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Abstract. Let X) be the closure of the I-orbit X, in the affine Grassmanian Gr of a
simple algebraic group G of adjoint type, where I is the Iwahori subgroup and X is a
coweight of G. We find a simple algorithm which describes the set W(A) of all I-orbits
in X, in terms of coweights. We introduce R-operators (associated to positive roots) on
the coweight lattice of GG, which exactly describe the closure relation of I-orbits. These
operators satisfy Braid relations generically on the coweight lattice. We also establish a
duality between the set ¥(A) and the weight system of the level one affine Demazure
module 7y of g indexed by A, where “g is the affine Kac-Moody algebra dual to the
affine Kac—Moody Lie algebra g associated to the Lie algebra g of G.

1. Introduction

It is well known that Schubert cells in the flag variety of a reductive group G
can be parametrized by the elements of the Weyl group of GG. Moreover, the closure
relations among Schubert cells can be described by the Bruhat order on the Weyl
group. There is another equivalent description of the Bruhat order in terms of the
containment relations of Demazure modules of a Borel subgroup of G, which is
established in the celebrated work [BGG]| by Bernstein—Gelfand—Gelfand. There is
a generalization of this perspective for general Kac-Moody groups, see [Ku].

From now on throughout this paper, we assume that G is a simple algebraic
group over C of adjoint type. Let Gr denote the affine Grassmannian G(.%")/G(0)
of G, where J# is the field of Laurent series over C and & is the ring of formal
power series. The G(&)-orbits are indexed by dominant coweights of G. It is well
known that (cf. [BD, §4.5], [Zhu, §2.1])

Gr, C Gry if and only if A — p is a sum of positive coroots of G, (1)
where Gr,, and Gr) denote G(&)-orbits indexed by dominant coweights A, i, and
Gr), is the closure of Gry. Moreover, the intersection cohomology of Gry carries an
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action of the Langlands dual group “G of G, which is irreducible and of highest
weight A (cf. [MV]).

In this paper, we consider the action of the Iwahori subgroup I on Gr. The I-
orbits in Gr can be indexed by coweights of G. For each coweight A\, we denote by
X, the associated I-orbit and X the closure of X in Gr. For any two coweights A, p,
we introduce the partial order p <; A if X, C X). This partial order is equivalent
to the combinatorial Bruhat order on the affine Weyl group, see Lemma 2.22
for the precise statement. This order naturally appears in the study of parabolic
Kazhdan-Lusztig polynomials for affine Kac-Moody groups (cf. [KT]), as well as
in the context of non-symmetric Macdonald polynomials (cf. [Iol, To3, Io4]. For a
given coweight A\, we denote by W(\) the set of all coweights p such that u <y A. In
this paper, we describe the partial order <; in a way similar to the condition in (1),
and describe the set ¥(\) by a simple algorithm. We also introduce R-operators
which help to describe the extremal elements in ¥(\), and they themselves satisfy
braid relations generically on the weight lattice. Moreover, we give a representation
theoretic interpretation of ¥(A) in terms of level one affine Demazure modules,
which are of twisted type when G is not simply-laced.

In Lemma 2.2 we describe an algorithm that is used to produce new elements
for the set U(A), and in Theorem 2.6 we prove that this algorithm indeed produces
all elements of (). Roughly speaking, any element in W(\) can be obtained by
successively adding or subtracting positive coroots, depending on the signs of the
pairing between coweights and positive roots.

The set 7y(Gr) of components of Gr can be identified with the quotient group
P/Q, where Q is the coroot lattice of G. Let Gr* be a component of Gr that contains
the T-fixed point L_g, associated to the coweight —&,, where &, is a miniscule
coweight or zero. In Proposition 2.21, we explicitly realize the component Gr" as
a partial flag variety Gs./ P, of the affine Kac-Moody group Gs. associated to the
simply-connected cover of G, and realize each I-orbit X, as an affine Schubert
cell in G/ P,. In this way, we translate the partial order <; on coweights into
the partial Bruhat order on W,g/W,, where W, is the Weyl group of ]BK. In
Section 2.3, we explictly realize the affine Weyl group W, as the Weyl group of
the affine Kac-Moody algebra g associated to g, and translate the Bruhat order
on W into certain conditions on coweights (cf. Proposition 2.15, Corollary 2.12).
Combining all these preparations, in Section 2.5 we prove Theorem 2.6 that is
described in the previous paragraph. In Section 2.6, we use length zero elements
of the extended affine Weyl group to establish bijections between the sets U(A) in
different components of the affine Grassmannian (cf. Corollary 2.25).

Let g be the affine Kac-Moody Lie algebra associated to the Lie algebra g of
G. Let ©g be the affine Kac-Moody algebra with Dynkin diagram dual to that of
g. As already mentioned above, the components of Gr correspond to the miniscule
coweights of g or zero. Furthermore, the level one basic representations of g also
correspond to the miniscule coweights of g or zero (cf. Lemma 3.2). In summary,
we have the following correspondences:

Gr" «— W, +—— I, (2)

where 7, denotes the associated level one basic representation of ©g. This suggests
a duality between the affine Grassmannian Gr of G and the level one representations
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of Lg. For every coweight A € P, if Xy C Gr®, we may associate a level one
affine Demazure module ¥\ generated by a maximal weight vector v () €
associated to A. By Proposition 3.7 together with Proposition 2.21, we can establish
the following correspondences:

‘,u <71 A ‘ — ‘ partial Bruhat order on Wag /W, ‘ — @u C .@,\ (3)

where in the first correspondence we view Wa as the Weyl group of g, and in
the second correspondence we view W,g as the Weyl group of g (cf. Section
3.1). Under these correspondences, in Theorem 3.9 we show that there exists a
natural projection from the weight system of @A to the set W(A). It is interesting
to point out that we crucially use the Frenkel-Kac construction of level one basic
representations of g in the proof of Theorem 3.9. Furthermore, in Lemma 3.12 we
give a representation-theoretic interpretation for the algorithm in Lemma 2.2. More
precisely we show that the algorithm of adding or subtracting positive coroots to
coweights in W(\) can be interpreted as the actions of the positive real root vectors
of Lg on weight vectors in Zy.

In Section 4, we study the set ¥(A) and the partial order <; further. We first
show that for any two coweights A\, u € P, when they are located in the same
chamber, then p <; A if and only if A\ — p is a sum of positive coroots relative
to that chamber (cf. Theorem 4.1). This is analogous to the statement in (1).
In Section 4.2, we introduce R-operators on the coweight lattice P associated to
positive roots. It turns out that these operators exactly characterize the partial
order <; (cf. Theorem 4.3). In Proposition 4.9 and Proposition 4.10, we describe
explicitly the covering relations of <; for a coweight A when A is mildly regular. In
Section 4.3, we show that for any two positive roots «, 8, when they generate a rank
two root system as simple roots, then the associated R-operators R, Rg satisfy
a braid relation when the coweights are away from certain critical hyperplanes
(Proposition 4.14). We introduce in Definition 4.5 the notion of a-regularity of a
coweight in a fixed chamber, where « is a positive root. This notion allows us to
cross the wall H, defined by « so that R, ()) is in the reflected chamber and R,,
preserves the partial order <; (cf. Proposition 3.3). This allows us to produce an
algorithm to describe the vertices of the convex hull of ¥()), or in other words
the moment polytope of the affine Schubert variety X,, see the discussions in
Section 4.4.

Acknowledgments. We would like to thank I. Cherednik, P. Fiebig and S. Kumar
for helpful suggestions and discussions. We would like to thank S. Nie for bringing
the reference [St] to our attentions. We also would like to thank Changlong Zhong
for careful reading and pointing out some typos. J. Hong is partially supported by
the Simons Foundation Collaboration Grant 524406, and NSF grant DMS 2001365.

2. A combinatorial description of the closure relation of
Iwahori orbits in affine Grassmannian

2.1. Notations

Let G be a simple algebraic group G over C of adjoint type. Pick a maximal torus
T contained in a Borel subgroup B of G. Let X*(7T) denote the lattice of characters
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of T and X, (T) the lattice of cocharacters of T. Let ® denote the set of roots for
T, & the coroots so (X.(T),®, X.(T),®) is the root datum of G. Let W denote
the Weyl group of G. We denote by ®* (respectively ®*) the set of positive roots
(respectively positive coroots) determined by T C B. Let aq,...,ay (respectively
&1, ...,0) be simple roots (respectively simple coroots). Under the assumption
that G is of adjoint type, the lattice X, (T') coincides with the coweight lattice P.

Let ¢ = CJ[t] be the formal power series in ¢ with coefficients in C, and let
# = C((t)) be the field of formal Laurent series in ¢. Let Gr denote the affine
Grassmanian G(%)/G(0) of G. We have an evaluation map

evg: G(O) - G

sending ¢ + 0. Write I = evy'(B) as the Iwahori subgroup of G(#). Any
cocharacter \: C* — T gives rise to an element t* € G(#¢). Set

Ly :=t*G(0)/G(0) € Gr.

Then all T-fixed points in Gr are given by Ly, where A € X, (T). We denote by
X, the I-orbit I-Ly in Gr, and we denote by Gr) the G(&)-orbit G(&) - Ly. The
variety X, has a unique T-fixed point Ly, and Gry has T-fixed points L.y, for
we W.

Definition 2.1. Let U()\) = {L,, € P | t* € X,}, where the closure is being taken
in the Zariski topology. If u € W(A), then we write u <; A. Clearly <; gives a
partial order on P.

