes
with CVR models built with 80 classes and using med-
ian-based and CDF difference methods. The 20-class
models are at the upper range possible to use for simple
even class definitions for all our data sets, while use of
80 classes is well within the range used by most IPM
models (Fig. 4).
Finally, we tested the effect of sample size on model

results by rarifying each data set in two different ways.
First, we randomly sampled each data set, with replace-
ment, 200 times for the full sample size, and also for 1/2,
1/4, 1/8, down to 1/32th of the full sample size, depend-
ing on species. We then replicated the model-fitting pro-
cess for 20-class DVR and CVR models, employing
median-based and CDF difference methods for CVR
discretization. For these models, we use a slight variant
on even class boundaries. To perform analyses on rari-
fied data sets using even size classes for DVR estimation,
we had to use a stratified bootstrap approach, so that we
retained some individuals across sizes in each data set.
This stratification regime also reflects the empirical sam-
pling decisions that many demographers make, with
efforts to include individuals at the top and bottom of
the size distribution in the sample followed for data col-
lection. To stratify the sampling, and also to define class
boundaries for all models, we used the top and bottom
5% of all individuals by starting size to define the small-
est and largest classes. We then divided the remaining
individuals into 18 even size-class divisions. Boot-
strapped samples were generated by resampling with
replacement separately for each size class. Resampled
data sets ranged from a sample equal to the original (see
Appendix S1: Figs. S13–S17 for per class sample sizes
statistics), down to between 1/8th and 1/32nd of the orig-
inal sample size, reflecting quite small minimum sample
sizes of individuals in a given class: bistorts, 6; gorgoni-
ans, 5; Borderea and guppies, 3; Vulpicida, 2. As supple-
mentary tests, we also (1) fit 80-class CVR models to
each data set to see if higher class numbers changed the
results and (2) ran similar rarefactions, but using non-
stratified bootstraps and fitting proportional class
boundary models using 20 classes for DVRs and 80
classes for CVRs.
In addition to the rarefaction simulations just

described, we also used a rarefaction approach to test
whether DVR models that are fit with high class num-
bers, and hence low sample sizes per class, perform
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worse than CVR models fit to the same resampled data.
For these analyses, we used the same 20-class stratified
bootstrap described in the last paragraph to generate
200 samples. For each species, we used one resampled
data set size, between 1/4th and 1/16th of the original
sample size; these sample sizes allowed us to fit a range
of class numbers for each species but also resulted in
small minimum sample sizes per class. We then fit mod-
els using from 5 up to 50 size classes, defining the upper
and lower classes using the 1/class number and 1 –
(1/class number) quantiles and evenly divided class
boundaries in between. We fit DVR and CVR models to
the same data and class boundaries, and employing med-
ian-based and CDF difference methods for CVR dis-
cretization. We fit models to any data set that had at
least one individual in each class, and also recorded the
fraction of failed data sets for each size-class number.
We show results for class numbers for which <30% of
samples failed for DVR models. We then predicted
lambda, damping ratio, and life span estimates for each
model.
All analyses were conducting using R version 3.5.2 (R

Core Team 2018). Example R scripts and data files
showing the routines used in our analyses are included
in Data S2.

Results

Use of mesh points vs. CDF differences to characterize
growth rates.—To restrict the range of modeling deci-
sions considered in subsequent analyses, we began by
addressing the last modeling decision listed above (Dis-
cretizing continuous size distributions), asking if using
mesh points or CDF differences had substantial effects
on growth rate estimation and hence on model results. It
is clear that the mesh point approach will be inaccurate
at smaller class numbers (Fig. 2e), as it is essentially a
crude numerical integration, but how accurate it is with
larger class numbers under realistic assumptions is less
clear. We therefore started by running a simplified simu-
lation, not tied to any of our real data sets, to illustrate
how well the mesh point method works to characterize
growth when starting from a single size, and when the
resulting sizes are far from size boundaries (so “eviction”
is not a problem). As noted in Ellner et al. (2016: sec-
tions 2.7.4 and 6.8), the mesh point approach performs
worst when there is low variance, in which case they sug-
gest increasing the variance (if model predictions are
unaffected), using sparse matrix methods with many
mesh points, or alternative integration approaches such
as Gauss-Legendre quadrature. To mimic this low-vari-
ance scenario, we simulated a realistically low SD of 0.5
with a mean size that varied from 49 to 51 (e.g., Fig. 7a
with mean = 50). We used from 10 to 100 mesh points
spanning a range of sizes between 0 and 100 to discretize
the resulting probability density function (PDF).
The most fundamental problem in approximating

