Risk and resilience-based optimal post-disruption restoration for
critical infrastructures under uncertainty

Basem A. Alkhaleel?, Haitao Liao™*, Kelly M. Sullivan®

% Department of Industrial Engineering, University of Arkansas, Fayetteville, AR 72701, USA

Abstract

Post-disruption restoration of critical infrastructures (CIs) often faces uncertainties associated with
the required repair tasks and the related transportation network. However, such challenges are often
overlooked in most studies on the improvement of CI resilience. In this paper, two-stage risk-averse and
risk-neutral stochastic optimization models are proposed to schedule repair activities for a disrupted
CI network with the objective of maximizing system resilience. Both models are developed based on
a scenario-based optimization technique that accounts for the uncertainties of the repair time and the
travel time spent on the underlying transportation network. Given the large number of uncertainty
realizations associated with post-disruption restoration tasks, an improved fast forward algorithm
based on a wait-and-see solution methodology is provided to reduce the number of chosen scenarios,
which results in the desired probabilistic performance metrics. To assess the risks associated with
post-disruption scheduling plans, a conditional value-at-risk (CVaR) metric is incorporated into the
optimization models through a scenario reduction algorithm. The proposed restoration framework is
applied to the French RTE electric power network with a DC power flow procedure, and the results
demonstrate the added value of using the stochastic optimization models incorporating the travel times
related to repair activities. It is essential that risk-averse decision-making under uncertainty largely

impacts the optimum schedule and the expected resilience, especially in the worst-case scenarios.
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1. Introduction

1.1. Background

Critical infrastructures (CIs) are defined as networks of independent, mostly privately-owned,
man-made systems and processes that function collaboratively and synergistically to produce and
distribute a continuous flow of essential goods and services (Ellis et al., 1997). Specially, those CI
networks for electric power, water distribution, natural gas, transportation, and telecommunications
are the backbone of modern societies (Almoghathawi et al., 2019; Zio, 2016). Their continuous and
proper functioning provides the fundamental services that support the economic productivity, security,

and quality of life of citizens.
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Unfortunately, CI networks are often subject to different types of disruptive events, including
random failures, technical accidents, malevolent attacks, and natural hazards, which could affect their
performance unpredictably and have direct consequences on the communities and people’s daily lives.
Such disruptions become inevitable in today’s increasingly complex and risky operating environment
(Helbing, 2013). Hence, for several years, the United States (U.S.), as well as many countries around
the globe, have shown an increasing interest in effectively preparing for and responding promptly to
such disruptive events (Karagiannis et al., 2017; O’Donnell, 2013; White House, 2013). Indeed, it is
increasingly important to not only protect the current CI networks against disruption, but also to be
able to restore them once they are disrupted.

In 2011, the U.S. president released a report setting a four-pillared strategy for modernizing the
electric grid (Executive Office of the President, 2011). The presidential initiative directed billions of
dollars toward the investments in 21st century smart grid technologies aiming at increasing the grid’s
efficiency, reliability, and resilience, and at making the grid less vulnerable to outages and reducing the
time it takes to restore power after an outage. A subsequent report in 2013 has addressed explicitly
the importance of increasing electric grid resilience, especially against weather-related outages, and
the economic benefits of resilience improvement (Executive Office of the President, 2013). According
to the report, severe weather is the leading cause of power outages in the U.S. In fact, between 2003
and 2012, an estimated 679 widespread power outages occurred due to severe weather. Such weather-
outages are expected to rise as climate change increases the frequency and intensity of hurricanes,
blizzards, floods, and other extreme weather events (Zamuda et al., 2013). In addition, weather-
related outages are estimated to have cost the U.S. economy an inflation-adjusted annual average of
$18 billion to $33 billion (Executive Office of the President, 2013). The annual estimation could reach
$70 billion according to another congressional study (Campbell & Lowry, 2012).

It is worth pointing out that the annual losses fluctuate significantly and reach the greatest in the
years of major storms. For example, Hurricane Sandy, which struck the entire East Coast of the U.S.
in October 2012, caused significant damages to the infrastructure systems, resulting in an estimated
cost of $33 billion for repairs and cleanup in the aftermath and an approximate total of $65 billion in
damages and economic loss (Force, 2013). Moreover, about 8.5 million customers were left without
power, and the commuting time increased significantly due to the disabled roads and public transit.
When Hurricane Harvey struck the southern coast, it caused about $200 billion in damages and $20
to $30 billion in lost economic output (CNBC, 2017). According to the U.S. Federal Emergency
Management Agency (FEMA), nearly 40,000 people were in the shelters in Texas and Louisiana,
considering the most were without essential lifeline services, over 160 drinking water systems were
damaged with 50 of them being totally shut down, and 800 water waste facilities were partially
damaged (FEMA, 2017). Furthermore, nearly 80,000 homes had at least 18 inches of floodwater,
23,000 of which had more than 5 feet, 24 hospitals were evacuated, 61 communities lost drinking
water capability, 23 ports were closed, 781 roads were impassable, about 780,000 people evacuated
their homes, and first responders rescued 122,331 people (FEMA, 2017). Altogether, the experience
from these events underlines the needs for timely, efficient, and effective network restoration and
recovery activities in the aftermath of large-scale disruptive events, so that both short-term and long-

term reliance on the infrastructure networks can be assured.



Risk management strategies generally emphasize disruptive events mitigation options in the form
of prevention and protection by designing the systems to avoid or absorb undesired events from
occurring (Hosseini et al., 2016). While such strategies are crucial to preventing undesired events or
consequences, recent events suggest that not all undesired events can be prevented. Natural events
such as Hurricane Harvey are among the recent examples of unpreventable disruptions. In fact, this
particular event impacted multiple networked systems including the transportation network and power
network, which has not been restored fully even after few months of the incident (Manuel, 2013). In
a recent report by the European Commission’s science and knowledge service, the Joint Research
Centre (JRC) has addressed challenges in power grid recovery after natural hazards (Karagiannis
et al., 2017). The study covered different natural events and their impact on power grid networks by
collecting worldwide data about at least 50 events from different sources including technical reports,
field survey reports, and research papers (Karagiannis et al., 2017). The report used two thresholds
to assess power grid recoverability: (1) The restoration of power supply to customers, and (2) The
complete repair of the network. Moreover, two of the significant challenges that face recovery actions
were found to be the repair times uncertainty and poor access to damaged facilities due to landslides or
traffic congestions. In addition, the report was concluded with multiple recommendations to improve
power grid recovery ranging from integrating risk-related strategies to stockpiling spare parts for
urgent maintenance actions (Luo et al., 2020).

All such recovery planning actions after disruptions are part of the rising concept of resilience,
which can be defined generally as the ability of a system or an organization to react and recover
from unanticipated disturbances and events (Hollnagel et al., 2006). Resilience, and in particular CI
resilience, has emerged in recent years due to the awareness of governments about the possible risks
associated with CIs and the catastrophic impacts of various disruptive events affecting CIs (White
House, 2013). This has encouraged practitioners and researchers to develop various resilience im-
provement techniques ranging from system design to recovery optimization (Hosseini et al., 2016). In
addition, resilience can be effectively improved by developing optimum plans for timely restoring the
disrupted service after the occurrence of a disruptive event. In planning Cls restoration, prioritiz-
ing components is key in improving the recovery process. To this end, optimization approaches are
typically used to facilitate the identification and scheduling of effective restoration strategies for the
rapid reestablishment of system functionality. Recently, Sharkey et al. (2020) reviewed the relation
between network optimization and resilience theory and applications. In the literature, many studies
have been reported in the context of post-disruption CI restoration under a mathematical program-
ming framework (Fang & Sansavini, 2017; Nurre & Sharkey, 2014; Vugrin et al., 2014; Zhang et al.,
2018). The main goal is to schedule recovering tasks of failed components in order to accelerate the

restoration process (Vugrin et al., 2014).

1.2. Related literature

The concept of resilience has been investigated by different disciplinary perspectives and across
various application domains. Specially, several definitions of resilience have been offered from an engi-
neering point of view (Hosseini et al., 2016). Many are similar and overlap with a number of existing
concepts such as robustness, fault tolerance, flexibility, survivability, and agility, among others. How-

ever, most definitions are based around pre- and post-disruption related concepts, such as protection,



risk mitigation, adaption and restoration (Barker et al., 2017). In addition, developing mathematical
and statistical modeling approaches to improve, analyze and optimize resilience needs resilience quan-
tification to compare proposed models. As a result, in the literature, resilience has been quantified
by different approaches and mathematical interpretations (Gasser et al., 2019; Hosseini et al., 2016).
Many of these resilience measures try to scale the performance measure as a ratio between the actual
level of performance and the desired (undisrupted) level over time (for a full review see Gasser et al.
(2019) and Hosseini et al. (2016)). Some examples are the ratio of the probability of failure and
recovery (Li & Lence, 2007), the ratio of the expected degradation and the maximum possible degra-
dation of a system due to a disruption (Rose, 2007), and the measure of system performance (Henry
& Ramirez-Marquez, 2012). In this work, the focus will be on post-event resilience-based actions (i.e.,
restoration and/or recovery).

