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Abstract

Post-disruption restoration of critical infrastructures (CIs) often faces uncertainties associated with

the required repair tasks and the related transportation network. However, such challenges are often

overlooked in most studies on the improvement of CI resilience. In this paper, two-stage risk-averse and

risk-neutral stochastic optimization models are proposed to schedule repair activities for a disrupted

CI network with the objective of maximizing system resilience. Both models are developed based on

a scenario-based optimization technique that accounts for the uncertainties of the repair time and the

travel time spent on the underlying transportation network. Given the large number of uncertainty

realizations associated with post-disruption restoration tasks, an improved fast forward algorithm

based on a wait-and-see solution methodology is provided to reduce the number of chosen scenarios,

which results in the desired probabilistic performance metrics. To assess the risks associated with

post-disruption scheduling plans, a conditional value-at-risk (CVaR) metric is incorporated into the

optimization models through a scenario reduction algorithm. The proposed restoration framework is

applied to the French RTE electric power network with a DC power flow procedure, and the results

demonstrate the added value of using the stochastic optimization models incorporating the travel times

related to repair activities. It is essential that risk-averse decision-making under uncertainty largely

impacts the optimum schedule and the expected resilience, especially in the worst-case scenarios.

Keywords: (O) OR in disaster relief; Stochastic optimization; Restoration; Risk measures

1. Introduction

1.1. Background

Critical infrastructures (CIs) are defined as networks of independent, mostly privately-owned,

man-made systems and processes that function collaboratively and synergistically to produce and

distribute a continuous flow of essential goods and services (Ellis et al., 1997). Specially, those CI

networks for electric power, water distribution, natural gas, transportation, and telecommunications

are the backbone of modern societies (Almoghathawi et al., 2019; Zio, 2016). Their continuous and

proper functioning provides the fundamental services that support the economic productivity, security,

and quality of life of citizens.
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Unfortunately, CI networks are often subject to different types of disruptive events, including

random failures, technical accidents, malevolent attacks, and natural hazards, which could affect their

performance unpredictably and have direct consequences on the communities and people’s daily lives.

Such disruptions become inevitable in today’s increasingly complex and risky operating environment

(Helbing, 2013). Hence, for several years, the United States (U.S.), as well as many countries around

the globe, have shown an increasing interest in effectively preparing for and responding promptly to

such disruptive events (Karagiannis et al., 2017; O’Donnell, 2013; White House, 2013). Indeed, it is

increasingly important to not only protect the current CI networks against disruption, but also to be

able to restore them once they are disrupted.

In 2011, the U.S. president released a report setting a four-pillared strategy for modernizing the

electric grid (Executive Office of the President, 2011). The presidential initiative directed billions of

dollars toward the investments in 21st century smart grid technologies aiming at increasing the grid’s

efficiency, reliability, and resilience, and at making the grid less vulnerable to outages and reducing the

time it takes to restore power after an outage. A subsequent report in 2013 has addressed explicitly

the importance of increasing electric grid resilience, especially against weather-related outages, and

the economic benefits of resilience improvement (Executive Office of the President, 2013). According

to the report, severe weather is the leading cause of power outages in the U.S. In fact, between 2003

and 2012, an estimated 679 widespread power outages occurred due to severe weather. Such weather-

outages are expected to rise as climate change increases the frequency and intensity of hurricanes,

blizzards, floods, and other extreme weather events (Zamuda et al., 2013). In addition, weather-

related outages are estimated to have cost the U.S. economy an inflation-adjusted annual average of

$18 billion to $33 billion (Executive Office of the President, 2013). The annual estimation could reach

$70 billion according to another congressional study (Campbell & Lowry, 2012).

It is worth pointing out that the annual losses fluctuate significantly and reach the greatest in the

years of major storms. For example, Hurricane Sandy, which struck the entire East Coast of the U.S.

in October 2012, caused significant damages to the infrastructure systems, resulting in an estimated

cost of $33 billion for repairs and cleanup in the aftermath and an approximate total of $65 billion in

damages and economic loss (Force, 2013). Moreover, about 8.5 million customers were left without

power, and the commuting time increased significantly due to the disabled roads and public transit.

When Hurricane Harvey struck the southern coast, it caused about $200 billion in damages and $20

to $30 billion in lost economic output (CNBC, 2017). According to the U.S. Federal Emergency

Management Agency (FEMA), nearly 40,000 people were in the shelters in Texas and Louisiana,

considering the most were without essential lifeline services, over 160 drinking water systems were

damaged with 50 of them being totally shut down, and 800 water waste facilities were partially

damaged (FEMA, 2017). Furthermore, nearly 80,000 homes had at least 18 inches of floodwater,

23,000 of which had more than 5 feet, 24 hospitals were evacuated, 61 communities lost drinking

water capability, 23 ports were closed, 781 roads were impassable, about 780,000 people evacuated

their homes, and first responders rescued 122,331 people (FEMA, 2017). Altogether, the experience

from these events underlines the needs for timely, efficient, and effective network restoration and

recovery activities in the aftermath of large-scale disruptive events, so that both short-term and long-

term reliance on the infrastructure networks can be assured.
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Risk management strategies generally emphasize disruptive events mitigation options in the form

of prevention and protection by designing the systems to avoid or absorb undesired events from

occurring (Hosseini et al., 2016). While such strategies are crucial to preventing undesired events or

consequences, recent events suggest that not all undesired events can be prevented. Natural events

such as Hurricane Harvey are among the recent examples of unpreventable disruptions. In fact, this

particular event impacted multiple networked systems including the transportation network and power

network, which has not been restored fully even after few months of the incident (Manuel, 2013). In

a recent report by the European Commission’s science and knowledge service, the Joint Research

Centre (JRC) has addressed challenges in power grid recovery after natural hazards (Karagiannis

et al., 2017). The study covered different natural events and their impact on power grid networks by

collecting worldwide data about at least 50 events from different sources including technical reports,

field survey reports, and research papers (Karagiannis et al., 2017). The report used two thresholds

to assess power grid recoverability: (1) The restoration of power supply to customers, and (2) The

complete repair of the network. Moreover, two of the significant challenges that face recovery actions

were found to be the repair times uncertainty and poor access to damaged facilities due to landslides or

traffic congestions. In addition, the report was concluded with multiple recommendations to improve

power grid recovery ranging from integrating risk-related strategies to stockpiling spare parts for

urgent maintenance actions (Luo et al., 2020).

All such recovery planning actions after disruptions are part of the rising concept of resilience,

which can be defined generally as the ability of a system or an organization to react and recover

from unanticipated disturbances and events (Hollnagel et al., 2006). Resilience, and in particular CI

resilience, has emerged in recent years due to the awareness of governments about the possible risks

associated with CIs and the catastrophic impacts of various disruptive events affecting CIs (White

House, 2013). This has encouraged practitioners and researchers to develop various resilience im-

provement techniques ranging from system design to recovery optimization (Hosseini et al., 2016). In

addition, resilience can be effectively improved by developing optimum plans for timely restoring the

disrupted service after the occurrence of a disruptive event. In planning CIs restoration, prioritiz-

ing components is key in improving the recovery process. To this end, optimization approaches are

typically used to facilitate the identification and scheduling of effective restoration strategies for the

rapid reestablishment of system functionality. Recently, Sharkey et al. (2020) reviewed the relation

between network optimization and resilience theory and applications. In the literature, many studies

have been reported in the context of post-disruption CI restoration under a mathematical program-

ming framework (Fang & Sansavini, 2017; Nurre & Sharkey, 2014; Vugrin et al., 2014; Zhang et al.,

2018). The main goal is to schedule recovering tasks of failed components in order to accelerate the

restoration process (Vugrin et al., 2014).

1.2. Related literature

The concept of resilience has been investigated by different disciplinary perspectives and across

various application domains. Specially, several definitions of resilience have been offered from an engi-

neering point of view (Hosseini et al., 2016). Many are similar and overlap with a number of existing

concepts such as robustness, fault tolerance, flexibility, survivability, and agility, among others. How-

ever, most definitions are based around pre- and post-disruption related concepts, such as protection,
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risk mitigation, adaption and restoration (Barker et al., 2017). In addition, developing mathematical

and statistical modeling approaches to improve, analyze and optimize resilience needs resilience quan-

tification to compare proposed models. As a result, in the literature, resilience has been quantified

by different approaches and mathematical interpretations (Gasser et al., 2019; Hosseini et al., 2016).

Many of these resilience measures try to scale the performance measure as a ratio between the actual

level of performance and the desired (undisrupted) level over time (for a full review see Gasser et al.

(2019) and Hosseini et al. (2016)). Some examples are the ratio of the probability of failure and

recovery (Li & Lence, 2007), the ratio of the expected degradation and the maximum possible degra-

dation of a system due to a disruption (Rose, 2007), and the measure of system performance (Henry

& Ramirez-Marquez, 2012). In this work, the focus will be on post-event resilience-based actions (i.e.,

restoration and/or recovery).

There are multiple studies addressing post-disruption CI restoration with different goals and

mathematical approaches. Anaya-Arenas et al. (2014) and Özdamar & Ertem (2015) reviewed post-

disruption restoration plans in humanitarian logistics, such as relief delivery, casualty transportation,

and mass evacuation. In addition, considerable research in this area has been focused on specific

types of critical infrastructures such as transportation networks and electrical power grids (Morshed-

lou, 2018). In contrast, other studies developed general restoration models that can be applied to

almost any CI network without changes or with slight modifications (e.g., adding power flow con-

straints in power grids). Although the literature review will not be restricted to one type of CIs

models, restrictions associated with a single CI model will be mentioned.

Many of the mathematical models found in the literature are formulated as mixed integer programs

(MIPs) and mixed integer linear programs (MILPs). Bryson et al. (2002) applied an MIP approach

for selecting a set of recovery subplans leading to the greatest benefit to business operation. Matisziw

et al. (2010) proposed an MIP model to restore networks where the connectivity between pairs of

nodes is considered as the performance measure associated with the network. Nurre et al. (2012)

studied an integrated network design and scheduling problem for the restoration of CI systems. They

formulated the problem as an integer programming problem, and a dispatch rule-based heuristic

approach was proposed for its efficient solution. To account for power flow law in electrical networks,

they adopted the method by Bienstock & Mattia (2007). Furthermore, Nurre & Sharkey (2014)

provided a comparative study focusing mainly on model complexity and heuristic dispatch rules for

their integer optimization problem.

