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Abstract. Let Xλ be the closure of the I-orbit Xλ in the affine Grassmanian Gr of a
simple algebraic group G of adjoint type, where I is the Iwahori subgroup and λ is a
coweight of G. We find a simple algorithm which describes the set Ψ(λ) of all I-orbits
in Xλ in terms of coweights. We introduce R-operators (associated to positive roots) on
the coweight lattice of G, which exactly describe the closure relation of I-orbits. These
operators satisfy Braid relations generically on the coweight lattice. We also establish a
duality between the set Ψ(λ) and the weight system of the level one affine Demazure

module D̂λ of Lg̃ indexed by λ, where Lg̃ is the affine Kac–Moody algebra dual to the
affine Kac–Moody Lie algebra g̃ associated to the Lie algebra g of G.

1. Introduction

It is well known that Schubert cells in the flag variety of a reductive group G
can be parametrized by the elements of the Weyl group of G. Moreover, the closure
relations among Schubert cells can be described by the Bruhat order on the Weyl
group. There is another equivalent description of the Bruhat order in terms of the
containment relations of Demazure modules of a Borel subgroup of G, which is
established in the celebrated work [BGG] by Bernstein–Gelfand–Gelfand. There is
a generalization of this perspective for general Kac–Moody groups, see [Ku].

From now on throughout this paper, we assume that G is a simple algebraic
group over C of adjoint type. Let Gr denote the affine Grassmannian G(K )/G(O)
of G, where K is the field of Laurent series over C and O is the ring of formal
power series. The G(O)-orbits are indexed by dominant coweights of G. It is well
known that (cf. [BD, §4.5], [Zhu, §2.1])

Grµ ⊂ Grλ if and only if λ− µ is a sum of positive coroots of G, (1)

where Grµ and Grλ denote G(O)-orbits indexed by dominant coweights λ, µ, and
Grλ is the closure of Grλ. Moreover, the intersection cohomology of Grλ carries an
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action of the Langlands dual group LG of G, which is irreducible and of highest
weight λ (cf. [MV]).

In this paper, we consider the action of the Iwahori subgroup I on Gr. The I-
orbits in Gr can be indexed by coweights of G. For each coweight λ, we denote by
Xλ the associated I-orbit and Xλ the closure of Xλ in Gr. For any two coweights λ, µ,
we introduce the partial order µ ≺I λ if Xµ ⊂ Xλ. This partial order is equivalent
to the combinatorial Bruhat order on the affine Weyl group, see Lemma 2.22
for the precise statement. This order naturally appears in the study of parabolic
Kazhdan-Lusztig polynomials for affine Kac–Moody groups (cf. [KT]), as well as
in the context of non-symmetric Macdonald polynomials (cf. [Io1, Io3, Io4]. For a
given coweight λ, we denote by Ψ(λ) the set of all coweights µ such that µ ≺I λ. In
this paper, we describe the partial order ≺I in a way similar to the condition in (1),
and describe the set Ψ(λ) by a simple algorithm. We also introduce R-operators
which help to describe the extremal elements in Ψ(λ), and they themselves satisfy
braid relations generically on the weight lattice. Moreover, we give a representation
theoretic interpretation of Ψ(λ) in terms of level one affine Demazure modules,
which are of twisted type when G is not simply-laced.

In Lemma 2.2 we describe an algorithm that is used to produce new elements
for the set Ψ(λ), and in Theorem 2.6 we prove that this algorithm indeed produces
all elements of Ψ(λ). Roughly speaking, any element in Ψ(λ) can be obtained by
successively adding or subtracting positive coroots, depending on the signs of the
pairing between coweights and positive roots.

The set π0(Gr) of components of Gr can be identified with the quotient group
P̌ /Q̌, where Q̌ is the coroot lattice of G. Let Grκ be a component of Gr that contains
the T -fixed point L−ω̌κ associated to the coweight −ω̌κ, where ω̌κ is a miniscule
coweight or zero. In Proposition 2.21, we explicitly realize the component Grκ as
a partial flag variety G̃sc/P̃κ of the affine Kac–Moody group G̃sc associated to the
simply-connected cover of G, and realize each I-orbit Xλ as an affine Schubert
cell in G̃sc/P̃κ. In this way, we translate the partial order ≺I on coweights into

the partial Bruhat order on Waff/Wκ, where Wκ is the Weyl group of P̃κ. In
Section 2.3, we explictly realize the affine Weyl group Waff as the Weyl group of
the affine Kac–Moody algebra g̃ associated to g, and translate the Bruhat order
on Waff into certain conditions on coweights (cf. Proposition 2.15, Corollary 2.12).
Combining all these preparations, in Section 2.5 we prove Theorem 2.6 that is
described in the previous paragraph. In Section 2.6, we use length zero elements
of the extended affine Weyl group to establish bijections between the sets Ψ(λ) in
different components of the affine Grassmannian (cf. Corollary 2.25).

Let g̃ be the affine Kac–Moody Lie algebra associated to the Lie algebra g of
G. Let Lg̃ be the affine Kac–Moody algebra with Dynkin diagram dual to that of
g̃. As already mentioned above, the components of Gr correspond to the miniscule
coweights of g or zero. Furthermore, the level one basic representations of Lg̃ also
correspond to the miniscule coweights of g or zero (cf. Lemma 3.2). In summary,
we have the following correspondences:

Grκ ←→ ω̌κ ←→Hκ , (2)

where Hκ denotes the associated level one basic representation of Lg̃. This suggests
a duality between the affine Grassmannian Gr ofG and the level one representations
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of Lg̃. For every coweight λ ∈ P̌ , if Xλ ⊂ Grκ, we may associate a level one
affine Demazure module D̂λ generated by a maximal weight vector v$(λ) ∈ Hκ

associated to λ. By Proposition 3.7 together with Proposition 2.21, we can establish
the following correspondences:

µ ≺I λ ←→ partial Bruhat order on Waff/Wκ ←→ D̂µ ⊂ D̂λ (3)

where in the first correspondence we view Waff as the Weyl group of g̃, and in
the second correspondence we view Waff as the Weyl group of Lg̃ (cf. Section
3.1). Under these correspondences, in Theorem 3.9 we show that there exists a

natural projection from the weight system of D̂λ to the set Ψ(λ). It is interesting
to point out that we crucially use the Frenkel–Kac construction of level one basic
representations of Lg̃ in the proof of Theorem 3.9. Furthermore, in Lemma 3.12 we
give a representation-theoretic interpretation for the algorithm in Lemma 2.2. More
precisely we show that the algorithm of adding or subtracting positive coroots to
coweights in Ψ(λ) can be interpreted as the actions of the positive real root vectors

of Lg̃ on weight vectors in D̂λ.
In Section 4, we study the set Ψ(λ) and the partial order ≺I further. We first

show that for any two coweights λ, µ ∈ P̌ , when they are located in the same
chamber, then µ ≺I λ if and only if λ − µ is a sum of positive coroots relative
to that chamber (cf. Theorem 4.1). This is analogous to the statement in (1).
In Section 4.2, we introduce R-operators on the coweight lattice P̌ associated to
positive roots. It turns out that these operators exactly characterize the partial
order ≺I (cf. Theorem 4.3). In Proposition 4.9 and Proposition 4.10, we describe
explicitly the covering relations of ≺I for a coweight λ when λ is mildly regular. In
Section 4.3, we show that for any two positive roots α, β, when they generate a rank
two root system as simple roots, then the associated R-operators Rα, Rβ satisfy
a braid relation when the coweights are away from certain critical hyperplanes
(Proposition 4.14). We introduce in Definition 4.5 the notion of α-regularity of a
coweight in a fixed chamber, where α is a positive root. This notion allows us to
cross the wall Hα defined by α so that Rα(λ) is in the reflected chamber and Rα
preserves the partial order ≺I (cf. Proposition 3.3). This allows us to produce an
algorithm to describe the vertices of the convex hull of Ψ(λ), or in other words
the moment polytope of the affine Schubert variety Xλ, see the discussions in
Section 4.4.

Acknowledgments. We would like to thank I. Cherednik, P. Fiebig and S. Kumar
for helpful suggestions and discussions. We would like to thank S. Nie for bringing
the reference [St] to our attentions. We also would like to thank Changlong Zhong
for careful reading and pointing out some typos. J. Hong is partially supported by
the Simons Foundation Collaboration Grant 524406, and NSF grant DMS 2001365.

2. A combinatorial description of the closure relation of
Iwahori orbits in affine Grassmannian

2.1. Notations

Let G be a simple algebraic group G over C of adjoint type. Pick a maximal torus
T contained in a Borel subgroup B of G. Let X∗(T ) denote the lattice of characters
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of T and X∗(T ) the lattice of cocharacters of T . Let Φ denote the set of roots for
T , Φ̌ the coroots so (X∗(T ),Φ, X∗(T ), Φ̌) is the root datum of G. Let W denote
the Weyl group of G. We denote by Φ+ (respectively Φ̌+) the set of positive roots
(respectively positive coroots) determined by T ⊂ B. Let α1, . . . , α` (respectively
α̌1, . . . , α̌`) be simple roots (respectively simple coroots). Under the assumption
that G is of adjoint type, the lattice X∗(T ) coincides with the coweight lattice P̌ .

Let O = C[[t]] be the formal power series in t with coefficients in C, and let
K = C((t)) be the field of formal Laurent series in t. Let Gr denote the affine
Grassmanian G(K )/G(O) of G. We have an evaluation map

ev0 : G(O)→ G

sending t 7→ 0. Write I = ev−1
0 (B) as the Iwahori subgroup of G(K ). Any

cocharacter λ : C∗ → T gives rise to an element tλ ∈ G(K ). Set

Lλ := tλG(O)/G(O) ∈ Gr .

Then all T -fixed points in Gr are given by Lλ, where λ ∈ X∗(T ). We denote by
Xλ the I-orbit I ·Lλ in Gr, and we denote by Grλ the G(O)-orbit G(O) · Lλ. The
variety Xλ has a unique T -fixed point Lλ, and Grλ has T -fixed points Lw(λ), for
w ∈W .

Definition 2.1. Let Ψ(λ) = {Lµ ∈ P̌ | tµ ∈ Xλ}, where the closure is being taken
in the Zariski topology. If µ ∈ Ψ(λ), then we write µ ≺I λ. Clearly ≺I gives a
partial order on P̌ .

2.2. The algorithm

We begin with a key lemma in order to describe the set Ψ(λ).

Lemma 2.2. Let λ ∈ P̌ , and let α ∈ Φ+ be a positive root.
1) If 〈λ, α〉 > 0, then λ− kα̌ ∈ Ψ(λ), for 1 ≤ k ≤ 〈λ, α〉.
2) If 〈λ, α〉 < 0, then λ+ kα̌ ∈ Ψ(λ), for 1 ≤ k ≤ −〈λ, α〉 − 1.

Proof. For any positive root α ∈ Φ+, we may choose root subgroup homomor-
phisms xα, x−α corresponding to the roots α,−α, and a cocharacter hα : C× → G,
which give rise to a group homomorphism

φ : SL2 → G

such that

φ

([
1 a
0 1

])
= xα(a), φ

([
1 0
a 1

])
= x−α(a), and φ

([
a 0
0 a−1

])
= hα(a).

Set
nα(a) := xα(a)x−α(−a−1)xα(a). (4)

Then,

φ

([
0 a
−a−1 0

])
= nα(a).
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We also have the following equalities,

nα(a) = x−α(−a−1)xα(a)x−α(−a−1), nα(ab) = hα(b) · nα(a). (5)

for any a, b ∈ C∗.
Case 1: 〈λ, α〉 > 0.
Let k be any integer such that 1 ≤ k ≤ 〈λ, α〉. Let fα,k,λ be the morphism

A1 → Gr given by a 7→ xα(at−k+〈λ,α〉) · Lλ ∈ Xλ. Note that

fα,k,λ(a) = tλxα(at−k) · L0. (6)

As k > 0, fα,k,λ defines an A1-curve in Xλ passing through Lλ when a = 0. In
view of (5), we can write

xα(at−k) = x−α(a−1tk)t−kα̌nα(a)x−α(a−1tk), (7)

where t−kα̌ = hα(t−k). It follows that

fα,k,λ(a) = tλx−α(a−1tk)t−kα̌ · L0 = tλ−kα̌x−α(a−1t−k) · L0.