There are multiple studies addressing post-disruption CI restoration with different goals and
mathematical approaches. Anaya-Arenas et al. (2014) and Ozdamar & Ertem (2015) reviewed post-
disruption restoration plans in humanitarian logistics, such as relief delivery, casualty transportation,
and mass evacuation. In addition, considerable research in this area has been focused on specific
types of critical infrastructures such as transportation networks and electrical power grids (Morshed-
lou, 2018). In contrast, other studies developed general restoration models that can be applied to
almost any CI network without changes or with slight modifications (e.g., adding power flow con-
straints in power grids). Although the literature review will not be restricted to one type of Cls
models, restrictions associated with a single CI model will be mentioned.

Many of the mathematical models found in the literature are formulated as mixed integer programs
(MIPs) and mixed integer linear programs (MILPs). Bryson et al. (2002) applied an MIP approach
for selecting a set of recovery subplans leading to the greatest benefit to business operation. Matisziw
et al. (2010) proposed an MIP model to restore networks where the connectivity between pairs of
nodes is considered as the performance measure associated with the network. Nurre et al. (2012)
studied an integrated network design and scheduling problem for the restoration of CI systems. They
formulated the problem as an integer programming problem, and a dispatch rule-based heuristic
approach was proposed for its efficient solution. To account for power flow law in electrical networks,
they adopted the method by Bienstock & Mattia (2007). Furthermore, Nurre & Sharkey (2014)
provided a comparative study focusing mainly on model complexity and heuristic dispatch rules for
their integer optimization problem.

Regarding cascading failures in power networks, Bienstock & Mattia (2007) proposed an MIP
model to protect power grid networks at minimum costs to increase the networks survivability against
cascading failures. Their DC power flow model can be implemented in general MIPs and MILPs
by just adding a small set of constraints to control the power flow. To control power transmission
networks, Chang & Wu (2011) explored a quantitative method to measure the stability and reliability
of electric power networks under the triggered cascading failures. In addition, Bienstock & Grebla
(2015) introduced a stochastic algorithm to minimize the lost power load at the termination of the
cascade considering noise and errors in the model. Fang et al. (2017) introduced a pattern for searching
for the optimal limited resource allocation to increase the capacity of some links in electric power

networks to be able to maximize the networks resistance to cascading failures.



Multiple infrastructures restoration models can also be found in the literature. Casari & Wilkie
(2005) discussed multiple infrastructures restoration when Cls are operated by different firms. Lee
IT et al. (2007) proposed an MIP model to minimize the operating costs for temporary emergency
restoration, where network restoration involves selecting the locations of temporary arcs needed to
completely reestablish network services over a set of interdependent networks. Ouyang & Wang (2015)
studied and compared the effectiveness of five strategies for joint restoration of interdependent infras-
tructures, and a Genetic Algorithm (GA) was applied to generate recovery sequences. Sharkey et al.
(2015) studied the restoration of multiple interdependent CI networks under a centralized decision-
making framework and suggested an MIP model to solve the problem. Furthermore, Gonzéilez et al.
(2016) proposed an MIP model for optimizing infrastructure system restoration considering joint
restoration due to the geographical interdependence between multiple CI systems. Recently, Garay-
Sianca & Pinkley (2021) studied the restoration of interdependent Cls considering the movement of
work crews through a damaged transportation network being restored and proposed an MIP to solve
the problem under a deterministic problem setting.

When only transportation networks are concerned, Aksu & Ozdamar (2014) considered a multi-
vehicle problem to maximize network accessibility during transportation network recovery by identify-
ing critical blocked links and restoring them with limited resources. Celik et al. (2015) also considered
debris removal problems and developed a stochastic debris removal approach over discrete time peri-
ods to determine the optimal schedule of blocked links under uncertainty. It was assumed that the
information corresponding to clearance time changes as the amount of debris changes, and thus as the
information is updated, the restorative vehicles assignment schedule changes. Furthermore, Kasaei
& Salman (2016) studied arc routing problems to regain network connectivity by clearing blocked
roads, developing heuristic algorithms to attain the maximum benefit gained by network connectivity
while minimizing the time horizon. Recently, Iloglu & Albert (2020) proposed a restoration model
of transportation networks to deliver critical services after disasters by heuristically optimizing the
relocation process of emergency responders to maximize the coverage of emergency services demand
over time.

One can see that the vast majority of these studies are based on deterministic assumptions such
as complete information on the restoration resources and full knowledge of the activities durations.
However, the restoration of infrastructure systems is complicated by the many decisions to be made
in a highly uncertain environment exacerbated by the disaster itself, people’s reaction, and limited
capability of information gathering (Fang & Sansavini, 2019). Several factors introduce uncertainty
into the parameters of a disaster situation, e.g., availability of restoration resources, number of repair
crews, the time duration for repairing failed components and the accessibility to such failed components
through the related transportation network. Clearly, optimal task planning under uncertainty appears
to be the closest to a real-life situation. In addition, existing optimization approaches usually do not
account for risk measures related to the execution of the optimal plan. For example, if the time
durations of some repair activities were longer than expected, the doubt would be if the suggested
plan will still perform well. Obviously, when optimizing CI restoration, risks associated with the
restoration plan must be considered to identify the possible worst-case scenarios and alter the plan

accordingly. Furthermore, the travel time between failed components may also affect the proposed



plan along with the accessibility of components under the transportation network condition.

In the literature, few studies have tackled uncertainty in post-disruption CI restoration. Xu et al.
(2007) optimized a power network restoration by scheduling inspection, assessment, and repair oper-
ations, which were assumed to have random durations with known probability distributions. Instead
of solving the stochastic model, the authors used a GA to produce a priority list of repair tasks, which
might be suboptimal. Recently, Fang & Sansavini (2019) proposed a stochastic optimization approach
for infrastructure restoration under uncertainty and showed the added value of the stochastic model
compared to the deterministic counterpart. However, risk measures, the effects of travel time and the

impact of different network failure modes were not considered in their model.

1.3. QOverview and research contributions

The aim of this paper is to schedule restoration actions on failed CI components using multiple
maintenance crews by solving a two-stage stochastic optimization model. The first stage schedules re-
pair tasks, and the second stage resolves the CI performance for each time period. The scheduled tasks
have uncertain duration, and the travel times between different tasks are also uncertain. Considering
these sources of uncertainty, two variants of the proposed stochastic optimization model are: (1) a
risk-neutral model to optimize restoration activities accounting for uncertainty and (2) a conditional
value-at-risk (CVaR)-based risk-averse model that enables the decision maker to choose plans that
perform well even in worst-case scenarios.

The main contributions of this paper are three-fold. (1) To the best of our knowledge, this is the
first paper that incorporates risk measures into resilience-based optimization in the context of post-
disruption restoration; (2) it provides a general framework for the generation, selection and reduction
of scenarios based on an improved fast forward selection algorithm for resilience optimization; and
(3) it provides the first stochastic optimization models that account for the travel time between failed
components for post-disruption restoration.

The remainder of this paper is organized as follows. Section 2 presents the background and method-
ology pertinent to our models and summarizes the proposed mathematical formulations. Section 3
shows the solution approach used in this paper. Section 4 presents a case study on the RTE elec-
tric power network to illustrate the use and advantage of the suggested models. Finally, concluding

remarks and future research directions are provided in Section 5.

2. Methodology and model development

2.1. Resilience of critical infrastructure

The resilience of a CI is commonly characterized with respect to a measure of performance (e.g.,
flow, connectivity, amount of demand satisfied) ¢(t) that evolves over time (Henry & Ramirez-
Marquez, 2012; Hosseini et al., 2016). As depicted in Figure 1, let t. < t4 < t; < t; denote instants
in time such that (i) a disruptive event occurs at time t. causing o(t) to begin decreasing; (ii) the
effects of the disruption are fully realized at time t4, causing (t) to stop decreasing; (iii) recovery of
the CI begins at time t,, causing () to begin increasing; and (iv) recovery of the CI is complete at

time ty, causing ¢(t) to stop increasing.
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Figure 1: Illustration of decreasing network performance ¢(t) (adapted from Henry & Ramirez-Marquez (2012))

In this study, the focus is on the recovery period after ¢4, for which a model that optimizes a
restoration plan over a finite planning horizon is proposed. Without loss of generality, let t € {1...T}
denote the time periods over which the CI network is restored and ¢ = t; = 0 denote the instant
of planning. The system performance ¢(t), t € {1...T} is defined using a maximum weighted flow
performance metric defined over an undirected network G(V, E) that represents the CI. The nodes
V are partitioned into supply nodes V1, transshipment nodes V*, and demand nodes such that
VT UV*UV~ = V. Each supply node i € V' has a supply Pf € Rar that specifies the maximum
amount of flow that may originate at the node within a single time period. Associated with each
demand node j € V™ is a demand P;” € R{ that specifies the maximum amount of flow that may be
consumed by the node in one time period. Each edge {i,j} € F has an associated capacity P;; € Rsr
that specifies the maximum amount of flow that can be carried on the edge within a single time period.

Given the mechanics expressed above, system performance is defined as the maximum amount of
weighted flow consumed by the demand nodes. Let weights w; € Z* be assigned to each demand
node j € V. These weights are incorporated in order to enable prioritizing the importance certain
types of demand nodes (e.g., it is more important to deliver power to a hospital than to a residential

household). Formally, system performance is defined as:

p(t) = D wifi(t) (1)

JEV =

where f;(t) is the total flow reaching demand node j in time period ¢ € {1...T}.

