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ABSTRACT: Predicting compound−protein affinity is beneficial
for accelerating drug discovery. Doing so without the often-
unavailable structure data is gaining interest. However, recent
progress in structure-free affinity prediction, made by machine
learning, focuses on accuracy but leaves much to be desired for
interpretability. Defining intermolecular contacts underlying
affinities as a vehicle for interpretability; our large-scale
interpretability assessment finds previously used attention mech-
anisms inadequate. We thus formulate a hierarchical multiobjective
learning problem, where predicted contacts form the basis for
predicted affinities. We solve the problem by embedding protein
sequences (by hierarchical recurrent neural networks) and
compound graphs (by graph neural networks) with joint attentions
between protein residues and compound atoms. We further introduce three methodological advances to enhance interpretability:
(1) structure-aware regularization of attentions using protein sequence-predicted solvent exposure and residue−residue contact
maps; (2) supervision of attentions using known intermolecular contacts in training data; and (3) an intrinsically explainable
architecture where atomic-level contacts or “relations” lead to molecular-level affinity prediction. The first two and all three advances
result in DeepAffinity+ and DeepRelations, respectively. Our methods show generalizability in affinity prediction for molecules that
are new and dissimilar to training examples. Moreover, they show superior interpretability compared to state-of-the-art interpretable
methods: with similar or better affinity prediction, they boost the AUPRC of contact prediction by around 33-, 35-, 10-, and 9-fold
for the default test, new-compound, new-protein, and both-new sets, respectively. We further demonstrate their potential utilities in
contact-assisted docking, structure-free binding site prediction, and structure−activity relationship studies without docking. Our
study represents the first model development and systematic model assessment dedicated to interpretable machine learning for
structure-free compound−protein affinity prediction.

■ INTRODUCTION
Current drug−target interactions are predominantly repre-
sented by the interactions between small-molecule compounds
as drugs and proteins as targets.1 The enormous chemical
space to screen compounds is estimated to contain 1060 drug-
like compounds.2 These compounds act in biological systems
of millions or more protein species or “proteoforms”
(considering genetic mutations, alternative splicing, and post-
translation modifications of proteins).3,4 Facing such a
combinatorial explosion of compound−protein pairs, drug
discovery calls for efficient characterization of compound
efficacy and toxicity, and computational prediction of
compound−protein interactions (CPI) addresses the need.
Classical physics-driven methods model atomic-level en-

ergetics using cocrystallized or docked 3D structures of
compound−protein pairs,5,6 such as molecular mechanical
and quantum mechanical force fields, potentials of mean force,
and empirical and statistical scoring. Over the years of
development, these methods are increasingly accurate7−9 for
applications including quantitative structure−activity relation-

ship (QSAR). Moreover, their affinity predictions are intrinsi-
cally interpretable toward revealing mechanistic principles,
with the consideration of atomic contacts, dynamics, and
energetics, as well as solvent effects. Recently, thanks to
increasingly abundant molecular data and advanced computing
power, data-driven machine learning (especially deep learning)
methods are also developed using the input structures of
compound−protein complexes10−12 or proteins alone (see a
related task of classifying binding13,14), albeit with less focus on
interpretability. However, these structure-based methods,
physics- or data-driven, are limited by the availability of
structure data. Indeed, 3D structures are often not available for
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compound−protein pairs or even proteins alone and their
prediction through docking is still a computationally
demanding and challenging task.
To overcome the data limitation of structure-based affinity-

prediction methods and broaden the applicability to more
chemical−proteomic pairs without structures, our focus of the
study is structure-free prediction of compound−protein
affinities. Recent developments only use identities of
compounds (SMILES15,16 or graphs16,17) and proteins
(amino acid sequences15,17 or shorter, predicted structural
property sequences16) as inputs. Compared to these recent
work, our goals are two folds: improved generalizability to
“new” molecules unseen in training data as well as improved
interpretability to a level that data supports (not yet the level of
mechanical principles that can be revealed by physics-driven
structure-based methods). In particular, interpretability
remains a major gap between the capability of current
structure-free machine-learning models and the demand for
rational drug discovery. The central question about interpret-
ability is whether and how methods (including machine
learning models) could explain why they make certain
predictions (affinity level for any compound−protein pair in
our context). This important topic is rarely addressed in
structure-free machine learning models. DeepAffinity16 has
embedded joint attentions over compound−protein compo-
nent pairs and uses such joint attentions to assess origins of
affinities (binding sites) or specificities. Additionally, attention
mechanisms have been used for predictions of CPI,18 chemical
stability,19 and protein secondary structures.20 Assessment of
interpretability for all these studies was either lacking or
limited to a few case studies. We note a recent work proposing
post-hoc attribution-based test to determine whether a model
learns binding mechanisms.21