When a→∞, fα,k,λ(a)→ Lλ−kα̌. It follows that Lλ−kα̌ ∈ Xλ. In other words,
λ− kα̌ ∈ Ψ(λ).

Case 2: 〈λ, α〉 < 0.
Let k be any integer such that 1 ≤ k ≤ −〈λ, α〉 − 1. Consider the morphism

gα,k,λ : A1 → Gr given by a 7→ x−α(at−k−〈λ,α〉) · Lλ ∈ Xλ. Similar to (6), we have

gα,k,λ(a) = tλx−α(at−k) · L0. (8)

Thus, gα,k,λ defines an A1-curve in Xλ passing through Lλ when a = 0. In view of
(4), we have

x−α(at−k) = xα(a−1tk)tkα̌nα(−a−1)x−α(a−1tk). (9)

It follows that

gα,k,λ(a) = tλxα(a−1tk)tkα̌ · L0 = tλ+kα̌xα(a−1t−k) · L0.

When a→∞, gα,k,λ(a)→ Lλ+kα̌. It follows that λ+ kα̌ ∈ Ψ(λ). �

This lemma will provide an algorithm which completely describes the set Ψ(λ).
For a positive root α, the algorithm will rely on the sign of 〈λ, α〉. In fact a
representation-theoretic explanation will be given in Lemma 3.12 of Section 3.2.

Remark 2.3. An analogue of Lemma 2.2 for simple roots and the highest root in
the setting of Bruhat order ≺ is proved in [Io1, Lem. 1.6]. In Lemma 2.22, we show
that the order ≺I is equivalent to the Bruhat order ≺.

For any coweight µ ∈ P̌ and any positive root α ∈ Φ+, we first introduce the
following set of coweights attached to µ and α

S(µ, α) =

{
{µ− kα̌ | 0 ≤ k ≤ 〈µ, α〉} when 〈µ, α〉 ≥ 0,

{µ+ kα̌ | 0 ≤ k < −〈µ, α〉} when 〈µ, α〉 < 0.
(10)

By Lemma 2.2, S(µ, α) is a subset of Ψ(λ) if µ ∈ Ψ(λ). We now define an increasing
filtration {Ψi(λ)}i≥0 of subsets in Ψ(λ) as follows.
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Definition 2.4. Define Ψ0(λ) = {λ}, and

Ψi(λ) =
⋃

µ∈Ψi−1(λ),α∈Φ+

S(µ, α).

Let Ψ∞(λ) denote the union of all Ψi(λ). From this definition, we observe that if
Ψn(λ) = Ψn+1(λ) for some integer n, then Ψ∞(λ) = Ψn(λ).

Lemma 2.5. This filtration stabilizes after finite many steps, that is, there exists
a positive integer n such that Ψ∞(λ) = Ψn(λ).

Proof. Let w be an element in the Weyl group W such that λ+ := w(λ) is
dominant. Since Xλ ⊂ Grλ+ , we have

Ψ(λ) ⊂ {µ | Lµ ∈ (Grλ+)T }.

Hence, Ψ(λ) is a finite set, and so is Ψ∞(λ). Therefore the filtration stabilizes after
finite many steps. �

We are now ready to state the following theorem.

Theorem 2.6. For any λ ∈ P̌ , Ψ(λ) = Ψ∞(λ).

This theorem gives an effective algorithm to describe the set Ψ(λ). We will first
make some preparations, and then the proof will be given in Section 2.5.

2.3. Affine Weyl group

The Weyl group W acts on the coroot lattice Q̌. From here we get an affine Weyl
group Waff := Q̌ oW . We write elements of Waff as τλw, where λ ∈ Q̌, w ∈ W .
The element τλw acts on P̌ by

τλw(µ) := w(µ) + λ, for any µ ∈ P̌ .

For any two elements τλ1
w1, τλ2

w2, the multiplication is given by

(τλ1
w1) · (τλ2

w2) = τλ1+w1(λ2)w1w2. (11)

The pair (Waff , Ŝ) is a Coxeter system where Ŝ consists of simple reflections {si | i ∈
I} and a simple affine reflection s0 = τθ̌sθ where θ is the highest positive root of

G and θ̌ is the coroot of θ. We denote by ≺ the Bruhat order on (Waff , Ŝ).

Let W̃aff be the extended affine Weyl group P̌ oW . The multiplication is given
similarly as in (11). Following [IM] we define the length function ` on W̃aff ,

`(τλw) =
∑

α∈Φ+,w−1(α)∈Φ+

|〈λ, α〉|+
∑

α∈Φ+,w−1(α)∈Φ−

|〈λ, α〉 − 1|. (12)

This length function ` on Waff coincides with the length function on the Coxeter
system (Waff , Ŝ).

Let g be the Lie algebra of G. We associate to g the (completed) affine Kac–
Moody algebra g̃ := g ⊗ K ⊕ Cc ⊕ Cd, where c is the center, d is the degree
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operator, and the Lie bracket is defined as in [Ka, §7.2]. The affine Kac–Moody

algebra g̃ corresponds to the extended Dynkin diagram Γ̂ of g with the set of
vertices Î = I t {0}. The Cartan subalgebra h̃ of g̃ is given by h⊕Cc⊕Cd, where

h is the Cartan subalgebra of g. Let h̃∗ denote the linear dual of h̃. Let δ denote
the linear functional on h̃ such that

δ|h = 0, δ(c) = 0, δ(d) = 1.

We first describe the affine root system associated to g̃. The set of all real affine
roots of g̃ is given by

Φ̂re = {α+ kδ |α ∈ Φ, k ∈ Z},

where the set of positive affine roots is given by

Φ̂+
re = {α+ kδ |α ∈ Φ, k > 0} ∪ Φ+,

and the set of negative affine roots is given by

Φ̂+
re = {α+ kδ |α ∈ Φ, k < 0} ∪ Φ−.

Let (· | ·) denote the normalized bilinear form on h̃, and the induced bilinear form

on h̃∗ (cf. [Ka, §6.1]). Let ν : h̃ → h̃∗ be the induced isomorphism. Then ν(c) = δ.
Moreover, for any α ∈ Φ, ν(α̌) = 2α/(α|α) where α̌ is the coroot of α. We will

denote by 〈 , 〉 the natural pairing between h̃ and h̃∗.
We may realize the affine Weyl group Waff as the Weyl group of the affine Kac–

Moody algebra g̃ in the sense of [Ka, §3.7], via the action of Waff on h̃∗. Following
[Ku, §13.1], we define

τλw(x) = w(x) + 〈w(x), c〉ν(λ)− (〈w(x), λ〉+ 1
2 (λ|λ)〈w(x), c〉)δ, (13)

for any τλw ∈Waff , x ∈ h̃∗.

Lemma 2.7. The element τkα̌sα ∈Waff corresponds to the reflection on h̃∗ asso-
ciated to the affine root −α+ kδ.

Proof. For any x ∈ h̃∗, we have

τkα̌sα(x) = x− 〈x, α̌〉α+ 〈sα(x), c〉ν(kα̌)− (〈sα(x), kα̌〉+
1

2
(kα̌|kα̌)〈sα(x), c〉)δ

= x− 〈x, α̌〉α+
2k〈x, c〉
(α|α)

α−
(
− k〈x, α̌〉+

2k2

(α|α)
〈x, c〉

)
δ

= x−
(
− 〈x, α̌〉+

2k〈x, c〉
(α|α)

)
(−α+ kδ)

= x− 2(x| − α+ kδ)

(−α+ kδ |− α+ kδ)
(−α+ kδ),

where the last equality holds since ν(c) = δ and (−α+kδ|−α+kδ) = (α|α). This

is exactly the reflection on h̃∗ associated to −α+ kδ. �
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For any α ∈ Φ+ and k ∈ Z, set

sα,k := τ−kα̌sα ∈Waff .

Then by Lemma 2.7, sα,k is the reflection associated to α + kδ. In particular
s0 = τθ̌sθ is the reflection associated to the affine simple root α0 := −θ + δ.

Lemma 2.8. Let α be a root in Φ. Assume that k ≥ 0 if α ∈ Φ+, and k > 0 if
α ∈ Φ−. Then for any τ−λw ∈Waff , sα,kτ−λw ≺ τ−λw if and only if

{
k < 〈λ, α〉 when w−1(α) ∈ Φ+,

k ≤ 〈λ, α〉 when w−1(α) ∈ Φ−.

Proof. We may realize Waff as the Weyl group of the affine root system of g̃. Note
that the assumption on α and k is equivalent to that of the affine root α + kδ
being positive. In view of Lemma 2.7, sα,k corresponds to the reflection sα+kδ. By
a general fact of the theory of Coxeter groups (cf. [Hu2, §5.7]), sα,kτ−λw ≺ τ−λw

if and only w−1τλ(α+ kδ) ∈ Φ̂−re . By the formula (13),

w−1τλ(α+ kδ) = w−1(α) + (k − 〈λ, α〉)δ.

Thus the lemma immediately follows. �

Proposition 2.9. Let α be a positive root in Φ+. Assume that sα,kτ−λw ≺ τ−λw.

(1) If w−1(α) ∈ Φ+ and k ≥ 0, then 〈λ, α〉 > 0, and k < 〈λ, α〉.
(2) If w−1(α) ∈ Φ− and k ≥ 0, then 〈λ, α〉 ≥ 0, and k ≤ 〈λ, α〉.
(3) If w−1(α) ∈ Φ+ and k < 0, then 〈λ, α〉 < 0, and k ≥ 〈λ, α〉.
(4) If w−1(α) ∈ Φ− and k < 0, then 〈λ, α〉 < −1, and k > 〈λ, α〉.

Remark 2.10. When α is a simple root or a highest root, a similar characterization
appears in [Io1, Lem. 1.3].

Proof. In first two cases, sα,k corresponds to the reflection of the positive affine
root α+kδ. In the last two cases, sα,k corresponds to the reflection of the positive
affine root −α− kδ. Then the proposition easily follows from Lemma 2.8. �

Definition 2.11. A coweight ω̌ ∈ P̌ is called miniscule, if for any positive root
α ∈ Φ+, 〈ω̌, α〉 ∈ {0, 1}.

The following corollary and Proposition 2.9 will be used in Section 2.5.

Corollary 2.12. Let ω̌ be a miniscule coweight. For any λ ∈ Q̌− ω̌, α ∈ Φ+ and
y ∈ τω̌Wτ−ω̌, assume that sα,kτ−λ−ω̌y ≺ τ−λ−ω̌y.

(1) If k ≥ 0, then k ≤ 〈λ, α〉.
(2) If k < 0, then k ≥ 〈λ, α〉.
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Proof. We can write y = τω̌wτ−ω̌ for some w ∈W . Note that

τ−λ−ω̌y = τ−(λ+w(ω̌))w.

We first prove part (1). Assume that k ≥ 0. If w−1(α) ∈ Φ+, then 〈w(ω̌), α〉 =
〈ω̌, w−1(α)〉 ∈ {0, 1}. Moreover, by part (1) of Proposition 2.9,

k < 〈λ+ w(ω̌), α〉 = 〈λ, α〉+ 〈w(ω̌), α〉.

Hence k ≤ 〈λ, α〉. If w−1(α) ∈ Φ−, then 〈w(ω̌), α〉 ∈ {0,−1}. By part (2) of
Proposition 2.9, we get

k ≤ 〈λ+ w(ω̌), α〉 = 〈λ, α〉+ 〈w(ω̌), α〉.