The proposed restoration planning model aims to reestablish connectivity between supply and
demand nodes of a disrupted network by repairing damaged components over a fixed planning horizon.
Disruptions are modeled by the removal of a subset of edges, without loss of generality, at time ¢ = 0.
Hereafter, these edges are referred to as failed edges. As edges are repaired in subsequent time periods,
the system performance o(t) improves. Following Fang et al. (2016), the resilience R(T) is defined
as the cumulative performance restored during the restoration horizon normalized by dividing by the
cumulative performance that would be restored over the same horizon if the system could be restored

to pre-disruption performance instantaneously. That is, the system resilience is given by:

=1 [ jev- wifi(t) — ¢(0)]
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where > jev- wi P = ©(to) denotes the system performance if not affected by the disruption.

2.2. Risk measure approach

Generally, two-stage stochastic optimization approaches in the literature are risk-neutral. In other
words, these approaches incorporate randomness by comparing different solutions on the basis of
expectation. Though solutions to risk-neutral models perform well on average, they may be prone to
poor performance for certain realizations in practice. Given the non-repetitive nature of CI restoration
and its significant impact on society, it is of interest to consider risk-averse models for planning
restoration (Noyan, 2012). That is, a desirable restoration plan may seek to limit the chance of
realizations that result in poor performance.

Toward stating a risk-averse restoration optimization model in Section 2.3, we now summarize
the Conditional Value at Risk (CVaR) risk measure (Krokhmal et al., 2002; Rockafellar & Uryasev,
2000) and recap results pertinent to the optimization model. Let Z denote a loss random variable with
cumulative distribution function (CDF) F'(+). The term “loss” is used here to indicate that large values
of Z are undesirable. Although this convention seemingly conflicts with the “maximize resilience”
objective, it has been employed here because it is standard in the CVaR literature. Section 2.3 details
the procedure for applying these results to our model.) For a given risk level a € [0, 1], the Value at
Risk (VaR) of Z is defined as:

VaRy(Z) = min{t|F(t) > a} = min{t|P(Z < t) > a} (3)

Thus, for a continuous random variable Z, VaR,[Z] is the quantile of Z that exceeds the loss with
probability a.
The CVaR for Z with risk level a € [0,1] is the expected loss given that the loss is at least
VaR,(2), i.e.:
CVaR,(Z) =E (Z|Z > VaR.(Z)) (4)

It is known that CVaR can also be expressed as the optimal solution to the optimization problem:

. 1
ovata (2] = nip {n+ 1B (2 -1} (5)
where (a)4+ := max(a,0) (Rockafellar & Uryasev, 2000).

Equation (5) enables conveniently formulating risk-averse stochastic optimization models with
respect to a CVaR risk measure. Formally, let x be a vector of decision variables, ¢ be a random

vector of data, and G(z,€) be a cost function depending on x and . Then, the CVaR minimization

problem:
miy CVaR,[G(z,&)] (6)
can be formulated as:
i - E[(G(x,€) — )] ™)
a;er)r(l,lrr;leR K 11—« * )+

allowing us to linearize the model by expressing the expected value term as a probability-weighted



summation of £ discrete realizations.

2.3. Two-stage stochastic optimization model formulation

This section formulates a two-stage stochastic optimization model in which the first stage schedules
the repair of failed edges using multiple repair crews, and the second stage determines the resilience
that results under a given realization of the random variables. Rather than optimize explicitly over
all random variables, it is common to sample scenarios from their joint distribution. Let 2 denote
the set of scenarios. For a given scenario w € 2, let ttr;j,, denote the time to repair edge {¢’, j'} € E’
and let tt;;;/j denote the travel time incurred if edge {i,j} € E’ and edge {i’,j'} € E’ are repaired
in sequence. It will also be convenient to define £(w) as a vector specifying the realized values of all
random variables in scenario w.

The maximum weighted flow for each time period t € {1...T} depends on {(w), and therefore
the resilience depends on {(w) as well. Let f;,(t) denote the flow into demand node j € V'~ at time

t € {1...T} in scenario w € €2, and define the resilience R(T,£(w)) in scenario w € 2 as:

=1 [Djev- wifiw(t) — (0)]
(X ey wiP; — (0))

R(T, ¢(w)) = , T>1 (8)
In what follows, R(T,£(w)) is optimized with respect to both expectation and a CVaR risk measure.

For simplicity of exposition, the model for the case of maximizing expected resilience is stated first.

Notation

A summary of notation follows. In addition to the notation already defined, the summary defines
binary variables z;;; and x5, in order to encode a restoration plan, auxiliary binary variables
Sijw(t) and Yk (t) in order to resolve the status of each disrupted edge for each time period and
realized scenario, and flow variables f;;,,(t) in order to facilitate determining the maximum weighted
flow for each time period and realized scenario. The feasible region of the optimization problem is

denoted by X and the sets of decision variables are represented as {f, s, v, st, z, x}.

Parameters and sets

G(V,E) Undirected graph consisting of nodes V and edges F
{VT,V*V=}  Set of {supply, transshipment, demand} nodes
T The number of time periods in restoration planning
E' Set of failed edges before restoration (E' C E)
K Set of repair crews
P;’ Supply of node i € VT per time period
P Demand of node j € V'~ per time period
P;; Flow capacity of edge {i,j} € E per time period
tijir jrw Travel time between edge {i,5} € E" and {¢’,j'} € E’ in scenario w
Hrijw Time to repair edge {3, j} € E’ for each scenario w

Decision variables

fijw(t) Flow on edge {4,j} € F in time t € {1...T} for each scenario w



fiw(t) Total flow reaching demand node j € V™ in each scenario w

Sijw(t) Binary variable indicating whether (s;j, = 1) or not (s;;, = 0) edge {i,j} € E is
functioning at time ¢ € {0...7T}

Yijhew(t) Binary variable that equals 1 if edge {i,j} € E’ is assigned to crew k € K and it is
functioning at time ¢ € {0...7T}; 0 otherwise

Stk Time at which crew k € K begins repairing edge {i,j} € E’

Zijk Binary variable that equals 1 if edge {i,j} € E’ is assigned to crew k € K; 0

otherwise

Tijit 'k Binary variable that equals 1 if crew k € K repairs edge {i,j} € E’ before edge

{i",j'} € E"\ i, j}

The two-stage stochastic optimization model for maximizing the expected resilience follows:

max E(R(T,¢(w)))

{f,s.y,8t,z,0} €X

s.t.
S fiiw® = D fuwt) <P VieVT, vte{l...T}, YweQ
ijEE JieE
S fijw®) = > fiiw(t) =0, Vie V¥, ¥t e {1...T}, Vw € Q
ijEE Ji€EE
D fij®) = D fiiwt) = fiu(t), Vi€V, Ve {1...T}, Vw e Q
ijeEE Ji€E

0< fju®) <P ,VjeV ,Vte{l...T} VweQ
—5ijw(t)Pij < fijw(t) < siju(t)Pyj, Yije E, Vte{l...T}, Vw € Q
$ijw(0) = 0,Vij € E', Vw € Q
sijw(0) = 1,Vij € E\E', Vw € Q
Sijw(t) <syut+1),VijeE, vte{0... T -1}, Vw e Q
Yijkw(t) <vijro(t+1), Vij € E', Vt€{0...T -1}, Vk € K, Vw € Q

Stijhe + tiju + tijirjrw < Stijike + Mg, Vig,i'j € B« {i, 5} #{i,5'},

Vk e K, Yw € Q
Stijkew + tijuw + tijirjrw < Stijrkw + M(1 — xijir i), Vig,i's" € E' + {i,5} #{i',j'},

Vk € K,Yw € Q

t > Stijkw + trijw — M1 — yijko(t)] ,Vij € B, Ve € {1...T}, Vk € K ,Yw € Q

> yijko(t) = siju(t) Vij € E', Yt €{0... T}, Yw € Q

keK
D biko(t) =Y siju(T) = Q11— zi5x) ,Vij € E', Vk € K
weR weN
> Yisro(t) < |Qlzin Vij € B, Yk € K
weN

>z =1,VijeE
keK
Tijij'k € {O, 1}, Vij € E/, Vi/j/ cr \ {i,j}, Vk e K
zijk € {0,1}, Vij € E', Vk € K
Yijko(t) € {0,1}, Vij € E', Vt € {1...T},Vk € K,Vw € Q
Sijw(t) €{0,1}, Vije E, Vt € {1...T},Vw € Q
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Stijkw >0, Vij € E', Vk € K, Yw € Q (30)