growth probabilities is if they do not sum to 1, as all

surviving individuals should have a size at the next time
step; values greater than one implicitly boost survival
when used in a full demographic model, while summed
growth rates below 1 implicitly reduce survival. In our
simulations, models with from 20 to 100 classes estimate
growth probabilities that sum to between 3.0 9 10�5

and 1.76; while there is a general trend to more accuracy
with higher class number, both under- and overestimates
still occur as class number increases (Fig. 7b). The
summed growth probability is also highly sensitive to
small differences in the mean of the growth distribution
relative to the mesh points, with significant over- and
underestimation of total growth probability until high
class numbers are reached (near to 100). This is because
the probability of growth into a given class is estimated
using exact PDF values at mesh points, so that the exact
placement of mesh points relative to the peak of the
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FIG. 7. An illustration of the problems with standard mesh
point growth estimation. (a) A distribution of ending size val-
ues, with mean 50 and SD 0.5, on a possible size range between
0 and 100 and with probabilities shown for classes of width 1.
(b) The summed probability of growing to any size, as estimated
by the standard mesh point method. Results are shown for bin
numbers between 10 and 100. Each line shows results for a dif-
ferent mean ending size between 49 and 51. Any reasonable way
to estimate growth rates should yield a summed probability of
exactly one. Unless high mesh point numbers are used, the mesh
point method yields values much larger or smaller than one
most of the time. With a narrower ending size distribution, far
higher bin numbers are needed to yield reasonable results.
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PDF creates erratic misestimation, particularly when
there are few mesh points relative to the growth vari-
ance. In contrast, the CDF difference approach always
estimates the summed growth probability as 1.
The problems with the mesh point approach can also

affect the construction and results of full population
models. To test the effects of mesh point misestimation
on growth rate estimates across starting sizes, we built
CVR models for each of our five focal species, using
each of the two methods and both moderately high (50)
and high (100) class numbers. For both methods, we nor-
malized the estimated growth rates for a starting size
based on the difference in the CDF between the mini-
mum and maximum sizes used in the model. This test is
the one proposed by Williams et al. (2012) to detect evic-
tion. While it is the correct estimate of “true” eviction

(i.e., growth outside the range of sizes in the model), and
corrects all the transition probabilities for the CDF dif-
ference method so that they sum to 1, for the mesh point
models it is not a perfect test or correction, since the
summed growth probabilities can deviate substantially
from 1, even in the absence of any meaningful eviction.
Use of mesh point methods leads to substantial over-

or underestimation of summed growth rates for some
small or large classes for four of our five species, and
does so even with models built with 50 or 100 classes
(Fig. 8). Misestimation tends to occur where variance in
growth is low (Appendix S1: Figs. S3–S7), and can occur
for size classes that include abundant individuals (e.g.,
large Borderea and small gorgonians). We also tested for
the effects of eviction correction in changing the esti-
mated mean and variance in growth for different sizes.
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FIG. 8. Even at high class numbers, the mesh point approach yields inaccurate growth rates for some starting size classes. Results
show the summed growth probabilities for each starting size for models built with 50 (green) or 100 (blue) classes for each of our focal
species. For four of the five species, the mesh point method gives poor total growth estimates for some large or small size classes, even
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Not surprisingly, eviction correction can substantially
shift both mean and variance estimates (Appendix S1:
Figs. S8–S12); while this is expected, it does suggest that
alternative models for growth rates that minimize the
eviction problem need to be developed and more widely
employed (e.g., Peterson et al. 2019).
To test the effects of mesh point misestimation of

growth rates on lambda estimates, we took the same
approach just described, but building entire demo-
graphic models for a range of class numbers for each
focal species. The models used mean class values for esti-
mation and even size class boundaries. For all of our
focal species, use of mesh points results in greater devia-
tions in lambda estimates and slower convergence on
stable lambda values as class number increases than do
models built using CDF differences to estimate growth
probabilities (Fig. 9).