Hence we also have k ≤ 〈λ, α〉. This shows that in case k ≥ 0, we always have
k ≤ 〈λ, α〉, no matter whether w−1(α) is positive or negative.

By similar arguments, we can show that if k < 0, then k ≥ 〈λ, α〉. �

2.4. Components of Gr as partial flag varieties of the Kac–Moody group

Let Gsc be the simply-connected cover of G. Let G̃sc be the affine Kac–Moody
group with Lie algebra g̃ in the sense of Kumar and Mathieu (cf. [Ku, §VI]), which
can be realized as a central extension of the semi-direct product Gsc(K )oC× (C×
acts on Gsc(K ) by the loop rotation) (cf. [Ku, Thm. 13.2.8]). It is known that when
G is of adjoint type, the associated affine Grassmannian Gr has |P̌ /Q̌| components.
In this subsection we produce an explicit description of each component of Gr as
a partial flag variety of the Kac–Moody group G̃sc.

Let M̂ denote the set of vertices i ∈ Î such that ai = 1, where ai is the
Kac labeling of affine Dynkin diagram Γ̂ [Ka, p. 54, Table Aff 1]. Since a0 = 1,

M̂ = M ∪{0}, where M := M̂ ∩ I. Let θ be the highest root of g. It is known that

θ =
∑
i∈I

aiαi. (14)

For each i ∈ I, let ω̌i be the fundamental coweight of g attached to i, i.e., for any
simple root αj ,

〈ω̌i, αj〉 = δi,j .

Lemma 2.13. For any i ∈ I, the fundamental coweight ω̌i is miniscule (cf. Defi-
nition 2.11) if and only if i ∈M , if and only if 〈ω̌i, θ〉 = 1.

Proof. This can be read from the Kac labeling in [Ka, p. 54, Table Aff 1] for g̃,
and the list of miniscule fundamental weights for the dual Lie algebra Lg of g in
[Hu1, p. 72, ex. 13] �

Lemma 2.14. The set {ω̌κ | κ ∈ M̂} gives a complete set of coset representatives

of P̌ /Q̌, as does the set {−ω̌κ |κ ∈ M̂}.
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Proof. This appears as Corollary to Prop. 6 in [Bou, Chap. VI.2.3]. �

For any coweight µ ∈ P̌ , we define a conjugation Adµ : Waff →Waff given by

Adµ(τλw) := τµ(τλw)τ−µ for any τλw ∈Waff .

For each κ ∈ M̂ , set Wκ = Adω̌κ(W ), where by convention ω̌0 = 0. Set Iκ = Î\{κ}.
The following proposition is well-known.

For the convenience of the reader, we provide a proof here.

Proposition 2.15. For any κ ∈ M̂ , the subgroup Wκ is a parabolic subgroup of
Waff with Coxeter generators {si | i ∈ Iκ}.

Proof. When κ = 0, Wκ = W together with {si | i ∈ I} is clearly a Coxeter system.

Now we assume that κ ∈ M . For any i ∈ Î\{0, κ}, it is easy to see that
Adω̌κ(si) = si. Since θ =

∑
i∈I aiαi, by Lemma 2.13 we have

Adω̌κ(sθ) = τθ̌sθ = s0.

Thus, Wκ contains {si | i ∈ Iκ}. Let W ′κ be the subgroup of Wκ generated by
{si | i ∈ Iκ}. As we see in the table [Ka, p. 54,Table Aff 1], by deleting κ the

Dynkin diagram Γ̂\{κ} is the same as the Dynkin diagram Γ of g. Therefore W ′κ
is isomorphic to W as Coxeter groups, in particular |W ′κ| = |W |. On the other
hand the conjugation Adω̌κ also gives rise to an isomorphism W ' Wκ of finite
groups. It follows that |Wκ| = |W ′κ|. Therefore Wκ = W ′κ, and furthermore Wκ is
a parabolic subgroup of Waff with Coxeter generators {si | i ∈ Iκ}. �

From this proposition, we may deduce an interesting corollary on the finite Weyl
group W .

Corollary 2.16. The Weyl group W can be generated by the set of reflections
{si | i ∈ I\{κ}} ∪ {sθ} for any κ ∈ M (equivalently, the coefficient of ακ in the
highest root θ is 1).

Proof. By Proposition 2.15, the set {Ad−ω̌κ(si) | i ∈ Iκ} generates the Weyl group
W . Unfolding the elements Ad−ω̌κ(si), the corollary immediately follows. �

The set π0(Gr) of the components of the affine Grassmannian Gr can be identified
with P̌ /Q̌. Let Grκ be the component of Gr containing the point

L−ω̌κ = t
ˇ−ωκG(O)/G(O).

By Lemma 2.14, we have the following disjoint union decomposition of Gr

Gr =
⊔
κ∈M̂ Grκ .

For any κ ∈ M̂ , set

Q̌κ := Q̌− ω̌κ. (15)
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Any T -fixed point in Grκ is given by Lλ and any I-orbit in Grκ is given by Xλ, for
some λ ∈ Q̌κ. Note that there is a bijection ικ : Q̌κ →Waff/Wκ given by

λ 7→ τ−λ−ω̌κWκ,

which fits into the following commutative diagram

Q̌ Waff/W

Q̌κ Waff/Wκ

ι0

·−ω̌κ Adω̌κ

ικ

.

In the following we would like to describe the component Grκ as a partial flag
variety associated to the quotient Waff/Wκ.

There is a canonical projection π : G̃sc → Gsc(K ) oC×. The preimage

B̃ = π−1(Isc oC×)

is the standard Borel subgroup of G̃sc, where Isc is the Iwahori subgroup in Gsc(K ).
We have the following identification

G̃sc/B̃ ' Gsc(K )/ Isc .

For any τλw ∈Waff , we associate an Isc-orbit

Yτλw := Isc t
−λw Isc / Isc ⊂ Gsc(K )/ Isc .

Then dimYτλw = `(τλw).

Remark 2.17. The sign normalization in Yτλw is crucial. Without this sign, the
dimension formula for dim Yτλw does not hold.

Let P̃κ denote the maximal standard parabolic subgroup of G̃sc containing
B̃, which is associated to the subset Iκ = Î\{κ} of Î. By Proposition 2.15, P̃κ
corresponds to the parabolic subgroup Wκ of Waff . The B̃-orbits in the partial flag
variety G̃sc/P̃κ can be indexed by the cosets in Waff/Wκ.

Without confusion, we still denote by p : Gsc(K̄ ) → G(K̄ ) and p : Gsc(K ) →
G(K ) the maps induced from the covering map p : Gsc → G, where K̄ is the
algebraic closure of K . The map p : Gsc(K̄ ) → G(K̄ ) is surjective, but the map
p : Gsc(K )→ G(K ) is not if P̌ /Q̌ 6= 0.

Let t̃κ be a lifting of t−ω̌κ ∈ G(K ) in Gsc(K̄ ) via the map p. Let Adt̃κ denote

the conjugation map on Gsc(K̄ ) by t̃κ, i.e.,

Adt̃κ(g) := t̃κgt̃
−1
κ , for any g ∈ Gsc(K̄ ).

Lemma 2.18. The conjugation Adt̃κ preserves Gsc(K ), and Adt̃κ is independent

of the choice of the lifting t̃κ.
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Proof. For any root α ∈ Φ, we have

t̃κxα(a)t̃−1
κ = xα(at−〈ω̌κ,α〉), (16)

where xα is a root subgroup homomorphism of Gsc associated to α, and a ∈ K .
Since the group Gsc(K ) is generated by its root subgroups xαi(K ) (cf. [Stg, §7,
Thm. 10], it follows that the conjugation Adt̃κ preserves Gsc(K ). The indepen-

dence of the lifting t̃κ also follows from the formula (16). �

Set

Gsc(O)κ := Adt̃κ(Gsc(O)).

Lemma 2.19. For any κ ∈ M̂ , the parabolic subgroup P̃κ is equal to the preimage
π−1(Gsc(O)κ oC×), where π is the canonical projection π : G̃sc → Gsc(K ) oC×.

Proof. We choose root subgroup homomorphisms x̂αi , x̂−αi : C → G̃sc associated

to αi for each i ∈ Î. For each i ∈ I, set xαi := π ◦ x̂αi and x−αi := π ◦ x̂−αi . The
images of x±αi land in Gsc, and they are exactly the root subgroup homomorphisms
of Gsc associated to ±αi for each i ∈ I. When i = 0, there exist root subgroup
homomorphisms xθ, x−θ of Gsc associated to θ,−θ, such that

π ◦ x̂α0
(a) = x−θ(at), π ◦ x̂−α0

(a) = xθ(at
−1) for any a ∈ C.

Set P̂ ′κ := π−1(Gsc(O)κ o C×). We first observe that B̃ ⊂ P̂ ′κ, since 〈ω̌κ, α〉 ∈
{0, 1} for any κ ∈ M̂ and any positive root α ∈ Φ+. Hence P̂ ′κ is a standard

parabolic subgroup of G̃sc (cf. [Ku, Thms. 5.1.3, 6.1.17]). To show P̃ ′κ = P̃κ, it

suffices to check that P̂ ′κ corresponds to the subset Iκ ⊂ Î. In other words, it

suffices to check that P̃ ′κ is proper and contains all root subgroups x̂−αi for all
i ∈ Iκ. Equivalently it suffices to show that G(O)κ contains π ◦ x̂−αi for all i ∈ Iκ.

When κ = 0, it suffices to check that G(O) contains x−αi for each i ∈ I, as
well as x−θ(·t). This is obvious. When κ ∈ M , it suffices to show that Gsc(O)κ is
a proper subgroup of Gsc(K ), and Gsc(O)κ contains x−αi for each i ∈ I\{κ}, and
xθ(·t−1). Clearly Gsc(O)κ is a proper subgroup of Gsc(K ), since Gsc(O) is proper in
Gsc(K ) and by Lemma 2.18 Adt̃κ preserves Gsc(K ). The group Gsc(O)κ contains
x−αi for each i ∈ I\{κ}, since

t̃κx−αi(a)t̃−1
κ = x−αi(a).

Recall that 〈ω̌κ, θ〉 = 1. By the computation

t̃κxθ(a)t̃−1
κ = xθ(at

−1),

we see that Gsc(O)κ contains xθ(at
−1) for any a ∈ C. This completes the proof.

�

Author's personal copy



AFFINE SCHUBERT VARIETIES IN THE AFFINE GRASSMANNIAN

Example 2.20. We examine G = PGL3. In this case Gsc = SL3. All fundamental
coweights are miniscule. Let ω̌1 be the first fundamental coweight. Then

t−ω̌1 =

t−1 0 0
0 1 0
0 0 1

 ∈ PGL3(K )

has a lifting

t̃−ω̌1 =

t−2/3 0 0
0 t1/3 0
0 0 t1/3

 ∈ SL3(K̄ ).

By conjugating we see

SL3(O)1 := Adt̃−ω̌1 (SL3(O)) =

{ a11 t−1a12 t−1a12

ta21 a22 a23

ta31 a32 a33

 ∣∣∣∣∣ (aij) ∈ SL3(O)

}
.

The group p−1(SL3(O)1 o C×) is the maximal parabolic subgroup of the Kac–
Moody group S̃L3 associated to the set of simple roots {α0, α2}.

Proposition 2.21. There exists an isomorphism iκ : Grκ → G̃sc/P̃κ as G̃sc-homo-

geneous spaces with iκ(L−ω̌κ) = eP̃κ, and moreover, iκ(Xλ) = B̃τ−λ−ω̌κ P̃κ/P̃κ.

Proof. It is well known that Gr0 is isomorphic to Gsc(K )/Gsc(O) as a homogenous
space (this can be seen by comparing the Cartan decompositions for G(K ) and
Gsc(K )).