The goal of model (9)—(30) is to determine a sequence of edges for each crew to restore in order to
maximize the expected resilience. Constraints (10)—(12) are flow balance constraints. Constraint (13)
ensures that each demand node j € V™ consumes no more than its demand P;” in every time period,
and constraint (14) ensures that the flow on each edge {7,j} € E in each time period does not exceed
its capacity P;; if the edge is functioning or 0 if the edge is failed. Constraints (15) and (16) set the
initial state of edges to be 0 for failed edges and 1 for other edges. Constraint (17) ensures that edges
{i,j} € E’ remain functioning after being restored, and edges {i,j} are functioning for the entire
restoration period. Constraint (18) impose a similar restriction on the y; k., (t)-variables; that is, if an
edge {i,j} € E’ was repaired by crew k € K by time period ¢t € {1...T —1}, where y;jx.(0) = 8, (0)
at t = 0, then the edge was also repaired by crew k by time period ¢ + 1. Constraints (19)—(20)
ensure each crew k € K can work on repairing at most one edge at a time, according to the schedule
specified by the x;;;j:x-variables. Note that one limitation of the proposed model is that the x;j; j/x
decision variables controlling the schedule of failed components are first-stage decision variables (i.e.,
not indexed by scenario w) which prevents sequential changes over time. Relative to Constraints (19)—
(20), the x;j; jx-variables, and the st;;i.-variables, an important detail of the model is that all edges
are sequenced for repair by all crews; however, constraints (14) and (21)—(22) impose that no benefit is
gained by (i) completing an edge’s restoration after the end of the restoration period or (ii) completing
an edge’s restoration using a different crew from when it was first restored. Therefore, the effect is
equivalent to imposing strictly that each edge is restored at most once and that edges cannot be
restored unless they can be completed during the restoration horizon. Defining tér;75* and 8377, as
the maximum repair time parameter of any failed edge in all scenarios and the maximum travel time

(ttrmax 4 ggmax, ) is sufficiently

. . . i
parameter between any two failed edges in all scenarios, M = |F e 371w

large in Constraints (19)—(20). Constraint (21) ensures that an edge {i,j} € E’ cannot have been
restored by crew k € K by time ¢ unless the restoration start time added to the repair time is no more
than t. In Constraint (21), it is sufficient to use the same value for M as in constraints (19)—(20).
Constraint (22) imposes that an edge {i,j} € E’ repaired by crew k € K by time t € {1...T} is an
edge that must be functioning at time ¢, and it prevents duplicate restoration of an edge by multiple
crews. Constraints (26)—(29) require the ;i j k-, Zijk-, Yijkw(t)-, and s;j, () variables to to be binary,
and Constraint (30) imposes that no repair tasks begin prior to time ¢ = 0.

The risk-neutral model (9)-(30) can be reformulated using a CVaR objective by first introducing
the following resilience loss function:

AR(T,&(w)) =1 = R(T,¢(w)) (31)

The value of AR(T¢(w)) ranges between [0, 1] because R(T) is bounded by the same values. Given
that X denotes the feasible region determined by constraints (10)—(30) and {f, s, y, st, z, 2} represents
the set of decision variables, then, by using Equation (7) the CVaR problem can be formulated as:

{1+ ZLEART. W) - 01 (32)

min
{f: sy, st, z, z}€X, nER
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Figure 2: Projection of CI network edges on transportation network

To motivate the following section, consider an optimal solution to model (32). Observe that the
CVaR for this solution corresponds to the average resilience loss of the [(1 — «)|€2|] worst scenarios
(having values greater than 7); thus, the remaining |«|€2|] scenarios contribute to the CVaR only
indirectly because their resilience loss must be no more than 7. Following Arpdn et al. (2018) and
Garcia-Bertrand & Minguez (2012), this motivates a computationally efficient strategy for deriving

solutions to model (32) by reducing the set of scenarios to focus on those that involve high risk.

3. Solution approach

3.1. Scenario generation and reduction

To ensure a representative set of scenarios, a maxi-min Latin hypercube sampling (LHS) technique
(Wyss & Jorgensen, 1998) is used to generate a large set of scenarios 2. Using LHS ensures some
amount of coverage of each random variable’s range, and it has been shown to have advantages when
incorporated within a sample average approximation approach (Chen et al., 2014; Kleywegt et al.,
2002).

When the number of generated scenarios is large, the associated stochastic program tends to
become intractable (Morales et al., 2009). To improve tractability, one method is to reduce the number
of scenarios such that the resulting problem’s optimal solution is close to the solution of the original
optimization problem (Fang & Sansavini, 2019). In these methods, which have received significant
attention in the literature (Heitsch & Romisch, 2003; Horejsova et al., 2020), it is common to select
scenarios based upon a probability distance between the original and reduced set of scenarios. The
most common probability distance used in stochastic optimization is the Kantorovich distance, Dg(-),
defined between two probability distributions @ and @’ on Q by the following problem (Dupacova
et al., 2003; Rachev, 1991):

Dk (Q,Q") = ir{}f{fﬂxgc(w,w’)ﬂ(dw,dw’) Do 0 (L dw) =Q

(33)
Jo Oldw, ) = Q'}

Problem (33) is known as the Monge—Kantorovich mass transportation problem (Rachev, 1991), where

¢ (w,w’) is a nonnegative, continuous and symmetric function, often referred to as cost function. The
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infimum is taken over all joint probability distributions defined on Q x Q represented by 6 (w,w’)
n (33). Note that Dk (-) can only be properly called Kantorovich distance if function ¢(-) is given by
a norm. When Q and @’ are finite distributions corresponding to the initial set of scenarios Q and
the reduced set of scenarios Qs C €, the Kantorovich distance can be determined (see Dupacovd et al.
(2003) for details) by:

Dk (Q,Q) Z T Imn c(w,w’) (34)
weEN\Q,

where m,, represents the probability of scenario w in Q (Dupacovd et al., 2003). Expression (34) can be
used to derive several heuristics for generating reduced scenario sets that are close to an original set
(Dupacové et al., 2003; Morales et al., 2009). Practically, the fast forward selection algorithm (Heitsch
& Romisch, 2003) has been known to perform well in different stochastic optimization applications.
This algorithm is an iterative greedy process that starts with an empty set. In the first step of the
algorithm, the scenario that has the minimum probability distance (e.g., Kantorovich distance) with
all other scenarios is included. After that, in each step of the algorithm, a scenario that minimizes the
Kantorovich distance between the reduced and original sets is selected from the set of non-selected
scenarios (2\s), where € represents the set of selected scenarios. Then, this scenario is included in
the reduced set §25. The stopping criteria of the algorithm is either by finding the pre-specified number
of scenarios or by reaching a pre-defined Kantorovich distance threshold (Morales et al., 2009).

In the fast forward selection algorithm, as described in (Heitsch & Romisch, 2003), the distance
between two scenarios w and w’ is expressed by the function ¢ (w,w’) and is computed according to
the difference between pairs of random vectors. Choices of the function (distance) ¢ (w,w’) varies
between probability metrics (Dupacovd et al., 2003), fixed first-stage decision variables objective
function (Morales et al., 2009) and the objective value for each scenario, which is shown to practically
outperform the other two methods (Bruninx, 2014). Here, we use the objective function value z/V%
of the wait-and-see solution (WS) for each scenario w €  (i.e., the objective function resulting from

solving model (9)—(30) when it is populated with w as its only scenario) to define c(-,-) as follows:
c(w,w’) = |25 =208 (35)

The resulting fast forward selection algorithm is summarized in Algorithm 1, specifically using the
“Algorithm A” subroutine in Step 0. We apply this algorithm, hereafter referred to as “Algorithm 1-
A, to the risk-neutral model (9). We also compare Algorithm 1-A to Algorithm 1-B, which is the
standard algorithm proposed by Dupacovd et al. (2003) based on the difference between the realized

vectors A, and A, consisting of the travel times and repair times for a pair of scenarios w,w’ € Q:
¢(@,0) = [Aw = A (36)

and report our findings in Section 4.4.
Following Arpén et al. (2018), Fairbrother et al. (2019) and Pineda & Conejo (2010), Algorithm 1
is adapted to the CVaR model given in Equation (32). Toward this end, we first define an active

scenario subset 2, C Q) of scenarios consisting of the scenarios w € € having the worst WS objective
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value 29 (Garcia-Bertrand & Minguez, 2012). Formally, let 0} = VaR.[G(z},
{weQ: Gzl Ew) =3}
Algorithm 1-C (i.e., Algorithm 1 with the “Algorithm C” subroutine chosen in Step 0) summarizes

-)] and define Q, =

the resulting procedure. After performing this initial reduction, Algorithm 1-C proceeds exactly as
Algorithm 1-A.

The current risk-averse scenario reduction approach combines the active scenarios concept from
Garcfa-Bertrand & Minguez (2012) and the WS reduction metric from Bruninx (2014). One ad-
vantage of this hybrid procedure is that the auxiliary variable 1 in Equation (32) is already known
(n = n% = VaR,[G(zF,-)]) given that individual scenario problems are already solved and that only

scenarios whose resilience losses are greater than or equal to 1}, are chosen. This allows us to rewrite

Equation (32) with optimal VaR,[G(z¥, )] as:
1
i + ——E[(AR(T -k
o B ART W) - @

In addition, since the subset of 1 — « scenarios in 2, is treated as a whole set of a- CVaR included
scenarios—with each scenario w included in €, having the property of G(x},&(w)) > ni—we can

drop the constant 7, and express Equation (37) as:

) 1

g BIART @)l € 2. (39)
Thus, the problem has become similar to the risk-neutral one by choosing the risk region €2, and
the reduction Algorithm 1-C acts similar to Algorithm 1-A as mentioned above. Nonetheless, the
disadvantage of the approach suggested by Pineda & Conejo (2010) and its risk-averse extension
proposed in this paper is that the algorithm computational time will be higher than other approaches.
To overcome the problem, we provide the deterministic solution (DS) as the initial feasible solution
to solve the problem associated with each scenario reducing the computational time significantly to a
level on par with Morales et al. (2009).