Regarding cascading failures in power networks, Bienstock & Mattia (2007) proposed an MIP

model to protect power grid networks at minimum costs to increase the networks survivability against

cascading failures. Their DC power flow model can be implemented in general MIPs and MILPs

by just adding a small set of constraints to control the power flow. To control power transmission

networks, Chang & Wu (2011) explored a quantitative method to measure the stability and reliability

of electric power networks under the triggered cascading failures. In addition, Bienstock & Grebla

(2015) introduced a stochastic algorithm to minimize the lost power load at the termination of the

cascade considering noise and errors in the model. Fang et al. (2017) introduced a pattern for searching

for the optimal limited resource allocation to increase the capacity of some links in electric power

networks to be able to maximize the networks resistance to cascading failures.
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Multiple infrastructures restoration models can also be found in the literature. Casari & Wilkie

(2005) discussed multiple infrastructures restoration when CIs are operated by different firms. Lee

II et al. (2007) proposed an MIP model to minimize the operating costs for temporary emergency

restoration, where network restoration involves selecting the locations of temporary arcs needed to

completely reestablish network services over a set of interdependent networks. Ouyang & Wang (2015)

studied and compared the effectiveness of five strategies for joint restoration of interdependent infras-

tructures, and a Genetic Algorithm (GA) was applied to generate recovery sequences. Sharkey et al.

(2015) studied the restoration of multiple interdependent CI networks under a centralized decision-

making framework and suggested an MIP model to solve the problem. Furthermore, González et al.

(2016) proposed an MIP model for optimizing infrastructure system restoration considering joint

restoration due to the geographical interdependence between multiple CI systems. Recently, Garay-

Sianca & Pinkley (2021) studied the restoration of interdependent CIs considering the movement of

work crews through a damaged transportation network being restored and proposed an MIP to solve

the problem under a deterministic problem setting.

When only transportation networks are concerned, Aksu & Ozdamar (2014) considered a multi-

vehicle problem to maximize network accessibility during transportation network recovery by identify-

ing critical blocked links and restoring them with limited resources. Çelik et al. (2015) also considered

debris removal problems and developed a stochastic debris removal approach over discrete time peri-

ods to determine the optimal schedule of blocked links under uncertainty. It was assumed that the

information corresponding to clearance time changes as the amount of debris changes, and thus as the

information is updated, the restorative vehicles assignment schedule changes. Furthermore, Kasaei

& Salman (2016) studied arc routing problems to regain network connectivity by clearing blocked

roads, developing heuristic algorithms to attain the maximum benefit gained by network connectivity

while minimizing the time horizon. Recently, Iloglu & Albert (2020) proposed a restoration model

of transportation networks to deliver critical services after disasters by heuristically optimizing the

relocation process of emergency responders to maximize the coverage of emergency services demand

over time.

One can see that the vast majority of these studies are based on deterministic assumptions such

as complete information on the restoration resources and full knowledge of the activities durations.

However, the restoration of infrastructure systems is complicated by the many decisions to be made

in a highly uncertain environment exacerbated by the disaster itself, people’s reaction, and limited

capability of information gathering (Fang & Sansavini, 2019). Several factors introduce uncertainty

into the parameters of a disaster situation, e.g., availability of restoration resources, number of repair

crews, the time duration for repairing failed components and the accessibility to such failed components

through the related transportation network. Clearly, optimal task planning under uncertainty appears

to be the closest to a real-life situation. In addition, existing optimization approaches usually do not

account for risk measures related to the execution of the optimal plan. For example, if the time

durations of some repair activities were longer than expected, the doubt would be if the suggested

plan will still perform well. Obviously, when optimizing CI restoration, risks associated with the

restoration plan must be considered to identify the possible worst-case scenarios and alter the plan

accordingly. Furthermore, the travel time between failed components may also affect the proposed
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plan along with the accessibility of components under the transportation network condition.

In the literature, few studies have tackled uncertainty in post-disruption CI restoration. Xu et al.

(2007) optimized a power network restoration by scheduling inspection, assessment, and repair oper-

ations, which were assumed to have random durations with known probability distributions. Instead

of solving the stochastic model, the authors used a GA to produce a priority list of repair tasks, which

might be suboptimal. Recently, Fang & Sansavini (2019) proposed a stochastic optimization approach

for infrastructure restoration under uncertainty and showed the added value of the stochastic model

compared to the deterministic counterpart. However, risk measures, the effects of travel time and the

impact of different network failure modes were not considered in their model.

1.3. Overview and research contributions

The aim of this paper is to schedule restoration actions on failed CI components using multiple

maintenance crews by solving a two-stage stochastic optimization model. The first stage schedules re-

pair tasks, and the second stage resolves the CI performance for each time period. The scheduled tasks

have uncertain duration, and the travel times between different tasks are also uncertain. Considering

these sources of uncertainty, two variants of the proposed stochastic optimization model are: (1) a

risk-neutral model to optimize restoration activities accounting for uncertainty and (2) a conditional

value-at-risk (CVaR)-based risk-averse model that enables the decision maker to choose plans that

perform well even in worst-case scenarios.

The main contributions of this paper are three-fold. (1) To the best of our knowledge, this is the

first paper that incorporates risk measures into resilience-based optimization in the context of post-

disruption restoration; (2) it provides a general framework for the generation, selection and reduction

of scenarios based on an improved fast forward selection algorithm for resilience optimization; and

(3) it provides the first stochastic optimization models that account for the travel time between failed

components for post-disruption restoration.

The remainder of this paper is organized as follows. Section 2 presents the background and method-

ology pertinent to our models and summarizes the proposed mathematical formulations. Section 3

shows the solution approach used in this paper. Section 4 presents a case study on the RTE elec-

tric power network to illustrate the use and advantage of the suggested models. Finally, concluding

remarks and future research directions are provided in Section 5.

2. Methodology and model development

2.1. Resilience of critical infrastructure

The resilience of a CI is commonly characterized with respect to a measure of performance (e.g.,

flow, connectivity, amount of demand satisfied) ϕ(t) that evolves over time (Henry & Ramirez-

Marquez, 2012; Hosseini et al., 2016). As depicted in Figure 1, let te ≤ td ≤ ts ≤ tf denote instants

in time such that (i) a disruptive event occurs at time te causing ϕ(t) to begin decreasing; (ii) the

effects of the disruption are fully realized at time td, causing ϕ(t) to stop decreasing; (iii) recovery of

the CI begins at time ts, causing ϕ(t) to begin increasing; and (iv) recovery of the CI is complete at

time tf , causing ϕ(t) to stop increasing.
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Figure 1: Illustration of decreasing network performance ϕ(t) (adapted from Henry & Ramirez-Marquez (2012))

In this study, the focus is on the recovery period after td, for which a model that optimizes a

restoration plan over a finite planning horizon is proposed. Without loss of generality, let t ∈ {1 . . . T}
denote the time periods over which the CI network is restored and t = td = 0 denote the instant

of planning. The system performance ϕ(t), t ∈ {1 . . . T} is defined using a maximum weighted flow

performance metric defined over an undirected network G(V,E) that represents the CI. The nodes

V are partitioned into supply nodes V +, transshipment nodes V ∗, and demand nodes such that

V + ∪ V ∗ ∪ V − = V . Each supply node i ∈ V + has a supply P+
i ∈ R+

0 that specifies the maximum

amount of flow that may originate at the node within a single time period. Associated with each

demand node j ∈ V − is a demand P−j ∈ R+
0 that specifies the maximum amount of flow that may be

consumed by the node in one time period. Each edge {i, j} ∈ E has an associated capacity Pij ∈ R+
0

that specifies the maximum amount of flow that can be carried on the edge within a single time period.

Given the mechanics expressed above, system performance is defined as the maximum amount of

weighted flow consumed by the demand nodes. Let weights wj ∈ Z+ be assigned to each demand

node j ∈ V −. These weights are incorporated in order to enable prioritizing the importance certain

types of demand nodes (e.g., it is more important to deliver power to a hospital than to a residential

household). Formally, system performance is defined as:

ϕ(t) =
∑
j∈V −

wjfj(t) (1)

where fj(t) is the total flow reaching demand node j in time period t ∈ {1 . . . T}.
The proposed restoration planning model aims to reestablish connectivity between supply and

demand nodes of a disrupted network by repairing damaged components over a fixed planning horizon.

Disruptions are modeled by the removal of a subset of edges, without loss of generality, at time t = 0.

Hereafter, these edges are referred to as failed edges. As edges are repaired in subsequent time periods,

the system performance ϕ(t) improves. Following Fang et al. (2016), the resilience R(T ) is defined

as the cumulative performance restored during the restoration horizon normalized by dividing by the

cumulative performance that would be restored over the same horizon if the system could be restored

to pre-disruption performance instantaneously. That is, the system resilience is given by:

R(T ) =

∑t=T
t=1 [

∑
j∈V − wjfj(t)− ϕ(0)]

T (
∑
j∈V − wjP

−
j − ϕ(0))

, T ≥ 1 (2)
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where
∑
j∈V − wjP

−
j = ϕ(t0) denotes the system performance if not affected by the disruption.

2.2. Risk measure approach

Generally, two-stage stochastic optimization approaches in the literature are risk-neutral. In other

words, these approaches incorporate randomness by comparing different solutions on the basis of

expectation. Though solutions to risk-neutral models perform well on average, they may be prone to

poor performance for certain realizations in practice. Given the non-repetitive nature of CI restoration

and its significant impact on society, it is of interest to consider risk-averse models for planning

restoration (Noyan, 2012). That is, a desirable restoration plan may seek to limit the chance of

realizations that result in poor performance.