In sum, the mesh point method can be highly inaccu-
rate, and much of this inaccuracy will also be undetected
by the usual test employed for growth rate eviction.
Given that the CDF difference method is highly robust
and extremely fast (only taking an additional 1.8 s than
the mesh point approach in a test with 10,000 classes on
a standard laptop), it is not clear that there is any reason
to continue to use the mesh point approach to estimate
growth, especially as it can generate artifacts and
extreme class number dependence in the absence of any
benefit. While the problems with the mesh point
approach can be easily solved by using increasing class
numbers, this number can reach ridiculous levels (e.g.,
>4,000; Zuidema et al. 2010, Needham et al. 2018) and
require careful analysis to detect. In the simulations
below, we always use the CDF difference approach in
our CVR models.
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Effects of modeling decisions on population growth esti-
mates.—All four of the remaining modeling decisions
that we explored can also have substantial influence on
estimated lambda values. However, the strength and pat-
terns of these effects are not necessarily what are usually
assumed by most population biologists. While we have
no independent measure of the “right” answer for these
real data sets, most models based on the same data set
converge on almost exactly the same lambda (k) esti-
mates with moderate (for discrete parameter estimation)
or high (for continuous vital rate functions) class num-
bers, and we assume that these values are reasonable
approximations of reality.
Class number and vital rate estimation method (DVR

vs. CVR) show significant interactions in their effects on
k, but do not indicate any clear advantage for the use of
CVRs (Fig. 10). Models using DVRs, corresponding to
classic matrix models, converge on the same lambda val-
ues as do models using CVRs, corresponding to IPM
models, especially when using even class boundaries. k
values also show convergence to a very narrow range of
values (�0.01) by ~10–20 classes, depending on the spe-
cies. While these are higher class numbers than are typi-
cal in many matrix models, they are far below those
generally used in IPMs (Fig. 4). Neither estimation
method gives consistently better results with small class
numbers. DVRs always misestimated k when used with
very few classes, but the use of CVRs also resulted in
over- or underestimation, often of greater magnitude,
depending on the species and other aspects of model
construction. This suggests that the number of classes
has a greater impact on model performance than the
method of parameter estimation, but that the extremely
large matrices used in most IPMs are unnecessary to
achieve model accuracy.
In general, bistorts, Borderea, and guppies showed fas-

ter convergence on the same lambda values with increas-
ing classes than did the other two species, and the first
two species also showed better correspondence between
the predictions of median-based CVR and DVR models.
Unfortunately, there is not a simple difference in the life
histories or size distributions of the species that appears
to correspond to these different results (see Fig. 6,
Appendix S1: Figs. S3–S7 for size distributions and vital
rates of the species).
Other components of model building also influenced

k estimates. First, defining class boundaries using even
divisions generally yielded more consistent results across
class numbers, regardless of other modeling decisions.
This was most obvious for bistort, Borderea and Vulpi-
cida, for which even class models show convergence to
the same lambda values at lower class numbers than do
models with proportional classes, which continued to
show divergence out to 100 classes. Second, use of esti-
mated median sizes with CVR models to characterize
average vital rates often yielded more accurate k esti-
mates, particularly at lower class numbers, than did use

of midpoint sizes. This was especially striking for Vulpi-
cida, for which use of midpoint sizes substantially
altered k estimates even with 80–100 classes with propor-
tional class sizes, with no sign of convergence with the
other estimates. The somewhat poorer performance of
models with either proportional classes or midpoints
appears to be due to the same underlying cause: mis-
characterizing average performance either by grouping
together very different individuals and/or by a poorer
approach to characterizing the average state of individu-
als within a class.
One striking aspect of these results is that the outputs

of CVR-based models are more dependent on other
decisions about model structure and estimation than
seems to be the case for discretely estimated vital rate
models (Fig. 10). This result contrasts with the common
assumption that use of CVRs will lead to more stable,
and hence reliable, results. This finding also suggests
that, if models are made with moderate numbers of
classes, discretely estimated matrix analyses are likely to
provide estimates of growth rates that are just as robust
as those arising from IPMs.