3.2. Benders decomposition

There are different types of decomposition algorithms for solving continuous and mixed integer
large-scale two-stage and multi-stage optimization problems (see Escudero et al. (2017) for a recent
review). Omne of those types of algorithms is the time-honored Benders decomposition (Benders,
1962) and its variants (see Rahmaniani et al. (2017) for a good review). Benders decomposition is
commonly used in the stochastic optimization literature to solve the resulting mixed-integer linear
programs (Rahmaniani et al., 2017). In this context, the risk-neutral and risk-averse models separate
into one linear program per scenario w—forming what is known as the subproblem (SP)—in the
reduced scenario set Qg (4,5 for the CVaR model) after fixing the binary @ik, Zijk- Yijkw (t)-,
and s;j,(t)-variables.

Formally, for each scenario w € g, let Z,, denote a fixed assignment of values to all a-, z-, y-, and

s-variables corresponding to the index w. The resulting SP for scenario w € Qs—with resilience loss
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Algorithm 1: Fast forward scenario reduction algorithm (Dupacovd et al., 2003)

Step 0: Compute the distances of scenario pairs:

Algorithm A: ¢ (w,w’) = [z — 225 Vw,w' € Q > Risk-neutral WS
Algorithm B: ¢ (w7w’) = ||>\w — A’ || ; Vw,w’ €N > A is a vector of random variables
Algorithm C: (a) Qo = {w e | G(CL’Z, w) > 77;} > proposed risk-averse

(b) c(w,w) = |25 = 25|; Yw,w' € Qq >Q = Q¢ and Qs = Qq,s for

Algorithm C in steps 1-3
Step 1: Select the first scenario as the most equidistant scenario from all other scenarios in the set

w1 = arg 51/1&12 {Z TwC (w,w’)} (39)
wenN ‘
QLI] — {wl} > Q[;] is the set of selected scenarios until step
Qg] — Q\{wl} > Qg]: the scenarios set not selected in the first ¢ steps
Step i: Identify the scenarios w; to be added to {25 until it reaches a given cardinality Ng based on
the distance function between QE_H and Q.[;_” :
For iin {2...N;}:

w; = arg min Z T min ¢ (w,w") (40)
weqli=1 —r w”eQl U {w}
) . _ . weQ; \{w'}
ol! — ol ufwl, o) — o\ ) >olluall o
End For

Step INg 4 1: Redistribute the probabilities of €% = QE,NS] over ¥ = Q[SN‘“] according to the cost
function ¢ (w,w’) :

T = Ty + Z T, Yw € Q (41)
w'eJ(w)
with J(w) being the set of scenarios w’ € Q% such that w = arg min ¢ (W W)
W e

minimization objective—is the linear program:

— . . :i?[zj‘evf wjfjw(t) - QD(O)]
SP(Z,): min (1 — T(S,cr w, P, — 2(0) ) (42)
s.t. (10) — (14) for scenario w (43)

Because SP(Z,,) is a linear program in which Z,, appears only in the constraints, the dual of SP(Z,,)

can be formulated as a linear program of the form:

DSP(z,): max (b— BZz,)d, (44)
st.d, €D (45)

where b is the right-hand side vector of (43), B is the left-hand side coefficient matrix of (43), d,, is
the dual variable vector corresponding to constraint (43), and D represents the dual feasible region.
Let D, and D, respectively denote the extreme points and extreme rays of D. Then, letting D, C D,
and D¥™ C D, respectively denote a subset of the extreme points and extreme rays produced prior

to iteration n of Benders decomposition, the restricted master problem (RMP) for iteration n is

15



formulated as:

Qs
min Z TV (46)
w=1
s.t.
v, > (b— Bz,)d,,Yw € Q,, d, € D" (47)
0> (b— Bz,)d,,Yw € Q, d, € D“" (48)

constraints (15)—(30)

where v, is a new variable that represents the resilience loss in scenario w. Constraints (47) and (48)
are respectively known as optimality cuts and feasibility cuts.

In the proposed Benders algorithm (Algorithm 2), the first step is to set the upper bound, lower
bound and iteration counter at oo, 0 and 0, respectively. In iteration n, RMP is solved first to obtain
an optimal solution 2" (note that in iteration 0, RMP has no cuts and any feasible solution to (15)—
(30) is optimal with an objecive value of 0). From 2", let 2" denote the partial solution associated
with the z-, z-, y-, and s-variables corresponding to the index w. Then, DSP(Z]) is solved (note
that since the linear program in (42)—(43) and so its dual (44)—(45) are scenario indexed, they can
be solved in parallel), yielding either an extreme point d,, € D,, (if the model is solved to optimality)
or an extreme ray d,, € D, (if the model is concluded to be unbounded). In the former case, d, is
added to Dy" (i.e., Dy "« DY U{d,} and D" « D), resulting in a new optimality cut;
otherwise, d,, is added to D¥" (i.e., Dy « D& and D"t « DY U {d,}), yielding a new
feasibility cut. The RMP objective provides a lower bound to the optimal solution of the original
problem (9)—(30) —under a resilience loss minimization objective—; furthermore, as demonstrated in
the following proposition, the dual subproblem DSP(Z,,) always has an optimal solution, meaning the
weighted sum > o m, (b — Bz() d,, yields an upper bound. We now state and prove the required
result.

Proposition 3.1. For a given binary variable vector Z,, = [Tiji/j/k,Eijw(t), Tijho (), Z‘jk] that satisfies
the constraints (15)—(30), both SP(Z,,) and DSP(Z,,) are always feasible and bounded.

PROOF. Observe that setting fij.,(t) =0, V{i,j} € E, Vt € {1...T}, and f;,(t) =0, Vj € VT, Vt €
{1...T}, satisfies Constraints (10)—(14); thus, SP(Z,,) is feasible. To show the boundedness of SP(Z,,),
note that fj,(t) < P, Vj € V7, V¢t € {1...T} due to Constraint (13); therefore, the objective of
SP(Z,) is bounded to be nonnegative. By duality theory, DSP(Z,,) must be feasible and bounded
because SP(Z,,) is feasible and bounded.

This result additionally shows that feasibility cuts are not needed in the decomposition procedure;
therefore, only optimality cuts are generated and added to the RMP in each iteration, and the con-

vergence of the algorithm is accelerated.

4. Numerical studies

4.1. System description

To test the proposed model and solution approach, the data from the French electrical power
network company RTE (D’Electricité, 2019) is utilized in this work. The RTE network can be modeled
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Algorithm 2: Benders decomposition algorithm

Step 0: UB < 00, LB < 0, iteration counter n = 0

Step 1: Solve the RMP to obtain its optimal solution (Z,,,7y) , Vw € Qs > Qs = Qa,s for
LB + max{LB, Y, cq. Twlu} CVaR model

Step 2: For each w € Q:
Solve the DSP(Z,,) to obtain its optimal solution d,, and objective value (b — BZ,)d,,
End For
UB < min{UB,}_ cq. mw(b— Bz,)d.,}

Step 3: If UB—- LB <e¢: > € is a predefined tolerance
Stop and report the solution

Else:
(a) Add a total number of |Q,| Benders optimality cuts of the form:

v, > (b— Bz,)d,,Yw € Q, to the RMP
(b) n <~ n+1 and go to Step 1
End If

as an undirected graph with 172 substations (nodes) and 220 transmission lines (edges) covering up
to more than 17,500 miles. There are 26 power generators and 145 distributors in the network. Some
of the generators and distributors also transmit power from other generators to distributors. The
weights of the edges (i.e., their capacities) are assumed to be identical. Specially, the capacity of each
transmission line is 5000 MW, and the total network flow received by demand nodes is 61928 MW. In
addition, given that the power network flow does not follow the general flow-based model introduced
in this paper (Bienstock & Mattia, 2007), the DC model has been used as a linear approximation of
the power flow in the network (see Appendix A.1 for details).

In this study, three possible cases are considered (along with subcases for their travel times) for
network failure modes that differ in terms of their spatial coverage and the importance or criticality

of the components in the network:

e Case 1: Random failures - common failures that occur randomly across the network caused
often by weather-related triggers, man-made accidents and operation errors affecting the whole
network. In this case, network edges are removed randomly with an equal failure probability for

all edges in the network.

e Case 2: Cascading failures - failures of initial components that may cause other intercon-
nected components to fail due to increased loads causing a sequence of failures in the network.

The cascading failure process was simulated using the ML model (Motter & Lai, 2002).

e Case 3: Spatial failures - failures caused generally by natural disasters (e.g., earthquakes and
floods) where only a local spatial area of the network is affected, and thus only components that

are spatially close to each other are impacted by the local disruption.

For all these cases, the three subcases of travel times are: (a) without travel time consideration,
(b) with deterministic travel time consideration, and (c¢) with random travel time consideration. Con-
sidering these allows for measuring the impact of travel times, uncertainty and risk to be tested under

various scenarios of failure propagation and revealing under which circumstances the usage of these
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additions to system resilience is critical. The distribution of the failed components over the geographic

area of the network for each case can be found in Appendix B.1.

4.2. Uncertainty representation

The proposed model assumes the time to repair each edge and the travel time between failed
edges are uncertain, but the remaining parameters are deterministic. The remainder of this section
summarizes the assumed probability distributions for the uncertain parameters.