We raise reasonable concerns on how much attention
mechanisms can reproduce native contacts in compound−
protein interactions. Attention mechanisms were originally
developed to boost the performance of seq2seq models for
neural machine translations.22 They have gained popularity for
interpreting deep learning models in visual question answer-
ing,23 natural language processing,24 and healthcare.25

However, they were also found to work differently from
human attentions in visual question answering.26

Representing the first effort dedicated to the interpretability
of structure-free compound−protein affinity predictors (in
particular, deep-learning models), our study is focused on how
to define, assess, and enhance interpretability for these
methods as follows.
How to Define Interpretability for Affinity Prediction.

Interpretable machine learning is increasingly becoming a
necessity27 for fields beyond drug discovery. Unlike interpret-
ability in a generic case,27 what interpretability actually means
and how it should be evaluated is much less ambiguous for
compound−protein affinity prediction. To make explanations
conform with scientific knowledge, human understanding, and
drug-discovery needs; we define interpretability of affinity
prediction as to the ability to explain predicted affinity through
underlying atomic interactions (or contacts). Specifically,
atomic contacts of various types are known to constitute the
physical basis of intermolecular interactions,28 modeled in
force fields to estimate interaction energies,6 needed to explain
mechanisms of actions for drugs,29,30 and relied upon to guide
structure−activity research in drug discovery.31,32 Therefore,
we use the ability to replicate such corresponding contacts

while predicting affinities as a vehicle for interpretability. The
current definition of interpretability (residue-atom pairs in
contact) is primitive compared to mechanistic principles in
structure-based classical methods. However, it is expected to
serve as a vehicle to help fill the mechanistic void in structure-
free affinity predictors (especially deep-learning models). We
emphasize that simultaneous prediction of affinity and contacts
does not necessarily make the affinity predictors intrinsically
interpretable unless predicted contacts form the basis for
predicted affinities.

How to Assess Interpretability for Affinity Prediction.
Once interpretability of affinity predictors is defined first
through atomic contacts, it can be readily assessed against
ground truth known in compound−protein structures, which
overcomes the barrier for interpretable machine learning
without ground truth.33 In our study, we have curated a data
set of compound−protein pairs, all of which are labeled with
pKd/pKi values and contact details, and we have split them into
training, test, new-compound, new-protein, and both-new sets.
We measure the accuracy of contact prediction over various
sets using area under the precision−recall curve (AUPRC)
which is suitable for binary classification (contacts/non-
contacts) with highly imbalanced classes (far fewer contacts
than noncontacts). We have performed large-scale assessments
of attention mechanisms in various molecular data representa-
tions (protein amino-acid sequences and structure−property
annotated sequences16 as well as compound SMILES and
graphs) and corresponding neural network architectures
(convolutional and recurrent neural networks [CNN and
RNN] as well as graph convolutional and isomorphism
networks [GCN and GIN]). We have found that current
attention mechanisms inadequate for interpretable affinity
prediction, as their AUPRCs, were merely slightly more than
chance (0.004).