Simulation results: Damping ratios, life spans, and sensi-
tivity analysis.—Predictions of life spans and damping
ratios mirrored those for population growth rates,
although with greater effects of several modeling deci-
sions (Figs. 11, 12). First, models made with even class
widths show weaker effects of other modeling decisions
on their eventual convergence than do models made with
proportional class widths. Second, CVR models that
used median sizes to characterize performance often
yielded more stable values than did those that used the
midpoint of a class. This was most evident for life span
estimates, for which midpoint models gave highly diver-
gent estimates for Vulpicida and, with proportional
classes, Borderea as well. Third, using discrete vital rate
estimation yielded the same results as did CVR models,
and generally converged upon stable values more quickly
with increasing class number. Overall, these results bol-
ster the conclusion that discretely estimated matrix mod-
els are no less representative of demographic patterns
than are IPMs fit with CVRs and evaluated at mid-
points, with IPMs of high (>80) classes and matrix mod-
els of quite moderate size (~10–20 classes) giving
essentially identical results.
We also examined the dependence of sensitivity analy-

ses of lambda to matrix elements on modeling
approach, contrasting the results of a DVR-based
model of 20 even size classes and a CVR model of 80
even classes, evaluated at midpoints. The contrasting
models for each species showed very similar results
(Fig. 13). The elasticity values of matrix elements were
strongly correlated (r = 0.95–0.97) with litte to no evi-
dence of systematic bias, and there was a similarly close
correspondence in sensitivity values (r = 0.94–0.99;
Appendix S1: Fig. S18).
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Simulation results: sample size effects.—One assumed
advantage of CVRs that has often been advanced in the
demographic literature is that they perform better when
data are sparse (Easterling et al. 2000, Ellner and Rees
2006, Ramula et al. 2009, Zuidema et al. 2010, Merow
et al. 2014), so we compared model outputs for 20-class
CVR models (fit with median values) vs. 20-class DVR
models, each fit to 200 bootstrapped data sets across a
range of sample sizes (Fig. 14). Regardless of the model-
ing approach used, the variance in lambda estimates
increased with smaller samples. However, to our sur-
prise, there was little consistent advantage of the CVR

approach with increasingly rarified data. Even when
using sample sizes in the low hundreds, both discrete
and continuous approaches to parameter estimation
yielded similarly variable predictions. This finding does
not support the generality that continuous functions will
better estimate vital rates and hence produce better
model outputs with small sample sizes. This result likely
reflects in part the model-selection process inherent to
fitting continuous vital rate functions. With smaller sam-
ple sizes, different sets of data can yield support for
alternative forms of the vital rate parameters or even
functions, such as linear vs. quadratic relationships,
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class-specific vital rates. Note the different range of class numbers on the x-axis for guppies.
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thereby altering model predictions. In addition, outliers
can exert effects on entire vital rate functions when using
the CVR approach, again creating variance in predic-
tions that appear to be equivalent in their effects to the
randomness generated in the estimates coming from the
DVR approach. While this result might change with
even smaller sample sizes, our simulation results based
on 300–400 individual transitions already show so much
variation that the effects of the sampling variance in the
data overwhelm any advantage of one modeling
approach over the other. We ran the same comparisons
using 80-class CVR models (Appendix S1: Fig. S19) and

also used non-stratified bootstrapped data sets with pro-
portional class boundaries (Appendix S1: Fig. S20); in
both cases, we find qualitatively similar results to those
seen in the main simulations. In the future, it would be
illuminating to estimate the relative contributions of dif-
ferent processes, such as model selection, outliers, and
size distributions, to the precision of both DVR and
CVR model predictions and how these vary with sample
size for each approach.
We also conducted a different test of sample-size