Let E’ C E denote the set of disrupted edges, and ttr;; denote the time to repair edge e = {4, j} €
E’. We assume ttr; ; has a Weibull distribution with scale parameter v, and shape parameter f.

Specially, the probability density function of ttr;; is given by:

h(t, Be,ve) = Be (t)ﬁe ' 6‘(%)%, t>0 (49)
e Ve
Note that the Weibull distribution is commonly used to model activity times (Abdelkader, 2004).
For e = {i,j} € E' and ¢’ = {i,j'} € E’, let tt;;;; denote the travel time between edge e and
€. A deterministic estimate of the travel time from e to €’ is derived using a separate transportation
network. In the transportation network, each edge has an associated length and speed limit, and
its traversal time ¢; is estimated assuming it will always be possible to travel at the speed limit.
The deterministic estimate of t;;,/;/, hereafter denoted as dtt;;;j/, is obtained by determining the
shortest path length between two nodes in the transportation network, namely those that are closest
to the midpoint of e and €’ (see Figure 2 for illustration). To represent the uncertainty of t¢;;y;,
a distribution for traversal time of edges in the transportation network is populated; given ¢;, the

random traversal time cr; is distributed according to the probability mass function:

0.3, t=¢
Plerp=t)=< 0.3, t=1.5¢ (50)
04, t=2¢

and tt;5 4 is found by solving the shortest path problem as explained. This approach follows other
disaster relief studies assuming that uncertain traversal times are based on a coefficient multiplication
of the deterministic traversal times of the transportation network (de la Torre et al., 2012; Mete &
Zabinsky, 2010).

4.8. Assumptions and computational information

In this study, the Weibull distributed repair time shape and scale parameters are assumed to be
5 and 2, respectively, for all components. Such assumptions are made following other studies in the
literature in terms of the chosen probability distribution and parameters (Fang & Sansavini, 2019).
Thus, the mean-time-to-repair (MTTR) used in the deterministic model is 1.84 hours. Without loss of
generality, we assume that 10% of the edges are damaged under each failure mode and that the number
of available maintenance crews is three. Table 1 shows the decrease in the network performance under
each failure mode. In addition, the restoration planning horizon T is chosen as 20 hours, which is
sufficient to restore the network performance to its original state under all cases. For the scenario

generation process, 1000 scenarios are generated of each failure mode and its included subcases. After
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that, scenario reduction algorithms (Algorithms 1-A and 1-C) were used to reduce the number of
scenarios into a smaller set. For the risk-neutral stochastic optimization model, the total number
of scenarios is reduced to 10 scenarios; and for the risk-averse stochastic optimization model (with
a = 80%) we reduce the total number of scenarios to 5 given that less probability space is covered (80%
less) with the CVaR measure. Solutions to the MILPs used in the scenario reduction procedure and the
stochastic optimization models were computed using CPLEX 12.10 (CPLEX, 2020) and programmed
using Python 3.7 (Python, 2020) on a 3.2 GHz Intel Core i5 iMac machine with 24 GB of RAM.

Case Random failures Cascading failures Spatial failures
Performance drop 9% 13.35% 12.78%

Table 1: Network performance drop after possible modes of disruption

Based on our preliminary analysis, a time limit of 2 hours (7200 seconds) and 1 hour (3600 seconds)
was set for each instance of the risk-neutral stochastic optimization model with 10 scenarios and the
risk-averse stochastic optimization model with 5 scenarios, respectively. This amount of time allows
our implementation of Benders algorithm to solve both problems within 2% adjusted optimality gap
(see Appendix A.2 for details) for all subcases. Algorithm 2 was implemented using callbacks with
Benders cuts added as lazy constraints. Table 2 shows the added value of our proposed solution
algorithm compared to CPLEX standard solver, and Table 3 summarizes the dimensions of different

problem instances.

Case CPLEX standard solver Benders decomposition

. Resilience . Resilience

C tational R C tational R
Otrﬁg: (ds)lond Gap(%)  objective Otrﬁglel (‘LS )1011@ Gap(%)  objective

value value
Random failures 7201.05 5.59 0.3437980 7202.178 0.1444 0.913716
Random failures (deterministic travel times) 7201.36 5.99 0.3035116 7200.977 0.7702 0.844289

Random failures (random travel times) 7201.18 2.56 0.63019 7200.49 0.7646 0.82157

Cascading failures 7200.20 1.13 0.8678093 5300.619 1.0288 0.875282
giffgdmg failures (deterministic travel 7201.46 226 0.78620732  6000.816 0.9407  0.881616
Cascading failures (random travel times) 7200.40 6.52 0.481307 7201.611 1.1633 0.850502
Spatial failures 7201.83 4.08 0.6243989 7201.101 1.2052 0.835887
Spatial failures (deterministic travel times) 7201.15 4.01 0.6289536 7201.170 1.4432 0.817396
Spatial failures (random travel times) 7206.79 6.82 0.41048 7217.37 1.3527 0.800491

Table 2: Comparison of Benders decomposition and CPLEX solver solutions for the Risk-neutral stochastic optimization
model with 10 reduced scenarios

No. of No. of binar No. of Max
. ) . y No. of No. of - i
Instance nglfil ggﬁgs variables constraints  Scenarios malcri‘g%?snce Coi?gét ?St)l onal
Risk-neutral 115,320 315,612 377,104 10 3 7200
Risk-averse 57,660 158,532 188,629 5 3 3600
Deterministic 11,532 32,868 37,695 1 3 600

Table 3: Problem sizes of different study instances

4.4. Results

4.4.1. Scenario reduction results
In this section, we compare the results from the adopted risk-neutral scenario reduction algorithm

based on the individual WS solutions with the ones from the standard algorithm based on the norm of
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the difference between pairs of scenarios’ random vectors. Figure 3 presents a histogram comparison
of the WS resilience values of the reduced set of scenarios using the WS metric (Algorithm 1-A) and
the standard probability metric (Algorithm 1-B) for one failure mode. The WS reduced scenarios
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Figure 3: WS results of scenario reduction algorithms 1-A and 1-B for different reduced numbers of scenarios

show more resemblance to the original set of scenarios with respect to the distribution of objective
values. Furthermore, Tables 4 and 5 present the values of mean and standard deviation of system
resilience for the reduced sets using both algorithms under different target numbers of reduced sce-
narios without/with travel time considerations. It is worth pointing out that the standard probability
metric method cannot differentiate between the model with no travel times and the one considering

deterministic travel times since the same set of scenarios will be chosen for both cases.
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All 1000 scenarios Algorithm 1-A Algorithm 1-B

Resilience Resilience Number of Resilience Resilience Number of Resilience Resilience
standard reduced standard reduced ” standard

mean L - mean L - mean L
deVlathn scenarios deVlathn scenarios dev1at10n
500 0.915831 0.0172866 500 0.915613 0.0176127
200 0.915831 0.0172866 200 0.91598 0.0178898
0.915831 00172952 100 0.915831 0.0172866 100 0.915249  0.0180558
50 0.915827 0.0172921 50 0.917131 0.0178635

Table 4: WS results from scenario reduction algorithms 1-A and 1-B for different reduced numbers of scenarios without
travel time consideration

All 1000 scenarios Algorithm 1-A Algorithm 1-B
Resilience Resilience Number of Resilience Resilience Number of Resilience Resilience
standard reduced ‘ standard reduced standard
mean o s . mean .. . mean . .

deviation scenarios deviation scenarios deviation

500 0.854238 0.0171671 500 0.853971  0.0174006

200 0.854238 0.0171671 200 0.854054  0.0177003

0.854238  0.0171757 100 0.854239  0.0171649 100 0.853737  0.017949
50 0.854242 0.0171685 50 0.855148 0.0178526

Table 5: WS results from scenario reduction algorithms 1-A and 1-B for different reduced numbers of scenarios consid-
ering deterministic travel times

Table 6 shows the benefit of using a warm start setting (supplying the deterministic solution as
an initial feasible solution) for each single scenario problem in reducing both computational time and

optimality gaps for the WS problems.

Average Max Average Max computational
Instance optimality optimality  computational time  time per problem
gap (%) gap (%) per problem (s) (s)
1000 scenario with cold start 0.573 2.27 118.135 120
1000 scenario with warm start 0.13 0.59 108.82 120

Table 6: Comparison of computational time and optimality gap for single scenario problems with warm vs. cold start

4.4.2. Stochastic optimization models results

A key result in this study is the impact of the inclusion of travel times between failed components
for each maintenance crew on the system resilience. Figure 4 shows a comparison between resilience
with and without deterministic travel times for all three failure modes. (The travel time between
each pair of failed components is assumed to be dtt;;;;» for the former and 0 for the latter). For all
failure modes, the impact of travel times is significant. The result indicates that the resilience models
without considering travel times between failed components might overestimate the actual possible
resilience values achieved and the time to restore the system to its undisrupted performance. Note
that this occurs even in the spatial failures case in which pairs of failed components are likely to be

close to each other. A sample of optimal routing for one failure mode is provided in Appendix B.2.