Toward stating a risk-averse restoration optimization model in Section 2.3, we now summarize

the Conditional Value at Risk (CVaR) risk measure (Krokhmal et al., 2002; Rockafellar & Uryasev,

2000) and recap results pertinent to the optimization model. Let Z denote a loss random variable with

cumulative distribution function (CDF) F (·). The term “loss” is used here to indicate that large values

of Z are undesirable. Although this convention seemingly conflicts with the “maximize resilience”

objective, it has been employed here because it is standard in the CVaR literature. Section 2.3 details

the procedure for applying these results to our model.) For a given risk level α ∈ [0, 1], the Value at

Risk (VaR) of Z is defined as:

VaRα(Z) = min{t|F (t) ≥ α} = min{t|P (Z ≤ t) ≥ α} (3)

Thus, for a continuous random variable Z, VaRα[Z] is the quantile of Z that exceeds the loss with

probability α.

The CVaR for Z with risk level α ∈ [0, 1] is the expected loss given that the loss is at least

VaRα(Z), i.e.:

CVaRα(Z) = E (Z|Z ≥ VaRα(Z)) (4)

It is known that CVaR can also be expressed as the optimal solution to the optimization problem:

CVaRα[Z] = min
η∈R

{
η +

1

1− α
E [(Z − η)+]

}
(5)

where (a)+ := max(a, 0) (Rockafellar & Uryasev, 2000).

Equation (5) enables conveniently formulating risk-averse stochastic optimization models with

respect to a CVaR risk measure. Formally, let x be a vector of decision variables, ξ be a random

vector of data, and G(x, ξ) be a cost function depending on x and ξ. Then, the CVaR minimization

problem:

min
x∈X

CVaRα[G(x, ξ)] (6)

can be formulated as:

min
x∈X,η∈R

{
η +

1

1− α
E [(G(x, ξ)− η)+]

}
(7)

allowing us to linearize the model by expressing the expected value term as a probability-weighted
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summation of ξ discrete realizations.

2.3. Two-stage stochastic optimization model formulation

This section formulates a two-stage stochastic optimization model in which the first stage schedules

the repair of failed edges using multiple repair crews, and the second stage determines the resilience

that results under a given realization of the random variables. Rather than optimize explicitly over

all random variables, it is common to sample scenarios from their joint distribution. Let Ω denote

the set of scenarios. For a given scenario ω ∈ Ω, let ttrijω denote the time to repair edge {i′, j′} ∈ E′

and let ttiji′j′ denote the travel time incurred if edge {i, j} ∈ E′ and edge {i′, j′} ∈ E′ are repaired

in sequence. It will also be convenient to define ξ(ω) as a vector specifying the realized values of all

random variables in scenario ω.

The maximum weighted flow for each time period t ∈ {1 . . . T} depends on ξ(ω), and therefore

the resilience depends on ξ(ω) as well. Let fjω(t) denote the flow into demand node j ∈ V − at time

t ∈ {1 . . . T} in scenario ω ∈ Ω, and define the resilience R(T, ξ(ω)) in scenario ω ∈ Ω as:

R(T, ξ(ω)) =

∑t=T
t=1 [

∑
j∈V − wjfjω(t)− ϕ(0)]

T (
∑
j∈V − wjP

−
j − ϕ(0))

, T ≥ 1 (8)

In what follows, R(T, ξ(ω)) is optimized with respect to both expectation and a CVaR risk measure.

For simplicity of exposition, the model for the case of maximizing expected resilience is stated first.

Notation

A summary of notation follows. In addition to the notation already defined, the summary defines

binary variables zijk and xiji′j′k in order to encode a restoration plan, auxiliary binary variables

sijω(t) and yijkω(t) in order to resolve the status of each disrupted edge for each time period and

realized scenario, and flow variables fijω(t) in order to facilitate determining the maximum weighted

flow for each time period and realized scenario. The feasible region of the optimization problem is

denoted by X and the sets of decision variables are represented as {f, s, y, st, z, x}.

Parameters and sets

G(V,E) Undirected graph consisting of nodes V and edges E
{V +, V ∗, V −} Set of {supply, transshipment, demand} nodes

T The number of time periods in restoration planning
E′ Set of failed edges before restoration (E′ ⊂ E)
K Set of repair crews
P+
i Supply of node i ∈ V + per time period
P−j Demand of node j ∈ V − per time period
Pij Flow capacity of edge {i, j} ∈ E per time period

ttiji′j′ω Travel time between edge {i, j} ∈ E′ and {i′, j′} ∈ E′ in scenario ω
ttrijω Time to repair edge {i, j} ∈ E′ for each scenario ω

Decision variables

fijω(t) Flow on edge {i, j} ∈ E in time t ∈ {1 . . . T} for each scenario ω
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fjω(t) Total flow reaching demand node j ∈ V − in each scenario ω
sijω(t) Binary variable indicating whether (sijω = 1) or not (sijω = 0) edge {i, j} ∈ E is

functioning at time t ∈ {0 . . . T}
yijkω(t) Binary variable that equals 1 if edge {i, j} ∈ E′ is assigned to crew k ∈ K and it is

functioning at time t ∈ {0 . . . T}; 0 otherwise
stijkω Time at which crew k ∈ K begins repairing edge {i, j} ∈ E′
zijk Binary variable that equals 1 if edge {i, j} ∈ E′ is assigned to crew k ∈ K; 0

otherwise
xiji′j′k Binary variable that equals 1 if crew k ∈ K repairs edge {i, j} ∈ E′ before edge

{i′, j′} ∈ E′ \ {i, j}

The two-stage stochastic optimization model for maximizing the expected resilience follows:

max
{f,s,y,st,z,x}∈X

E(R(T, ξ(ω))) (9)

s.t. ∑
ij∈E

fijω(t)−
∑
ji∈E

fjiω(t) ≤ P+
i , ∀i ∈ V

+, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω (10)

∑
ij∈E

fijω(t)−
∑
ji∈E

fjiω(t) = 0, ∀i ∈ V ∗, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω (11)

∑
ij∈E

fijω(t)−
∑
ji∈E

fjiω(t) = fjω(t) , ∀j ∈ V −, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω (12)

0 ≤ fjω(t) ≤ P−j , ∀j ∈ V
−, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω (13)

−sijω(t)Pij ≤ fijω(t) ≤ sijω(t)Pij , ∀ij ∈ E, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω (14)

sijω(0) = 0, ∀ij ∈ E′, ∀ω ∈ Ω (15)

sijω(0) = 1, ∀ij ∈ E\E′, ∀ω ∈ Ω (16)

sijω(t) ≤ sijω(t+ 1) , ∀ij ∈ E, ∀t ∈ {0 . . . T − 1}, ∀ω ∈ Ω (17)

yijkω(t) ≤ yijkω(t+ 1) , ∀ij ∈ E′, ∀t ∈ {0 . . . T − 1}, ∀k ∈ K, ∀ω ∈ Ω (18)

stijkω + ttrijω + ttiji′j′ω ≤ sti′j′kω +Mxiji′j′k, ∀ij, i′j′ ∈ E′ : {i, j} 6= {i′, j′},
∀k ∈ K, ∀ω ∈ Ω (19)

stijkω + ttrijω + ttiji′j′ω ≤ sti′j′kω +M(1− xiji′j′k), ∀ij, i′j′ ∈ E′ : {i, j} 6= {i′, j′},
∀k ∈ K, ∀ω ∈ Ω (20)

t ≥ stijkω + ttrijω −M [1− yijkω(t)] , ∀ij ∈ E′, ∀t ∈ {1 . . . T}, ∀k ∈ K , ∀ω ∈ Ω (21)∑
k∈K

yijkω(t) = sijω(t) , ∀ij ∈ E′, ∀t ∈ {0 . . . T}, ∀ω ∈ Ω (22)∑
ω∈Ω

yijkω(t) ≥
∑
ω∈Ω

sijω(T )− |Ω|(1− zijk) , ∀ij ∈ E′, ∀k ∈ K (23)∑
ω∈Ω

yijkω(t) ≤ |Ω|zijk , ∀ij ∈ E′, ∀k ∈ K (24)∑
k∈K

zijk = 1 , ∀ij ∈ E′ (25)

xiji′j′k ∈ {0, 1}, ∀ij ∈ E′, ∀i′j′ ∈ E′ \ {i, j}, ∀k ∈ K (26)

zijk ∈ {0, 1}, ∀ij ∈ E′, ∀k ∈ K (27)

yijkω(t) ∈ {0, 1}, ∀ij ∈ E′, ∀t ∈ {1 . . . T}, ∀k ∈ K, ∀ω ∈ Ω (28)

sijω(t) ∈ {0, 1}, ∀ij ∈ E, ∀t ∈ {1 . . . T}, ∀ω ∈ Ω (29)
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stijkω ≥ 0, ∀ij ∈ E′, ∀k ∈ K, ∀ω ∈ Ω (30)

The goal of model (9)–(30) is to determine a sequence of edges for each crew to restore in order to

maximize the expected resilience. Constraints (10)–(12) are flow balance constraints. Constraint (13)

ensures that each demand node j ∈ V − consumes no more than its demand P−j in every time period,

and constraint (14) ensures that the flow on each edge {i, j} ∈ E in each time period does not exceed

its capacity Pij if the edge is functioning or 0 if the edge is failed. Constraints (15) and (16) set the

initial state of edges to be 0 for failed edges and 1 for other edges. Constraint (17) ensures that edges

{i, j} ∈ E′ remain functioning after being restored, and edges {i, j} are functioning for the entire

restoration period. Constraint (18) impose a similar restriction on the yijkω(t)-variables; that is, if an

edge {i, j} ∈ E′ was repaired by crew k ∈ K by time period t ∈ {1 . . . T −1}, where yijkω(0) = sijω(0)

at t = 0, then the edge was also repaired by crew k by time period t + 1. Constraints (19)–(20)

ensure each crew k ∈ K can work on repairing at most one edge at a time, according to the schedule

specified by the xiji′j′k-variables. Note that one limitation of the proposed model is that the xiji′j′k

decision variables controlling the schedule of failed components are first-stage decision variables (i.e.,

not indexed by scenario ω) which prevents sequential changes over time. Relative to Constraints (19)–

(20), the xiji′j′k-variables, and the stijkω-variables, an important detail of the model is that all edges

are sequenced for repair by all crews; however, constraints (14) and (21)–(22) impose that no benefit is

gained by (i) completing an edge’s restoration after the end of the restoration period or (ii) completing

an edge’s restoration using a different crew from when it was first restored. Therefore, the effect is

equivalent to imposing strictly that each edge is restored at most once and that edges cannot be

restored unless they can be completed during the restoration horizon. Defining ttrmax
ijω and ttmax

iji′j′ω as

the maximum repair time parameter of any failed edge in all scenarios and the maximum travel time

parameter between any two failed edges in all scenarios, M = |E′|(ttrmax
ijω + ttmax

iji′j′ω) is sufficiently

large in Constraints (19)–(20). Constraint (21) ensures that an edge {i, j} ∈ E′ cannot have been

restored by crew k ∈ K by time t unless the restoration start time added to the repair time is no more

than t. In Constraint (21), it is sufficient to use the same value for M as in constraints (19)–(20).