effects, focused on the effects of low sample sizes per
class for DVR models. Here we are looking at the
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possibility that with higher class numbers, DVR models
will be increasing unreliable, since they will have at least
some classes with vital rates estimated from extremely
small samples (down to n = 1 in our simulations). Using
relatively low total sample sizes (see Methods) we fit
models with a range of class numbers and found surpris-
ingly little evidence for an advantage of CVR over DVR
models or of a disadvantage of DVR models with higher
class numbers (Fig. 15 and Appendix S1: Figs. S21–
S25), even when multiple classes have extremely low
sample sizes (e.g., N < 6; Appendix S1: Figs. S21–S25).
At the lowest sample sizes, for guppies and gorgonians

we do see that DVR models generated a bimodal distri-
bution of lambdas, but the second, erroneous peak in
estimates results from models that have one or more
classes where individuals are immortal and cannot leave,
resulting in lambda = 1. While erroneous, this is a
pathology that is easy to recognize and rectify when
building a model for a particular species. The surprising
lack of advantage for CVR models also occurs for damp-
ing ratio and life span estimates (Appendix S1:
Figs. S21–S25), and does so even though we created
models in which minimum sample sizes per class
spanned extremely low numbers.
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FIG. 12. Damping ratios with varying class number and modeling decisions. Models are built using class divisions that evenly
divide the size range and have a constant width (left) or that proportionally divide the size range to include similar sample sizes
within each class (right). Within each panel, data are shown for models built with discrete vital rate estimation (DVR) or with con-
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Simulation results: One more lesson.—One lesson that
we learned from constructing the models used in our
simulations may not be apparent to many demogra-
phers, but can have large effects on model performance
and especially the effects of varying class number: how
the size distribution of new recruits is treated. For most
species, including those in our focal data sets, there is a
wide enough range of new recruit sizes, at least after
their first year of life as a seedling or equivalent new
recruit class, that they can grow into a meaningful range
of sizes. While in IPM models, the size distribution of

new recruits is typically quantified (92% of IPMs in our
literature review; Data S1: Literature Review), in matrix
models, new recruits are often deposited into the small-
est size class and then can proceed through the other size
classes of a model. In the course of making our simula-
tions, we realized that making this simple assumption
guarantees an artificial dependency of model predictions
on class number, because use of fewer, wider size classes
essentially increases the size of new recruits, while nar-
rower classes essentially shrink them. This problem is
avoidable if, instead, new recruits are explicitly modeled
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FIG. 13. Close correspondence between elasticity values generated by a 20-class DVR and an 80-class continuous vital rate
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as having probabilities of growing to a range of sizes.
When testing effects of class number on model outputs,
attention to this potential artifact is important.

DISCUSSION

IPMs and traditional matrix models are often dis-
cussed as wholly distinct modeling approaches, with
IPMs represented as a substantial improvement in
demographic modeling by dealing more realistically with
the continuous ranges of state variables and vital rates
seen for many organisms. While an argument can be
made that conceptually the two methods really are dis-
tinct, both our literature review and demographic analy-
ses, based on data for five diverse organisms, challenge
the view that they are entirely distinct in practice or that
one is clearly superior. Instead, we find broad overlap in
the way IPMs and matrix models are fit and interpreted.
A quarter of size-based matrix models estimated at least

one vital rate as a continuous function of size, and
although these models used substantially fewer classes
on average than IPMs, the range of class numbers was
very wide and overlapping across the two approaches.
Further, our simulations showed no substantive differ-
ences in outputs of models using discrete vs. continuous
approaches to estimating vital rates. Rather, both
approaches performed similarly well when sample sizes
and class numbers were sufficient and similarly poorly
when data were limiting or too few classes were used to
capture an organism’s life history. Further, we found lit-
tle advantage to using more than 10–20 classes even for
extremely slow-growing and long-lived organisms, sug-
gesting that continuous demographic processes can be
well approximated by matrices of moderate dimension.
This range of size classes is at the high end for most size-
based matrix models in the literature, but it is far lower
than that used to analyze virtually all IPMs. Although
these two aspects of demographic modeling, matrix
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dimension and discrete vs. continuous vital rate estima-
tion, have received the most attention in the literature,
our simulations also highlight the equal or greater
importance of other modeling decisions, such as how
classes are defined and continuous vital rate functions
are discretized, as well as the quality and quantity of the
underlying demographic data. Together, these results
suggest that some model building decisions have been
overemphasized whereas data collection methods and
sample size effects have been underemphasized in discus-
sions of improving demographic models and their pre-
dictions.
One of the principal critiques of traditional matrix