Risk-neutral stochastic model
To measure the added value of incorporating uncertainty into the model and to compare the
stochastic solution (SS) to its deterministic counterpart, we use what is known as the value of stochas-

tic solution (VSS) as our metric for comparison. This measure indicates the difference in the objective
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Figure 4: Comparison of resilience values for the 1000 scenarios WSs with/without deterministic travel times

values of the stochastic solution and the deterministic counterpart (Birge, 1982). By solving the
restoration problems for the different disruption cases (with the subcases of excluding travel times,
and including deterministic travel times and random travel times) using the proposed Benders decom-
position method, we can find the added value of uncertainty. Figure 5 shows the added value of the
risk-neutral stochastic model compared to its deterministic counterpart in terms of the value of re-
silience achieved at the end of the restoration period and in terms of the extra amount of flow (power)
received by demand nodes under the cases of random failures and cascading failures. Based on that, if
the stochastic solution was used instead of the deterministic one, more flow will be pushed to satisfy
more demand by amounts of at least 3000 MWh (3 GWh) for all subcases of the random failures case
and 1800 MWh (1.8 GWh) for all subcases of the cascading failures case. Given that the annual elec-
tricity consumption per household in France is about 5.425 MWh (Odyssee-Mure, 2020) and the daily
consumption is approximately 0.015 MWh, the extra amount of flow gained by the stochastic solution
is equivalent to the daily consumption of 200,000-275,000 households for case 1 and 100,000-600,000
households for case 2 (see Figure 6). This indicates the significance of incorporating uncertainty into
the restoration scheduling tasks.

In contrast to the previous cases, the stochastic solution for the case with spatial failures only
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Figure 5: Cases 1 and 2 (Random Failures and Cascading Failures): Resilience values and VSS (as higher satisfied
demand in MWh) under different travel time assumptions

shows an improvement over the deterministic solution in the subcase with random travel times. In
the other subcases, the deterministic and stochastic solutions are the same. Resilience progress over
time curves for cases 1 and 2 can be found under Appendix B.3 showing how the stochastic solution
outperforms the deterministic counterpart in almost every scenario.

To validate the solution resulting from the reduced set of scenarios, we compare the solution for
each subcase to the one for the full set of scenarios as shown in Table 7. In all subcases, the estimate
of the expected resilience value for the small set of scenarios is within about a 0.01 difference from

the expected resilience for the full set of scenarios.

Case Full set of scenarios (1000 scenarios) Reduced set of scenarios (10 scenarios)
Resilience objective value Resilience objective value
Random failures 0.912227 0.913716
gfnrzig)m failures (deterministic travel 0.838694 0.844289
Random failures (random travel times) 0.828919 0.82157
Cascading failures 0.881547 0.875282
Silsec:)dmg failures (deterministic travel 0.881711 0.881616
Cascading failures (random travel times) 0.845592 0.850502
Spatial failures 0.848444 0.835887
Spatial failures (deterministic travel times) 0.815873 0.817396
Spatial failures (random travel times) 0.796081 0.800491

Table 7: Validation of solutions for the reduced set of scenarios when applied to the full set of scenarios
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Figure 6: Cases 1 and 2 (Random Failures and Cascading Failures): VSS in equivalent number of households consump-
tion related to the extra amount of satisfied demand in MWh under different travel time assumptions

Risk-averse stochastic model

For the risk-averse model, five reduced scenarios are chosen to represent the worst 20% cases
with o = 0.8. Similar to the VSS, we adopt the mean-risk value of stochastic solution (MRVSS)
(Noyan, 2012), a measure of the possible gain from solving stochastic models incorporating a mean-
risk function, as the method to quantify the gains from solving the CVaR problem. However, given
that only a CVaR approach is considered rather than a mean-risk one, we rename the measure to
CVaR-VSS, i.e., the mean-risk measure with the weight of the expected resilience of scenarios not in
a-CVaR being 0. Figures 7, 8 and 9 compare the CVaR solution and the deterministic solution in

terms of resilience values and CVaR-VSS for all cases.
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Figure 7: Case 1 (Random Failures): Resilience values and CVaR-VSS in equivalent number of households consumption
related to the extra amount of satisfied demand in MWh under different travel time assumptions (a = 0.8)
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Figure 8: Case 2 (Cascading Failures): Resilience values and CVaR-VSS in equivalent number of households consumption
related to the extra amount of satisfied demand in MWh under different travel time assumptions (a = 0.8)
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Figure 9: Case 3 (Spatial Failures): Resilience values and CVaR-VSS in equivalent number of households consumption
related to the extra amount of satisfied demand in MWh under different travel time assumptions (a = 0.8)

In almost all of these cases, the CVaR solutions outperform the deterministic solutions by achieving
higher resilience values accompanied with significant CVaR-~VSS values ranging from about 50,000 to
800,000 households daily consumption equivalence in the worst-case scenarios. Note that, in contrast
to the risk-neutral case, the case with spatial failures also shows a significant CVaR-VSS under all
subcases. Figure 10 plots the network performance over time for the high-risk scenarios in Case 3-b
(spatial failures with deterministic travel times), showing how the CVaR restoration plan generally
achieves full performance in these scenarios faster than either a risk-neutral or deterministic restoration

plan.
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Table 8 compares the CVaR solution and the deterministic and risk-neutral solutions across Cases
1-3. Tt can be seen that the risk-averse solution performs the best in all the cases by mitigating the
risk associated with resilience loss. Moreover, the risk-neutral solution almost always comes second in

performance with the deterministic solution classified as the solution involving the highest risk.
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Figure 10: Case 3-b (Spatial Failures with Deterministic Travel Times): Comparison of network performance during
the restoration period in high-risk scenarios under different solution plans

In addition, It is of interest to investigate whether the CVaR solution performs well in scenarios
other than the high-risk ones. Table 9 compares the risk-neutral solution for all cases with the
deterministic counterpart and the CVaR solution applied to the reduced set of 10 scenarios associated
with the risk-neutral problem. Surprisingly, the CVaR solution in some cases outperforms the risk-
neutral solution. One possible reason of this unexpected finding is that the CVaR problems generally
use fewer scenarios, given the 1 — a% reduced covered area of possible scenarios allowing the optimal
solutions of the problems to be closer to the 0% optimality gap in less amount of computational time.
Therefore, two important features of the CVaR approach can be summarized as follows: (1) the CVaR
approach covers a fair amount of uncertainty (depending on « value), making its suggested plan more
pleasing than the fixed deterministic counterpart, and (2) the CVaR problem is solved with fewer
scenarios than its risk-neutral counterpart allowing the optimal solution to be found in less time (50%

in our setting) and with lower optimality gaps.

: Computational . CVaR Deterministic Stochastic
Case tiII)ne (s) Gap(%) solution solution solution
Random failures 3600.000 0.0691 0.887089 0.846803 0.885704
Random failures (deterministic travel times) 3600.797 0.5549 0.827217 0.804466 0.827217
Random failures (random travel times) 3600.632 0.833 0.8103 0.7876 0.8103
Cascading failures 3607.194 0.1988 0.920725 0.850712 0.868874
Cascading failures (deterministic travel times) 3600.476 0.8428 0.880710 0.860402 0.873507
Cascading failures (random travel times) 3600.035 1.4551 0.8289 0.7959 0.8155
Spatial failures 3600.312 0.7766 0.842965 0.828520 0.828520
Spatial failures (deterministic travel times) 3600.015 1.4309 0.804756 0.800828 0.800828
Spatial failures (random travel times) 3600.896 1.3141 0.7744 0.7622 0.7744

Table 8: Solution comparison of the risk-averse resilience values (o = 0.8) with deterministic and risk-neutral alternatives
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e Computational i Stochastic ~ Deterministic CVaR

Case time (s) Gap(%) solution solution solution

Random failures 7202.178 0.1444 0.913716 0.877421 0.912732
Random failures (deterministic travel times) 7200.977 0.7702 0.844289 0.817283 0.844289
Random failures (random travel times) 7200.49 0.7646 0.82157 0.7928 0.82157
Cascading failures 5300.619 1.0288 0.875282 0.865170 0.911292
Cascading failures (deterministic travel times) 6000.816 0.9407 0.881616 0.848590 0.882013

Cascading failures (random travel times) 7200.4 0.9549 0.8505 0.7983 0.8314
Spatial failures 7201.101 1.2052 0.835887 0.835887 0.850345
Spatial failures (deterministic travel times) 7201.170 1.4432 0.817396 0.817396 0.818078
Spatial failures (random travel times) 7217.37 1.3527 0.800491 0.7704 0.800491

Table 9: Solution comparison of the risk-neutral resilience values with deterministic and risk-neutral alternatives

5. Conclusion and future work

This paper proposes risk-neutral and risk-averse two-stage stochastic optimization models for CI
restoration planning, where post-disruption restoration tasks occur in a highly dynamic environment
and thus subject to a considerable amount of uncertainty. The models address two important chal-
lenges facing restoration planning, which are the accessibility of failed components and uncertainty
associated with restoration task durations and possible starting times. For the former, travel time
between components has been added to the model to connect CI restoration models to the state of
the underlying transportation network. For the latter, the uncertainty of repair times and travel
times is handled by sampling from their suggested probability distributions through a maxi-min Latin
hypercube technique, with the number of discrete uncertainty scenarios being reduced to a tractable
size by applying an improved risk-neutral and a proposed risk-averse fast forward selection algorithm
based on the WS objective values of individual scenarios. The objective of the model is to minimize
the expected loss of performance over all possible realizations of the random parameters, and thus to
maximize the system’s resilience. Three common network failure mechanisms (i.e., random failures,
cascading failures and spatial failures) are tested.