Constraint (22) imposes that an edge {i, j} ∈ E′ repaired by crew k ∈ K by time t ∈ {1 . . . T} is an

edge that must be functioning at time t, and it prevents duplicate restoration of an edge by multiple

crews. Constraints (26)–(29) require the xiji′j′k-, zijk-, yijkω(t)-, and sijω(t) variables to to be binary,

and Constraint (30) imposes that no repair tasks begin prior to time t = 0.

The risk-neutral model (9)–(30) can be reformulated using a CVaR objective by first introducing

the following resilience loss function:

∆R(T, ξ(ω)) = 1−R(T, ξ(ω)) (31)

The value of ∆R(Tξ(ω)) ranges between [0, 1] because R(T ) is bounded by the same values. Given

that X denotes the feasible region determined by constraints (10)–(30) and {f, s, y, st, z, x} represents

the set of decision variables, then, by using Equation (7) the CVaR problem can be formulated as:

min
{f, s, y, st, z, x}∈X, η∈R

{
η +

1

1− α
E [(∆R(T, ξ(ω))− η)+]

}
(32)
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Figure 2: Projection of CI network edges on transportation network

To motivate the following section, consider an optimal solution to model (32). Observe that the

CVaR for this solution corresponds to the average resilience loss of the d(1 − α)|Ω|e worst scenarios

(having values greater than η); thus, the remaining bα|Ω|c scenarios contribute to the CVaR only

indirectly because their resilience loss must be no more than η. Following Arpón et al. (2018) and

Garćıa-Bertrand & Mı́nguez (2012), this motivates a computationally efficient strategy for deriving

solutions to model (32) by reducing the set of scenarios to focus on those that involve high risk.

3. Solution approach

3.1. Scenario generation and reduction

To ensure a representative set of scenarios, a maxi-min Latin hypercube sampling (LHS) technique

(Wyss & Jorgensen, 1998) is used to generate a large set of scenarios Ω. Using LHS ensures some

amount of coverage of each random variable’s range, and it has been shown to have advantages when

incorporated within a sample average approximation approach (Chen et al., 2014; Kleywegt et al.,

2002).

When the number of generated scenarios is large, the associated stochastic program tends to

become intractable (Morales et al., 2009). To improve tractability, one method is to reduce the number

of scenarios such that the resulting problem’s optimal solution is close to the solution of the original

optimization problem (Fang & Sansavini, 2019). In these methods, which have received significant

attention in the literature (Heitsch & Römisch, 2003; Horeǰsová et al., 2020), it is common to select

scenarios based upon a probability distance between the original and reduced set of scenarios. The

most common probability distance used in stochastic optimization is the Kantorovich distance, DK(·),
defined between two probability distributions Q and Q′ on Ω by the following problem (Dupačová

et al., 2003; Rachev, 1991):

DK (Q,Q′) = inf
θ

{∫
Ω×Ω

c (ω, ω′) θ (dω, dω′) :
∫

Ω
θ (·, dω′) = Q∫

Ω
θ(dω, ·) = Q′

} (33)

Problem (33) is known as the Monge–Kantorovich mass transportation problem (Rachev, 1991), where

c (ω, ω′) is a nonnegative, continuous and symmetric function, often referred to as cost function. The
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infimum is taken over all joint probability distributions defined on Ω × Ω represented by θ (ω, ω′)

in (33). Note that DK(·) can only be properly called Kantorovich distance if function c(·) is given by

a norm. When Q and Q′ are finite distributions corresponding to the initial set of scenarios Ω and

the reduced set of scenarios Ωs ⊆ Ω, the Kantorovich distance can be determined (see Dupačová et al.

(2003) for details) by:

DK (Q,Q′) =
∑

ω∈Ω\Ωs

πω min
ω′∈Ωs

c (ω, ω′) (34)

where πω represents the probability of scenario ω in Ω (Dupačová et al., 2003). Expression (34) can be

used to derive several heuristics for generating reduced scenario sets that are close to an original set

(Dupačová et al., 2003; Morales et al., 2009). Practically, the fast forward selection algorithm (Heitsch

& Römisch, 2003) has been known to perform well in different stochastic optimization applications.

This algorithm is an iterative greedy process that starts with an empty set. In the first step of the

algorithm, the scenario that has the minimum probability distance (e.g., Kantorovich distance) with

all other scenarios is included. After that, in each step of the algorithm, a scenario that minimizes the

Kantorovich distance between the reduced and original sets is selected from the set of non-selected

scenarios (Ω\Ωs), where Ωs represents the set of selected scenarios. Then, this scenario is included in

the reduced set Ωs. The stopping criteria of the algorithm is either by finding the pre-specified number

of scenarios or by reaching a pre-defined Kantorovich distance threshold (Morales et al., 2009).

In the fast forward selection algorithm, as described in (Heitsch & Römisch, 2003), the distance

between two scenarios ω and ω′ is expressed by the function c (ω, ω′) and is computed according to

the difference between pairs of random vectors. Choices of the function (distance) c (ω, ω′) varies

between probability metrics (Dupačová et al., 2003), fixed first-stage decision variables objective

function (Morales et al., 2009) and the objective value for each scenario, which is shown to practically

outperform the other two methods (Bruninx, 2014). Here, we use the objective function value zWS
ω

of the wait-and-see solution (WS) for each scenario ω ∈ Ω (i.e., the objective function resulting from

solving model (9)–(30) when it is populated with ω as its only scenario) to define c(·, ·) as follows:

c(ω, ω′) =
∣∣zWS
ω − zWS

ω′

∣∣ (35)

The resulting fast forward selection algorithm is summarized in Algorithm 1, specifically using the

“Algorithm A” subroutine in Step 0. We apply this algorithm, hereafter referred to as “Algorithm 1-

A, to the risk-neutral model (9). We also compare Algorithm 1-A to Algorithm 1-B, which is the

standard algorithm proposed by Dupačová et al. (2003) based on the difference between the realized

vectors λω and λω′ consisting of the travel times and repair times for a pair of scenarios ω, ω′ ∈ Ω:

c (ω, ω′) = ‖λω − λω′‖ (36)

and report our findings in Section 4.4.

Following Arpón et al. (2018), Fairbrother et al. (2019) and Pineda & Conejo (2010), Algorithm 1

is adapted to the CVaR model given in Equation (32). Toward this end, we first define an active

scenario subset Ωα ⊆ Ω of scenarios consisting of the scenarios ω ∈ Ω having the worst WS objective
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value zWS
ω (Garćıa-Bertrand & Mı́nguez, 2012). Formally, let η∗α = VaRα[G(x∗ω, ·)] and define Ωα =

{ω ∈ Ω : G(x∗ω, ξ(ω)) ≥ η∗α}.
Algorithm 1-C (i.e., Algorithm 1 with the “Algorithm C” subroutine chosen in Step 0) summarizes

the resulting procedure. After performing this initial reduction, Algorithm 1-C proceeds exactly as

Algorithm 1-A.

The current risk-averse scenario reduction approach combines the active scenarios concept from

Garćıa-Bertrand & Mı́nguez (2012) and the WS reduction metric from Bruninx (2014). One ad-

vantage of this hybrid procedure is that the auxiliary variable η in Equation (32) is already known

(η = η∗α = VaRα[G(x∗ω, ·)]) given that individual scenario problems are already solved and that only

scenarios whose resilience losses are greater than or equal to η∗α are chosen. This allows us to rewrite

Equation (32) with optimal VaRα[G(x∗ω, ·)] as:

min
{f, s, y, st, z, x}∈X

{
η∗α +

1

1− α
E [(∆R(T, ξ(ω))− η∗α)]

}
(37)

In addition, since the subset of 1 − α scenarios in Ωα is treated as a whole set of α- CVaR included

scenarios—with each scenario ω included in Ωα having the property of G(x∗ω, ξ(ω)) ≥ η∗α—we can

drop the constant η∗α and express Equation (37) as:

min
{f, s, y, st, z, x}∈X

{
1

1− α
E [(∆R(T, ξ(ω))|ω ∈ Ωα]

}
(38)

Thus, the problem has become similar to the risk-neutral one by choosing the risk region Ωα and

the reduction Algorithm 1-C acts similar to Algorithm 1-A as mentioned above. Nonetheless, the

disadvantage of the approach suggested by Pineda & Conejo (2010) and its risk-averse extension

proposed in this paper is that the algorithm computational time will be higher than other approaches.

To overcome the problem, we provide the deterministic solution (DS) as the initial feasible solution

to solve the problem associated with each scenario reducing the computational time significantly to a

level on par with Morales et al. (2009).

3.2. Benders decomposition

There are different types of decomposition algorithms for solving continuous and mixed integer

large-scale two-stage and multi-stage optimization problems (see Escudero et al. (2017) for a recent

review). One of those types of algorithms is the time-honored Benders decomposition (Benders,

1962) and its variants (see Rahmaniani et al. (2017) for a good review). Benders decomposition is

commonly used in the stochastic optimization literature to solve the resulting mixed-integer linear

programs (Rahmaniani et al., 2017). In this context, the risk-neutral and risk-averse models separate

into one linear program per scenario ω—forming what is known as the subproblem (SP)—in the

reduced scenario set Ωs (Ωα,s for the CVaR model) after fixing the binary xiji′j′k-, zijk-, yijkω(t)-,

and sijω(t)-variables.