models is that they use too few classes to accurately rep-
resent what are inherently continuous demographic pro-
cesses, and this idea has been bolstered by analyses of
IPMs that show that class numbers into the hundreds
are often necessary to stabilize model outputs. Our simu-
lations lend partial support to this idea, by showing that
demographic models with too few classes do indeed

produce biased outputs. Interestingly, however, our
models were able to accurately capture the demography
of long-lived species with sizes spanning up to 2.6 orders
of magnitude with 10–20 classes, much less than what is
typically used by IPMs. These results suggest that tradi-
tional matrix models for size-based life histories may
indeed require more classes than are typically used,
although many models are built for species with smaller
size ranges, more stage-based life histories, or shorter life
spans than most of our focal species. For such species,
there are likely to be smaller differences between the
fates of most individuals and also less steep changes in
vital rates across the sizes of most individuals. In such
cases, fewer classes may well be sufficient, as we see with
our guppy example. In addition, studies focused on par-
ticular species often make careful, biologically based
decisions about class boundaries, which seem likely to
yield better results than our more standardized but
mindless class divisions (but see Ramula et al. 2020).
Our results also suggest that the perceived need for
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each distribution shows the mean. See Appendix S1: Figs. S21–S25 for comparable results for damping ratios and life spans and for
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extremely high class numbers with IPMs may be driven
by the inefficiency of the midpoint method for estimat-
ing growth, or some other pathology in the way the
models are being constructed, rather than a more funda-
mental need for high class number to capture biological
patterns.
The other aspect of model fitting that has been

emphasized in discussions of demographic modeling has
been whether vital rates are estimated discretely for each
class or by using the data across all classes to fit continu-
ous vital rate functions (CVRs). The main arguments for
CVRs are that they are more biologically realistic than
discrete classes, are more accurate and efficient when
data are limiting, can allow easier incorporation and
testing of demographic drivers, and can utilize sophisti-
cated statistical methods, such as mixed models or Baye-
sian approaches (Ramula et al. 2009, Merow et al.
2014b, Ehrl�en et al. 2016, Elderd and Miller 2016). In
our simulations, we found no evidence for the first two
arguments. There was no improvement when using
CVRs for a range of model outputs, including popula-
tion growth, life span, damping ratio, or sensitivity and
elasticity patterns. In fact, we observed a general ten-
dency in our simulations for CVR-based model outputs
to be more sensitive to other modeling decisions, such as
whether classes are equally spaced or proportional to
sample sizes. We also saw no evidence that CVRs
increase the precision or accuracy of estimates as sample
sizes decrease. This is in contrast to results found by
Ramula et al. (2009), which compared 100-class IPMs
with four-to-six-class matrix models. This discrepancy
may have been driven by the difference in class number
rather than the method of vital rate estimation. By sepa-
rating these two components in our simulations, we find
a large effect of class number but little consistent effect
of estimation method. Ramula et al. (2009) also found a
weak correlation between matrix dimension and sample
size for 63 plant matrix models, suggesting that matrix
models with low sample sizes could also suffer from few
classes. However, we found no relationship between
matrix dimension and sample size for size-based matrix
models in our literature review (Appendix S1: Fig. S2).
Our results lead us to conclude that neither the contin-