2.2. The algorithm
We begin with a key lemma in order to describe the set W(\).

Lemma 2.2. Let A\ € P, and let o € ®F be a positive root.
1) If (\,a) > 0, then A —ka € U(N), for 1 <k < (A a).
2) If (\,a) <0, then A+ ka € U(A), for 1 <k < —(\a)—1.
Proof. For any positive root o € ®*, we may choose root subgroup homomor-

phisms x,, x_, corresponding to the roots «, —«, and a cocharacter h,: C* — G,
which give rise to a group homomorphism

¢:SLy — G
such that
ol )i ot B s offy 2] one
Set
na(a) = ta(a)r—o(—a"")za(a) (4)
Then,
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We also have the following equalities,
na(a) = m—a(*ail)xa(a)w—a(*ail), na(ab) = ha(b) - na(a). (5)
for any a,b € C*.
Case 1: (A, ) > 0.
Let k be any integer such that 1 < k < (A, a). Let fuxx be the morphism
A! = Gr given by a — zo(at~*t M) . Ly € X,. Note that
fara(a) = trzy(at™) - Ly. (6)

As k>0, for defines an Al-curve in X, passing through L) when a = 0. In
view of (5), we can write

To(at™) = z_ o (a7 F) g (a)z_o(a™1tF), (7)
where t %% = h (t=%). Tt follows that
fara(a) =t oo (a )R Ly = 2R (a7tF) - L.

When a — 00, fa,xx(a) = La_ks. It follows that Ly_is € Xx. In other words,
A—ka e T(N).

Case 2: (A, o) < 0.

Let k be any integer such that 1 < k < —(\,a) — 1. Consider the morphism
Jakn: Al — Gr given by a — r_o(atF= M) Ly € X,. Similar to (6), we have

Gakx(a) = t)‘x_a(at_k) - Lg. (8)

Thus, ga,k,» defines an Al-curve in X, passing through L) when a = 0. In view of
(4), we have

z_o(at™F) = 2o (a7 )N, (—a 2 _o (a7 1EF). 9)
It follows that
Jakn (@) = t’\xa(a_ltk)tkd Ly = t/\+k‘5‘xa(a_1t_k) - Lg.
When a — 00, ga.kx(a) = Latra- It follows that A+ ka € T(A). O

This lemma will provide an algorithm which completely describes the set ().
For a positive root «, the algorithm will rely on the sign of (A «). In fact a
representation-theoretic explanation will be given in Lemma 3.12 of Section 3.2.

Remark 2.3. An analogue of Lemma 2.2 for simple roots and the highest root in
the setting of Bruhat order < is proved in [lol, Lem. 1.6]. In Lemma 2.22, we show
that the order <; is equivalent to the Bruhat order <.

For any coweight p € P and any positive root o € &, we first introduce the
following set of coweights attached to p and «

_ J{p—kal0<k < (u,o)}  when (u,a) >0,
Slu,a) = {{u—l— ka|0 <k < —(u,)} when (u,a) <O0. (10)

By Lemma 2.2, S(u, ) is a subset of U(\) if u € ¥(\). We now define an increasing
filtration {¥;(A)};>0 of subsets in U(A) as follows.
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Definition 2.4. Define ¥y(A) = {A\}, and

lIlz()‘) = U S(M,Oé).

HEY,; _1(N),a€DT

Let ¥ (A) denote the union of all ¥;(\). From this definition, we observe that if
U, (A) = U, 41(A) for some integer n, then Uoo (A) = U, (A).

Lemma 2.5. This filtration stabilizes after finite many steps, that is, there exists

a positive integer n such that Woo(X) = ¥, (A).

Proof. Let w be an element in the Weyl group W such that AT := w(\) is
dominant. Since X, C Gry+, we have

W) € (1] Ly € (Gra)T)

Hence, ¥(\) is a finite set, and so is U4 (A). Therefore the filtration stabilizes after
finite many steps. [

We are now ready to state the following theorem.
Theorem 2.6. For any A € P, U(\) = U (\).

This theorem gives an effective algorithm to describe the set W(\). We will first
make some preparations, and then the proof will be given in Section 2.5.
2.3. Affine Weyl group

The Weyl group W acts on the coroot lattice Q. From here we get an affine Weyl
group Wy := Q x W. We write elements of Wy as myw, where A € Q,w € W.
The element Thw acts on P by

mw(p) == w(p) + A, for any pu € P.
For any two elements 7, w1, Ta, w2, the multiplication is given by
(T2 w1) + (T, W2) = T,y (Ag) W1WS2- (11)

The pair (Wag, S ) is a Coxeter system where S consists of simple reflections {sili €
I} and a simple affine reflection so = 74589 where 6 is the highest positive root of
G and 6 is the coroot of 6. We denote by < the Bruhat order on (W, S ).

Let Waff be the extended affine Weyl group P x W. The multiplication is given
similarly as in (11). Following [IM] we define the length function ¢ on W,

U(raw) = > (A )| + > [(Aa) =1 (12)

acdt w-1l(a)edt aedt w-l(a)ed—

This length fu/r\mtion £ on Wy coincides with the length function on the Coxeter
system (W, S).

Let g be the Lie algebra of G. We associate to g the (completed) affine Kac—
Moody algebra g := g ® # & Cc & Cd, where c is the center, d is the degree
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operator, and the Lie bracket is defined as in [Ka, §7.2]. The affine Kac-Moody
algebra g\ corresponds to the extended Dynkin diagram T of g with the set of
vertices I = I U {0}. The Cartan subalgebra h of g is given by h & Cc @ Cd, where
b is the Cartan subalgebra of g. Let E* denote the linear dual of 5 Let 6 denote
the linear functional on b such that

8o =0, 8(c)=0, &(d)=1.

We first describe the affine root system associated to g. The set of all real affine
roots of g is given by R
(I)re:{a+k5|ae (I),k'EZ},

where the set of positive affine roots is given by

Ot ={a+ki|ac® k>0}Uudt
and the set of negative affine roots is given by

o ={a+kélac® k<0lUD .

Let (- | -) denote the normalized bilinear form on b, and the induced bilinear form
on E* (cf. [Ka, §6.1]). Let v: H — E* be the induced isomorphism. Then v(c) = 4.
Moreover, for any a € @, v(&) = 2a/(a|a) where & is the coroot of o. We will
denote by ( , ) the natural pairing between E and E*

We may realize the affine Weyl group Wag as the Weyl group of the affine Kac-
Moody algebra g in the sense of [Ka, §3.7], via the action of Wy on h*. Following
[Ku, §13.1], we define

nw(z) = w(@) + (w(z), r(A) — ((w(z), ) + 5NN (w(@),c))d,  (13)

for any myw € Wy, x € 6*

Lemma 2.7. The element x5S, € Wags corresponds to the reflection on E* asso-
ciated to the affine root —a + ko .

Proof. For any = € 6*, we have

Thasa(@) = — (@, 6) + (sa(x), Ay (ha) — (sa(z), k) + £ (kalka) sa(2), )3
2k(z, c)

x — (z, &)

o (- bmay+ é’@%@)a

(ala)
=z —(—(z,& 2k(z, ) -«
=o= (- o) + Tp) o a0
. 2(z| — a + ko) (—a + ko)

(—a+ ko |— a + ko)

where the last equality holds since v(c) = 0 and (—a+ kd| — a+ kd) = (a|a). This
is exactly the reflection on h* associated to —a+ kd. [
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For any o € ®* and k € Z, set
Sak = T—kaSa € Wt

Then by Lemma 2.7, s,k is the reflection associated to « + kd. In particular
50 = T5Sg is the reflection associated to the affine simple root ag := —60 + 6.

Lemma 2.8. Let a be a root in ®. Assume that k > 0 if « € T, and k > 0 if

o € 7. Then for any T_ \xw € Wy, Sqk,T-2w < T_)w if and only if

k< (\a) whenw l(a)e ®T,
k<(\a) whenw ' (a)e d.

Proof. We may realize W as the Weyl group of the affine root system of g. Note
that the assumption on « and k is equivalent to that of the affine root a + kd
being positive. In view of Lemma 2.7, s, corresponds to the reflection sq4x5. By
a general fact of the theory of Coxeter groups (cf. [Hu2, §5.7]), sqx7-rw < T_ w

if and only w7\ (o + k8) € ®7. By the formula (13),
w (a4 k6) = wHa) + (k — () a))d.

Thus the lemma immediately follows. [

Proposition 2.9. Let a be a positive root in ®T. Assume that Sa kT-AW < T_)\W.

(1) If w=(a) € ®* and k > 0, then (\,a) >0, and k < (), ).
(2) If w™ ) € @~ and k >0, then (A\,a) >0, and k < (\,a).
(3) If w™ ) € ®F and k <0, then (\,a) <0, and k > (), ).
(4) If w™(a) € @~ and k <0, then (A, o) < —1, and k > (), ).

Remark 2.10. When « is a simple root or a highest root, a similar characterization
appears in [lol, Lem. 1.3].

Proof. In first two cases, s, corresponds to the reflection of the positive affine
root a+ k9. In the last two cases, s, i corresponds to the reflection of the positive
affine root —a — kd. Then the proposition easily follows from Lemma 2.8. [

Definition 2.11. A coweight & € P is called miniscule, if for any positive root
a€dt (w,a) €{0,1}.

The following corollary and Proposition 2.9 will be used in Section 2.5.

Corollary 2.12. Let & be a miniscule coweight. For any A € Q — @, o € &1 and
Y € ToWr_g, assume that sq xT-x—oy < T-_r—o¥.

(1) If k > 0, then k < (), ).

(2) If k <0, then k > (), ).
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Proof. We can write y = 7owr_g, for some w € W. Note that

T-x—o¥Y = T-\tw(@))W-

We first prove part (1). Assume that k& > 0. If w™(a) € ®T, then (w(w),a) =
(w,w™(a)) € {0,1}. Moreover, by part (1) of Proposition 2.9,

E< A+ ww),a) =\ a)+ (w@),a).

Hence k& < (A, ). If w™(a) € &7, then (w(®),a) € {0,—1}. By part (2) of
Proposition 2.9, we get

E< A+ ww),a) =\ a)+ (w@),a).