Formally, for each scenario ω ∈ Ωs, let zω denote a fixed assignment of values to all x-, z-, y-, and

s-variables corresponding to the index ω. The resulting SP for scenario ω ∈ Ωs—with resilience loss
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Algorithm 1: Fast forward scenario reduction algorithm (Dupačová et al., 2003)

Step 0: Compute the distances of scenario pairs:

Algorithm A: c (ω, ω′) =
∣∣zWS
ω − zWS

ω′

∣∣ ; ∀ω, ω′ ∈ Ω . Risk-neutral WS

Algorithm B: c (ω, ω′) = ‖λω − λω′‖ ; ∀ω, ω′ ∈ Ω . λ is a vector of random variables

Algorithm C: (a) Ωα = {ω ∈ Ω | G(x∗ω, ω) ≥ η∗α} . proposed risk-averse

(b) c (ω, ω′) =
∣∣zWS
ω − zWS

ω′

∣∣ ; ∀ω, ω′ ∈ Ωα . Ω = Ωα and Ωs = Ωα,s for
Algorithm C in steps 1-3

Step 1: Select the first scenario as the most equidistant scenario from all other scenarios in the set
Ω :

ω1 = arg min
ω′∈Ω

{∑
ω∈Ω

πωc (ω, ω′)

}
(39)

Ω
[1]
s ← {ω1} . Ω

[i]
s is the set of selected scenarios until step i

Ω
[1]
J ← Ω\{ω1} . Ω

[i]
J : the scenarios set not selected in the first i steps

Step i: Identify the scenarios ωi to be added to Ωs until it reaches a given cardinality Ns based on

the distance function between Ω
[i−1]
s and Ω

[i−1]
J :

For i in {2 . . . Ns}:

ωi = arg min
ω′∈Ω

[i−1]
J


∑

ω∈Ω
[i−1]
J \{ω′}

πω min
ω′′∈Ω

[i−1]
s ∪{ω}

c (ω, ω′′)

 (40)

Ω
[i]
s ← Ω

[i−1]
s ∪ {ωi}, Ω

[i]
J ← Ω

[i−1]
J \{ωi} . Ω

[i]
J ∪ Ω

[i]
s = Ω

End For
Step Ns + 1: Redistribute the probabilities of Ω∗J = Ω

[Ns]
J over Ω∗s = Ω

[Ns]
s according to the cost

function c (ω, ω′) :

π∗ω = πω +
∑

ω′∈J(ω)

πω′ , ∀ω ∈ Ω∗s (41)

with J(ω) being the set of scenarios ω′ ∈ Ω∗J such that ω = arg min
ω′′∈Ω∗s

c (ω′′, ω′)

minimization objective—is the linear program:

SP(zω) : min

(
1−

∑t=T
t=1 [

∑
j∈V − wjfjω(t)− ϕ(0)]

T (
∑
j∈V − wjP

−
j − ϕ(0))

)
(42)

s.t. (10)− (14) for scenario ω (43)

Because SP(zω) is a linear program in which zω appears only in the constraints, the dual of SP(zω)

can be formulated as a linear program of the form:

DSP(zω) : max (b−Bzω)dω (44)

s.t. dω ∈ D (45)

where b is the right-hand side vector of (43), B is the left-hand side coefficient matrix of (43), dω is

the dual variable vector corresponding to constraint (43), and D represents the dual feasible region.

Let Dp and Dr respectively denote the extreme points and extreme rays of D. Then, letting Dωnp ⊆ Dp
and Dωnr ⊆ Dr respectively denote a subset of the extreme points and extreme rays produced prior

to iteration n of Benders decomposition, the restricted master problem (RMP) for iteration n is
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formulated as:

min

Ωs∑
ω=1

πωvω (46)

s.t.

vω ≥ (b−Bzω)dω, ∀ω ∈ Ωs, dω ∈ Dωnp (47)

0 ≥ (b−Bzω)dω, ∀ω ∈ Ωs, dω ∈ Dωnr (48)

constraints (15)–(30)

where vω is a new variable that represents the resilience loss in scenario ω. Constraints (47) and (48)

are respectively known as optimality cuts and feasibility cuts.

In the proposed Benders algorithm (Algorithm 2), the first step is to set the upper bound, lower

bound and iteration counter at ∞, 0 and 0, respectively. In iteration n, RMP is solved first to obtain

an optimal solution z̄n (note that in iteration 0, RMP has no cuts and any feasible solution to (15)–

(30) is optimal with an objecive value of 0). From z̄n, let z̄nω denote the partial solution associated

with the x-, z-, y-, and s-variables corresponding to the index ω. Then, DSP(z̄nω) is solved (note

that since the linear program in (42)–(43) and so its dual (44)–(45) are scenario indexed, they can

be solved in parallel), yielding either an extreme point dω ∈ Dp (if the model is solved to optimality)

or an extreme ray dω ∈ Dp (if the model is concluded to be unbounded). In the former case, dω is

added to Dωnp (i.e., Dω,n+1
p ← Dωnp ∪ {dω} and Dω,n+1

r ← Dωnr ), resulting in a new optimality cut;

otherwise, dω is added to Dωnr (i.e., Dω,n+1
p ← Dωnp and Dω,n+1

r ← Dωnr ∪ {dω}), yielding a new

feasibility cut. The RMP objective provides a lower bound to the optimal solution of the original

problem (9)–(30) —under a resilience loss minimization objective—; furthermore, as demonstrated in

the following proposition, the dual subproblem DSP(zω) always has an optimal solution, meaning the

weighted sum
∑
ω∈Ωs

πω (b−Bznω)dω yields an upper bound. We now state and prove the required

result.

Proposition 3.1. For a given binary variable vector zω =
[
xiji′j′k, sijω(t), yijkω(t), zijk

]
that satisfies

the constraints (15)–(30), both SP(zω) and DSP(zω) are always feasible and bounded.

Proof. Observe that setting fijω(t) = 0, ∀{i, j} ∈ E, ∀t ∈ {1 . . . T}, and fjω(t) = 0, ∀j ∈ V +, ∀t ∈
{1 . . . T}, satisfies Constraints (10)–(14); thus, SP(zω) is feasible. To show the boundedness of SP(zω),
note that fjω(t) ≤ P−j , ∀j ∈ V −, ∀t ∈ {1 . . . T} due to Constraint (13); therefore, the objective of
SP(zω) is bounded to be nonnegative. By duality theory, DSP(zω) must be feasible and bounded
because SP(zω) is feasible and bounded.

This result additionally shows that feasibility cuts are not needed in the decomposition procedure;

therefore, only optimality cuts are generated and added to the RMP in each iteration, and the con-

vergence of the algorithm is accelerated.

4. Numerical studies

4.1. System description

To test the proposed model and solution approach, the data from the French electrical power

network company RTE (D’Electricité, 2019) is utilized in this work. The RTE network can be modeled
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Algorithm 2: Benders decomposition algorithm

Step 0: UB ←∞, LB ← 0, iteration counter n = 0
Step 1: Solve the RMP to obtain its optimal solution (zω, v̄ω) , ∀ω ∈ Ωs . Ωs = Ωα,s for

CVaR modelLB ← max{LB,
∑
ω∈Ωs

πω v̄ω}
Step 2: For each ω ∈ Ωs:

Solve the DSP(zω) to obtain its optimal solution dω and objective value (b−Bzω)dω
End For
UB ← min{UB,

∑
ω∈Ωs

πω (b−Bzω)dω}
Step 3: If UB − LB ≤ ε : . ε is a predefined tolerance

Stop and report the solution
Else:
(a) Add a total number of |Ωs| Benders optimality cuts of the form:

vω ≥ (b−Bzω)dω, ∀ω ∈ Ωs to the RMP

(b) n ← n+ 1 and go to Step 1
End If

as an undirected graph with 172 substations (nodes) and 220 transmission lines (edges) covering up

to more than 17,500 miles. There are 26 power generators and 145 distributors in the network. Some

of the generators and distributors also transmit power from other generators to distributors. The

weights of the edges (i.e., their capacities) are assumed to be identical. Specially, the capacity of each

transmission line is 5000 MW, and the total network flow received by demand nodes is 61928 MW. In

addition, given that the power network flow does not follow the general flow-based model introduced

in this paper (Bienstock & Mattia, 2007), the DC model has been used as a linear approximation of

the power flow in the network (see Appendix A.1 for details).

In this study, three possible cases are considered (along with subcases for their travel times) for

network failure modes that differ in terms of their spatial coverage and the importance or criticality

of the components in the network:

• Case 1: Random failures - common failures that occur randomly across the network caused

often by weather-related triggers, man-made accidents and operation errors affecting the whole

network. In this case, network edges are removed randomly with an equal failure probability for

all edges in the network.

• Case 2: Cascading failures - failures of initial components that may cause other intercon-

nected components to fail due to increased loads causing a sequence of failures in the network.

The cascading failure process was simulated using the ML model (Motter & Lai, 2002).

• Case 3: Spatial failures - failures caused generally by natural disasters (e.g., earthquakes and

floods) where only a local spatial area of the network is affected, and thus only components that

are spatially close to each other are impacted by the local disruption.

For all these cases, the three subcases of travel times are: (a) without travel time consideration,

(b) with deterministic travel time consideration, and (c) with random travel time consideration. Con-

sidering these allows for measuring the impact of travel times, uncertainty and risk to be tested under

various scenarios of failure propagation and revealing under which circumstances the usage of these
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additions to system resilience is critical. The distribution of the failed components over the geographic

area of the network for each case can be found in Appendix B.1.

4.2. Uncertainty representation

The proposed model assumes the time to repair each edge and the travel time between failed

edges are uncertain, but the remaining parameters are deterministic. The remainder of this section

summarizes the assumed probability distributions for the uncertain parameters.

Let E′ ⊆ E denote the set of disrupted edges, and ttrij denote the time to repair edge e = {i, j} ∈
E′. We assume ttri,j has a Weibull distribution with scale parameter νe and shape parameter βe.

Specially, the probability density function of ttrij is given by:

h(t, βe, νe) =
βe
νe

(
t

νe

)βe−1

e−( t
νe

)
βe

, t ≥ 0 (49)

Note that the Weibull distribution is commonly used to model activity times (Abdelkader, 2004).