uous nor discrete approaches to estimating vital rates is
inherently better. Instead, the choice of approach should
depend on the particular life history and analysis goals
of a given study. Discrete vital rate estimation (DVR) is
arguably the most flexible approach if life-history pat-
terns are complex, because it is agnostic about many
aspects of vital rate patterns. For example, multiple state
variables can be easily combined into complex states rep-
resenting combinations of size, age, or stage variables.
DVR can also easily accommodate sharp transitions or
nonlinearities in vital rates, cases where survival asymp-
totes at values less than 1, and cases that violate distribu-
tional assumptions about state variables (e.g., normally
distributed growth). Further, the explanatory power of
different model structures can be tested statistically to

infer the number and placement of class divisions, and
there is some evidence that this approach outperforms
model structures informed by expert opinion alone
(Ramula et al. 2020). Alternatively, there are clear
advantages of the statistical framework of CVRs. By
modeling vital rates in a regression-based framework,
CVRs can easily incorporate the effects of covariates
such as climate, can incorporate or correct for site or
year effects as random variables, and can account for
individual effects using random effects to account for
repeated measures. CVRs can also provide a clear con-
ceptual framework for hypothesis testing and model
selection, and also allow investigation of sensitivities
with respect to underlying functional forms or model
parameters. However, it is worth noting that various
methods, including multistate mark–recapture models,
can also allow model selection to be applied to DVR
estimation. Thus, CVR and DVR-based models may
each be most appropriate for different data sets and
analysis goals.
One surprising result to emerge from this work is the

importance of other aspects of model fitting that have
received far less attention in the demographic literature.
For example, traditional matrix models often define
classes based in part on sample sizes, but our results sug-
gest that dividing classes evenly, on the transformed or
untransformed scale for which size best relates to vital
rates, depending on species, generally gives more accurate
results. We also identified several ways to improve meth-
ods for discretizing continuous vital rate functions. First,
we show that the mesh point method can badly misesti-
mate growth probabilities when using CVR functions, but
that this is solved by using the CDF difference method.
Second, our results suggest that vital rates are better char-
acterized by using the median rather than the midpoint of
a class, as long as the distribution of sampled individuals
represents the size distribution in the population. We
expect that this distinction is behind the slower conver-
gence of the Vulpicida models with increasing class num-
bers. This is the only data set we used where sampling was
not roughly comprehensive, but stratified over sizes, mak-
ing the distribution of sampled individuals a poor charac-
terization of the population-wide size distribution.
Finally, the most overwhelming effect on model accu-

racy in our simulations was the sample size of the under-
lying demographic data, which is an indicator of the
sampling precision of vital rates and their relationships
with the state variable used. We found low precision in
model outputs with sample sizes less than several hun-
dred regardless of modeling approach, and, in these
cases, CVRs did not solve the problems caused by low
sample sizes. The lowest sample sizes we used (305–405)
were typical of many published demographic studies,
and considerably larger than used in some studies
(Appendix S1: Figs. S2, S26). However, our simulations
pooled all demographic data to estimate a single transi-
tion matrix. This means that spatial and temporal varia-
tion in individual fates will be at least somewhat larger
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in our samples than would be expected in samples of a
single population over a single transition, potentially
inflating the variance in lambda estimates we see with
small samples. Furthermore, in cases where data are col-
lected across multiple time periods or locations and sam-
ple sizes are limiting, CVRs may enable a researcher to
improve accuracy by fitting vital rate functions that bor-
row strength by including all the data while appropri-
ately modeling its structure. Statistical models can also
be used to estimate DVRs while accounting for random
effects of site or time period (Altwegg et al. 2007, Morris
et al. 2011, Ramula et al. 2020), and a mixed strategy of
fitting CVRs with class-specific random effects could
also be useful in some cases.
There are several other important aspects of demo-