Hence we also have k < (A, a). This shows that in case k > 0, we always have
k < (X, ), no matter whether w~!(a) is positive or negative.
By similar arguments, we can show that if £ < 0, then k > (A, o). O

2.4. Components of Gr as partial flag varieties of the Kac—Moody group

Let Gs be the simply-connected cover of G. Let ésc be the affine Kac—-Moody
group with Lie algebra g in the sense of Kumar and Mathieu (cf. [Ku, §VI]), which
can be realized as a central extension of the semi-direct product Gg.(o#) x C* (C*
acts on Gsc (") by the loop rotation) (cf. [Ku, Thm. 13.2.8]). It is known that when
G is of adjoint type, the associated affine Grassmannian Gr has | P/Q| components.
In this subsection we produce an explicit description of each component of Gr as
a partial flag variety of the Kac-Moody group Gsc.

Let M denote the set of vertices ¢ € I such that a; = 1, where q; is the
Kac labeling of affine Dynkin diagram I' [Ka, p.54, Table Aff 1]. Since ag = 1,
M=MU {0}, where M := MNT. Let 6 be the highest root of g. It is known that

0= Zaiai. (14)

el

For each i € I, let @; be the fundamental coweight of g attached to 1, i.e., for any
simple root «;,

(Wi, ;) = bij-
Lemma 2.13. For any i € I, the fundamental coweight &; is miniscule (cf. Defi-
nition 2.11) if and only if i € M, if and only if (@;,0) = 1.

Proof. This can be read from the Kac labeling in [Ka, p.54, Table Aff 1] for g,
and the list of miniscule fundamental weights for the dual Lie algebra “g of g in
[Hul, p. 72, ex.13] O

Lemma 2.14. The set {&, | Kk € M\} gives a complete set of coset representatives
of P/Q, as does the set {—, |k € M}.
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Proof. This appears as Corollary to Prop. 6 in [Bou, Chap. VI.2.3]. O

For any coweight p € 15, we define a conjugation Ad,: Wag — Wyg given by
Ad,(nw) =1, (maw)T—, for any maw € Wa.

For each k € M, set W, = Adg, (W), where by convention @ = 0. Set I, = I\{x}.
The following proposition is well-known.
For the convenience of the reader, we provide a proof here.

Proposition 2.15. For any x € J/\/[\, the subgroup W, is a parabolic subgroup of
Wage with Cozeter generators {s;|i € I;}.

Proof. When k = 0, W,, = W together with {s; |i € I} is clearly a Coxeter system.
Now we assume that x € M. For any ¢ € I\{0,x}, it is easy to see that

Adg, (s;) = si. Since § = ), a;o;, by Lemma 2.13 we have

Ad@R(SG) = T§Se = So-

Thus, W,, contains {s;|i € I.}. Let W/ be the subgroup of W, generated by
{si|i € I.}. As we see in the table [Ka, p.54,Table Aff 1], by deleting x the
Dynkin diagram f\{/@} is the same as the Dynkin diagram T' of g. Therefore W,
is isomorphic to W as Coxeter groups, in particular |W/| = |W|. On the other
hand the conjugation Adg, also gives rise to an isomorphism W ~ W, of finite
groups. It follows that |W,| = |W/|. Therefore W,, = W/, and furthermore W, is
a parabolic subgroup of W, with Coxeter generators {s;|i € I,,}. O

From this proposition, we may deduce an interesting corollary on the finite Weyl
group W.

Corollary 2.16. The Weyl group W can be generated by the set of reflections
{si|i € I\{k}} U {se} for any K € M (equivalently, the coefficient of a, in the
highest root 6 is 1).

Proof. By Proposition 2.15, the set {Ad_g, (s;)|¢ € I} generates the Weyl group
W. Unfolding the elements Ad_,_ (s;), the corollary immediately follows. [

The set 7y (Gr) of the components of the affine Grassmannian Gr can be identified
with P/Q. Let Gr* be the component of Gr containing the point

L_g =t"“G(0)/G(0).
By Lemma 2.14, we have the following disjoint union decomposition of Gr
Gr = Unel/\/l\ Gr"™ .

For any k € ]\/4\, set
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Any T-fixed point in Gr” is given by L) and any I-orbit in Gr” is given by Xy, for
some X\ € Q. Note that there is a bijection ¢,: @ — Wag/W, given by

A [ Wlm

which fits into the following commutative diagram

Q —— W/ W

| [,

Qn L’ WafF/Wn

In the following we would like to describe the component Gr" as a partial flag
variety associated to the quotient Wag/W.
There is a canonical projection m: Gsc = Gsc(£) x C*. The preimage

B =77 (I xC*)

is the standard Borel subgroup of Gec, where I is the Iwahori subgroup in G ().
We have the following identification

Gee/B =~ Gse(H)/ Isc..
For any maw € W, we associate an Ig.-orbit
Yow =Tt M Ie /Toe C Goe(H)/ Tec .

Then dim Y7, ,, = ¢(Thw).

Remark 2.17. The sign normalization in Y, ,, is crucial. Without this sign, the
dimension formula for dim Y-, ,, does not hold.

Let P denote the maximal standard parabolic subgroup of GSC containing
B, which is associated to the subset I, = I\{Ii} of T. By Proposition 2.15, P
corresponds to the parabolic subgroup W, of Wag. The B-orbits in the partial flag
variety Gsc/ P, can be indexed by the cosets in W/ W,.

Without confusion, we still denote by p: G (#) — G(#) and p: Gse(H) —
G(#) the maps induced from the covering map p: Gsc — G, where # is the
algebraic closure of #". The map p: Gs(#) — G(X') is surjective, but the map
p: Gsc(H) = G(X) is not if P/Q # 0.

Let t,, be a lifting of t=%* € G(#) in Gs(A) via the map p. Let Ad;_ denote
the conjugation map on Gs.(#) by t,., ie.,

Ad; (9) := tegty ", for any g € Goe(H).

Lemma 2.18. The conjugation Adg_ preserves Ge(H), and Adg_ is independent
of the choice of the lifting t,..
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Proof. For any root a € ®, we have

%vnxa (a)g’zl =2, (at‘“’mo‘)), (]_6)
where x, is a root subgroup homomorphism of Gy associated to «, and a € % .
Since the group G (#) is generated by its root subgroups x,, (%) (cf.[Stg, §7,
Thm. 10], it follows that the conjugation Ad; preserves Gsc(#). The indepen-

dence of the lifting t, also follows from the formula (16). [

Set
Gsc(0)r = Ad; (Gsc(0)).

Lemma 2.19. For any k € ]/W\, the parabolic subgroup ﬁ,i is equal to the preimage
7 HGse(0) . x CX), where m is the canonical projection w: Gsc — Gs () x C*.

Proof. We choose root subgroup homomorphisms Z,,Z_q,: C — G associated
to oy for each i € T. For each i € I, set 2o, ;=T 0Ty, and x_,, == T0T_,,. The
images of 244, land in Gy, and they are exactly the root subgroup homomorphisms
of Gs associated to +q; for each i € I. When i = 0, there exist root subgroup
homomorphisms xg,x_g of Gs. associated to 8, —6, such that

T 0Ty (a) =z _glat), ToZT_o,(a)=xe(at™") for any a € C.

Set I/DZ i= 171(Gee(0), x C*). We first observe that B C I/DZ, since (W, ) €
{0,1} for any k € M and any positive root o € ®*. Hence I/DZ is a standard
parabolic subgroup of Gy (cf. [Ku, Thms. 5.1.3, 6.1.17]). To show ﬁ; = P, it
suffices to check that f’z corresponds to the subset I, C I. In other words, it
suffices to check that 15,2 is proper and contains all root subgroups Z_,, for all
i € I,,. Equivalently it suffices to show that G(&), contains moZ_,, for all i € I,,.

When x = 0, it suffices to check that G(&) contains x_,, for each i € I, as
well as x_g(-t). This is obvious. When k € M, it suffices to show that Gs.(€), is
a proper subgroup of Ge. (), and G (0, contains z_,, for each i € I'\{x}, and
x9(-t71). Clearly Gs.(0),, is a proper subgroup of Gs.(#"), since Gy () is proper in
G (') and by Lemma 2.18 Ady_ preserves G (). The group G (0),; contains
Z_q, for each i € I\{k}, since

o, ()t = 2_a,(a).

Recall that (@, ) = 1. By the computation

t,{xg(a)fgl =129 (at_l),

we see that Gy (0), contains zg(at™1) for any a € C. This completes the proof.
O
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Example 2.20. We examine G = PGL3. In this case Gs. = SL3. All fundamental
coweights are miniscule. Let @7 be the first fundamental coweight. Then

) t™t 0 0
t™r* =10 1 0| €PGL3(%¥)
0 0 1
has a lifting
t=2/3 0 0
tr=| 0o /3 0 | esLy(HA).
0 0 /3

By conjugating we see

air traiz tlags
SLg(ﬁ)l = Adfﬂpl (SLg(ﬁ)) = tagl a2 a3
tas, asz2 as3

(aij) S SLg(ﬁ)} .

The group p~!(SL3(€); x CX) is the maximal parabolic subgroup of the Kac—

Moody group SLj associated to the set of simple roots {ag, aa}.

Proposition 2.21. There exists an isomorphism i, : Gr” — C:'SC/JSH as ésc-homo—
geneous spaces with i,(L_g_.) = ePy, and moreover, i,,(X\) = BT_x—g,. Ps/Ps.

Proof. Tt is well known that Gr? is isomorphic to Gs.(#")/Gs.(€) as a homogenous
space (this can be seen by comparing the Cartan decompositions for G(J¢") and
G (X)).

The translation map from Gr® to Gr® given by L + t~%~L is an isomorphism
between Gr' and Gr”. In view of Lemma 2.18, one can see that the component
Gr" is also a homogeneous space of Gg(#'). Moreover Gg(0), is exactly the
stabilizer group of Ge(#) at L_5, € Gr* (recall that . is a lifting of t~%= ).
Hence Gr" ~ Gsc(#)/Gsc(0) ;. Furthermore

Gr™ = (Gee (A7) @ C7)/(Gee(0) x C7),

since the rotation factor C* acts trivially at L_,_.