For e = {i, j} ∈ E′ and e′ = {i′, j′} ∈ E′, let ttiji′j′ denote the travel time between edge e and

e′. A deterministic estimate of the travel time from e to e′ is derived using a separate transportation

network. In the transportation network, each edge has an associated length and speed limit, and

its traversal time cl is estimated assuming it will always be possible to travel at the speed limit.

The deterministic estimate of ttiji′j′ , hereafter denoted as dttiji′j′ , is obtained by determining the

shortest path length between two nodes in the transportation network, namely those that are closest

to the midpoint of e and e′ (see Figure 2 for illustration). To represent the uncertainty of ttiji′j′ ,

a distribution for traversal time of edges in the transportation network is populated; given cl, the

random traversal time crl is distributed according to the probability mass function:

P (crl = t) =

 0.3, t = cl
0.3, t = 1.5 cl
0.4, t = 2 cl

(50)

and ttiji′j′ is found by solving the shortest path problem as explained. This approach follows other

disaster relief studies assuming that uncertain traversal times are based on a coefficient multiplication

of the deterministic traversal times of the transportation network (de la Torre et al., 2012; Mete &

Zabinsky, 2010).

4.3. Assumptions and computational information

In this study, the Weibull distributed repair time shape and scale parameters are assumed to be

5 and 2, respectively, for all components. Such assumptions are made following other studies in the

literature in terms of the chosen probability distribution and parameters (Fang & Sansavini, 2019).

Thus, the mean-time-to-repair (MTTR) used in the deterministic model is 1.84 hours. Without loss of

generality, we assume that 10% of the edges are damaged under each failure mode and that the number

of available maintenance crews is three. Table 1 shows the decrease in the network performance under

each failure mode. In addition, the restoration planning horizon T is chosen as 20 hours, which is

sufficient to restore the network performance to its original state under all cases. For the scenario

generation process, 1000 scenarios are generated of each failure mode and its included subcases. After
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that, scenario reduction algorithms (Algorithms 1-A and 1-C) were used to reduce the number of

scenarios into a smaller set. For the risk-neutral stochastic optimization model, the total number

of scenarios is reduced to 10 scenarios; and for the risk-averse stochastic optimization model (with

α = 80%) we reduce the total number of scenarios to 5 given that less probability space is covered (80%

less) with the CVaR measure. Solutions to the MILPs used in the scenario reduction procedure and the

stochastic optimization models were computed using CPLEX 12.10 (CPLEX, 2020) and programmed

using Python 3.7 (Python, 2020) on a 3.2 GHz Intel Core i5 iMac machine with 24 GB of RAM.

Case Random failures Cascading failures Spatial failures

Performance drop 9% 13.35% 12.78%

Table 1: Network performance drop after possible modes of disruption

Based on our preliminary analysis, a time limit of 2 hours (7200 seconds) and 1 hour (3600 seconds)

was set for each instance of the risk-neutral stochastic optimization model with 10 scenarios and the

risk-averse stochastic optimization model with 5 scenarios, respectively. This amount of time allows

our implementation of Benders algorithm to solve both problems within 2% adjusted optimality gap

(see Appendix A.2 for details) for all subcases. Algorithm 2 was implemented using callbacks with

Benders cuts added as lazy constraints. Table 2 shows the added value of our proposed solution

algorithm compared to CPLEX standard solver, and Table 3 summarizes the dimensions of different

problem instances.

Case CPLEX standard solver Benders decomposition

Computational
time (s) Gap(%)

Resilience
objective

value

Computational
time (s) Gap(%)

Resilience
objective

value

Random failures 7201.05 5.59 0.3437980 7202.178 0.1444 0.913716
Random failures (deterministic travel times) 7201.36 5.99 0.3035116 7200.977 0.7702 0.844289
Random failures (random travel times) 7201.18 2.56 0.63019 7200.49 0.7646 0.82157
Cascading failures 7200.20 1.13 0.8678093 5300.619 1.0288 0.875282
Cascading failures (deterministic travel
times)

7201.46 2.26 0.78629732 6000.816 0.9407 0.881616

Cascading failures (random travel times) 7200.40 6.52 0.481307 7201.611 1.1633 0.850502
Spatial failures 7201.83 4.08 0.6243989 7201.101 1.2052 0.835887
Spatial failures (deterministic travel times) 7201.15 4.01 0.6289536 7201.170 1.4432 0.817396
Spatial failures (random travel times) 7206.79 6.82 0.41048 7217.37 1.3527 0.800491

Table 2: Comparison of Benders decomposition and CPLEX solver solutions for the Risk-neutral stochastic optimization
model with 10 reduced scenarios

Instance
No. of

continuous
variables

No. of binary
variables

No. of
constraints

No. of
Scenarios

No. of
maintenance

crews

Max
computational

time (s)

Risk-neutral 115,320 315,612 377,104 10 3 7200
Risk-averse 57,660 158,532 188,629 5 3 3600

Deterministic 11,532 32,868 37,695 1 3 600

Table 3: Problem sizes of different study instances

4.4. Results

4.4.1. Scenario reduction results

In this section, we compare the results from the adopted risk-neutral scenario reduction algorithm

based on the individual WS solutions with the ones from the standard algorithm based on the norm of
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the difference between pairs of scenarios’ random vectors. Figure 3 presents a histogram comparison

of the WS resilience values of the reduced set of scenarios using the WS metric (Algorithm 1-A) and

the standard probability metric (Algorithm 1-B) for one failure mode. The WS reduced scenarios

Figure 3: WS results of scenario reduction algorithms 1-A and 1-B for different reduced numbers of scenarios

show more resemblance to the original set of scenarios with respect to the distribution of objective

values. Furthermore, Tables 4 and 5 present the values of mean and standard deviation of system

resilience for the reduced sets using both algorithms under different target numbers of reduced sce-

narios without/with travel time considerations. It is worth pointing out that the standard probability

metric method cannot differentiate between the model with no travel times and the one considering

deterministic travel times since the same set of scenarios will be chosen for both cases.

20



All 1000 scenarios Algorithm 1-A Algorithm 1-B

Resilience
mean

Resilience
standard
deviation

Number of
reduced
scenarios

Resilience
mean

Resilience
standard
deviation

Number of
reduced
scenarios

Resilience
mean

Resilience
standard
deviation

0.915831 0.0172952

500 0.915831 0.0172866 500 0.915613 0.0176127
200 0.915831 0.0172866 200 0.91598 0.0178898
100 0.915831 0.0172866 100 0.915249 0.0180558
50 0.915827 0.0172921 50 0.917131 0.0178635

Table 4: WS results from scenario reduction algorithms 1-A and 1-B for different reduced numbers of scenarios without
travel time consideration

All 1000 scenarios Algorithm 1-A Algorithm 1-B

Resilience
mean

Resilience
standard
deviation

Number of
reduced
scenarios

Resilience
mean

Resilience
standard
deviation

Number of
reduced
scenarios

Resilience
mean

Resilience
standard
deviation

0.854238 0.0171757

500 0.854238 0.0171671 500 0.853971 0.0174006
200 0.854238 0.0171671 200 0.854054 0.0177003
100 0.854239 0.0171649 100 0.853737 0.017949
50 0.854242 0.0171685 50 0.855148 0.0178526

Table 5: WS results from scenario reduction algorithms 1-A and 1-B for different reduced numbers of scenarios consid-
ering deterministic travel times

Table 6 shows the benefit of using a warm start setting (supplying the deterministic solution as

an initial feasible solution) for each single scenario problem in reducing both computational time and

optimality gaps for the WS problems.

Instance
Average

optimality
gap (%)

Max
optimality
gap (%)

Average
computational time

per problem (s)

Max computational
time per problem

(s)

1000 scenario with cold start 0.573 2.27 118.135 120
1000 scenario with warm start 0.13 0.59 108.82 120

Table 6: Comparison of computational time and optimality gap for single scenario problems with warm vs. cold start

4.4.2. Stochastic optimization models results

A key result in this study is the impact of the inclusion of travel times between failed components

for each maintenance crew on the system resilience. Figure 4 shows a comparison between resilience

with and without deterministic travel times for all three failure modes. (The travel time between

each pair of failed components is assumed to be dttiji′j′ for the former and 0 for the latter). For all

failure modes, the impact of travel times is significant. The result indicates that the resilience models

without considering travel times between failed components might overestimate the actual possible

resilience values achieved and the time to restore the system to its undisrupted performance. Note

that this occurs even in the spatial failures case in which pairs of failed components are likely to be

close to each other. A sample of optimal routing for one failure mode is provided in Appendix B.2.

Risk-neutral stochastic model

To measure the added value of incorporating uncertainty into the model and to compare the

stochastic solution (SS) to its deterministic counterpart, we use what is known as the value of stochas-

tic solution (VSS) as our metric for comparison. This measure indicates the difference in the objective
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Figure 4: Comparison of resilience values for the 1000 scenarios WSs with/without deterministic travel times

values of the stochastic solution and the deterministic counterpart (Birge, 1982). By solving the

restoration problems for the different disruption cases (with the subcases of excluding travel times,

and including deterministic travel times and random travel times) using the proposed Benders decom-

position method, we can find the added value of uncertainty. Figure 5 shows the added value of the

risk-neutral stochastic model compared to its deterministic counterpart in terms of the value of re-

silience achieved at the end of the restoration period and in terms of the extra amount of flow (power)

received by demand nodes under the cases of random failures and cascading failures. Based on that, if

the stochastic solution was used instead of the deterministic one, more flow will be pushed to satisfy

more demand by amounts of at least 3000 MWh (3 GWh) for all subcases of the random failures case

and 1800 MWh (1.8 GWh) for all subcases of the cascading failures case. Given that the annual elec-

tricity consumption per household in France is about 5.425 MWh (Odyssee-Mure, 2020) and the daily

consumption is approximately 0.015 MWh, the extra amount of flow gained by the stochastic solution

is equivalent to the daily consumption of 200,000–275,000 households for case 1 and 100,000–600,000

households for case 2 (see Figure 6). This indicates the significance of incorporating uncertainty into

the restoration scheduling tasks.

