Low-Complexity Parallel Cyclic Redundancy Check

Xinmiao Zhang and Yok Jye Tang
The Ohio State University

Abstract—Cyclic redundancy check (CRC) is adopted in many
digital communication and storage systems to ensure data in-
tegrity. CRC en/decoding is carried out using linear feedback
shift registers (LFSRs) and a parallel LFSR can be implemented
by registers with a feedback matrix multiplication and an
input pre-processing matrix multiplication. A large parallelism
is needed to achieve the high throughput required by modern
applications. In prior designs, the complexity of parallel LF-
SRs has been reduced by applying state transformation and/or
modifying the input tap. In this paper, we first show that the
input tap modification can be actually described by a category
of state transformation. Using this type of transformation, the
pre-processing matrix in a highly-parallel LFSR can be simplified
without changing the feedback matrix. Additionally, we show that
the post-processing matrix multiplication in state-transformed
designs can be eliminated without affecting the error detection
capability of the CRC. Utilizing these two techniques, the area
requirement of highly-parallel CRC can be reduced by 7-16%
without increasing the critical path for various parallelisms and
most generator polynomials compared to the best previous design.

Index Terms—Error correction code (ECC), cyclic redundancy
check (CRC), linear feedback shift register (LFSR).

I. INTRODUCTION

Cyclic redundancy check (CRC) is used to detect errors
in many digital communication and storage systems, such as
Flash memory and optical communications. Both the encoding
and decoding of CRC are basically to compute the remainder
of the data polynomial divided by the generator polynomial
of CRC. Such computations can be implemented by linear
feedback shift registers (LFSRs). To reach a throughput in the
order of GigaBytes/s, highly parallel designs are needed.

A p-parallel LFSR can be derived by applying look-ahead
computation to the register state of a serial LFSR for p itera-
tions [1]. Such parallel LFSRs are typically smaller than those
derived by unfolding [2]-[4] or parallel recursive filtering [5],
[6]. A parallel LFSR based on state look-ahead has a matrix
multiplication in the feedback loop and an input pre-processing
matrix multiplication. The register state transformation pro-
posed in [7] results in modified feedback and pre-processing
matrices and adds a post-processing matrix multiplication at
the end. The data path of the feedback matrix multiplication
is reduced to one XOR gate by using companion-matrix-like
transformation matrices [7], [8]. The design in [9] searches for
transformation matrices in a triangular form to minimize the
overall gate count. By searching for inverse transformation
matrices in a triangular form that minimize the number of

This material is based upon work supported by the National Science
Foundation under Award No. 2011785

nonzero entries in the pre-processing matrix, the design in
[10] achieves lower gate count and power consumption.

It was shown in [11] that, when p is larger than the
generator polynomial degree, adding the data input to the
least significant tap (LST) instead of the most significant tap
(MST) of the LFSR as in conventional designs makes the pre-
processing matrix consist of an identity matix instead of all
dense columns. Moreover, when p is less than the degree of
the generator polynomial and the same remainder as in MST-
input design needs to be computed, inserting the data to the
p-th tap leads to the simplest design [12].

This paper proposes two techniques to further reduce the
complexity of CRCs for high-throughput digital communica-
tions and storage, in which case the parallelism is larger than
the generator polynomial degree. When the input is added to
a different tap of the LFSR, the register state update formula
in [11] is derived by analyzing the effect of the input on each
register. The formula derivation is not associated with any state
transformation and the shifting of the input is limited to from
the MST to the LST. The first discovery made in this paper
is that the input tap modification can be actually described
as a state transformation using a power of the companion
matrix as the transformation matrix. This interpretation allows
larger space to be exploited to find even simpler pre-processing
matrix without changing the feedback matrix. Besides, an
additional state transformation for reducing the gate count
can be further applied. The second simplification utilizes
the property that the remainder computed for CRC can be
bijectively mapped to another vector as long as the same
mapping is used in both the encoder and decoder. Accordingly,
the post-processing matrix multiplication can be eliminated.
Utilizing these two techniques, the gate counts of CRCs
with various parallelisms for most generator polynomials are
reduced by 7-16% compared to the best previous design [11]
without sacrificing the critical path.