graphic model construction that we do not consider
here, but that have recently been explored and shown to
be of real importance. Perhaps most critically, we do not
address how the choice of state variable can influence
model results. As Louthan and Doak (2018) show, mea-
sured state variables that are not closely correlated with
an individual’s “true state” can yield misleading model
results due to errors in characterizing state. For example,
perennial plant size is often characterized by measuring
leaf or stem size, whereas demographic rates may in fact
be driven more by belowground energy stores. A second
concern that we do not address is the distributional
assumptions that are often made when modeling size
transitions with CVRs. Most IPMs assume that growth
is normally distributed, but this can bias model outputs
if growth is asymmetric such as when growth or shrink-
age is more likely (Peterson et al. 2019). In general,
choices regarding the form of vital rate functions are
likely to be just as important for inference as the issues
investigated here. Several authors have repeatedly
emphasized that IPM practitioners should carefully
evaluate the goodness of model fits for vital rate func-
tions and their influence on IPM outputs (Easterling
et al. 2000, Rees et al. 2014, Ellner et al. 2016), and we
echo those recommendations here.
Taken together, our results suggest that IPMs and

matrix models are overly dichotomized in the literature.
We suggest that this distinction is neither useful nor rep-
resentative of the range of modeling decisions that
underlie every structured demographic model. Many
models use some combination of continuous and dis-
crete vital rate estimation (e.g., when some individuals
are described by continuous state variables and others
[juveniles, seeds, etc.] by stage). Although the methods
used to build these matrices will often be very similar,
the language and notation used to describe models are
often completely different based on whether authors
decide to refer to a model as an IPM or matrix model.
In our experience, the terminology and integral notation
used to describe IPMs can be intimidating to many new
students and to nonspecialist consumers of demographic
analyses, such as conservation managers, when in fact
the vital rate models and discretization methods would

be familiar if described differently. In addition, much of
the language used to present IPMs obscures the fact that
the continuous vital rate functions are discretized into
projection matrices prior to analysis, making the actual
model outputs or their correspondence to matrix models
difficult to understand. As we note above, many IPM
studies in our literature review do not report the dis-
cretization methods used at all.
We suggest that it is more informative to refer to both

projection matrix models and IPMs as Structured Popu-
lation Models more generally, in part to emphasize the
need to break these labels down into the important
details of vital rate estimation, the number of size
classes, and the methods used to discretize CVRs. In
particular, we emphasize that statements suggesting that
IPMs avoid discretization, are more biologically realistic,
or perform better at small sample sizes, are not sup-
ported by our findings.

SPECIFIC RECOMMENDATIONS

Below, we highlight several of the most important rec-
ommendations for constructing demographic models
that have emerged from this work.

(1) When using an inherently continuous state variable,
test the sensitivity of results to class number (partic-
ularly when using few classes).

(2) When using continuous vital rate functions (CVRs),
report methods for discretization by including class
number and integration method.

(3) When using CVRs to model size transitions, use the
CDF difference method or explicitly show that the
use of the standard mesh point method is accurate.

(4) Especially when using smaller class numbers, use pop-
ulation size distributions to base class-specific vital rate
estimates on representative (mean or median) sizes.

(5) Both small sample sizes (indicative of low precision
in vital rate estimates) or very few classes can result in
biased or imprecise model outputs, and this should
be carefully considered when interpreting or using
published models (e.g., meta-analysis, COMPADRE
or COMADRE databases), especially as many matrix
models have been built with fewer classes than what
we would recommend. A caveat to this conclusion is
that for short-lived species or species with a limited
range of sizes, fewer classes may be sufficient.

SUMMARY

In summary, we do not find support for several com-
mon generalities and assumptions about demographic
modeling methods, and we also expose some new consider-
ations for the construction of accurate structured popula-
tion models. However, our results are generally positive:
widely repeated but untested assumptions about the
dependence of demographic results on modeling
approaches were largely unsupported, meaning that we
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have a far wider range of useful demographic studies to
learn from than would otherwise be the case. Looking for-
ward, this result also implies that the structure and param-
eterization of demographic models should always be
guided by careful consideration of the species and data
being modeled and that, if this is done, different
approaches will generally reach the same ecological conclu-
sions. With sufficient sample sizes and enough classes to
accurately represent the key life-history variation of a given
species, a range of model-fitting approaches will converge
on the same answer. Structured demographic models, one
of the backbone methods of population biology, are com-
prised of a robust set of methods that can be usefully
added to, but do not require fundamental re-tooling.
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DATA AVAILABILITY

Example R scripts and data files showing the routines used in our analyses are included in Data S2.
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