Finally we consider the action of ésc on Gr®, which factors through the action
of Gsc(#) x C*. The stabilizer group of Gsc at L_s, is p~1(Gs(0), x C*). By
Lemma 2.19, we conclude that Gr" ~ C:‘SC/]S,Q.

For any \ € Q,, equivalently A + &, € Q, so we have t*" ¥~ ¢ Gec (). Then

BT s, P/ Pe = T t'9r - Ly, = Toe-Ly = T-Ly = Xy,

since the natural map Isc — I is surjective. This completes the proof of this
proposition. [

Given any two coweights X, u € Q,., let T_x—o,w (respectively 7_,_g y) be the
minimal representative in the coset 7_x_g, W, (respectively 7_,_z, Wi).
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Lemma 2.22. p <7 X if and only if 7_, 4.y < T_x—g, W, where < is the Bruhat
order on Wu.

Proof. This equivalence follows from Proposition 2.21 and [Ku, Prop. 7.1.21]. O

2.5. Proof of Theorem 2.6
We first recall the statement of Theorem 2.6.

Theorem. For any A\ € P, U()\) = ¥ ()).

Proof. By Lemma 2.2, it suffices to show that p € ¥U(\) implies u € ¥ (N). We
may assume that \, u € Q,. for some k € M.

Let 7_x_g, y (respectively 7_,_s, w) be the minimal representative in the coset
T_x—o, Wi (respectively 7_,_s, Wy). By Lemma 2.22, p <7 A if and only 7, ¢, y
< Tor—w,W.

By the chain property of partial Bruhat order for Coxeter groups (cf. [BB, Thm.
2.5.5]), there exists a sequence of elements

Tep—0, W =T\ =0 Yn <X T=Ap_1 -0 Yn—1 < < T-X1 -, Y1 < T—Xg—w,. Y0

T-_\—,.Y,

(17)

which satisfies the following properties:

(1) for each 0 < i < m, 7_x,_,.¥: is the minimal representative in the coset
T—)x;,—&),,iWIi;

(2) for each 1 < i < n, T_x,—0.Yi = S8, k:T—ri_1—w.Yi—1 for some affine
reflection sg, r, with 3; € ®* and for some k; € Z, and {(7_», -z, yi) =
UTx 1 -0,Yi-1) — L.

By the choice of this sequence, we see that all \; are distinct. By Proposition 2.21
and [Ku, Prop. 7.1.21] again, the sequence (17) is equivalent to

Ay = <7 A1 <7 =7 AN - <1 AL <1 Ag= A
From the following computation
Toxi—0nYi = Togy 3 SB T=Nim1 =0 Yim1 = T_x, b (Oi1,80) ki) fi—o A (88,)¥i-1,

we see that A; = \j_1 — ((Ni21, 8:) — kl)ﬁvl and y; = Adg, (sg,)yi—1 € Wi. It follows
that (\;_1, 8;) — k; # 0, since all \; are distinct. Since

T-Xic1—0xYi-1 R TN =0, Yi = S8 ki T—Ni_1—0.Yi—1,

in view of Proposition 2.9 and Corollary 2.12, we have

(1) if k > O, then 0 < <)\¢_17ﬂi> — ]Ci < <>‘i—17ﬂi>;
(2) if £ <0, then 0 < k; — (Xi—1, Bi) < —(Xi—1,Bi)-

Therefore A\; € ¥y (\;—1) for any 1 < i < n (cf. Definition 2.4). In fact \; € ¥;(Ag)
for each 4. It follows that u € U, (), since by convention g = A, and A = A\g. O
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2.6. Crossing different components of Gr

Recall that Waff is the extended affine Weyl group P x W. Let Q denote the > group
of all length zero elements in Waff Equivalently, € is the stabilizer group of W at
the fundamental alcove of Wog (cf. [Hu2, §4.5]). Then Q ~ P/Q. Let W, denote
the stabilizer group of W at w,. Then Wy, is a parabolic subgroup of W with

Coxeter generators {s; |i € I \/{\O, k}}. For each k € M, let w,, denote the longest
element irl\ Wy, for each xk € M, in particular wy is the longest element in W. For
each k € M, set w"™ = w,wy.
Lemma 2.23. The group €2 consists of elements
Vi = T@KZUK S Waff, K € ]/\4\,
Proof. See [Mac, 2.5.4]. O
Using the length zero element v,, we define a translation map p,: Gr® — Gr”
given by
Lt “~w"L € Gr® for any L € Gr’.
Proposition 2.24. For any A € Q, we have p,(Xy) = X (A= > 0nd pe(Xy) =
N
Proof. Since the map p, is an isomorphism between Gr® and Gr”, it suffices to
show that p.(Xx) = Xy, (A)—w,- We are reduced to show the following fact
t O T(w™) s = 1.
For any o € &,
tm Wz, (a) (w) P = T (a) (at ™ {@mw (@),
where z, (respectively 2, (4)) is the root group homomorphism associated to o

(respectively w*(«)), and a € C. Notice that w"(«) € @~ if and only if the support
of w"(«) contains the simple root «,, with coefficient —1. It follows that

S )1 ifw(a) € 7,

(@, w™ () = {0 if W (a) € B+,

It follows that ) )
R g (a) (W) O € 1.
For any a € &~
t™ R, (at) (w®) T = xwﬁ(a)(atl—@mm(a))).

In this case w"(a) € @7 if and only if the support of w"(«) contains the simple
root a,. with coefficient 1. It follows that

0 ifw(a)edt
1 — (g, w"(a)) = ’
(G, 0 (@) {1 if w(a) € ™.
Therefore .

O w gy (at)(w®) " € 1.

This finishes the proof. 0O

Now we define a map j,: Q — Qx, given by p.(\) = w*(\) — &.. The following
corollary is a consequence of Proposition 2.24.
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Corollary 2.25. The map p, gives rise to a bijection from \II()\) to U(wr(\)—wx)
which preserves the partial order <p, for any X\ € Q and K € M.

Notice that for any o € &, if (A, ) > 0 and 0 < k < (), a), by Corollary 2.25
Pr(X — k&) = pe(X) — kw™ (&) € U(w"(X) — wy).

Given a positive root « satisfying above conditions, w"(«) could be a negative
root. If w*(«) € ®~, then

(Pr(A), —w"(a)) <0.

In this case, A — kd is obtained by successively subtracting the positive coroot ¢;
however p,.i()\ ka) is obtained by successively adding the positive coroot —w" ().
There is a similar phenomenon when (X, a) < 0.

3. A duality between affine Schubert varieties and
level one affine Demazure modules

3.1. The Kac-Moody algebra Lg

Let LF be the Dynkin diagram which is dual to the Dynkin diagram F of g.
Let g denote the Kac-Moody algebra associated to LT. Let {e:, fili € I} be a
set of Chevalley generators of ©g. Let g be the Lie subalgebra of g generated
by {é, fi|i € I}. Then 'g is a simple Lie algebra with Dynkin diagram Ly
which is dual to the Dynkin diagram I' of g. We have the following table for
the correspondence between (I',I") and (*T', T

r| A, | B, Co | Do | Es | Er | Es | Fu | Gy

r[A® | BY | ¢ || e | eM | E] | FY |G

(18)
Il A, | C | B, | Dy | Es | Ex | Es | Fu | Gy

Lf AE,,D Ag) D(2)

n—1 n+1

Dgll) E((il) Egl) Eél) EéQ) D513)

From this table, we see that if I' is simply-laced, then [=IT.IfIis non-simply-
laced, then *T is of twisted affine type.
Let “h denote the Cartan subalgebra of “g. We can write

lhy=tpocCeoCd and 'h*=%p*@CAyo C),

where ©h is the Cartan subalgebra of g, ¢ is the canonical center of g, d is the
degree operator, Ag is the fundamental weight of g associated to 0 € I, and ¢ is
the element such that 5|Lh =0, (5,¢) =0 and (5,d) = 1.

Recall that f) is the Cartan subalgebra of g. Under the duality of T and LF we
may identify Lf) with h* and identify Lh* with f) Under this identification, Lp = p*
and Lh* = h. In particular, the simple roots {a;|i € I} of g can be regarded as
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the simple coroots of g, and the simple coroots {&; |i € I} of § can be regarded
as simple roots of ©g. Moreover, § can be regarded as the canonical center &, hence

¢ = Z a; 0, (19)
iel
vyhere a; is the Kac labeling of f at i, in particular ag = 1. The coroot lattice
Q@ (respectively coweight lattice P) are now regarded as root lattice (respectively
weight lattice) of “g.
We will still denote by (-|-) the induced bilinear forms on Ly and Lh* from the
normalized bilinear form (-|-) on E and E It turns out that the induced forms on

LH and LH* are still the normalized bilinegr forms with respect to ©g.
Recall the affine Weyl group Wr = @ x W. We can also realize Wy as the
Weyl group of I'g. For any myw € W, and h € Lh*, following [Ka, §6.5.5] we define

mw(h) = h+ (h, &)\ — ((h|>\) + (ALA)GL,@)) 5. (20)

The set L@, of real roots of L§ can be described as follows (cf. [Ka, Prop.
6.32)b) ])

Ly, ={a+krad|ac® kel}

where ¢ is the coroot associated to «, and r, = 2/(a|a); more precisely

1 if T" is simply-laced, or « is a long root when I' is non-simply-laced,
rq =< 2 if « is a short root when I' = B,,, C,,, Fy,

3 if o is a short root when I' = Gs.
There is a bijection n: (/I;re — L&)re between &)re and L&)re, given by

n(a + kd) = @+ kryd.

Lemma 3.1. The bijection n is Wa-equivariant.