The translation map from Gr0 to Grκ given by L 7→ t−ω̌κL is an isomorphism
between Gr0 and Grκ. In view of Lemma 2.18, one can see that the component
Grκ is also a homogeneous space of Gsc(K ). Moreover Gsc(O)κ is exactly the
stabilizer group of Gsc(K ) at L−ω̌κ ∈ Grκ (recall that t̃κ is a lifting of t−ω̌κ ).
Hence Grκ ' Gsc(K )/Gsc(O)κ. Furthermore

Grκ ' (Gsc(K ) oC×)/(Gsc(O)κ oC×),

since the rotation factor C× acts trivially at L−ω̌κ .

Finally we consider the action of G̃sc on Grκ, which factors through the action
of Gsc(K ) o C×. The stabilizer group of G̃sc at L−ω̌κ is p−1(Gsc(O)κ o C×). By

Lemma 2.19, we conclude that Grκ ' G̃sc/P̃κ.
For any λ ∈ Q̌κ, equivalently λ+ ω̌κ ∈ Q̌, so we have tλ+ω̌κ ∈ Gsc(K ). Then

B̃τ−λ−ω̌κ P̃κ/P̃κ ' Isc t
λ+ω̌κ · L−ω̌κ = Isc ·Lλ = I ·Lλ = Xλ,

since the natural map Isc → I is surjective. This completes the proof of this
proposition. �

Given any two coweights λ, µ ∈ Q̌κ, let τ−λ−ω̌κw (respectively τ−µ−ω̌κy) be the
minimal representative in the coset τ−λ−ω̌κWκ (respectively τ−µ−ω̌κWκ).
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Lemma 2.22. µ ≺I λ if and only if τ−µ−ω̌κy ≺ τ−λ−ω̌κw, where ≺ is the Bruhat
order on Waff .

Proof. This equivalence follows from Proposition 2.21 and [Ku, Prop. 7.1.21]. �

2.5. Proof of Theorem 2.6

We first recall the statement of Theorem 2.6.

Theorem. For any λ ∈ P̌ , Ψ(λ) = Ψ∞(λ).

Proof. By Lemma 2.2, it suffices to show that µ ∈ Ψ(λ) implies µ ∈ Ψ∞(λ). We

may assume that λ, µ ∈ Q̌κ for some κ ∈ M̂ .
Let τ−λ−ω̌κy (respectively τ−µ−ω̌κw) be the minimal representative in the coset

τ−λ−ω̌κWκ (respectively τ−µ−ω̌κWκ). By Lemma 2.22, µ ≺I λ if and only τ−µ−ω̌κy
≺ τ−λ−ω̌κw.

By the chain property of partial Bruhat order for Coxeter groups (cf. [BB, Thm.
2.5.5]), there exists a sequence of elements

τ−µ−ω̌κw = τ−λn−ω̌κyn ≺ τ−λn−1−ω̌κyn−1 ≺ · · · ≺ τ−λ1−ω̌κy1 ≺ τ−λ0−ω̌κy0

= τ−λ−ω̌κy,
(17)

which satisfies the following properties:

(1) for each 0 ≤ i ≤ n, τ−λi−ω̌κyi is the minimal representative in the coset
τ−λi−ω̌κWκ;

(2) for each 1 ≤ i ≤ n, τ−λi−ω̌κyi = sβi,kiτ−λi−1−ω̌κyi−1 for some affine
reflection sβi,ki with βi ∈ Φ+ and for some ki ∈ Z, and `(τ−λi−ω̌κyi) =
`(τ−λi−1−ω̌κyi−1)− 1.

By the choice of this sequence, we see that all λi are distinct. By Proposition 2.21
and [Ku, Prop. 7.1.21] again, the sequence (17) is equivalent to

λn = µ ≺I λn−1 ≺I · · · ≺I λi · · · ≺I λ1 ≺I λ0 = λ.

From the following computation

τ−λi−ω̌κyi = τ−kiβ̌isβiτ−λi−1−ω̌κyi−1 = τ−λi−1+(〈λi−1,βi〉−ki)β̌i−ω̌κAdω̌κ(sβi)yi−1,

we see that λi = λi−1−(〈λi−1, βi〉−ki)β̌i and yi = Adω̌κ(sβi)yi−1 ∈Wκ. It follows
that 〈λi−1, βi〉 − ki 6= 0, since all λi are distinct. Since

τ−λi−1−ω̌κyi−1 ≺ τ−λi−ω̌κyi = sβi,kiτ−λi−1−ω̌κyi−1,

in view of Proposition 2.9 and Corollary 2.12, we have

(1) if k ≥ 0, then 0 < 〈λi−1, βi〉 − ki ≤ 〈λi−1, βi〉;
(2) if k < 0, then 0 < ki − 〈λi−1, βi〉 < −〈λi−1, βi〉.

Therefore λi ∈ Ψ1(λi−1) for any 1 ≤ i ≤ n (cf. Definition 2.4). In fact λi ∈ Ψi(λ0)
for each i. It follows that µ ∈ Ψ∞(λ), since by convention µ = λn and λ = λ0. �
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2.6. Crossing different components of Gr

Recall that W̃aff is the extended affine Weyl group P̌ oW . Let Ω denote the group
of all length zero elements in W̃aff . Equivalently, Ω is the stabilizer group of W̃aff at
the fundamental alcove of Waff (cf. [Hu2, §4.5]). Then Ω ' P̌ /Q̌. Let Wω̌κ denote
the stabilizer group of W at ω̌κ. Then Wω̌κ is a parabolic subgroup of W with

Coxeter generators {si | i ∈ Î\{0, κ}}. For each κ ∈ M̂ , let wκ denote the longest

element in Wω̌κ for each κ ∈ M̂ , in particular w0 is the longest element in W . For

each κ ∈ M̂ , set wκ = wκw0.

Lemma 2.23. The group Ω consists of elements

γκ := τω̌κw
κ ∈ W̃aff , κ ∈ M̂,

Proof. See [Mac, 2.5.4]. �

Using the length zero element γκ, we define a translation map ρκ : Gr0 → Grκ

given by
L 7→ t−ω̌κwκL ∈ Grκ for any L ∈ Gr0 .

Proposition 2.24. For any λ ∈ Q̌, we have ρκ(Xλ) = Xwκ(λ)−ω̌κ , and ρκ(Xλ) =
Xwκ(λ)−ω̌κ

Proof. Since the map ρκ is an isomorphism between Gr0 and Grκ, it suffices to
show that ρκ(Xλ) = Xwκ(λ)−ω̌κ . We are reduced to show the following fact

t−ω̌κwκ I(wκ)−1tω̌κ = I .

For any α ∈ Φ+,

t−ω̌κwκxα(a)(wκ)−1tω̌κ = xwκ(α)(at
−〈ω̌κ,wκ(α)〉),

where xα (respectively xwκ(α)) is the root group homomorphism associated to α
(respectively wκ(α)), and a ∈ C. Notice that wκ(α) ∈ Φ− if and only if the support
of wκ(α) contains the simple root ακ with coefficient −1. It follows that

−〈ω̌κ, wκ(α)〉 =

{
1 if wκ(α) ∈ Φ−,

0 if wκ(α) ∈ Φ+.

It follows that
t−ω̌κwκxα(a)(wκ)−1tω̌κ ∈ I .

For any α ∈ Φ−,

t−ω̌κwκxα(at)(wκ)−1tω̌κ = xwκ(α)(at
1−〈ω̌κ,wκ(α)〉).

In this case wκ(α) ∈ Φ+ if and only if the support of wκ(α) contains the simple
root ακ with coefficient 1. It follows that

1− 〈ω̌κ, wκ(α)〉 =

{
0 if wκ(α) ∈ Φ+,

1 if wκ(α) ∈ Φ−.

Therefore
t−ω̌κwκxα(at)(wκ)−1tω̌κ ∈ I .

This finishes the proof. �

Now we define a map ρ̄κ : Q̌→ Q̌κ, given by ρ̄κ(λ) = wκ(λ)− ω̌κ. The following
corollary is a consequence of Proposition 2.24.
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Corollary 2.25. The map ρ̄κ gives rise to a bijection from Ψ(λ) to Ψ(wκ(λ)−ω̌κ)

which preserves the partial order ≺I , for any λ ∈ Q̌ and κ ∈ M̂ .

Notice that for any α ∈ Φ+, if 〈λ, α〉 > 0 and 0 ≤ k ≤ 〈λ, α〉, by Corollary 2.25

ρ̄κ(λ− kα̌) = ρ̄κ(λ)− kwκ(α̌) ∈ Ψ
(
wκ(λ)− ω̌κ

)
.

Given a positive root α satisfying above conditions, wκ(α) could be a negative
root. If wκ(α) ∈ Φ−, then

〈ρ̄κ(λ),−wκ(α)〉 < 0.

In this case, λ− kα̌ is obtained by successively subtracting the positive coroot α̌;
however ρ̄κ(λ−kα) is obtained by successively adding the positive coroot −wκ(α̌).
There is a similar phenomenon when 〈λ, α〉 < 0.

3. A duality between affine Schubert varieties and
level one affine Demazure modules

3.1. The Kac–Moody algebra Lg̃

Let LΓ̂ be the Dynkin diagram which is dual to the Dynkin diagram Γ̂ of g̃.
Let Lg̃ denote the Kac–Moody algebra associated to LΓ̂. Let {ěi, f̌i | i ∈ Î} be a
set of Chevalley generators of Lg̃. Let Lg be the Lie subalgebra of Lg̃ generated
by {ěi, f̌i | i ∈ I}. Then Lg is a simple Lie algebra with Dynkin diagram LΓ
which is dual to the Dynkin diagram Γ of g. We have the following table for
the correspondence between (Γ, Γ̂) and (LΓ, LΓ̂)

Γ An Bn Cn Dn E6 E7 E8 F4 G2

Γ̂ A
(1)
n B

(1)
n C

(1)
n D

(1)
n E

(1)
6 E

(1)
7 E

(1)
8 F

(1)
4 G

(1)
2

LΓ An Cn Bn Dn E6 E7 E8 F4 G2

LΓ̂ A
(1)
n A

(2)
2n−1 D

(2)
n+1 D

(1)
n E

(1)
6 E

(1)
7 E

(1)
8 E

(2)
6 D

(3)
4

. (18)

From this table, we see that if Γ is simply-laced, then Γ̂ = LΓ̂. If Γ is non-simply-
laced, then LΓ̂ is of twisted affine type.

Let Lh̃ denote the Cartan subalgebra of Lg̃. We can write

Lh̃ = Lh⊕ Cč⊕ Cď and Lh̃∗ = Lh∗ ⊕ CΛ̌0 ⊕ Cδ̌,

where Lh is the Cartan subalgebra of Lg, č is the canonical center of Lg̃, ď is the
degree operator, Λ̌0 is the fundamental weight of Lg̃ associated to 0 ∈ Î, and δ̌ is
the element such that δ̌|Lh̃ = 0, 〈δ̌, č〉 = 0 and 〈δ̌, ď〉 = 1.

Recall that h̃ is the Cartan subalgebra of g̃. Under the duality of Γ̂ and LΓ̂, we
may identify Lh̃ with h̃∗ and identify Lh̃∗ with h̃. Under this identification, Lh = h∗

and Lh∗ = h. In particular, the simple roots {αi | i ∈ Î} of g̃ can be regarded as
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the simple coroots of Lg̃, and the simple coroots {α̌i | i ∈ Î} of g̃ can be regarded
as simple roots of Lg̃. Moreover, δ can be regarded as the canonical center č, hence

č =
∑
i∈Î

aiαi, (19)

where ai is the Kac labeling of Γ̂ at i, in particular a0 = 1. The coroot lattice
Q̌ (respectively coweight lattice P̌ ) are now regarded as root lattice (respectively
weight lattice) of Lg.

We will still denote by (· | ·) the induced bilinear forms on Lh̃ and Lh̃∗ from the

normalized bilinear form (· | ·) on h̃ and h̃. It turns out that the induced forms on
Lh̃ and Lh̃∗ are still the normalized bilinear forms with respect to Lg̃.