II. PARALLEL LFSRS AND STATE TRANSFORMATION

A CRC that adds n — k parity bits to a data string, u(z), of
length & can be specified by a generator polynomial g(z) =
2" F 4 gy g1 1 4.+ g1z + go. In CRC encoding,
the remainder of dividing u(x)2" ¥ by g(z) is computed and
padded to u(x). In decoding, the received data polynomial
is multiplied by "% and divided by g(x). If the remainder
matches that from encoding, then it is considered that there
is no error. The LFSR in Fig. 1 divides u(x)z"* by g(x).
The coefficients of w(x) are input serially starting with the

Beu(x)

Fig. 1. Serial LFSR architecture with input added to the MST
[n-k n-k n-k
m r(t+p) r(t)

(a) non-transformed architecture
- -k n-k
B H" : |—H-H-T
= rr(t+p] t)

1(t+p rol
(b) state-transformed architecture

Fig. 2. p-parallel LFSR architectures

most significant one. After the last coefficient is processed,
the remainder polynomial, r(x), is available in the registers.
Denote the state of the register in clock cycle ¢ by

r(t) = [ra—k-1(), rn—k—2(t), -+ ,ro(t)]’, where <’ means
transpose. Let u(t) be the input in clock cycle ¢. From Fig. 1,
r(t+1) = A xr(t) +b x u(t), (1)
where

gn—k-1 1 0 0

Gn—k—-2 0 1 0

A= : Do 0

g1 0 0 1

g% 00 0

is a companion matrix and b = [g,,_x—_1," - , g1, go]'- Substi-
tuting (1) back to itself for p times, it can be derived that

r(t+p) = AP xr(t) + B, x u,(t), (2)

and a p-parallel LFSR can be implemented as shown in
Fig. 2(a). Here B, = [AP~!b,--- /Ab,b] and u,(t) =
[u(t), - ,ult+p—2),ult+p—1)].

The state vector can be transformed to r(¢t) = T x rp(t)
[7] by using any non-singular T. Then (2) becomes

I‘T<t +p) = ApT X I‘T(t) + BpT X U.p(t), (3)

and a transformed p-parallel architecture is implemented as in
Fig. 2(b). Here A,y = T'APT and B,r = T7'B,,. It is
impractical to exhaustively search for the optimal transforma-
tion matrix 7. Hence, existing works [7]-[10] considered T
of certain structures, such as companion-like and triangular, to
achieve various optimization goals. AP and A,r are referred
to as the feedback matrices in the respective designs, and B,
and B,7 are called pre-processing matrices.

When the input is added to the j-th tap, the serial LFSR
in Fig. 1 computes u(x)x’/g(z). n — k — j zeros can be
padded to u(x) to compute the remainder of u(x)x""*/g(x).
By analyzing the contributions of the input to the register state
update, it was found in [11] that the b in (1) should be replaced
by bU), which has a single nonzero entry in the j-th bit, if the
input is added to the j-th (j < n — k) tap. Accordingly, the
B, in (2) is replaced by BY) = [AP~1bU) ... AbW) bU)].

It was also shown in [11] that B;,]) with smaller j has
more columns with single nonzero entry. In particular, when
p> (n—k) and the input is added to the LST, B{" consists
of an identity part. As a result, the LST-input design has
smaller gate count than all prior architectures. Besides, state
transformation may be further applied to achieve additional
complexity reduction.

III. REDUCED-COMPLEXITY HIGHLY-PARALLEL CRC

Two techniques are proposed in this section to further reduce
the complexity of highly-parallel CRC. The first connects the
input-tap modification to state transformation, through which
larger space is exploited to further reduce the complexity of
the pre-processing matrix. The second utilizes the fact that
that error detection in CRC is made based on remainder
comparisons to eliminate unnecessary computations.

A is a companion matrix whose leftmost column is
specified by the generator polynomial g(z). Let a =
[@n—k—1," " ,a1,a0]. It can be derived that

Aa: ([an—k‘—Qa' © 1, ao, O]XOR(an—k—l'[gn—k—la' © 91, 90]))/

Computations in exactly the same format are done when
an element @ € GF(2"%) in standard basis representation
is multiplied by o € GF(2"%), which is a root of the
irreducible polynomial used to construct GF(2"~*). Hence,
although ¢(z) is not necessarily an irreducible polynomial,
multiplying A to a vector a can be translated as multiplying a
root of g(x), denoted by a, to an element of GF'(2"~*) whose
standard basis representation is a. In other words, A can be
considered as the binary matrix representing the multiplication
by a.