Proof. For any Thw € Wy and o+ kd € </IS, from the formula (13) we have
n(nw(a +k6)) = n(w(d) + (k — (A, w(a)))d)

= w(@) + (k = (A w(@)))rad,
where w(&) is equal to the coroot of w(a). On the other hand,
(kra = (Aw(@)))d
(kre — (N w(&))ra)d,

20 w(@)  _ 2(\ w(@))
(w(@)|w(a)) (ala)

From the above two computations, we see that 7 is Wg-equivariant. [

(Aw(a)) = = (N w(@))ra.
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Under the map 7, the image n(t/ﬁi) is the set of all positive (respectively
negative) roots in “®,.. Recall the set {&, | € M } in Lemma 2.14. The following
lemma follows from the discussion in [Ka, §12.4]. For the convenience of the reader,
we include an argument here.

Lemma 3.2. For any \ §\P+, Ao + X is a dominant weight of L'y of level one if
and only if X € {&. |k € M}.

Proof. We first observe that A is dominant if and only if
(Ao + X ;) = (N a;) >0, foranyicl.
By the formulae (19) and (14), ag = ¢ — 0. Hence, Ag + ) is dominant if and only
(Ao + XN ) = (Ag+ X, 6—0) =1—(\,0) >0.

By Lemma 2.13, X is equal to w,; for k € M. This concludes the proof. [
For each x € JTZ[\7 set A, = Ay + @,

Lemma 3.3. The stabilizer group of Wag at the dominant weight A, is equal
to W,.

Proof. Tt is known that the stabilizer W of W at A, is a parabolic subgroup of
Wiage. It is enough to determine the Coxeter generators of W/. We first examine

so(Ao),

For any v € M,

so([\,@) = TéSg(Ao +w,) = T(;(Ao + 0 — 9)

where the fourth equality holds since (A|f) = 2 and (f|@, — ) = —1.
Now it is easy to see that the Coxeter generators of W/ are given by {s; | € I},
where I, = I\{k}. By Proposition 2.15, we can conclude that W/ =W,. O

3.2. Level one affine Demazure modules

We first make a digression to prove a general lemma in the setting of general
symmetrizable Kac-Moody algebras. Let A be an integral dominant weight of a
symmetrizable Kac-Moody algebra G with a fixed Borel subalgebra B. Let W be
the Weyl group of G. Let V) denote the irreducible integrable representation of G
of highest weight A. Let W, denote the stabilizer group of W at A. Then W, is a
parabolic subgroup of W. Let WA denote the set of minimal coset representatives
in W/Wha.
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Proposition 3.4. For any y,w € W, we have
w =<y = vy € UB)vy,).
Proof. Let B~ denote the negative Borel subalgebra in G. Then we have
w =<y = vyn) CUB )vyn- (21)

This fact is stated in [Ku, ex. 7.1.E.4 ], and this is a parabolic version of [Ku, Prop.
7.1.20]. The proof is almost identical to that in [Ku, Prop. 7.1.20].
In the next step, we show that

Uy(a) C U(Bi)vw(/\) = Uy(a) C U(B)vy(,\).

Let (-,-) be the contravariant form on 7} (cf. [Ku, Prop. 2.3.2]), which satisfies
that, for any vi,vy € Vp, and z € G.

(xv1,v2) = (v1,0(x)v2),

where o: G — G is the Cartan involution on G. The involution ¢ induces an anti-
automorphism on the universal enveloping algebra U(G) of G. Furthermore the
contravariant form (-, ) has the following properties:

(1) (-,-) is non-degenerate on each weight space Vj(u), where u is a weight
of G.

(2) (v1,v2) =0 for any two weight vectors vy, vy of distinct weights.

Assume that vy(n)y C U(B™ )vy(a). We may write vyn) = Puvy(a), where P is an
element in the enveloping algebra U (N ™) of the nilpotent radical A/~ of B~. Notice
that the weight space Va(y(A)) is 1-dimensional. It follows that we may assume
P € U(N7™) is a monomial in negative root vectors in A'~. By the non-degeneracy
of (-,-) on Vi (y(A)), we have

0 7 (vy(a)s vy(n)) = (Prw(a), vy(a)) = (Vuw(a), o (P)vy(a))-

Note that o(P) € U(N) is a monomial in positive root vectors in A/, where N
is the unipotent radical of B. By the second property of the contravariant form
mentioned above, we must have o (P)vya) € Va(w(A)). By the one-dimensionality
of Va(w(A)), there exists a nonzero constant ¢ such that

V() = co(P)vyay € UN)vy(a).

By similar argument, we can show that if v,,(xy € U(B)vy(a), then we have vy €
U(B™)vy(a)- Thus the lemma is proven. [
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Remark 3.5. The equivalence (21) can be proved by the induction on the length
of elements of Weyl group. The proof of [Ku, Prop. 7.1.20] in the regular case
essentially incorporates the original proof for finite Weyl groups by Bernstein—
Gelfand—Gelfand [BGG]. We don’t know how to prove Proposition 3.4 by induction
directly. It is interesting to use the contravariant form to reduce the lemma to the
equivalence (21).

We now return to the Kac-Moody algebra Lg. Let %, denote the irreducible
integrable representation of g of highest weight A,. Then . is an integrable
representation of level one. Fix a highest weight vector vy € J. For any A € P
if A e Q. :=Q — w,, then we set

w(\) == T_r_w. (M),
where 7_5_g, € Wag. Let vg(n) € S be an extremal vector of weight w(\). By

this convention, w(—w,) = A.. By a simple computation from formula (20), we
have the following formula
M(g for A € Q. (22)

Definition 3.6. We now define the affine Demazure module @A for each A\ € P
as follows,

w(\) =KAo — X —

@)\ = U(LE)UW(A) c s, iftle Q,.;,
where U(Zb) is the universal enveloping algebra of the Borel subalgebra b of L.

Reqall that there is a bijection Q, ~ Wt /W, where Q.. := Q — @,. For each
A € @, let T_n_g, denote the associated minimal representative in the coset
T_)\_@NWH.
Proposition 3.7. For any A\, u € P, then pu <1 X\ if and only if Ve (p) € @,\.

Proof. First of all, 4 <y A if and only if 7_x_45, < T-r_g,.. By Lemma 3.3, we
have

@A) = Toama,(Ae), @(k) = Tor—s, (Ax)-
Hence .@A =U (LE) “Ug(n)- Lastly, in view of Proposition 3.4 we conclude that
p <y Aif and only if v,y € 5. U
Let P(.7;) denote the weight system of the integrable representation J7Z;. A
weight o € P(,) is called maximal if o+ 0 ¢ P(7). Let Max(2,) denote the

set of all maximal weights in P(J). The weight system P(.) can be completely
described by the following lemma (cf. [Ka, §12.6]).

Lemma 3.8. For any k € ]\7, we have
(1) Max () = {@w(A) [ A € Qx};
(2) P(H) = Upeo Aw(N) —nd|n € Z*} is a disjoint union.

Any weight in P(7,) is of the form Ag — A\ + mé, for some integer m. We define
a twisted version of projection
p: P(J,) — P, given by Ag — A +md — .

Let P(@,\) denote the weight system of the affine Demazure module 7.
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Theorem 3.9. The map p maps P(@A)) onto ¥(X), and p admits a canonical
section A — w(A).

Proof. Set

= @n>0( )iné @ Lh @ CC and fJi ®n>0(La)ﬂ:n6~
Then $ is an Heisenberg algebra with the center ¢. By the Frenkel-Kac construc-
tion (for untwisted affine types, see [FK]; for Agi)fl, Dfll, E((f), see [Fr, Thm. 1.2.25]
[FLM, §7]; for Df), see [BT, §B.8 ]), the representation . can be realized as

A = S($H7) ® ClQx], (23)

where S($)7) is the symmetric algebra of $~, and C[Q] consists of linear combina-
tions of e}, A € Q.. Moreover

Hn(@(N) = nd) = S(H7)_,5 @€,
where e is of weight (), and
D50 (@A) — nd) ~ S(H7) ® e

is a free U($)~)-module of rank 1.

By Lemma 3.8, any weight vector in :@,\ is of weight w(u) — mé for some integer
m and p € P. To show that p maps P(@,\) onto ¥(A), it suffices to show that for
some nonzero weight vector T (u)—mi in @)\ of weight w(u) — mé, the maximal
vector vg(,) is also an element in 9?)\.

Let (-,-) be the contravariant form on 7, and let o be the Cartan involution

on 3. Clearly, there exists a weight vector Ty 5 of weight w(p) — md, such
that

p)—m

(xw(u)fmS’ xw(,u)fm(;) 7& 0,

since the contravariant form (, ) on the weight space .7 (w(u) — md) is nondege-
nerate. By the construction in (23), Tyy(p)—mé CAN be written as P - vg(,), where

P is an element of weight —md in the enveloping algebra U($)~) of . Then

0 # (‘rw(,u)—mg’ww(,u)—mg) = (P “ Ve (p)> mw(p)—mé) = (UW(#)7 O—(P)xw(,u)—m(;)'

By the one-dimensionality of the weight space S (@ (1)), 0(P)Z () —ms = CVw(y)
for some nonzero constant ¢ € C, since o(P) € U(HT),, 5. Here we use the fact
that ¢ maps $~ to 5. When g is of untwisted affine types, this fact follows from
[Ka, §7.6]. This fact holds for twisted affine types as well, see [Ka, §8.3].

Since H+ C Lb b, it follows that v(,) € _@A Then by Proposition 3.7, we have
<1 A. In other words, u € ¥(A). This concludes the proof. O

Remark 3.10. In the proof of Theorem 3.9, we crucially use the Frenkel-Kac
construction of basic representations for “g. Note that this construction only works
for affine Kac—-Moody algebras of type X7(f)7 where r = 1,2,3 and X, is of type

A, D,E. From Table (18), we see that g exhausts all cases except Aézn)
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Example 3.11. By Lemma 3.8, it is clear that p: P(%#,) — P is not one-to-one.
In fact p: P(@A)) — W(A) is not one-to-one as well. For example when g = sl and
k = 0, consider the affine Demazure module .@_gd,vwhere « is the simple root of g.
One can check that 0 # (e )?ve(—2s) has weight Ag — 24. The following example

describes all weights appearing in Z_o4.