Recall the affine Weyl group Waff = Q̌ oW . We can also realize Waff as the
Weyl group of Lg̃. For any τλw ∈Waff and h ∈ Lh̃∗, following [Ka, §6.5.5] we define

τλw(h) = h+ 〈h, č〉λ−
(

(h|λ) +
(λ|λ)

2
〈h, č〉

)
δ̌. (20)

The set LΦ̂re of real roots of Lg̃ can be described as follows (cf. [Ka, Prop.
6.3a),b) ])

LΦ̂re = {α̌+ krαδ̌ |α ∈ Φ, k ∈ Z}
where α̌ is the coroot associated to α, and rα = 2/(α|α); more precisely

rα :=


1 if Γ is simply-laced, or α is a long root when Γ is non-simply-laced,

2 if α is a short root when Γ = Bn,Cn,F4,

3 if α is a short root when Γ = G2.

There is a bijection η : Φ̂re → LΦ̂re between Φ̂re and LΦ̂re, given by

η(α+ kδ) = α̌+ krαδ̌.

Lemma 3.1. The bijection η is Waff-equivariant.

Proof. For any τλw ∈Waff and α+ kδ ∈ Φ̂, from the formula (13) we have

η(τλw(α+ kδ)) = η(w(α̌) + (k − 〈λ,w(α)〉)δ)
= w(α̌) + (k − 〈λ,w(α)〉)rαδ̌,

where w(α̌) is equal to the coroot of w(α). On the other hand,

τλw(η(α+ kδ)) = τλw(α̌+ krαδ̌)

= w(α̌) + (krα − (λ|w(α̌)))δ̌

= w(α̌) + (krα − 〈λ,w(α̌)〉rα)δ̌,

where the second equality follows from (20), and the third equality holds since

(λ|w(α̌)) =
2〈λ,w(α̌)〉

(w(α)|w(α))
=

2〈λ,w(α̌)〉
(α|α)

= 〈λ,w(α̌)〉rα.

From the above two computations, we see that η is Waff -equivariant. �
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Under the map η, the image η(Φ̂±re) is the set of all positive (respectively

negative) roots in LΦ̂re. Recall the set {ω̌κ |κ ∈ M̂} in Lemma 2.14. The following
lemma follows from the discussion in [Ka, §12.4]. For the convenience of the reader,
we include an argument here.

Lemma 3.2. For any λ ∈ P̌+, Λ̌0 + λ is a dominant weight of Lg̃ of level one if
and only if λ ∈ {ω̌κ |κ ∈ M̂}.

Proof. We first observe that λ is dominant if and only if

〈Λ̌0 + λ, αi〉 = 〈λ, αi〉 ≥ 0, for any i ∈ I.

By the formulae (19) and (14), α0 = č− θ. Hence, Λ̌0 + λ is dominant if and only

〈Λ̌0 + λ, α0〉 = 〈Λ̌0 + λ, č− θ〉 = 1− 〈λ, θ〉 ≥ 0.

By Lemma 2.13, λ is equal to ω̌κ for κ ∈ M̂ . This concludes the proof. �

For each κ ∈ M̂ , set Λ̌κ := Λ̌0 + ω̌κ.

Lemma 3.3. The stabilizer group of Waff at the dominant weight Λ̌κ is equal
to Wκ.

Proof. It is known that the stabilizer W ′′κ of Waff at Λ̌κ is a parabolic subgroup of
Waff . It is enough to determine the Coxeter generators of W ′′κ . We first examine
s0(Λ̌0),

s0(Λ̌0) = τθ̌sθ(Λ̌0) = τθ̌(Λ̌0) = Λ̌0 + θ̌ − (θ̌|θ̌)
2

δ̌ = Λ̌0 + θ̌ − δ̌.

For any κ ∈M ,

s0(Λ̌κ) = τθ̌sθ(Λ̌0 + ω̌κ) = τθ̌(Λ̌0 + ω̌κ − θ̌)

= Λ̌0+ω̌κ−θ̌+〈Λ̌0+ω̌κ−θ̌, č〉θ̌−
(
(θ̌|Λ̌0+ω̌κ−θ̌)+

(θ̌|θ̌)
2
〈Λ̌0+ω̌κ, č〉

)
δ̌

= Λ̌0 + ω̌κ −
(

(θ̌|ω̌κ − θ̌) +
(θ̌|θ̌)

2

)
δ̌ = Λ̌κ,

where the fourth equality holds since (θ̌|θ̌) = 2 and (θ̌|ω̌κ − θ̌) = −1.
Now it is easy to see that the Coxeter generators of W ′′κ are given by {si | i ∈ Iκ},

where Iκ = Î\{κ}. By Proposition 2.15, we can conclude that W ′′κ = Wκ. �

3.2. Level one affine Demazure modules

We first make a digression to prove a general lemma in the setting of general
symmetrizable Kac–Moody algebras. Let Λ be an integral dominant weight of a
symmetrizable Kac–Moody algebra G with a fixed Borel subalgebra B. Let W be
the Weyl group of G. Let VΛ denote the irreducible integrable representation of G
of highest weight Λ. Let WΛ denote the stabilizer group of W at Λ. Then WΛ is a
parabolic subgroup of W. Let WΛ denote the set of minimal coset representatives
in W/WΛ.
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Proposition 3.4. For any y, w ∈ WΛ, we have

w ≺ y ⇐⇒ vw(Λ) ∈ U(B)vy(Λ).

Proof. Let B− denote the negative Borel subalgebra in G. Then we have

w ≺ y ⇐⇒ vy(Λ) ⊂ U(B−)vw(Λ). (21)

This fact is stated in [Ku, ex. 7.1.E.4 ], and this is a parabolic version of [Ku, Prop.
7.1.20]. The proof is almost identical to that in [Ku, Prop. 7.1.20].

In the next step, we show that

vy(Λ) ⊂ U(B−)vw(Λ) ⇐⇒ vw(Λ) ⊂ U(B)vy(Λ).

Let (· , ·) be the contravariant form on HΛ (cf. [Ku, Prop. 2.3.2]), which satisfies
that, for any v1, v2 ∈ VΛ, and x ∈ G.

(xv1, v2) = (v1, σ(x)v2),

where σ : G → G is the Cartan involution on G. The involution σ induces an anti-
automorphism on the universal enveloping algebra U(G) of G. Furthermore the
contravariant form (· , ·) has the following properties:

(1) (· , ·) is non-degenerate on each weight space VΛ(µ), where µ is a weight
of G.

(2) (v1, v2) = 0 for any two weight vectors v1, v2 of distinct weights.

Assume that vy(Λ) ⊂ U(B−)vw(Λ). We may write vy(Λ) = Pvw(Λ), where P is an
element in the enveloping algebra U(N−) of the nilpotent radical N− of B−. Notice
that the weight space VΛ(y(Λ)) is 1-dimensional. It follows that we may assume
P ∈ U(N−) is a monomial in negative root vectors in N−. By the non-degeneracy
of (· , ·) on VΛ(y(Λ)), we have

0 6= (vy(Λ), vy(Λ)) = (Pvw(Λ), vy(Λ)) = (vw(Λ), σ(P )vy(Λ)).

Note that σ(P ) ∈ U(N ) is a monomial in positive root vectors in N , where N
is the unipotent radical of B. By the second property of the contravariant form
mentioned above, we must have σ(P )vy(Λ) ∈ VΛ(w(Λ)). By the one-dimensionality
of VΛ(w(Λ)), there exists a nonzero constant c such that

vw(Λ) = cσ(P )vy(Λ) ∈ U(N )vy(Λ).

By similar argument, we can show that if vw(Λ) ∈ U(B)vy(Λ), then we have vy(Λ) ∈
U(B−)vw(Λ). Thus the lemma is proven. �
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Remark 3.5. The equivalence (21) can be proved by the induction on the length
of elements of Weyl group. The proof of [Ku, Prop. 7.1.20] in the regular case
essentially incorporates the original proof for finite Weyl groups by Bernstein–
Gelfand–Gelfand [BGG]. We don’t know how to prove Proposition 3.4 by induction
directly. It is interesting to use the contravariant form to reduce the lemma to the
equivalence (21).

We now return to the Kac–Moody algebra Lg̃. Let Hκ denote the irreducible
integrable representation of Lg̃ of highest weight Λ̌κ. Then Hκ is an integrable
representation of level one. Fix a highest weight vector vΛ̌κ

∈ Hκ. For any λ ∈ P̌
if λ ∈ Q̌κ := Q̌− ω̌κ, then we set

$(λ) := τ−λ−ω̌κ(Λ̌κ),

where τ−λ−ω̌κ ∈ Waff . Let v$(λ) ∈ Hκ be an extremal vector of weight $(λ). By

this convention, $(−ω̌κ) = Λ̌κ. By a simple computation from formula (20), we
have the following formula

$(λ) = Λ̌0 − λ−
(λ|λ)− (ω̌κ|ω̌κ)

2
δ̌ for λ ∈ Q̌κ. (22)

Definition 3.6. We now define the affine Demazure module D̂λ for each λ ∈ P̌
as follows,

D̂λ := U(Lb̃)v$(λ) ⊂Hκ, if λ ∈ Q̌κ,

where U(Lb̃) is the universal enveloping algebra of the Borel subalgebra Lb̃ of Lg̃.

Recall that there is a bijection Q̌κ ' Waff/Wκ where Q̌κ := Q̌ − ω̌κ. For each
λ ∈ Q̌κ, let τ̄−λ−ω̌κ denote the associated minimal representative in the coset
τ−λ−ω̌κWκ.

Proposition 3.7. For any λ, µ ∈ P̌ , then µ ≺I λ if and only if v$(µ) ∈ D̂λ.

Proof. First of all, µ ≺I λ if and only if τ̄−λ−ω̌κ ≺ τ̄−λ−ω̌κ . By Lemma 3.3, we
have

$(λ) = τ̄−λ−ω̌κ(Λ̌κ), $(µ) = τ̄−λ−ω̌κ(Λ̌κ).

Hence D̂λ = U(Lb̃) · v$(λ). Lastly, in view of Proposition 3.4 we conclude that

µ ≺I λ if and only if v$(µ) ∈ D̂λ. �

Let P(Hκ) denote the weight system of the integrable representation Hκ. A
weight µ̂ ∈ P(Hκ) is called maximal if µ̂ + δ̌ 6∈ P(Hκ). Let Max(Hκ) denote the
set of all maximal weights in P(Hκ). The weight system P(Hκ) can be completely
described by the following lemma (cf. [Ka, §12.6]).

Lemma 3.8. For any κ ∈ M̂ , we have

(1) Max(Hκ) = {$(λ) |λ ∈ Q̌κ};
(2) P(Hκ) =

⋃
λ∈Q̌κ{$(λ)− nδ̌ |n ∈ Z+} is a disjoint union.

Any weight in P(Hκ) is of the form Λ̌0−λ+mδ̌, for some integer m. We define
a twisted version of projection

p : P(Hκ)→ P̌ , given by Λ̌0 − λ+mδ̌ 7→ λ.

Let P(D̂λ) denote the weight system of the affine Demazure module D̂λ.
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Theorem 3.9. The map p maps P(D̂λ)) onto Ψ(λ), and p admits a canonical
section λ 7→ $(λ).

Proof. Set

H :=
⊕

n>0(Lg̃)±nδ̌ ⊕ Lh⊕ Cč, and H± :=
⊕

n>0(Lg̃)±nδ.