As it was discovered in [11] through analyzing the con-
tribution of the input to the register state, when the in-
put is added to the j-th tap, the pre-processing matrix be-
comes BY) = [AP~1b() ... AbU) bW)] while the feed-
back matrix AP is unchanged. bU) (j < (n — k) is a
vector that is only ‘1’ in the j-th bit. Hence, it can be
considered as the standard basis representation of al. Ac-
cordingly, Bg) consists of columns that are standard basis
representations of o~ '*J ... ot oJ. Similarly, the pre-
processing matrix for the MST-input design, B, consists
of columns representing o~ 1Tk ... otk qn=k gince
b =[gn—k—1,""",91,90] is the standard basis representation
of a"*. Hence BY) = A~("—#-)B,. BY can be con-
sidered as B,, transformed by using T—! = (A"~k=J)~L
Let D be the binary matrix describing the multiplication by
an element § € GF(29). Assume that the binary inverse
of D is D™!. D! actually also equals the binary matrix
representing the multiplication by 6= € GF(27) [13]. As
a result, T"'APT = (A" "#=7)"LAPA"*~J represents the
multiplication by o~ ("—k=9)+r+(n—k=j) — 4P Therefore, the
feedback matrix is still AP and it is unchanged by using
transformation T = A(»~%=7)_ This matches the design in
[11]. Nevertheless, it was not realized in [11] that the input
tap modification can be described by state transformation.

11 _10 9 a8 Cl7 a6 aS a4 a3 aZ al aO a-l a-Z a»3 a-4

a o a
1/1 0 1{0o 1 1 1Y1|0 0 0|1 0 0 1}
10 1 1|1 10 0|0[1 0 0|1 1 0 1}
0/1 0 1(1 11 0f0/0 100 11 0}
10 1 01 1 1 1{0/0 0 001 1}
7 U ™
Bs A'Bg A*Bg A®Bg

Fig. 3. Example array of columns for pre-processing matrices when g(z) =
zt 2?41

The design of [11] is limited to adding the input to one of
the n—k+1 taps of the LFSR. In terms of state transformation,
this means that T can only be A" k7 with 0 < j < n— k.
Relaxing this constraint, any AJ with 0 < 7 < on—k _ 9
can be used as the transformation matrix, although employing
j > n — k does not correspond to inserting the input to any
physical taps. This relaxation allows larger design space to be
exploited to further simplify the pre-processing matrix.

The vector representations of a®,a',a?,--- can be listed
as the columns in an array. Fig. 3 shows a toy example for the
case that n — k = 4 and g(z) = 2* + 23 + 1. Over GF(2*%),
all = o2 ~1=4 = o4, For the purpose of showing different
pre-processing matrices, the column of ' wraps around and
is shown as a duplicated column of a~% in Fig. 3. Using
a power of A as the transformation matrix, the transformed
pre-processing matrix consists of a window of p consecutive
columns in the array. The window for B,,, which corresponds
to the case that T = A® = I, starts from the column for
"% and goes to the left. The window for A=B, starts
from the column for o”~%~7. The windows shown in Fig. 3
are for the case of p = 8. By exhaustively gliding the window
to cover different p consecutive columns, the simplest pre-
processing matrix and its corresponding transformation matrix
can be found. When n —k is larger, such as 32, this exhaustive
search takes very long time. Instead, the search can be centered
around the columns for o~ *=1 ... ! a0 since they are the
most sparse columns in the array. The input-tap modification
in [11] only allows the right border of the window to shift from
the column of o™ * to the column of a°. On the contrary, the
proposed relaxation allows the window to pass beyond the o
column. Depending on the pattern of g(z), the columns to the
right of the a® column may be less dense than those to the
left of the ™% column, as shown by the example in Fig. 3.
As a result, pre-processing matrices of even lower complexity
may be found. Besides, the transformation in [10] with lower-
triangular matrix can be additionally applied to further reduce
the complexity.