In contrast to the previous cases, the stochastic solution for the case with spatial failures only
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Figure 5: Cases 1 and 2 (Random Failures and Cascading Failures): Resilience values and VSS (as higher satisfied
demand in MWh) under different travel time assumptions

shows an improvement over the deterministic solution in the subcase with random travel times. In

the other subcases, the deterministic and stochastic solutions are the same. Resilience progress over

time curves for cases 1 and 2 can be found under Appendix B.3 showing how the stochastic solution

outperforms the deterministic counterpart in almost every scenario.

To validate the solution resulting from the reduced set of scenarios, we compare the solution for

each subcase to the one for the full set of scenarios as shown in Table 7. In all subcases, the estimate

of the expected resilience value for the small set of scenarios is within about a 0.01 difference from

the expected resilience for the full set of scenarios.

Case Full set of scenarios (1000 scenarios) Reduced set of scenarios (10 scenarios)

Resilience objective value Resilience objective value

Random failures 0.912227 0.913716
Random failures (deterministic travel
times)

0.838694 0.844289

Random failures (random travel times) 0.828919 0.82157
Cascading failures 0.881547 0.875282
Cascading failures (deterministic travel
times)

0.881711 0.881616

Cascading failures (random travel times) 0.845592 0.850502
Spatial failures 0.848444 0.835887
Spatial failures (deterministic travel times) 0.815873 0.817396
Spatial failures (random travel times) 0.796081 0.800491

Table 7: Validation of solutions for the reduced set of scenarios when applied to the full set of scenarios
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Figure 6: Cases 1 and 2 (Random Failures and Cascading Failures): VSS in equivalent number of households consump-
tion related to the extra amount of satisfied demand in MWh under different travel time assumptions

Risk-averse stochastic model

For the risk-averse model, five reduced scenarios are chosen to represent the worst 20% cases

with α = 0.8. Similar to the VSS, we adopt the mean-risk value of stochastic solution (MRVSS)

(Noyan, 2012), a measure of the possible gain from solving stochastic models incorporating a mean-

risk function, as the method to quantify the gains from solving the CVaR problem. However, given

that only a CVaR approach is considered rather than a mean-risk one, we rename the measure to

CVaR-VSS, i.e., the mean-risk measure with the weight of the expected resilience of scenarios not in

α-CVaR being 0. Figures 7, 8 and 9 compare the CVaR solution and the deterministic solution in

terms of resilience values and CVaR-VSS for all cases.
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Figure 7: Case 1 (Random Failures): Resilience values and CVaR-VSS in equivalent number of households consumption
related to the extra amount of satisfied demand in MWh under different travel time assumptions (α = 0.8)
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Figure 8: Case 2 (Cascading Failures): Resilience values and CVaR-VSS in equivalent number of households consumption
related to the extra amount of satisfied demand in MWh under different travel time assumptions (α = 0.8)
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Figure 9: Case 3 (Spatial Failures): Resilience values and CVaR-VSS in equivalent number of households consumption
related to the extra amount of satisfied demand in MWh under different travel time assumptions (α = 0.8)

In almost all of these cases, the CVaR solutions outperform the deterministic solutions by achieving

higher resilience values accompanied with significant CVaR-VSS values ranging from about 50,000 to

800,000 households daily consumption equivalence in the worst-case scenarios. Note that, in contrast

to the risk-neutral case, the case with spatial failures also shows a significant CVaR-VSS under all

subcases. Figure 10 plots the network performance over time for the high-risk scenarios in Case 3-b

(spatial failures with deterministic travel times), showing how the CVaR restoration plan generally

achieves full performance in these scenarios faster than either a risk-neutral or deterministic restoration

plan.
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Table 8 compares the CVaR solution and the deterministic and risk-neutral solutions across Cases

1–3. It can be seen that the risk-averse solution performs the best in all the cases by mitigating the

risk associated with resilience loss. Moreover, the risk-neutral solution almost always comes second in

performance with the deterministic solution classified as the solution involving the highest risk.
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Figure 10: Case 3-b (Spatial Failures with Deterministic Travel Times): Comparison of network performance during
the restoration period in high-risk scenarios under different solution plans

In addition, It is of interest to investigate whether the CVaR solution performs well in scenarios

other than the high-risk ones. Table 9 compares the risk-neutral solution for all cases with the

deterministic counterpart and the CVaR solution applied to the reduced set of 10 scenarios associated

with the risk-neutral problem. Surprisingly, the CVaR solution in some cases outperforms the risk-

neutral solution. One possible reason of this unexpected finding is that the CVaR problems generally

use fewer scenarios, given the 1− α% reduced covered area of possible scenarios allowing the optimal

solutions of the problems to be closer to the 0% optimality gap in less amount of computational time.

Therefore, two important features of the CVaR approach can be summarized as follows: (1) the CVaR

approach covers a fair amount of uncertainty (depending on α value), making its suggested plan more

pleasing than the fixed deterministic counterpart, and (2) the CVaR problem is solved with fewer

scenarios than its risk-neutral counterpart allowing the optimal solution to be found in less time (50%

in our setting) and with lower optimality gaps.

Case
Computational

time (s) Gap(%) CVaR
solution

Deterministic
solution

Stochastic
solution

Random failures 3600.000 0.0691 0.887089 0.846803 0.885704
Random failures (deterministic travel times) 3600.797 0.5549 0.827217 0.804466 0.827217
Random failures (random travel times) 3600.632 0.833 0.8103 0.7876 0.8103
Cascading failures 3607.194 0.1988 0.920725 0.850712 0.868874
Cascading failures (deterministic travel times) 3600.476 0.8428 0.880710 0.860402 0.873507
Cascading failures (random travel times) 3600.035 1.4551 0.8289 0.7959 0.8155
Spatial failures 3600.312 0.7766 0.842965 0.828520 0.828520
Spatial failures (deterministic travel times) 3600.015 1.4309 0.804756 0.800828 0.800828
Spatial failures (random travel times) 3600.896 1.3141 0.7744 0.7622 0.7744

Table 8: Solution comparison of the risk-averse resilience values (α = 0.8) with deterministic and risk-neutral alternatives
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Case
Computational

time (s) Gap(%) Stochastic
solution

Deterministic
solution

CVaR
solution

Random failures 7202.178 0.1444 0.913716 0.877421 0.912732
Random failures (deterministic travel times) 7200.977 0.7702 0.844289 0.817283 0.844289
Random failures (random travel times) 7200.49 0.7646 0.82157 0.7928 0.82157
Cascading failures 5300.619 1.0288 0.875282 0.865170 0.911292
Cascading failures (deterministic travel times) 6000.816 0.9407 0.881616 0.848590 0.882013
Cascading failures (random travel times) 7200.4 0.9549 0.8505 0.7983 0.8314
Spatial failures 7201.101 1.2052 0.835887 0.835887 0.850345
Spatial failures (deterministic travel times) 7201.170 1.4432 0.817396 0.817396 0.818078
Spatial failures (random travel times) 7217.37 1.3527 0.800491 0.7704 0.800491

Table 9: Solution comparison of the risk-neutral resilience values with deterministic and risk-neutral alternatives

5. Conclusion and future work

This paper proposes risk-neutral and risk-averse two-stage stochastic optimization models for CI

restoration planning, where post-disruption restoration tasks occur in a highly dynamic environment

and thus subject to a considerable amount of uncertainty. The models address two important chal-

lenges facing restoration planning, which are the accessibility of failed components and uncertainty

associated with restoration task durations and possible starting times. For the former, travel time

between components has been added to the model to connect CI restoration models to the state of

the underlying transportation network. For the latter, the uncertainty of repair times and travel

times is handled by sampling from their suggested probability distributions through a maxi-min Latin

hypercube technique, with the number of discrete uncertainty scenarios being reduced to a tractable

size by applying an improved risk-neutral and a proposed risk-averse fast forward selection algorithm

based on the WS objective values of individual scenarios. The objective of the model is to minimize

the expected loss of performance over all possible realizations of the random parameters, and thus to

maximize the system’s resilience. Three common network failure mechanisms (i.e., random failures,

cascading failures and spatial failures) are tested.

The proposed approach was demonstrated using a real-life case study based on the RTE 400 kV

French electric power transmission network. Our first finding was the significant impact of incorpo-

rating travel times into resilience modeling. In fact, one can see that resilience models that do not

consider travel times are overestimating their expected resilience achieved and the speed of restoring

the system to its undisrupted performance level. Furthermore, to assess the added value of incorpo-

rating uncertainty, two measures were used to quantify the significance of adapting stochastic models

over deterministic counterparts: VSS for the risk-neutral stochastic model and CVaR-VSS for the

risk-averse stochastic model. Both models have resulted in positive values of VSS and CVaR-VSS in

2 out of 3 cases and all three cases, respectively. There is a clear benefit of using stochastic methods

that account for uncertainty over deterministic ones that depend on the expected values of the uncer-

tain parameters. In addition, CVaR solutions were generally found with less computational time, and

their suggested restoration plans perform on par with the risk-neutral counterparts and sometimes

even better under a risk-neutral setting of scenarios selection. However, under high-risk scenarios,

CVaR proposed solutions mitigate the risk associated with such scenarios by achieving resilience val-

ues close to the wait-and-see solutions of such individual scenarios. In addition, the CVaR solution

under this setting performed second to none under all failure modes and their subcases.

The stochastic optimization models proposed in this study are reformulated as deterministic equiv-

alent large MILPs in order to generate methods to solve proposed models efficiently. A Benders de-
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composition algorithm is proposed in this paper to solve the proposed models in short time settings.

In addition, given that the risk-averse stochastic program is modeled by a scenario selection procedure

identifying true risks associated with individual scenarios, the Benders decomposition algorithm pro-

posed here is robust to work with both versions of the stochastic model. Thus, a practical framework

for solving risk-averse versions of resilience-based optimization models, starting from scenarios gener-

ation, risk-averse scenarios reduction and ending with a solution procedure, is shown here to facilitate

linking risk measures to current and future resilience optimization models.