Then H is an Heisenberg algebra with the center č. By the Frenkel–Kac construc-

tion (for untwisted affine types, see [FK]; for A
(2)
2n−1,D

(2)
n+1,E

(2)
6 , see [Fr, Thm. I.2.25]

[FLM, §7]; for D
(3)
4 , see [BT, §B.8 ]), the representation Hκ can be realized as

Hκ ' S(H−)⊗ C[Q̌κ], (23)

where S(H−) is the symmetric algebra of H−, and C[Q̌κ] consists of linear combina-
tions of eλ, λ ∈ Q̌κ. Moreover

Hκ($(λ)− nδ̌) ' S(H−)−nδ̌ ⊗ e
λ,

where eλ is of weight $(λ), and⊕
n≥0 Hκ($(λ)− nδ̌) ' S(H−)⊗ eλ

is a free U(H−)-module of rank 1.

By Lemma 3.8, any weight vector in D̂λ is of weight $(µ)−mδ̌ for some integer

m and µ ∈ P̌ . To show that p maps P(D̂λ) onto Ψ(λ), it suffices to show that for

some nonzero weight vector x$(µ)−mδ̌ in D̂λ of weight $(µ) −mδ̌, the maximal

vector v$(µ) is also an element in D̂λ.
Let (· , ·) be the contravariant form on Hκ, and let σ be the Cartan involution

on Lg̃. Clearly, there exists a weight vector xω(µ)−mδ̌ of weight $(µ) −mδ̌, such
that

(x$(µ)−mδ̌, x$(µ)−mδ̌) 6= 0,

since the contravariant form ( , ) on the weight space Hκ($(µ)−mδ̌) is nondege-
nerate. By the construction in (23), xω(µ)−mδ̌ can be written as P · v$(µ), where

P is an element of weight −mδ̌ in the enveloping algebra U(H−) of H−. Then

0 6= (x$(µ)−mδ̌, x$(µ)−mδ̌) = (P · v$(µ), x$(µ)−mδ̌) = (v$(µ), σ(P )x$(µ)−mδ̌).

By the one-dimensionality of the weight space Hκ($(µ)), σ(P )x$(µ)−mδ̌ = cv$(µ)

for some nonzero constant c ∈ C, since σ(P ) ∈ U(H+)mδ̌. Here we use the fact
that σ maps H− to H+. When Lg̃ is of untwisted affine types, this fact follows from
[Ka, §7.6]. This fact holds for twisted affine types as well, see [Ka, §8.3].

Since H+ ⊂ Lb̃, it follows that v$(µ) ∈ D̂λ. Then by Proposition 3.7, we have
µ ≺I λ. In other words, µ ∈ Ψ(λ). This concludes the proof. �

Remark 3.10. In the proof of Theorem 3.9, we crucially use the Frenkel–Kac
construction of basic representations for Lg̃. Note that this construction only works

for affine Kac–Moody algebras of type X
(r)
n , where r = 1, 2, 3 and Xn is of type

A,D,E. From Table (18), we see that Lg̃ exhausts all cases except A
(2)
2n .
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Example 3.11. By Lemma 3.8, it is clear that p : P(Hκ)→ P̌ is not one-to-one.

In fact p : P(D̂λ))→ Ψ(λ) is not one-to-one as well. For example when g = sl2 and

κ = 0, consider the affine Demazure module D̂−2α̌, where α is the simple root of g.
One can check that 0 6= (eα̌)2v$(−2α̌) has weight Λ̌0 − 2δ. The following example

describes all weights appearing in D̂−2α̌.

Λ̌0 + 2α̌− 4δ̌

Λ̌0

Λ̌0 + α̌− δ̌Λ̌0 − α̌− δ̌

Let eα̌+mrαδ̌
be a root vector in Lg̃ corresponding to the root α̌+mrαδ̌ ∈ LΦ̂+.

Via the bijection η given in Section 3.1, by Lemma 3.1 the coroot of α̌ +mrαδ̌ is
α+mδ ∈ Φ̂+.

The following lemma gives a representation theoretic interpretation for Lemma
2.2.

Lemma 3.12. For any α ∈ Φ+,

(1) if 〈λ, α〉 > 0, then for any 0 < k ≤ 〈λ, α〉,

(eα̌)k · v$(λ) 6= 0, and p(wt((eα)k · v$(λ))) = λ− kα̌; (24)

(2) if 〈λ, α〉 < −1, then for any 0 < k < −〈λ, α〉,

(e−α̌+rαδ̌
)k · v$(λ) 6= 0, and p(wt(e−α̌+rαδ̌

)k · v$(λ))) = λ+ kα̌, (25)

where wt( · ) denote the weight of a weight vector.

Proof. With respect to any sl2-triple {eα̌+krαδ̌
, e−α̌−krαδ̌, α + kδ} associated to

α̌ + krαδ̌ ∈ Φ̂+, the extremal vector v$(λ) is either a highest weight vector or
lowest weight vector. In part (1), by (22)

〈$(λ), α〉 = −〈λ, α〉 < 0,

the vector v$(λ) is a weight vector of lowest weight −〈λ, α〉 with respect to the
sl2-triple associated to α̌. Hence the statement (24) holds.

In part (2), since
〈$(λ),−α+ δ〉 = 1 + 〈λ, α〉 < 0,

the vector v$(λ) is again a weight vector of lowest weight 1+ 〈λ, α〉 with respect to

the sl2-triple associated to the positive root −α̌ + rαδ̌. Hence the statement (25)
holds as well. �
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Remark 3.13. For any λ ∈ Q̌κ, let γ denote the unique dominant coweight that is
translated by the Weyl group W from −λ. Set Vγ := U(Lg) ·v$(λ) ⊂Hκ. It is well
known that Vγ is a finite-dimensional irreducible representation of highest weight
γ. The vector v$(λ) ∈ Vγ is an extremal vector of weight −λ. Let Lb denote the

Borel subalgebra of Lg obtained as Lb := Lb̃ ∩ Lg. Then D−λ := U(Lb)v$(λ) is a
Demazure module in Vγ in the usual sense. It is proved in [Io2] that the multiplicity
of the weight space D−λ(−µ) is equal to the number of top components of the
intersection N(K ) · Lµ ∩ I · Lλ. It is a natural question to ask if there is similar

phenomenon for the affine Demazure module D̂λ.

4. Further study of the set Ψ(λ)

4.1. The partial order ≺I on a chamber of the coweight lattice

Let C be the dominant chamber of the coweight lattice P̌ determined by T ⊂ B,
i.e.,

C = {λ ∈ P̌ | 〈λ, α〉 ≥ 0, for any α ∈ Φ+}.

Set Cw := w(C) for any w ∈ W . Then P̌ is the union of all chambers Cw indexed
by w ∈W .

Theorem 4.1. For any coweights λ, µ ∈ Cw, µ ≺I λ if and only if λ − µ is a
positive sum of coroots in w(Φ̌+).

Proof. We first assume that µ ≺I λ, in other words Lµ ⊂ Xλ. Set λ+ := w−1(λ)
and µ+ := w−1(µ). Then λ+, µ+ ∈ C. It follows that Lµ+ ⊂ Grλ+ , since Grλ+ =

G(O) · Lλ. Hence λ+ − µ+ is a positive sum of coroots in Φ̌+. Equivalently, λ− µ
is a positive sum of coroots in w(Φ̌+).

Now we prove the converse. Assume that λ − µ is a positive sum of coroots in
w(Φ̌+). Equivalently, λ+−µ+ is a positive sum of coroots in Φ̌+. By a result due to
Stembridge and Steinberg (cf. [Stg, Cor. 2.7]), there exists a sequence of dominant
coweights

µ+ = λ+
0 , λ

+
1 , . . . , λ

+
k−1, λ

+
k = λ+,

such that for each 1 ≤ i ≤ k, λ+
i = λ+

i−1 + β̌i where β̌i ∈ Φ̌+. Set λi := w(λ+
i ) for

each i. Then λi = λi−1 + w(β̌i). Since

〈λi, w(βi)〉 = 〈λi−1 + w(β̌i), w(βi)〉 = 〈λ+
i−1 + β̌i, βi〉 = 〈λ+

i−1, βi〉+ 2 > 0,

by Lemma 2.2, λi−1 = λi−w(β̌i) ∈ Ψ(λi). Hence λi−1 ≺I λI . Inductively, we have
µ ≺I λ. �

This theorem completely describes the partial order ≺I on any fixed chamber.
Moreover from this theorem, we immediately get the following corollary.

Corollary 4.2. For any two coweights λ, µ in the same chamber, µ ≺I λ if and
only if w(µ) ≺I w(λ).
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4.2. R-operators and cover relations

For each α ∈ Φ+, we define the operator Rα on P̌ ,

Rα(λ) =

{
sα(λ) := λ− 〈λ, α〉α̌ if 〈λ, α〉 ≥ 0,

sα(λ)− α̌ =: λ− 〈λ, α〉α̌− α if 〈λ, α〉 < 0.
(26)

By Lemma 2.2, for any λ ∈ P̌ , we always have Rα(λ) ∈ Ψ(λ).
The following theorem shows that the set Ψ(λ) can be obtained by repeatedly

applying R-operators starting at λ.

Theorem 4.3. For any coweight λ ∈ P̌ , we have

Ψ(λ) = {Rβ1
Rβ2
· · ·Rβk(λ) | k ∈ N, β1, β2, . . . , βk ∈ Φ+}.

Proof. By Lemma 2.2, for any λ ∈ P̌ , we always have Rα(λ) ≺I λ. Therefore for
any sequence of positive roots β1, . . . , βk, we have Rβ1Rβ2 · · ·Rβk(λ) ∈ Ψ(λ).

To show the other inclusion, we first prove the following general fact: for any
µ, µ′ ∈ P̌ , if µ′ ∈ S(µ, α) for some positive root α ∈ Φ+ (recall S(µ, α) defined in
(10)), then µ′ can be written as (Rα)k(µ) for some integer k. We first assume that
〈µ, α〉 ≥ 0. One can check that for any integer m ≥ 0,

µ−mα̌ =

{
(Rα)2m(µ) if 0 ≤ m ≤ 〈µ, α〉/2,
(Rα)2(〈λ,α〉−m)+1(µ) if 〈µ, α〉/2 < m ≤ 〈λ, α〉.

(27)

Now we assume that 〈µ, α〉 < 0, one can check similarly

µ+mα̌ =

{
(Rα)2m(µ) if 0 ≤ m < −〈µ, α〉/2,
(Rα)2(−〈µ,α〉−m)−1(µ) if − 〈µ, α〉/2 ≤ m ≤ −〈µ, α〉 − 1.

(28)

From the computations (27) (28), we see that this theorem follows from Theorem
2.6. �

For α ∈ Φ+ and k ∈ Z, let Hα,k denote the hyperplane {λ ∈ P̌ | 〈λ, α〉 = k}.

Lemma 4.4. Assume that µ, λ are in the same chamber Cw and µ, λ 6∈ Hα,−1 for
some positive root α ∈ Φ+, if µ ≺I λ, then Rα(µ) ≺I Rα(λ).

Proof. Since α is either an element in w(Φ+) or an element in w(Φ−), it follows that
either 〈λ, α〉 ≥ 0 and 〈µ, α〉 ≥ 0, or 〈λ, α〉 ≤ 0 and 〈µ, α〉 ≤ 0. By the assumption
µ, λ 6∈ Hα,−1, it follows that either 〈λ, α〉 ≥ 0 and 〈µ, α〉 ≥ 0, or 〈λ, α〉 < 0 and
〈µ, α〉 < 0.

In the first case Rα(µ) ≺I Rα(λ), which follows from Corollary 4.2. In the
second case,

Rα(λ) = sα(λ)− α̌, and Rα(µ) = sα(µ)− α̌.

Hence by Theorem 4.1, Rα(λ) − Rα(µ) is a positive sum of coroots in sαw(Φ̌+).
Then by Theorem 4.1 again, Rα(µ) ≺I Rα(λ). This concludes the proof. �

In the following, we introduce the notion of α-regularity n-regularity for a
coweight. This notion will allow us to cross the wall Hα := Hα,0.
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Definition 4.5.