When state transformation is applied, T needs to be mul-
tiplied at the end as shown in Fig. 2(b) to get the remainder
of u(x)x"*/g(x). In the modified input tap design of [11],
adding the input to the j-th tap (0 < j < n — k), which is
equivalent to using T = A" %7, makes the register state
equal the remainder of u(x)x’/g(x) after the last data bit is
sent in. u(x)x” is just u(x)x” % with the least significant zeros
eliminated. If the same number of zeros are deleted in both
the CRC encoder and decoder, the remainders should match.

Fig. 4. Proposed p-parallel CRC architecture without post-processing matrix
multiplication

TABLE I
GENERATOR POLYNOMIALS OF CRCs

[

Generator polynomial
24 T4 2%+ 22+ +1

CRC-12
CRC-16 4 25 422+ 1
SDLC 6422425 +1

16+I14+CE+1

16+$11+$4+1
32+x26+123+x22+116+x12+111+x10
o8+’ b+t a2+ +1

CRC-16 reverse
SDLC reverse
CRC-32

x
x
x
x
x
x

Hence, the design in [11] does not have the T matrix multipli-
cation at the end. Actually, the remainder of u(z)z"*/g(x)
can be (inversely) mapped to another vector without affecting
the error detection capability of CRC as long as the same
bijective mapping is used in both the encoder and decoder.
Since a valid transformation matrix, which is not limited to
the format of T = A" %7 is always invertible, the matching
test can be carried out on the register state directly and the
multiplication with T at the end can be always eliminated.
The proposed CRC architecture without the post-processing
T matrix multiplication is shown in Fig. 4.

IV. HARDWARE COMPLEXITY COMPARISONS

This section compares the hardware complexity of the
proposed parallel CRC architecture with those of previous
designs for various generator polynomials listed in Table I.
The same generator polynomials have been considered in prior
works. Since the proposed design is targeting at highly parallel
CRCs, p = 2(n — k) and 4(n — k) are considered in the
comparisons. Among prior designs, the one in [11] that adds
the input to the LST, or equivalently using T = A" F as
the transformation matrix, achieves the lowest complexity for
p > n — k and it is utilized for comparison.

For both the proposed and LST-input design, the trans-
formation using lower-triangular matrices from [10] can be
additionally applied to further reduce the complexity. For p =
2(n — k), the complexities of these designs are listed in Table
II. The designs with and without the additional transformation
are denoted by ‘trans’ and ‘n-trans’, respectively. After the
number of ‘I’s in the matrices is minimized by searching
for optimal transformations, the substructure sharing method
that can set the critical path delay (CPD) constraint in [10] is
employed to derive the numbers of XOR gates for all designs.
These numbers are normalized with respect to that of the non-
transformed LST-input design from [11] in Table II. For most
CRCs, the proposed design achieves 7-16% total gate count
reduction without increasing the critical path. Unlike the pre-
processing and feedback matrices, the post-processing matrix
only needs to be multiplied in the last clock cycle. To compare
the power consumption, the number of XOR gates that are