Ao +2a — 40

Let €4, 5 De a root vector in LG corresponding to the root &+ mrqd € Lg+,
Via the bijection 7 given in Section 3.1, by Lemma 3.1 the coroot of & + mrad is
a+mdé e dt.

The following lemma gives a representation theoretic interpretation for Lemma
2.2.

Lemma 3.12. For any o € T,

(1) if (A, ) >0, then for any 0 < k < (X, a),
(ea)" - vy # 0, and p(wt((eq)® - vm(n))) = A — kii; (24)
(2) if (A, &) < =1, then for any 0 < k < —(\, ),

(efdﬂag)k “Umn) # 0, and p(wt(67d+ra5)k “Uopny)) = A+ ka,  (25)
where wt( - ) denote the weight of a weight vector.

Proof. With respect to any sls-triple {ed+kTa5,e_d_kTa5,a + ké} associated to

a+ krod € &f*‘, the extremal vector vg(y) is either a highest weight vector or
lowest weight vector. In part (1), by (22)

(@A), ) = =(A, ) <0,

the vector vy is a weight vector of lowest weight —(), a) with respect to the
slo-triple associated to ¢&. Hence the statement (24) holds.
In part (2), since
(@A), —a+48) =1+ () a) <0,

the vector v (y) is again a weight vector of lowest weight 1+ (), o) with respect to

the slo-triple associated to the positive root —é + 7,0. Hence the statement (25)
holds as well. [
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Remark 3.13. For any A € Q,., let v denote the unique dominant coweight that is
translated by the Weyl group W from —\. Set V,, := U(Fg) Ve(n) C . Tt is well
known that V,, is a finite-dimensional irreducible representation of highest weight
7. The vector vy (x) € V5 is an extremal vector of weight —\. Let Lb denote the
Borel subalgebra of g obtained as £b := Lb N Lg. Then D_y = U(Fb)vg(y is a
Demazure module in V, in the usual sense. It is proved in [Io2] that the multiplicity
of the weight space D_(—pu) is equal to the number of top components of the
intersection N () - L, N1 - Ly. It is a natural question to ask if there is similar

phenomenon for the affine Demazure module @)\.

4. Further study of the set ¥(A)

4.1. The partial order <; on a chamber of the coweight lattice

Let € be the dominant chamber of the coweight lattice P determined by 7' C B,
ie.,
c={\Ae P|(\a)>0, forany a € &}

Set €, := w(¢) for any w € W. Then P is the union of all chambers €,, indexed
by w e W.

Theorem 4.1. For any coweights A, pn € €y, p <1 A if and only if A — p is a
positive sum of coroots in w(PT).

Proof. We first assume that p <y A, in other words L, C Xy. Set AT := w=1()\)
and pt := w™!(p). Then A*, pt € € It follows that L,+ C Gry+, since Gry+ =
G(0) - Ly. Hence AT — pt is a positive sum of coroots in ®*. Equivalently, A\ — p
is a positive sum of coroots in w(d+).

Now we prove the converse. Assume that A — p is a positive sum of coroots in
w(®). Equivalently, At —u* is a positive sum of coroots in ®*. By a result due to
Stembridge and Steinberg (cf. [Stg, Cor. 2.7]), there exists a sequence of dominant
coweights

/J/+ - A8_7>\1"_,...7AZ_717A;: = A+7
such that for each 1 <i <k, A} = A/, + 3; where §; € *. Set \; := w(\]") for
each i. Then \; = \j_1 + w(f;). Since

Ao w(Bi)) = ic1 +w(Bs), w(B)) = (N + Bi, Bi) = (M1, 8:) +2> 0,

by Lemma 2.2, A\;_1 = A\; —w(B;) € ¥(\;). Hence \;_; <; A;. Inductively, we have
w=<ria 0o

This theorem completely describes the partial order <; on any fixed chamber.
Moreover from this theorem, we immediately get the following corollary.

Corollary 4.2. For any two coweights A, i in the same chamber, u < A if and
only if w(p) <5 w(A).
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4.2. R-operators and cover relations

For each a € @1, we define the operator R, on P,

) sa(A) = A= (N oa if (A, ) >0,
Ba(}) = {SQ(A) —a=A-\a)a—a if()\a)<O0. (26)

By Lemma 2.2, for any A € P, we always have Ry ()\) € U(\).
The following theorem shows that the set W(\) can be obtained by repeatedly
applying R-operators starting at A.

Theorem 4.3. For any coweight A € P, we have
\I’()\) = {Rﬂ1R,32 s RBk (/\) | keN, B1,82,...,0r € (I)Jr}.

Proof. By Lemma 2.2, for any A € P, we always have R,()\) <; A. Therefore for
any sequence of positive roots f1,. .., Bk, we have Rg, Rg, - -- Rg, (A\) € U(A).

To show the other inclusion, we first prove the following general fact: for any
w, i’ € P,if i’ € S(u,a) for some positive root o € ®F (recall S(u, ) defined in
(10)), then z’ can be written as (R,)*(u) for some integer k. We first assume that
(, ) > 0. One can check that for any integer m > 0,

feY 2m if < < ’ 23
i —ma— )2 A(u)_ 1 if 0<m < (4, a)/ (27)
(Ro)X0=mH ()i (p,0)/2 <m < (X, ).
Now we assume that (i, @) < 0, one can check similarly
Ro)*™ if 0<m < —(ua)/2
P ( )2(_(<u) - if0<m<—(ua)/ (28)
(Ra)* @) =m)=1(0) i — (u,0)/2 < m < —(,a) — L.

From the computations (27) (28), we see that this theorem follows from Theorem
26. O

For a € ®* and k € Z, let H, ; denote the hyperplane {\ € P|()\,a) = k}.

Lemma 4.4. Assume that i, X are in the same chamber €, and p, A & H, _; for
some positive root o € DT, if <5 A, then Ry (1) <1 Ra(N).

Proof. Since « is either an element in w(®™) or an element in w(® ™), it follows that
either (A, ) > 0 and (u,a) > 0, or (A\,a) <0 and (u, ) < 0. By the assumption
w, A & Hy 1, it follows that either (A\,a) > 0 and (u,a) > 0, or (A\,a) < 0 and
(u, ) < 0.
In the first case Ro(p) <5 Ro(A), which follows from Corollary 4.2. In the
second case,
Ra(X) = s4(N) — &, and R, () = 84 (1) — c.

Hence by Theorem 4.1, R, (\) — Ry (1) is a positive sum of coroots in s,w(®T).
Then by Theorem 4.1 again, R, (u) <7 Ra(N). This concludes the proof. [

In the following, we introduce the notion of a-regularity n-regularity for a
coweight. This notion will allow us to cross the wall H, := Hg .
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Definition 4.5.

(1) We say that a coweight A is a-regular, if (A\,a) > 0, or (A\,a) < 0 and
A+ @& € €,x, where w” is the minimal element in W such that A € €,x.

(2) We say that \ is n-regular for a nonnegative integer n, if (\,w*(a;)) > n
for any simple root «;.

Set
1 if T is simply-laced,
r =42 if I" is non simply-laced but " # Gg,
3 ifI' = Ga.

Lemma 4.6. If \ is r-reqular, then X is a-reqular for any positive root .

Proof. By the assumption of r-regularity, it is easy to see that (A, a) # 0 for any
root a, since « is always a positive (or a negative) summation of w*(«;). We may
only consider the case when (A, o) < 0. Note that we always have | (&, w*(a;))| < r
(cf. [Hul, §9.4]). It follows that

(A + &, w*(a;)) > 0, for each simple root a;.

Equivalently, A + & € €». It finishes the proof of the lemma. [

Lemma 4.7. Let a be a positive root in ®+. Let \ be an a-reqular coweight. Then
A& Hy 1 and Ro(N) € €y, where w is the minimal element in W such that
AeC,.

Proof. First of all we show that A\ ¢ H, _1. Assume that (A\,a) < —1. Then
w™H(a) € &7, since X € €,,. Write —a = Y ¢;w(q;) as a positive linear combina-
tion of the w-translations w(a;) of simple roots. Then

A+ d,a) =— ZciO\ + d, w(ay)) <0.
By the a-regularity of A, it follows that (A, ) < —2. It follows that A & H, _1.
We now show that R,(A) € €5 .. When (A, a) > 0, it is obvious. Set 3 :=
—w~!(a) € ®*. Then 8 = —w~1(&). For any simple root «,
<Bvai> S 2.
To show that R, (\) € €4, it suffices to check that, for any simple root «;,
(Ra(A), saw(ai)) = 0,

which follows since

(Ra(N), saw(@i)) = (sa(A) — & saw(a;))
=N+ dw(a)) >0 O.

The following result immediately follows from Lemma 4.4 and Lemma 4.7.
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Proposition 4.8. Let o be a positive root. For any a-reqular coweights p, A in
Cow, if <1 A, then Ro(1), Ro(N) € €4 and Ry (1) <1 Ra(N).

Following [BGG], we write y < w for any y,w € W, if y = s,w and f(w) =
{(y) 4+ 1 for some reflection s,. Similarly, we write y — X for any p, A € P,
if 4 = Ro(N\) and dimXy = dimX, +1 for some positive root a. As shown in
Theorem 4.3, the R-operators generate the closure relations for <;. So we see that
the covering relations of <; on P must all be of the form ;=5 \.