(1) We say that a coweight λ is α-regular, if 〈λ, α〉 > 0, or 〈λ, α〉 < 0 and
λ+ α̌ ∈ Cwλ , where wλ is the minimal element in W such that λ ∈ Cwλ .

(2) We say that λ is n-regular for a nonnegative integer n, if 〈λ,wλ(αi)〉 ≥ n
for any simple root αi.

Set

r =


1 if Γ is simply-laced,

2 if Γ is non simply-laced but Γ 6= G2,

3 if Γ = G2.

Lemma 4.6. If λ is r-regular, then λ is α-regular for any positive root α.

Proof. By the assumption of r-regularity, it is easy to see that 〈λ, α〉 6= 0 for any
root α, since α is always a positive (or a negative) summation of wλ(αi). We may
only consider the case when 〈λ, α〉 < 0. Note that we always have |〈α̌, wλ(αi)〉| ≤ r
(cf. [Hu1, §9.4]). It follows that

〈λ+ α̌, wλ(αi)〉 ≥ 0, for each simple root αi.

Equivalently, λ+ α̌ ∈ Cwλ . It finishes the proof of the lemma. �

Lemma 4.7. Let α be a positive root in Φ+. Let λ be an α-regular coweight. Then
λ 6∈ Hα,−1 and Rα(λ) ∈ Csαw, where w is the minimal element in W such that
λ ∈ Cw.

Proof. First of all we show that λ 6∈ Hα,−1. Assume that 〈λ, α〉 ≤ −1. Then
w−1(α) ∈ Φ−, since λ ∈ Cw. Write −α =

∑
ciw(αi) as a positive linear combina-

tion of the w-translations w(αi) of simple roots. Then

〈λ+ α̌, α〉 = −
∑

ci〈λ+ α̌, w(αi)〉 ≤ 0.

By the α-regularity of λ, it follows that 〈λ, α〉 ≤ −2. It follows that λ 6∈ Hα,−1.
We now show that Rα(λ) ∈ Csαw. When 〈λ, α〉 > 0, it is obvious. Set β :=

−w−1(α) ∈ Φ+. Then β̌ = −w−1(α̌). For any simple root αi,

〈β̌, αi〉 ≤ 2.

To show that Rα(λ) ∈ Csαw, it suffices to check that, for any simple root αi,

〈Rα(λ), sαw(αi)〉 ≥ 0,

which follows since

〈Rα(λ), sαw(αi)〉 = 〈sα(λ)− α̌, sαw(αi)〉
= 〈λ+ α̌, w(αi)〉 ≥ 0 �.

The following result immediately follows from Lemma 4.4 and Lemma 4.7.
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Proposition 4.8. Let α be a positive root. For any α-regular coweights µ, λ in
Cw, if µ ≺I λ, then Rα(µ), Rα(λ) ∈ Csαw and Rα(µ) ≺I Rα(λ).

Following [BGG], we write y
α−→ w for any y, w ∈ W , if y = sαw and `(w) =

`(y) + 1 for some reflection sα. Similarly, we write µ
α−→ λ for any µ, λ ∈ P̌ ,

if µ = Rα(λ) and dim Xλ = dim Xµ +1 for some positive root α. As shown in
Theorem 4.3, the R-operators generate the closure relations for ≺I . So we see that
the covering relations of ≺I on P̌ must all be of the form µ

α−→ λ.
Recall that dim Xλ = `(τ−λw

λ) where ` is the length function defined in (12),
and wλ is the minimal element in W such that λ ∈ Cwλ . Set λ+ := (wλ)−1(λ); by
definition λ+ is the dominant translate of λ. The following formula is a consequence
of (12),

dim Xλ = 2〈λ+, ρ〉 − `(wλ). (29)

From this formula, we immediately see that µ
α−→ λ if and only if µ = Rα(λ) and

`(wλ)− `(wµ) = 2〈λ+ − µ+, ρ〉 − 1. (30)

This characterization is a bit complicated, as we need to determine λ+, µ+ and
the lengths of wλ and wµ. In the following two propositions, we give a simpler
characterization of the cover relation Rα(λ)

α−→ λ when λ is α-regular.

Proposition 4.9. Let µ, λ be two coweights in P̌ such that µ = Rα(λ) for some

positive root α. Assume that 〈λ, α〉 > 0. Then µ
α−→ λ if and only if wλ

α−→ sαw
λ.

Proof. Observe that wλ ≺ sαw
λ and (wλ)−1(α) ∈ Φ+, which follow from the

assumption that 〈λ, α〉 > 0. We also notice that λ+ = µ+ in this case.
We first prove the direction “⇐= ”. It is enough to show that wµ = sαw

λ. By
the formula (12), for any w and λ ∈ Cw, we always have

`(τ−λw) ≥ 2〈λ+, ρ〉 − `(w).

In fact, the equality holds if and only if w = wλ. We now show that sµ = sαw
λ by

contradiction. Assume that sαw
λ 6= wµ, implying the following inequality:

`(τ−sα(λ)sαw
λ) > 2〈λ+, ρ〉 − `(sαwλ) = 2〈λ+, ρ〉 − `(wλ)− 1. (31)

On the other hand, we view τ−λw
λ as an element in the extended affine Weyl

group W̃aff . By the formula (20),

(τ−λw
λ)−1(α) = (wλ)−1(α)− 〈λ, α〉δ̌

is a negative affine root. It follows that sατ−λw
λ ≺ τ−λwλ. In particular,

`(sατ−λw
λ) < `(τ−λw

λ) = 2〈λ+, ρ〉 − `(wλ).

It contradicts with the inequality (31), since sατ−λw
λ = τ−sα(λ)sαw

λ.
The direction “=⇒” is obvious. �
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Proposition 4.10. For any two coweights µ, λ in P̌ with µ = Rα(λ) for some

positive root α, assume that 〈λ, α〉 < 0 and λ is α-regular. Then µ
α−→ λ if and only

`(wλ)− `(wµ) = −2〈α̌, wλ(ρ)〉 − 1.

Proof. By Lemma 3.12, µ = Rα(λ) ∈ Csαwλ . It follows that µ+ = (wλ)−1(λ+ α̌).
Then

〈λ+ − µ+, 2ρ〉 = −2〈(wλ)−1(α̌), ρ〉 = −2〈α̌, wλ(ρ)〉.

Hence µ
α−→ λ if and only if `(wλ)− `(wµ) = −2〈α̌, wλ(ρ)〉 − 1. �

Note that if λ is (r + 1)-regular, then wµ = sαw
λ; by the same argument as in

Lemma 4.7, it is easy to check that if λ is (r+ 1)-regular, then µ = Rα(λ) ∈ Csαwλ
is 1-regular. Hence wµ = sαw

λ. This fact, along with Proposition 4.10, imply the
following corollary.

Remark 4.11. Prop. 4.9 and Prop. 4.10 are special cases of [LS, Prop. 4.1] when λ
is super-regular in the sense of [LS]. But the regularity for λ is much weaker in our
propositions.

Corollary 4.12. With the same setup as in Proposition 4.10, assume that 〈λ, α〉 <
0 and λ is (r + 1)-regular. If Rα(λ)

α−→ λ, then sαw
λ α−→ wλ if and only if

−(wλ)−1(α) is a simple root.

Now for any λ ∈ P̌ , let Ψ(λ)∂ denote the subset of Ψ(λ) consisting of µ such

that µ
α−→ λ for some α. Geometrically, if µ ∈ Ψ(λ)∂ then Xµ is an irreducible

divisor in Xλ. In general, the set Ψ(λ)∂ consists of two types of elements Rα(λ),
those for which 〈λ, α〉 > 0 and those for which 〈λ, α〉 < 0.

Example 4.13. Let G be of type A2. Let α1 and α2 be the two simple roots.

(1) Take λ = α̌1 + α̌2. Then Ψ(λ)∂ = {α̌1, α̌2}.
(2) Take λ = −(α̌1 + α̌2). Then Ψ(λ)∂ = {0}.
(3) Take λ = −2(α̌1 + α̌2). Then Ψ(λ)∂ = {−2α̌1 − α̌2,−α̌1 − 2α̌2, α̌1 + α̌2}.
(4) Take λ = −3α̌1. Then Ψ(λ)∂ = {2α̌2 − α̌1,−3(α̌1 + α̌2)}. The dimension of

Xλ is 10. The following picture illustrates for example (4) the dimension of
Xµ for all possible µ = Rα(λ):

−3α̌1

dim 10

2α̌2 − α̌1 dim 9

2α̌1

dim 7

−3(α̌1 + α̌2) dim 9

0
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4.3. Braid relations on R-operators

Proposition 4.14. Let λ be a coweight in P̌ , and let α, β be two positive roots
in Φ.

(1) If 〈α, β̌〉 = 0, then RαRβ(λ) = RβRα(λ).

(2) If 〈α, β̌〉 = −1, 〈β, α̌〉 = −1, and λ is away from the hyperplane Hα+β,−1,
then RαRβRα(λ) = RβRαRβ(λ).

(3) If 〈α, β̌〉 = −1, 〈β, α̌〉 = −2, and λ is away from the hyperplanes Hα+β,−1,
H2α+β,−1 and H2α+β,−2, then RαRβRαRβ(λ) = RβRαRβRα(λ).

Proof. We first show part (1). Assume that 〈α, β̌〉 = 0. We compare RαRβ(λ) with
RβRα(λ). There are four cases. If 〈λ, α〉 ≥ 0 and 〈λ, β〉 ≥ 0, then the R operators
coincide with the reflections sα, sβ which commute, so we obviously have equality.
Assume 〈λ, α〉 < 0, 〈λ, β〉 ≥ 0. Now we compute

RαRβ(λ) = Rαsβ(λ) = sαsβ(λ)− α̌.

The other expression evaluates to sβsα(λ) − sβ(α̌) and the two expressions are
equal since sβ(α̌) = α̌. The case where 〈λ, α〉 ≥ 0 but 〈λ, β〉 < 0 is identical. Lastly
if 〈λ, α〉 < 0 and 〈λ, β〉 < 0 we get expressions sαsβ(λ)− α̌− β̌ and sβsα(λ)− β̌− α̌,
which again are equal.

The proof of part (2) and part (3) essentially follows by brute force computation.
We include tables with all of the relevant information, as well as some sample
computations.

In the tables below we make the following convention: if a square is blank, then
the braid relation is satisfied. Only when the braid relation is not satisfied do we
put anything in the second column. This is simply for readability.