TABLE I
COMPARISONS OF p = 2(n — k)-PARALLEL CRC

design A,T(AP) B(JTZ(BP) T Total XORs active every
‘T [XOR [CPD ‘T [XOR [CPD ‘T [XOR [CPD XOR (normalized) [CPD clock (normalized)
CRC-12 [11] (n-trans.) 50 25 4 64 33 5 - - - 70 (1) 6 70 (1)
[T1] (trans.) 35 20 3 50 32 4 17 5 1 69 (0.99) 5 64(0.91)
proposed (n-trans.) 50 25 4 64 33 5 - - - 70 (1) 6 70 (1)
proposed (trans.) 35 20 3 50 32 4 - - - 64 (0.91) 5 64 (0.91)
CRC-16 [11] (n-trans.) 76 30 5 88 43 5 - - - 89 (1) 6 89 (1)
[T1] (trans.) 50 25 4 66 12 5 18 2 1 85 (0.96) 6 83 (0.93)
proposed (n-trans.) 76 30 5 88 43 5 - - - 89 (1) 6 89 (1)
proposed (trans.) 50 25 4 66 42 5 - - - 83(0.93) 6 83 (0.93)
SDLC [11] (n-trans.) 130 63 4 104 56 4 - - 135 (1) 5 135 (1)
[T1] (trans.) 113 57 4 32 52 3 31 12 3 137 (1.01) 5 125 (0.93)
proposed (n-trans.) | 130 63 4 78 48 3 - - 127 (0.94) 5 127 (0.94)
proposed (trans.) 125 57 4 78 49 3 - - - 122 (0.90) 5 122 (0.90)
CRC-16 [11] (n-trans.) 154 48 4 170 60 5 - - - 124 (1) 6 124 (1)
Reverse [11] (trans.) 129 42 4 65 46 4 134 34 4 138 (1.11) 5 104 (0.84)
proposed (n-trans.) | 154 48 4 88 45 4 - - 109 (0.88) 5 109 (0.88)
proposed (trans.) 150 46 4 66 42 4 - - - 104 (0.84) 5 104 (0.84)
SDLC [11] (n-trans.) 108 55 4 100 53 4 - - 124 (1) 5 124 (1)
Reverse] [T1] (trans.) 103 55 3 79 49 3 32 14 3 134 (1.08) 4 120 (0.97)
proposed (n-trans.) | 108 55 4 78 48 3 - - - 119 (0.96) 5 119 (0.96)
proposed (trans.) 106 57 4 78 49 3 - - - 122 (0.98) 5 122 (0.98)
CRC-32 [11] (n-trans.) 485 221 5 484 250 5 - - - 503 (1) 6 503 (1)
[T1] (trans.) 507 226 5 362 229 4 191 94 4 581 (1.16) 6 487 (0.97)
proposed (n-trans.) | 485 221 5 479 250 5 - - - 503 (1) 6 503 (1)
proposed (trans.) 463 211 5 368 226 4 - - - 469 (0.93) 6 469 (0.93)
TABLE III may increase because of the transformation as shown in the

COMPARISONS OF p = 4(n — k)-PARALLEL CRC

design A, BZ(jT> T Total ORs active
(AP) | (Bp) XOR [CP every clk
CRC-12[11] (n-trans.)| 26 103 | - 141 (1) | 6 1
[11] (trans.) 25 95 2 134 (0.95)] 6 0.94
prop. (n-trans.) 26 98 - |136 (0.96) 6 0.96
prop. (trans.) 24 91 - [127 (0.90) 6 0.90
CRC-16[11] (n-trans.)| 34 131 - 181 (1) | 7 1
[11] (trans.) 29 124 [2 171 (0.94) 7 0.93
prop. (n-trans.) 34 126 176 (0.97) 7 0.97
prop. (trans.) 30 123 - 169 (0.93) 7 0.93
SDLC |[[11] (n-trans.)| 67 176 | - 259 (1) | 6 1
[11] (trans.) 61 163 [19 [259 (1) | 6 0.93
prop. (n-trans.) 67 160 | - 43 (0.94) 6 0.94
prop. (trans.) 53 167 - 236 (0.91) 6 0.91
CRC-16[11] (n-trans.)| 62 170 | - 248 (1) | 7 1
Reverse| [11] (trans.) 45 134 |34 229 (0.92) 6 0.79
prop. (n-trans.) 62 130 | - [208 (0.84) 7 0.84
prop. (trans.) 60 124 | - 200 (0.81) 7 0.81
SDLC |[[11] (n-trans.)| 59 172 | - 247 (1) | 6 1
Reverse| [11] (trans.) 52 165 |31 P64 (1.07) 6 0.94
prop. (n-trans.) 59 153 - 228 (0.92) 6 0.92
prop. (trans.) | 56 169 | - [241(0.98) 6 0.98
CRC-32[11] (n-trans.)| 232 675 | - 939 (1) | 7 1
[11] (trans.) | 225 616 [115 988 (1.05) 7 0.93
prop. (n-trans.) 232 675 - 939 (1) | 7 1
prop. (trans.) | 225 616 | - [873(0.93) 7 0.93

active in every clock cycle is listed in the last column of Table
II.