Recall that dim X, = #(7_yw?) where / is the length function defined in (12),
and w” is the minimal element in W such that A € €, ». Set At := (w*)~1()\); by
definition AT is the dominant translate of A. The following formula is a consequence
of (12),

dimXy = 2(\", p) — £(w?). (29)

From this formula, we immediately see that pu %+ X if and only if 4 = R ()) and
Uuw?) = (wh) = 200" — p*,p) — 1. (30)

This characterization is a bit complicated, as we need to determine AT, u™ and
the lengths of w* and w*. In the following two propositions, we give a simpler
characterization of the cover relation R, (\) —» X when \ is a-regular.

Proposition 4.9. Let p, A be two coweights in P such that j = Ry (\) for some

positive root .. Assume that (\,a) > 0. Then p =+ X if and only if w* = s w.

Proof. Observe that w* < s,w® and (w*)7!(a) € ®*, which follow from the
assumption that (A, a) > 0. We also notice that A* = p* in this case.

We first prove the direction “<=7. It is enough to show that w* = s,w*. By
the formula (12), for any w and A € €,,, we always have

Ur_yw) > 2001, p) — L(w).

In fact, the equality holds if and only if w = w*. We now show that s, = s,w* by
contradiction. Assume that s,w? # w*, implying the following inequality:

UT—s, 0 Saw?) > 20T, p) — L(squw™) = 2(AT, p) — £(w?) — 1. (31)

A

On the other hand, we view 7_ w” as an element in the extended affine Weyl

group Was. By the formula (20),
(roaw?) " Ha) = () @) — (A, a)d
is a negative affine root. It follows that s,7_yw” < 7_yw?. In particular,
U(saTorw™) < £(Toyw™) = 2(\F, p) — £(w?).

It contradicts with the inequality (31), since s,7_ \w* = T,Sa()\)sau/‘.

The direction “==" is obvious. O
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Proposition 4.10. For any two coweights i, \ in P with i = Ry(\) for some

positive Toot «, assume that (A, ) < 0 and X is a-reqular. Then u & X if and only
Uw?) = L(wh) = —2(d, wa(p)) — 1.

Proof. By Lemma 3.12, 1 = R (\) € €,_,,». It follows that u* = (w) 71 (A + &).
Then

AT =™, 2p) = =2((wh) (@), p) = —2(@, w(p)).
Hence p = X if and only if £(w?) — £(w") = —2(&, wx(p)) — 1. O

Note that if A is (r + 1)-regular, then w" = s,w™; by the same argument as in
Lemma 4.7, it is easy to check that if A is (r 4 1)-regular, then 1 = Rq(\) € €;_,n
is 1-regular. Hence w* = s,w™. This fact, along with Proposition 4.10, imply the
following corollary.

Remark 4.11. Prop. 4.9 and Prop. 4.10 are special cases of [LS, Prop. 4.1] when A
is super-regular in the sense of [LS]. But the regularity for A is much weaker in our
propositions.

Corollary 4.12. With the same setup as in Proposition 4.10, assume that (A, o) <
0 and X\ is (r + 1)-reqular. If Ro(\) =5 N, then sqw® = w™ if and only if
—(wM) () is a simple root.

Now for any A € P, let ¥(\)s denote the subset of ¥()\) consisting of u such
that g — A for some a. Geometrically, if 4 € W(\)p then X, is an irreducible

divisor in X,. In general, the set W(\)y consists of two types of elements R, (A),
those for which (A, &) > 0 and those for which (A, o) < 0.

Example 4.13. Let G be of type As. Let a3 and as be the two simple roots.
(1) Take A\ = dy + d2. Then U(A)y = {d1, dz}.
(2) Take A = —(éy + ). Then U(N)y = {0}.
(3) Take \ = —2(641 + 642). Then \I/()\)a = {—2@1 — Qig, —CQp — 2000, Oy + dg}.
(4) Take A = —3¢&;. Then ¥(\)g = {2¢2 — &1, —3(é&1 + &2)}. The dimension of
Xy is 10. The following picture illustrates for example (4) the dimension of
X, for all possible = Ry (N):

20 — &1 dim 9
[ ] [ ]

[ ] [ ]
dim 10 0 dim 7

[ ] [
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4.3. Braid relations on R-operators

Proposition 4.14. Let X be a coweight in P, and let a, B be two positive roots
in P.
(1) If (a, B) = 0, then RaRz(\) = RgRa(N).
(2) If (o, B) = —1,(B,a) = —1, and X is away from the hyperplane Hotp -1,
then RaRgRa(N) = RgRaRg()N).
(3) If (a, B) = —1,(B, &) = —2, and X is away from the hyperplanes Hotp-1,
Hootp,—1 and Hantp,—2, then RaRgRoR3(A) = RgRoRgRo(N).
Proof. We first show part (1). Assume that (a, ) = 0. We compare Ry Rp(N) with
RgR(N). There are four cases. If (A, ) > 0 and (A, 5) > 0, then the R operators
coincide with the reflections s,, s3 which commute, so we obviously have equality.
Assume (X, a) < 0, (A, 5) > 0. Now we compute

RoR3(A) = Rasg(A) = sqss(N) —

The other expression evaluates to sgsa(A) — sg(@) and the two expressions are
equal since sg(&) = &. The case where (A, a) > 0 but (A, 3) < 0 is identical. Lastly
if (A, @) < 0and (), B) < 0 we get expressions s,55(\) —@—f and sgs.(\) — 5 —da,
which again are equal.

The proof of part (2) and part (3) essentially follows by brute force computation.
We include tables with all of the relevant information, as well as some sample

computations.
In the tables below we make the following convention: if a square is blank, then

the braid relation is satisfied. Only when the braid relation is not satisfied do we
put anything in the second column. This is simply for readability.

conditions R, RgR, RgR,Rg
<)‘7O‘> < -1, <)‘>6> <-1 w@\) — 2(6‘""6)
Cva) = -1, (AB) =0 w()—&—7p

(o) =0 (73— 1 w()—a—f

Na)y>0, Na+p)<-1 w(A) —2a — 3

MNa)>1, (Na+p8)=-1 w(\) —2a -0 w(A) — &
nath) S0, (up) <1 W) —a

(Aa)>0, (\,B8)>0 w(A)

NGy >0, (Na+p8) < -1 w(\) — 20 —a
Aat+p)=-1 (AB)>1 w(A) = p w(\) — 28 —a
ot B) >0, Pha)< 1 w() = B
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Type BQ: <OL,B> = 71’ <ﬂad> =-2

Conditions RoRgR.Rs RgR,RgR,
(N a) < (X, B) <0 w(X) —3a — 43
RIS w0 263

N\ B)=0, (\a)=-1 w(A\) —2a — 203

NB) =1, (ha)=0 w\) —a—20

Na+p)<—1, (\B)>0 w(\) —3a — 303
(a+8)y=-1,(\3)>0 w(A) —3a—38 | w(\) —2a—0
\NB) =1, (\a)=-2 w(A) —3a&—38 | w(\) —2a—23
NatB) >0, (\2a+tp) <2 w\) — 24 — 27

(A a) <=2, (\,2a0+ ) =2or-1 wA) —2a—p | w\) —a&

05 =1 o) = w65 w7
(AN 20+ B) > 0,(\, ) < —1 w() — &

) =0 () >0 ey

(A, a>20 (N 20+ B) < -2 w(A) — 2& — 43

(A a)y >0, (\2a+ 8) =2or-1 w\) —a—36 | w\) —2a—4p
(A, 2a+6>>0 (A a+p) < -1 w(\) —a— 33

N a+p)=-1,(\2a+3) >2 w(\) — B w(A) —a — 33
(A, oz—|—,8>=—1 MN2a+8)=0 w(A\) — 5 w(d) — & — 28
Na+p)>0,(\B) <0 w(\) — B

As an illustration, we do an example calculation in type As. Assume (A, ) > 0
and (X, a + B) < —1. Then we compute RoRgR.()). As a first step, we compute
(A, a). By assumption (A, ) > 0 50 R (A) = $o(A). Thus

RoRsRa(N) = RaRs(5a(N)).

Next we compute (54 (M), 8) = (A, s4(8)) = (A\,a + 8). By assumption, this is less
than or equal to —1. Thus

RaRﬁ(*Sa()‘)) = Ra(sﬁ(saO‘)) - B)

Lastly we compute

(38(sa(N) = B, a) = (sa(N) + B, 55(a)) = (A + 54 (B), s(a+ B)) = (A +a+ 5, B).

The two assumptions at the beginning on X force (\, ) < —1 so that (A+a+4, 8) <
—2+1 < 0, so finally we see that Ry RgRa(\) = 84(55(5a(N)) —B) — @. Simplifying
this expression yields RoRsRa(\) = sas5(\) — 2& —  as desired. Computing
RgR,Rg proceeds in a similar fashion.