Type A2: 〈α, β̌〉 = −1, 〈β, α̌〉 = −1

conditions RαRβRα RβRαRβ
〈λ, α〉 ≤ −1, 〈λ, β〉 ≤ −1 w(λ)− 2(α̌+ β̌)

〈λ, α〉 = −1, 〈λ, β〉 = 0 w(λ)− α̌− β̌
〈λ, α〉 = 0 〈λ, β〉 = −1 w(λ)− α̌− β̌
〈λ, α〉 ≥ 0, 〈λ, α+ β〉 < −1 w(λ)− 2α̌− β̌
〈λ, α〉 ≥ 1, 〈λ, α+ β〉 = −1 w(λ)− 2α̌− β̌ w(λ)− α̌
〈λ, α+ β〉 ≥ 0, 〈λ, β〉 ≤ −1 w(λ)− α̌
〈λ, α〉 ≥ 0, 〈λ, β〉 ≥ 0 w(λ)

〈λ, β〉 ≥ 0, 〈λ, α+ β〉 < −1 w(λ)− 2β̌ − α̌
〈λ, α+ β〉 = −1, 〈λ, β〉 ≥ 1 w(λ)− β̌ w(λ)− 2β̌ − α̌
〈λ, α+ β〉 ≥ 0, 〈λ, α〉 ≤ −1 w(λ)− β̌
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Type B2: 〈α, β̌〉 = −1, 〈β, α̌〉 = −2

Conditions RαRβRαRβ RβRαRβRα
〈λ, α〉 ≤ −1, 〈λ, β〉 < 0 w(λ)− 3α̌− 4β̌

〈λ, α〉 = 0, 〈λ, β〉 = −2 w(λ)− 2α̌− 3β̌

〈λ, β〉 = 0, 〈λ, α〉 = −1 w(λ)− 2α̌− 2β̌

〈λ, β〉 = −1, 〈λ, α〉 = 0 w(λ)− α̌− 2β̌

〈λ, α+ β〉 < −1, 〈λ, β〉 ≥ 0 w(λ)− 3α̌− 3β̌

〈α+ β〉 = −1, 〈λ, β〉 > 0 w(λ)− 3α̌− 3β̌ w(λ)− 2α̌− β̌
〈λ, β〉 = 1, 〈λ, α〉 = −2 w(λ)− 3α̌− 3β̌ w(λ)− 2α̌− 2β̌

〈λ, α+ β〉 ≥ 0, 〈λ, 2α+ β〉 < −2 w(λ)− 2α̌− 2β̌

〈λ, α〉 ≤ −2, 〈λ, 2α+ β〉 =-2 or -1 w(λ)− 2α̌− β̌ w(λ)− α̌
〈λ, β〉 = 1, 〈λ, α〉 = −1 w(λ)− α̌− β̌ w(λ)− α̌− β̌
〈λ, 2α+ β〉 ≥ 0,〈λ, α〉 ≤ −1 w(λ)− α̌
〈λ, α〉 ≥ 0 〈λ, β〉 ≥ 0 w(λ)

〈λ, α〉 ≥ 0, 〈λ, 2α+ β〉 < −2 w(λ)− 2α̌− 4β̌

〈λ, α〉 > 0, 〈λ, 2α+ β〉 =-2 or -1 w(λ)− α̌− 3β̌ w(λ)− 2α̌− 4β̌

〈λ, 2α+ β〉 ≥ 0, 〈λ, α+ β〉 < −1 w(λ)− α̌− 3β̌

〈λ, α+ β〉 = −1, 〈λ, 2α+ β〉 ≥ 2 w(λ)− β̌ w(λ)− α̌− 3β̌

〈λ, α+ β〉 = −1, 〈λ, 2α+ β〉 = 0 w(λ)− β̌ w(λ)− α̌− 2β̌

〈λ, α+ β〉 ≥ 0, 〈λ, β〉 < 0 w(λ)− β̌

As an illustration, we do an example calculation in type A2. Assume 〈λ, α〉 ≥ 0
and 〈λ, α + β〉 < −1. Then we compute RαRβRα(λ). As a first step, we compute
〈λ, α〉. By assumption 〈λ, α〉 ≥ 0 so Rα(λ) = sα(λ). Thus

RαRβRα(λ) = RαRβ(sα(λ)).

Next we compute 〈sα(λ), β〉 = 〈λ, sα(β)〉 = 〈λ, α+ β〉. By assumption, this is less
than or equal to −1. Thus

RαRβ(sα(λ)) = Rα(sβ(sα(λ))− β̌).

Lastly we compute

〈sβ(sα(λ))− β̌, α〉 = 〈sα(λ) + β̌, sβ(α)〉 = 〈λ+ sα(β̌), sβ(α+ β)〉 = 〈λ+ α̌+ β̌, β〉.

The two assumptions at the beginning on λ force 〈λ, β〉 < −1 so that 〈λ+α̌+β̌, β〉 ≤
−2+1 < 0, so finally we see that RαRβRα(λ) = sα(sβ(sα(λ))− β̌)−α̌. Simplifying
this expression yields RαRβRα(λ) = sα+β(λ) − 2α̌ − β̌ as desired. Computing
RβRαRβ proceeds in a similar fashion.

We do another example in type B2 where the braid relation holds. Let 〈λ, 2α+
β〉 ≥ 0 and 〈λ, α + β〉 < −1. We first compute RαRβRαRβ(λ). We first calculate
〈λ, β〉 which by assumption is < 0. Thus the first simplification is

RαRβRαRβ(λ) = RαRβRα(sβ(λ)− β̌).
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Next we compute 〈sβ(λ)− β̌, α〉 = 〈λ+ β̌, β+α〉 < 0. So the next simplification is

RαRβRαRβ(λ) = RαRβ((sα(sβλ)− β̌)− α̌).

The next pairing 〈sα(sβλ)− β̌)− α̌, β〉 > 0, so the next step is

RαRβRαRβ(λ) = Rαsβ(sα(sβλ)− β̌)− α̌).

One can then calculate the last pairing, see that it is ≥ 0, and obtain finally that

RαRβRαRβ(λ) = sαsβ(sα((sβλ)− β̌)− α̌) = sαsβsαsβ(λ)− α̌− 3β̌.

Computing the other side, RβRαRβRα(λ) is much the same; we mention that
the first two pairings will be positive and the last two negative, leading to

RβRαRβRα(λ) = sβ(sα(sβsα(λ))− α̌)− β̌ = sβsαsβsα(λ)− α̌− 3β̌.

Thus, in this case the braid relation holds. �

Remark 4.15. A summary of the data from the tables in the above proof is as
follows: the “braid relations” for the R-operators hold in types A2, B2 everywhere
except at a certain set of critical lines. In the following w0 denotes the longest
element in the Weyl group of each type. In type A2, the braid relations fail precisely
when 〈λ, α+β〉 = −1 and λ /∈ Cw0

. Similarly in B2, the braid relations hold except
when 〈λ, α+ β〉 = −1 and λ /∈ Cw0

, or when 〈λ, β + 2α〉 = −1 or −2 and λ /∈ Cw0
.

Though we have not done all the calculations for G2, it seems to follow the same
pattern: in particular the braid relations appear to hold in all cases, except the
following: 〈λ, α+ 2β〉 = −1, λ /∈ Cw0 , or 〈λ, 3β + 2α〉 = −1 and λ /∈ Cw0 .

Example 4.16. We do an example calculation in type B2 where the braid relation
fails. Let 〈λ, α+ β〉 = −1 and let 〈λ, 2α+ β〉 ≥ 2. First we compute RαRβRαRβ .
As a first step we compute 〈λ, β〉 < 0, so

RαRβRαRβ(λ) = RαRβRα(sβ(λ)− β̌).

Next we compute 〈sβ(λ)− β̌, α〉 = 〈λ+ β̌, α+ β〉, which by assumption is 0, so we
have

RαRβRαRβ(λ) = RαRβsα((sβ(λ)− β̌)) = RαRβ(sαsβ(λ)− α̌− β̌).

Computing

〈sαsβ(λ)− α̌− β̌, β〉 = 〈sβ(λ)− β̌, β + 2α〉 = 〈λ+ β̌, β + 2α〉
which is forced to be ≥ 0 by our assumptions, we see that the next step is
Rα(sβsαsβ(λ) − α̌ − β̌). The last computation is 〈sβsαsβ(λ) − α̌ − β̌, α〉; our
assumptions force this to be positive, so our final result is

RαRβRαRβ(λ) = sαsβsαsβ(λ)− β̌
as desired. On the other hand, we compute RβRαRβRα(λ). Since 〈λ, α〉 > 0 we
must have RβRαRβRα(λ) = RβRαRβsα(λ). Next we see that 〈sα(λ), β〉 > 0, so
we simplify further

RβRαRβRα(λ) = RβRα(sβsα(λ)).

Our assumptions force 〈sβsα(λ), α〉 < 0, and so the next simplification is

RβRαRβRα(λ) = Rβ(sαsβsα(λ)− α̌).

Lastly we compute 〈sαsβsα(λ)− α̌, β〉 < 0. So we finally see

RβRαRβRα(λ) = sβ(sαsβsα(λ)− α̌)− β̌ = sβsαsβsα(λ)− α̌− 3β̌.
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4.4. Discussions on the moment polytope of Xλ

For any λ ∈ P̌ , we define the moment polytope MP(λ) of Xλ as the convex hull of
Ψ(λ) in P̌ ⊗Z R. A part of our original motivation for this work was to explicitly
understand the moment polytope MP(λ), and understand whether all integral points
(relative to λ) in MP(λ) appear in Ψ(λ).

Due to Theorem 4.1, if λ ∈ Cw for some w ∈ W , then the part of the moment
polytope inside the chamber Cw is easy to describe. In general, to describe a
polytope, it suffices to describe the vertices of this polytope. For the polytope
MP(λ), all vertices are some special points in Ψ(λ). Fix a chamber Cy. Let My(λ)
denote the set of all coweights in Ψ(λ) that are maximal in the chamber Cy. Using
Theorem 4.1 again, we see that in any given chamber Cy the coweights of Ψ(λ)
appearing in chamber Cy are precisely those µ such that λ′−µ is a sum of coroots in
y(Φ+), for some λ′ ∈ My(λ). Therefore the points in My(λ) are exactly the vertices
of MP(λ) in the chamber Cy.

We may use Proposition 4.8 to obtain candidates of points in My(λ). All of these
points are obtained via Rβ1

. . . Rβk(λ) so that Cy = sβ1
· · · sβk(Cw), in other words

y = sβ1
· · · sβkw. However in general it seems very difficult to determine which

path of R-operators will provide the maximal vectors.

In the picture of the A2 example below, we see five ”paths” given by

RαRβRα(λ), RβRαRβ(λ), RαRα+βRβ(λ), RβRα+βRα(λ), Rα+β(λ),

where λ = −3(α̌ + β̌). Note that the last path Rα+β(λ) yields the maximal
coweight 2(α̌ + β̌), and all other candidates α̌ + β̌, 2β̌ + α̌ and 2α̌ + β̌ are in
Ψ(2α̌ + 2β̌). Thus far this pattern has held in all our rank 2 experiments; in any
given chamber Cw we have only ever observed one maximal coroot µ such that
all other candidates µ′ = Rβ1 . . . Rβk(λ) ∈ Ψ(µ). In A2 it seems to be the case
(after much tedious calculation) that RαRβRα(λ) ∈ Ψ(Rsα(β)), so in A2, to find
the maximal candidates, one should replace RαRβRα with Rα+β . On the other
hand in B2 there is an example where Rα(λ) ∈ Ψ(Rα+βRβR2α+β(λ)), (note here
sα = sα+βsβs2α+β) so shorter expressions do not always do better.

−3(α̌+ β̌)

0

2(α̌+ β̌)
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One further remark is that in the above example, every integral coweight inside
MP(λ) is indeed contained in Ψ(λ), where λ = −3(α̌+ β̌). If it were true in general
that for any λ and for any y ∈ W , My(λ) contains at most one element (in other
words, if each chamber has a unique “maximal” candidate if it exists), then this
would imply the following property: for every integral point µ inside MP(λ), µ ∈
Ψ(λ). This property holds for A1 × A1 and A2 by naive calculation, and has held
in every other example we have tried for B2. We would be interested in a proof or
disproof of this property for general root systems. When λ is dominant, Xλ = Grλ.
In this case, it is well known that MP(λ) is the convex hull of {w(λ) |w ∈ W},
and for every weight µ ∈ MP(λ) such that λ − µ ∈ Q̌, µ ∈ Ψ(λ). The study of the
moment polytopes of certain subvarieties in affine Grassmannians very often leads
to interesting applications in representation theory, see [An, Kam].
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[MV] I. Mirković, K. Vilonen, Geometric Langlands duality and representations
of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007),
no. 1, 95–143.

[St] J. Stembridge, The partial order of dominant weights, Adv. in Math. 136
(1998), no. 2, 340–364.

[Stg] R. Steinberg, Lectures on Chevalley Groups, Iniversity Lecture Series, Vol.
66, American Mathematical Society, Providence, RI, 2016.

[Zhu] X. Zhu, An introduction to affine Grassmannians and the geometric Satake
equivalence, in: Geometry of Moduli Spaces and Representation Theory,
IAS/Park City Math. Ser., Vol. 24, Amer. Math. Soc., Providence, RI,
2017, pp. 59–154.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Author's personal copy