Since the LST-input design is one case in the proposed
search, the proposed design does not ever have higher com-
plexity. Besides, in previous transformed designs, the trans-
formation matrix needs to be multiplied at the end although
the complexities of the pre-processing and feedback matrix
multiplications may be reduced. Overall, the total gate count

cases of SDLC, CRC-16 Reverse, SDLC Reverse, and CRC-
32 for LST-input designs [11] in Table II. On the other hand,
our proposed design eliminates the post-processing matrix
multiplication. Applying additional transformation with lower-
triangular T always leads to further saving. The only exception
is the SDLC Reverse CRC. This is because that the optimal
transformation search is done based on the number of ‘1’s
to reduce the search time. However, the gate count after the
substructure sharing depends on the patterns of ‘1’s.

The complexities of CRCs with even higher parallelism,
p = 4(n — k), are presented in Table III. For this parallelism,
the proposed design achieves 7-19% total gate count reduction
for most CRCs. The achievable improvement is slightly bigger
because there are more columns in the pre-processing matrix
and the chance of finding matrices with fewer ‘1’s is higher.
For other parallelisms, we expect that the saving achievable
by the proposed design is similar.

V. CONCLUSIONS

This paper first translates the idea of the LFSR input tap
modification into a state transformation for parallel CRC
design. By utilizing this interpretation, much wider design
space is exploited to reduce the complexity of the pre-
processing matrix without changing the feedback matrix in
parallel CRC. Additionally, by utilizing the property that
bijective mapping can be applied to the remainders used for
matching test in CRC, the transformation matrix multiplication
at the end is eliminated. Overall, the proposed design achieves
significant complexity reduction without increasing the critical
path. Future work will address more effective transformations
for simplifying the multiplications of the pre-processing and
feedback matrices.

(1]
[2]

[3]

[4]

(51

(6]

(71
(8]

[9]

REFERENCES

T.-B. Pei, and C. Zukowski, “High-speed parallel CRC circuits in VLSI,”
IEEE Trans. on Commun., vol. 40, no. 4, pp. 653-657, Apr. 1992.

K. K. Parhi, “Eliminating the fanout bottleneck in parallel long BCH
encoders,” IEEE Trans. on Circuits and Syst.-1, vol. 51, no. 3, pp. 512 -
516, Mar. 2004.

X. Zhang and K. K. Parhi, “High-speed architectures for parallel long
BCH encoders,” IEEE Trans. on VLSI Syst., vol. 13, no. 7, pp. 872-877,
Jul. 2005.

Y. J. Tang and X. Zhang, “Low-complexity architectures for parallel long
BCH encoders,” Proc. of IEEE Workshop on Signal Processing Syst.,
Coimbra, Portugal, Oct. 2019.

M. Ayinala and K. K. Parhi, “High-speed parallel architectures for linear
feedback shift registers,” IEEE Trans. on Signal Process., vol. 59, no. 9,
pp. 4459-4469, Sep. 2011.

J. Jung, et. al., “Efficient parallel architecture for linear feedback shift
registers,” IEEE Trans. on Circuits and Syst.-1I, vol. 62, no. 11, pp. 1068-
1072, Nov. 2015.

J. H. Derby, “High-speed CRC computation using state-space transfor-
mations,” Proc. IEEE Global Commun. Conf., pp. 166-170, Nov. 2001.

C. Kennedy and A. Reyhani-Masoleh, “High-speed CRC computations
using improved state-space transformation,” Proc. IEEE Intl. Conf. Elec-
tro/Info. Tech., pp. 9-14, 2009.

G. Hu, J. Sha, and Z. Wang, “High-speed parallel LFSR architectures
based on improved state-space transformations,” IEEE Trans. on VLSI
Syst. vol. 25, no. 3, pp. 1159-1163, Mar. 2017.

[10] X. Zhang, “A low-power parallel architecture for linear feedback shift

registers,” IEEE Trans. on Circuits and Syst.-1I, 2019.

[11] X. Zhang, and Y. J. Tang, “Reducing parallel linear feedback shift

register complexity through input tap modification,” Proc. of IEEE Intl.
Symp. on Circuits and Systems, Sapporo, Japan, May 2019.

[12] X.Zhang, “High-speed and low-complexity parallel long BCH encoder,”

Proc. of IEEE Intl. Symp. on Circuits and Systems, Seville, Spain, May
2020.

[13] J. Bloember, et. al., “An XOR-based erasure-resilient coding scheme,”

Technical Report, 1995.