We do another example in type By where the braid relation holds. Let (A, 2a+
B) > 0 and (A, o + 8) < —1. We first compute R, RgRoRa(A\). We first calculate
(X, B8) which by assumption is < 0. Thus the first simplification is

RoRsR,R5(\) = RyRgRu(s5(\) — B).
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Next we compute (sg(\) — 3,a) = (\+ 3, 8+ a) < 0. So the next simplification is
RoRgRaRs(A) = RaRs((sa(ss)) — ) — a).
The next pairing (s, (ss\) — 3) — &, 8) > 0, so the next step is
RoRR,Rs(\) = Rosp(sal(sp)) — B) — ).
One can then calculate the last pairing, see that it is > 0, and obtain finally that
RoRsRoR5(N\) = 5055(5a((5s)\) — B) — @) = 8a555a55(\) — & — 3.
Computing the other side, RgR,RgRa(A) is much the same; we mention that
the first two pairings will be positive and the last two negative, leading to
RgRoRsRa(N\) = 55(5a(5550(N) — @) — B = 8545554 (N) — & — 3.
Thus, in this case the braid relation holds. O
Remark 4.15. A summary of the data from the tables in the above proof is as
follows: the “braid relations” for the R-operators hold in types Ag, By everywhere
except at a certain set of critical lines. In the following wy denotes the longest
element in the Weyl group of each type. In type Ao, the braid relations fail precisely
when (A, a+ ) = —1 and A ¢ €, . Similarly in By, the braid relations hold except
when (A, a0+ ) = —1 and A ¢ €, or when (A, f+2a) =—1or —2 and A ¢ €.
Though we have not done all the calculations for Gg, it seems to follow the same

pattern: in particular the braid relations appear to hold in all cases, except the
following: (A, a4 28) = =1, A ¢ €, or (A, 38 +2a) = —1 and A ¢ &, .
Example 4.16. We do an example calculation in type Bs where the braid relation
fails. Let (A\,a + 8) = —1 and let (\,2a + 8) > 2. First we compute R,RgR,R3.
As a first step we compute (A, 8) < 0, so

RoRyRoRs(N) = RaRsRa(s5(\) - B).
Next we compute (sg(A) — B,a) = (\+ B, a+ B), which by assumption is 0, so we
have

RaRsRaRs(\) = RaRpsa((s5(\) = B)) = RaRp(sass(N) — 6 — ).
Computing
(sas5(A) = — B,8) = (ss(X) = 8,6+ 2a) = (A + 3,8 + 2a)
which is forced to be > 0 by our assumptions, we see that the next step is
Ry (s8sasp(A) — & — ). The last computation is (sgsqasg(A) — & — B, a); our
assumptions force this to be positive, so our final result is
RaRﬂRaRﬂ(/\) = SaSBSaS,B()\) - ,B
as desired. On the other hand, we compute RgR,RgRq (). Since (A, ) > 0 we
must have RgRoR3Rq(X) = RgRaRpgsa(A). Next we see that (sq(A),5) > 0, so
we simplify further
RﬂRaRﬁRa()\) = R,@Ra(858Q<)\)).
Our assumptions force (sgsq(A), @) < 0, and so the next simplification is
RgRaRgRa()\) = Rg(SaSBSa()\) —a).
Lastly we compute (sq854(A) — &, 8) < 0. So we finally see
RsRoRsRo(\) = 55(50555a4(N) — @) — B = 85505554(N) — & — 3.
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4.4. Discussions on the moment polytope of X

For any A € P, we define the moment polytope MP()\) of X, as the convex hull of
T(\) in P @z R. A part of our original motivation for this work was to explicitly
understand the moment polytope MP(\), and understand whether all integral points
(relative to A) in MP(A) appear in W(\).

Due to Theorem 4.1, if A € &, for some w € W, then the part of the moment
polytope inside the chamber €, is easy to describe. In general, to describe a
polytope, it suffices to describe the vertices of this polytope. For the polytope
MP()), all vertices are some special points in (). Fix a chamber €. Let M, (\)
denote the set of all coweights in () that are maximal in the chamber €,. Using
Theorem 4.1 again, we see that in any given chamber €, the coweights of ¥(\)
appearing in chamber €, are precisely those p such that X' —p is a sum of coroots in
y(®*), for some X € M, (\). Therefore the points in M, (\) are exactly the vertices
of MP(\) in the chamber €,,.

We may use Proposition 4.8 to obtain candidates of points in M, (). All of these
points are obtained via Rg, ... Rg,(A) so that €, = s, - - - 53, (€y), in other words
Yy = Sg, - sg,w. However in general it seems very difficult to determine which
path of R-operators will provide the maximal vectors.

In the picture of the A; example below, we see five ”"paths” given by

RaRgRa(A), RgRaRg(A), RaRatpRs(A), RgRatpRa(N), Rats(N),

where A = —3(& + (). Note that the last path R,.s(\) yields the maximal
coweight 2(@ 4 £), and all other candidates & + 3, 25 + & and 2& + /3 are in
U(2a + 25) Thus far this pattern has held in all our rank 2 experiments; in any
given chamber ¢, we have only ever observed one maximal coroot p such that
all other candidates ' = Rg, ... R, (A) € ¥(u). In Ay it seems to be the case
(after much tedious calculation) that R,RgRq(A) € W(R, (g)), s0 in Ay, to find
the maximal candidates, one should replace R,RgR, with R,4g. On the other
hand in By there is an example where Ry (A\) € U(RaygRgR2q+5(A)), (note here
Sa = Sa+85352a+8) SO shorter expressions do not always do better.

o e
SN
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One further remark is that in the above example, every integral coweight inside
MP()) is indeed contained in W()), where A = —3(c + f3). If it were true in general
that for any A and for any y € W, M, () contains at most one element (in other
words, if each chamber has a unique “maximal” candidate if it exists), then this
would imply the following property: for every integral point p inside MP()A), u €
U(A). This property holds for A; x A; and A by naive calculation, and has held
in every other example we have tried for Bs. We would be interested in a proof or
disproof of this property for general root systems. When A is dominant, Xy = Gry.
In this case, it is well known that MP()) is the convex hull of {w(\)|w € W},
and for every weight p € MP(\) such that A — u € @, u € ¥(\). The study of the
moment polytopes of certain subvarieties in affine Grassmannians very often leads
to interesting applications in representation theory, see [An, Kam)].

References

[An] J. Anderson, A polytope calculus for semisimple groups, Duke Math. J. 116
(2003), no. 3, 567-588.

[BB] A.Bjorner, F.Brenti, Combinatorics of Coxeter Groups, Graduate Texts
in Mathematics, Vol. 231. Springer, New York, 2005.

[BD] A.Beilinson, V. Drinfeld, Quantization of Hitchin’s integrable system and
Hecke eigensheaves, www.math.uchicago.edu/mitya/langlands.

[BGG] U.H. Beprmreits, . M. eandann, C. U. Denvdann, Kaemxu Ulybepma u xo-
2omonozuu npocmpancme G/P, YMH 28 (1973), som. 3(171), 3—26. Engl.
transl.: J. Bernstein, I. M. Gelfand, S.I. Gelfand, Schubert cells and coho-
mologies of spaces G/P, Russian Math. Surveys 28 (1973), no. 3, 1-26.

[Bou] N.Bourbaki, Lie Algebras and Lie Groups, Chapters 4-6, Springer, Berlin,
2002.

[BT] D.Bernard, J. Thierry-Mieg, Level one representations of the simple affine
Kac—Moody algebras in their homogeneous gradations, Comm. Math. Phys.
111 (1987), no. 2, 181-246.

[Fr] I.Frenkel, Two constructions of affine Lie algebra representations and
boson-fermion correspondence in quantum field theory, J. Funct. Anal. 44
(1981), no. 3, 259-327.

[FK] I.Frenkel, V.Kac, Basic representations of affine Lie algebras and dual
resonance models, Invent. Math. 62 (1980/81), no. 1, 23-66.

[FLM] I Frenkel, J.Lepowsky, A. Meurman, Vertex Operator Algebras and the
Monster, Pure and Applied Mathematics, Vol. 134. Academic Press,
Boston, MA, 1988.

[Hul] J.Humphreys, Introduction to Lie Algebras and Representation Theory, 3d

printing, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New
York, 1980.

[Hu2] J.Humphreys, Reflection Groups and Cozeter Groups, Cambridge Studies
in Advanced Mathematics, Vol., 29, Cambridge University Press,
Cambridge, 1990.

[IM] N.Iwahori and H.Matsumoto, On some Bruhat decomposition and the



AFFINE SCHUBERT VARIETIES IN THE AFFINE GRASSMANNIAN

[To1]
[To2]
[Io3]

[To4]

[St]
[Stg]

[Zhu]

structure of the Hecke rings of p-adic Chevalley groups, Inst. Hautes Etudes
Sci. Publ. Math. (1965), no. 25, 5-48.

B.Ion, Nonsymmetric Macdonald polynomials and Demazure characters,
Duke Math. 116 (2003), no. 2, 299-318.

B.Ion, A weight multiplicity formula for Demazure modules, Int. Math.
Res. Not. (2005), no. 5, 311-323.

B.Ion, Nonsymmetric Macdonald polynomials and matriz coefficients for
unramified principal series, Adv. in Math. 201 (2006), 36—62.

B.Ion, Standard bases for affine parabolic modules and mnonsymmetric
Macdonald polynomials, J. Algebra 319 (2008), no. 8, 3480-3517.

V. Kac, Infinite-dimensional Lie Algebras, 3rd edn., Cambridge University
Press, Cambridge, 1990.

J. Kamnitzer, Mirkovi¢-Vilonen cycles and polytopes, Ann. of Math. (2)
171 (2010), no. 1, 245-294.

M. Kashiwara, T.Tanisaki, Parabolic Kazhdan—Lusztig polynomials and
Schubert varieties, J. Algebra 249 (2002), no. 2, 306-325.

S.Kumar, Kac-Moody Groups, their Flag Varieties and Representation
Theory, Progress in Mathematics, Vol. 204, Birkhaduser Boston, Boston,
MA, 2002.

T.Lam, M. Shimozono, Quantum cohomology of G/P and homology of
affine Grassmannian, Acta Math. 204 (2010), no. 1, 49-90.

I. G.Macdonald, Affine Hecke Algebras and Orthogonal Polynomials,
Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press,
Cambridge, 2003.

I. Mirkovi¢, K. Vilonen, Geometric Langlands duality and representations
of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007),
no. 1, 95-143.

J. Stembridge, The partial order of dominant weights, Adv. in Math. 136
(1998), no. 2, 340-364.

R. Steinberg, Lectures on Chevalley Groups, Iniversity Lecture Series, Vol.
66, American Mathematical Society, Providence, RI, 2016.

X. Zhu, An introduction to affine Grassmannians and the geometric Satake
equivalence, in: Geometry of Moduli Spaces and Representation Theory,
IAS/Park City Math. Ser., Vol. 24, Amer. Math. Soc., Providence, RI,
2017, pp. 59-154.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.