The proposed stochastic optimization models present a practical framework for risk-neutral and

risk-averse resilience-based applications and possibly other applications with task-scheduling proce-

dures involving fair amount of uncertainty. Nonetheless, possible additions in terms of planning flex-

ibility to the current framework are adding multi-mode repairs of failed components and allowing for

multi-crew restoration of failed components under travel time considerations. Moreover, restoration

considering multiple interdependent networks (Gomez et al., 2019) under uncertainty and network-

based risk measures along with coordinating the restoration of the transportation network can also be

studied as future research directions. Finally, the models in the present study assume that the restora-

tion plan is determined initially and cannot be altered afterwards. Indeed, relaxing this assumption

by enabling sequential change of the plan as time goes on will add more flexibility to the models but

will significantly increase the computational time by moving the models from the two-stage setting

into a more dynamic multi-stage stochastic optimization framework. Such computational differences

can be tested using time-consistent risk-averse measures such as Expected CVaR (Homem-de-Mello

& Pagnoncelli, 2016) and Expected Conditional Stochastic Dominance (Escudero et al., 2017).

Acknowledgments

This work was supported by the U.S. National Science Foundation under Grant No.

CMMI–1745353.

References

Abdelkader, Y. H. (2004). Evaluating project completion times when activity times are Weibull distributed.
European Journal of Operational Research , 157 , 704–715.

Aksu, D. T., & Ozdamar, L. (2014). A mathematical model for post-disaster road restoration: Enabling
accessibility and evacuation. Transportation Research Part E: Logistics and Transportation Review , 61 ,
56–67.

Almoghathawi, Y., Barker, K., & Albert, L. A. (2019). Resilience-driven restoration model for interdependent
infrastructure networks. Reliability Engineering and System Safety , 185 , 12–23.

Anaya-Arenas, A. M., Renaud, J., & Ruiz, A. (2014). Relief distribution networks: a systematic review.
Annals of Operations Research , 223 , 53–79.

Arpón, S., Homem-de-Mello, T., & Pagnoncelli, B. (2018). Scenario reduction for stochastic programs with
conditional value-at-risk. Mathematical Programming , 170 , 327–356.

Barker, K., Lambert, J. H., Zobel, C. W., Tapia, A. H., Ramirez-Marquez, J. E., Albert, L., Nicholson,
C. D., & Caragea, C. (2017). Defining resilience analytics for interdependent cyber-physical-social networks.
Sustainable and Resilient Infrastructure , 2 , 59–67.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables programming problems. Numerische
Mathematik , 4 , 238–252.

28



Bienstock, D., & Grebla, G. (2015). Robust control of cascading power grid failures using stochastic approxi-
mation. arXiv:1504.00856.

Bienstock, D., & Mattia, S. (2007). Using mixed-integer programming to solve power grid blackout problems.
Discrete Optimization , 4 , 115–141.

Birge, J. R. (1982). The value of the stochastic solution in stochastic linear programs with fixed recourse.
Mathematical Programming , 24 , 314–325.

Bruninx, K. (2014). A practical approach on scenario generation and & reduction algorithms for wind power
forecast error scenarios.

Bryson, K. M., Millar, H., Joseph, A., & Mobolurin, A. (2002). Using formal MS/OR modeling to support
disaster recovery planning. European Journal of Operational Research , 141 , 679–688.

Campbell, R. J., & Lowry, S. (2012). Weather-related power outages and electric system resiliency. Washing-
ton, DC: Library of Congress.

Casari, M., & Wilkie, S. J. (2005). Sequencing lifeline repairs after an earthquake: An economic approach.
Journal of Regulatory Economics , 27 , 47–65.
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Appendix A

A.1. Model adaptation for the power network

The general flow-based model introduced in this paper assumes that the flow in the network can be

directly controlled, which is not the case for power infrastructure networks (Bienstock & Mattia, 2007).

The DC model is a commonly used linear approximation of the power grid to model its operations,

especially the power transmission network (Bienstock & Mattia, 2007; Nurre et al., 2012). The DC

model includes decision variables (i.e., the phase angles) for all the nodes in the network. The flow on

edge {i, j} is then a function of the phase angles of nodes i and j along with the reactance of the edge

{i, j}. The reactance, bij , of the edge is dependent on its length and the voltage levels. By defining θi

for i ∈ V as the phase angle of node i, the flow on edge {i, j} for a given scenario is determined by:

bijfij = θi − θj (A.1)

Note that both the phase angle variables and the edge flow variables are unrestricted in the DC

model. A negative flow on edge {ij} corresponds to power flowing from node j to node i. Therefore, it

is necessary to incorporate the constraints given by Equation (A.1) into the optimization problem (9)–

(30). We define variables θi(t) for i ∈ V and t ∈ {1 . . . , T} for the phase angle of node i in time period

t. Then, the DC flow is incorporated by adding two constraints controlling flow on each edge along

with (14):

bijfijω(t) ≤ θiω(t)− θjω(t) +M [1− sijω(t)] , ∀ij ∈ E, ∀t ∈ {1, . . . , T}, ∀ω ∈ Ωs (A.2)

bijfijω(t) ≥ θiω(t)− θjω(t)−M [1− sijω(t)] , ∀ij ∈ E, ∀t ∈ {1, . . . , T}, ∀ω ∈ Ωs (A.3)

Therefore, whenever sijω(t) = 1, constraints (A.2) and (A.3) will make sure that the DC flow satisfies

Equation (A.1) for edge {i, j} in time period t. In addition, Constraints (A.2) and (A.3) are added

to the optimization problem (9)–(30) and to each scenario-related subproblem from the proposed

Benders decomposition.

A.2. Optimality gap calculation

Regarding the relative optimality gap of the stochastic optimization models, we note that the

optimality gap using the resilience measure (or loss of resilience) by Fang et al. (2016) is inflated given

a constant term in the objective function’s numerator representing either the negative summation of

the aggregated system performance measure (flow in our case) in the disrupted state: −
∑t=T
t=1 ϕ(0) for

a maximization problem or the summation of aggregated system flow over time in the nominal state:∑t=T
t=1 ϕ(t0) for a resilience loss minimization problem. For example, if the cumulative sum of flow

∀t ∈ {1 . . . T} is 100,
∑t=T
t=1 ϕ(0) = 70 and

∑t=T
t=1 ϕ(t0) = 120, the resilience objective function solution

(Ôbj) will be 0.60 and if we assume that the upper bound on the cumulative flow is 115, the upper

bound on resilience (ObjUB) will be 0.90; thus, if we calculate the optimality gap by:
(
ObjUB

Ôbj

)
− 1, it

will be estimated as 50.00% where the gap in terms of the aggregated flow:
(

Aggregated FlowUB

̂Aggregated Flow

)
− 1,

which is the term to be maximized, is 15.00%. Based on that, we use from this point onward an

adjusted optimality gap calculated using:

(
ObjUB+

Tϕ(0)
T (ϕ(t0)−ϕ(0))

Ôbj+
Tϕ(0)

T (ϕ(t0)−ϕ(0))

)
− 1 for a maximization problem and:
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(
Tϕ(t0)

T (ϕ(t0)−ϕ(0))
−ObjLB

Tϕ(t0)

T (ϕ(t0)−ϕ(0))
−Ôbj

)
− 1 for a minimization objective to eliminate the impact of constant terms on

the gap estimation of the aggregated flow. In Table 2, we compare the proposed Benders algorithm

to the standard CPLEX solver. The optimalty gap for the Benders implementation is found using:(
Tϕ(t0)

T (ϕ(t0)−ϕ(0))
−LB

Tϕ(t0)

T (ϕ(t0)−ϕ(0))
−Ôbj

)
− 1 where LB is the lower bound representing the optimal objective function

value of the master problem at the last iteration of the algorithm before termination. For the CPLEX

solver, we use the reported best lower bound on the objective function ObjLBsolver and the best available

objective value Ôbjsolver reported by CPLEX:

(
Tϕ(t0)

T (ϕ(t0)−ϕ(0))
−ObjLBsolver

Tϕ(t0)

T (ϕ(t0)−ϕ(0))
−Ôbjsolver

)
−1 to calculate the optimality

gap.

Appendix B

B.1. Maps of failed components for numerical studies

Figure 11: Case 1: Distribution of random failures
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Figure 12: Case 2: Distribution of cascading failures

Figure 13: Case 3: Distribution of spatial failures
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B.2. Sample of optimal solution routing under deterministic travel times

Figure 14: Case 1-b (Random Failures with Deterministic Travel Times): Optimal routing for crews 1 and 2

Figure 15: Case 1-b (Random Failures with Deterministic Travel Times): Optimal routing for crew 3
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B.3. Resilience curves under different considerations of travel times
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Figure 16: Case 1-c (Random Failures with Random Travel Times): Comparison of resilience curves under different
solution plans for the reduced 10 scenarios
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Figure 17: Case 2-c (Cascading Failures with Random Travel Times): Comparison of resilience curves under different
solution plans for the reduced 10 scenarios
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Figure 18: Case 1-a (Random Failures without Travel Times): Comparison of resilience curves under different solution
plans for the reduced 10 scenarios
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Figure 19: Case 1-b (Random Failures with Deterministic Travel Times): Comparison of resilience curves under different
solution plans for the reduced 10 scenarios

40



0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

R
es

il
ie

n
ce

Scenario 1

WS

SS

DS

Scenario 2

WS

SS

DS

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

R
es

il
ie

n
ce

Scenario 3

WS

SS

DS

Scenario 4

WS

SS

DS

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

R
es

il
ie

n
ce

Scenario 5

WS

SS

DS

Scenario 6

WS

SS

DS

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

R
es

il
ie

n
ce

Scenario 7

WS

SS

DS

Scenario 8

WS

SS

DS

0 5 10 15 20

Time (h)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

R
es

il
ie

n
ce

Scenario 9

WS

SS

DS

0 5 10 15 20

Time (h)

Scenario 10

WS

SS

DS

Figure 20: Case 2-a (Cascading Failures without Travel Times): Comparison of resilience curves under different solution
plans for the reduced 10 scenarios
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Figure 21: Case 2-b (Cascading Failures with Travel Times): Comparison of resilience curves under different solution
plans for the reduced 10 scenarios
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