The proposed approach was demonstrated using a real-life case study based on the RTE 400 kV
French electric power transmission network. Our first finding was the significant impact of incorpo-
rating travel times into resilience modeling. In fact, one can see that resilience models that do not
consider travel times are overestimating their expected resilience achieved and the speed of restoring
the system to its undisrupted performance level. Furthermore, to assess the added value of incorpo-
rating uncertainty, two measures were used to quantify the significance of adapting stochastic models
over deterministic counterparts: VSS for the risk-neutral stochastic model and CVaR-VSS for the
risk-averse stochastic model. Both models have resulted in positive values of VSS and CVaR-VSS in
2 out of 3 cases and all three cases, respectively. There is a clear benefit of using stochastic methods
that account for uncertainty over deterministic ones that depend on the expected values of the uncer-
tain parameters. In addition, CVaR solutions were generally found with less computational time, and
their suggested restoration plans perform on par with the risk-neutral counterparts and sometimes
even better under a risk-neutral setting of scenarios selection. However, under high-risk scenarios,
CVaR proposed solutions mitigate the risk associated with such scenarios by achieving resilience val-
ues close to the wait-and-see solutions of such individual scenarios. In addition, the CVaR solution
under this setting performed second to none under all failure modes and their subcases.

The stochastic optimization models proposed in this study are reformulated as deterministic equiv-

alent large MILPs in order to generate methods to solve proposed models efficiently. A Benders de-
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composition algorithm is proposed in this paper to solve the proposed models in short time settings.
In addition, given that the risk-averse stochastic program is modeled by a scenario selection procedure
identifying true risks associated with individual scenarios, the Benders decomposition algorithm pro-
posed here is robust to work with both versions of the stochastic model. Thus, a practical framework
for solving risk-averse versions of resilience-based optimization models, starting from scenarios gener-
ation, risk-averse scenarios reduction and ending with a solution procedure, is shown here to facilitate
linking risk measures to current and future resilience optimization models.

The proposed stochastic optimization models present a practical framework for risk-neutral and
risk-averse resilience-based applications and possibly other applications with task-scheduling proce-
dures involving fair amount of uncertainty. Nonetheless, possible additions in terms of planning flex-
ibility to the current framework are adding multi-mode repairs of failed components and allowing for
multi-crew restoration of failed components under travel time considerations. Moreover, restoration
considering multiple interdependent networks (Gomez et al., 2019) under uncertainty and network-
based risk measures along with coordinating the restoration of the transportation network can also be
studied as future research directions. Finally, the models in the present study assume that the restora-
tion plan is determined initially and cannot be altered afterwards. Indeed, relaxing this assumption
by enabling sequential change of the plan as time goes on will add more flexibility to the models but
will significantly increase the computational time by moving the models from the two-stage setting
into a more dynamic multi-stage stochastic optimization framework. Such computational differences
can be tested using time-consistent risk-averse measures such as Expected CVaR (Homem-de-Mello
& Pagnoncelli, 2016) and Expected Conditional Stochastic Dominance (Escudero et al., 2017).
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Appendix A

A.1. Model adaptation for the power network

The general flow-based model introduced in this paper assumes that the flow in the network can be
directly controlled, which is not the case for power infrastructure networks (Bienstock & Mattia, 2007).
The DC model is a commonly used linear approximation of the power grid to model its operations,
especially the power transmission network (Bienstock & Mattia, 2007; Nurre et al., 2012). The DC
model includes decision variables (i.e., the phase angles) for all the nodes in the network. The flow on
edge {i,7} is then a function of the phase angles of nodes ¢ and j along with the reactance of the edge
{i,7}. The reactance, b;;, of the edge is dependent on its length and the voltage levels. By defining 0;

for i € V as the phase angle of node 4, the flow on edge {4, j} for a given scenario is determined by:
bijfij = 97, — 9]' (Al)

Note that both the phase angle variables and the edge flow variables are unrestricted in the DC
model. A negative flow on edge {ij} corresponds to power flowing from node j to node i. Therefore, it
is necessary to incorporate the constraints given by Equation (A.1) into the optimization problem (9)—
(30). We define variables 6;(¢) fori € V and t € {1...,T} for the phase angle of node i in time period
t. Then, the DC flow is incorporated by adding two constraints controlling flow on each edge along
with (14):

bijfijw(t) < Giw(t) — ejw(t) + M [1 — Sijw(t)} ,V’Lj € EVt e {1, . ,T},Vw € Qg (AZ)
bij fijw(t) = 0iw(t) — 050 (t) — M [1 — s450,(t)] ,Vij € E,Vt € {1,...,T},Vw € € (A.3)

Therefore, whenever s;;,,(t) = 1, constraints (A.2) and (A.3) will make sure that the DC flow satisfies
Equation (A.1) for edge {i,j} in time period ¢. In addition, Constraints (A.2) and (A.3) are added
to the optimization problem (9)—(30) and to each scenario-related subproblem from the proposed

Benders decomposition.

A.2. Optimality gap calculation

Regarding the relative optimality gap of the stochastic optimization models, we note that the
optimality gap using the resilience measure (or loss of resilience) by Fang et al. (2016) is inflated given
a constant term in the objective function’s numerator representing either the negative summation of
the aggregated system performance measure (flow in our case) in the disrupted state: Zt 1 T (0) for
a maximization problem or the summation of aggregated system flow over time in the nominal state:
Zt 1 (p(to) for a resﬂlence loss minimization problem. For example, if the cumulative sum of flow
Vi e {1...T}is 100, 34—, T o(0) = 70 and thl ©(tg) = 120, the resilience objective function solution
(5\193) will be 0.60 and if we assume that the upper bound on the cumulative flow is 115, the upper
bound on resilience (ObjY %) will be 0.90; thus, if we calculate the optimality gap by: (%) —1,it

will be estimated as 50.00% where the gap in terms of the aggregated flow: (M) -1

Aggreg/ate\d Flow
which is the term to be maximized, is 15.00% Based on that, we use from this point onward an
©(0)
+T(w(f0) 2O
2(0)
Obj+ rpteg et

Obj
adjusted optimality gap calculated using: ( ) — 1 for a maximization problem and:
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To(tg) _ObiLB
Tty ooy —Obi e N - .
( T(“’(t%(f (;))) T — 1 for a minimization objective to eliminate the impact of constant terms on
__Telta) -
T(o(to)—»(0) =

the gap estimation of the aggregated flow. In Table 2, we compare the proposed Benders algorithm
to the standard CPLEX solver. The optimalty gap for the Benders implementation is found using:

Ty (tg)

—-LB . . . .. .

(%_'L@) — 1 where LB is the lower bound representing the optimal objective function
T(p(to)—»(0)

value of the master problem at the last iteration of the algorithm before termination. For the CPLEX

solver, we use the reported best lower bound on the objective function ObjLP and the best available

A7 M)__ObjL?

objective value Obj e, reported by CPLEX: ( T(w(Ttgzt—s;(o» 5\b'80 vw> "1 to caleulate the optimality
T(@(to)—(0) 7% solver

gap.

Appendix B

B.1. Maps of failed components for numerical studies
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Figure 11: Case 1: Distribution of random failures
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Figure 12: Case 2: Distribution of cascading failures
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Figure 13: Case 3: Distribution of spatial failures
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B.2. Sample of optimal solution routing under deterministic travel times
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Figure 14: Case 1-b (Random Failures with Deterministic Travel Times): Optimal routing for crews 1 and 2
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Figure 15: Case 1-b (Random Failures with Deterministic Travel Times): Optimal routing for crew 3
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B.3. Resilience curves under different considerations of travel times
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Figure 16: Case 1-c (Random Failures with Random Travel Times): Comparison of resilience curves under different
solution plans for the reduced 10 scenarios
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Figure 17: Case 2-¢ (Cascading Failures with Random Travel Times): Comparison of resilience curves under different
solution plans for the reduced 10 scenarios
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Figure 18: Case 1-a (Random Failures without Travel Times): Comparison of resilience curves under different solution
plans for the reduced 10 scenarios
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Figure 19: Case 1-b (Random Failures with Deterministic Travel Times): Comparison of resilience curves under different

solution plans for the reduced 10 scenarios
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Figure 20: Case 2-a (Cascading Failures without Travel Times): Comparison of resilience curves under different solution
plans for the reduced 10 scenarios
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Figure 21: Case 2-b (Cascading Failures with Travel Times): Comparison of resilience curves under different solution
plans for the reduced 10 scenarios

42



	Introduction
	Background
	Related literature
	Overview and research contributions

	Methodology and model development
	Resilience of critical infrastructure
	Risk measure approach
	Two-stage stochastic optimization model formulation

	Solution approach
	Scenario generation and reduction
	Benders decomposition

	Numerical studies
	System description
	Uncertainty representation
	Assumptions and computational information
	Results 
	Scenario reduction results 
	Stochastic optimization models results


	Conclusion and future work
	Model adaptation for the power network 
	Optimality gap calculation 
	Maps of failed components for numerical studies 
	Sample of optimal solution routing under deterministic travel times 
	Resilience curves under different considerations of travel times 