How to Enhance Interpretability for Affinity Pre-
diction. We have made three main contributions to enhance
interpretability for structure-free deep-learning models.
The first contribution is to incorporate physical constraints

into data representations, model architectures, and model
training. (1) To respect the sequence nature of protein inputs
and to overcome the computational bottlenecks of RNNs,
inspired by protein folding principles, we represent protein
sequences as hierarchical k-mers and model them with
hierarchical attention networks (HANs). (2) To respect the
structural contexts of proteins, we predict from protein
sequence solvent exposure over residues and contact maps
over residue pairs, and we introduce novel structure-aware
regularizations for structured sparsity of model attentions.
The second contribution is to supervise attentions with

native intermolecular contacts available to training data and to
accordingly teach models how to pay attention to pairs of
compound atoms and protein residues while making affinity
predictions. We have formulated a hierarchical multiobjective
optimization problem where contact predictions form the basis
for affinity prediction. We utilize contact data available to
training compound−protein pairs and design hierarchical
training strategies accordingly.
The last contribution is to design intrinsic explainability into

the architecture of a deep “relational” network. Inspired by
physics, we explicitly model and learn various types of atomic
interactions (or “relations”) through deep neural networks
with joint attentions embedded. This was motivated by
relational neural networks first introduced to learn to reason
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in computer vision34,35 and subsequent interaction networks to
learn the relations and interactions of complex objects and
their dynamics.36,37 Moreover, we combine such deep
relational modules in a hierarchy to progressively focus
attention from putative protein surfaces, binding-site k-mers
and residues, to putative residue-atom binding pairs.
The rest of the paper is organized as follows. The

aforementioned contributions in defining, measuring, and
enhancing interpretable affinity prediction will be detailed in
the Methods section. In the Results section, we first show over
established affinity-benchmark data sets that the original
DeepAffinity16 and its variants (with various molecular
representations and neural networks) have comparable or
better accuracy in affinity prediction, compared to current
noninterpretable structure-free methods. We then describe a
data set newly curated for both affinity and contact prediction.
The data set is designed to be diverse and challenging with the
generalizability test in mind. Using this data set, we
incrementally introduce the three contributions to Deep-
Affinity and compare the resulting DeepAffinity+ (using the
first two contributions) and DeepRelations (using all three
contributions) to a competing interpretable method. Both
methods produce remarkably improved interpretability (now
defined as accuracy of contacts predicted by joint attentions)
while maintaining accurate and generalizable affinity predic-
tion. Importantly, compared to the competing method and
their reduced version without supervising attentions, they show
that sufficiently better interpretability (much more accurate
contact predictions) can help improve accuracy in affinity
prediction. Lastly, we use various focused studies to show the
spatial patterns of top-10 predicted contacts, the benefit of
these predictions to contact-assisted protein−ligand docking,
and the additional utilities of aggregating attentions and
decomposing predicted affinities for binding site prediction
and QSAR.

■ METHODS
Toward genome-wide prediction of compound−protein
interactions (CPI), we assume that proteins are only available
in 1D amino-acid sequences, whereas compounds are available
in 1D SMILES or 2D chemical graphs. We start the section
with the curation of a data set of compound−protein pairs with
known pKd/pKi values, which is also of known intermolecular
contacts. We will introduce the state-of-the-art and our newly-
adopted neural networks to predict from such molecular data.
These neural networks will be first adopted in our previous
framework of DeepAffinity16 (supervised learning with joint
attention) so that the interpretability of attention mechanisms
can be systematically assessed in CPI prediction. We will then
describe our physics-inspired, intrinsically explainable archi-
tecture of deep relational networks where aforementioned
neural networks are used as basis models. With carefully
designed regularization terms, we will explain multistage deep
relational networks that increasingly focus attention on
putative binding-site k-mers, binding-site residues, and
residue-atom interactions, for the prediction and interpretation
of compound−protein affinity. We will also explain how the
resulting model can be trained strategically.
Benchmark Set with Compound−Protein Affinities

and Contacts. We have previously curated affinity-labeled
compound−protein pairs16 based on BindingDB.38 In this
study, we used those pKi/pKd-labeled data with amino-acid
sequence length no more than 1000 and curated a subset with

known complex-protein cocrystal structures. We further merge
the data with the refined set of PDBbind (v. 2019),39 leading
to 4446 pairs between 3672 compounds and 1287 proteins.
More details about procedures are provided in the Supporting
Information, Section 1.1. Resulting data characteristics,
including compound property distributions and protein class
statistics, are described in the Results section.
The compound data are in the format of canonical SMILES

as provided in PubChem,40 and the protein data are in the
format of FASTA sequences (UniProt canonical). Compound
SMILES were also converted to graphs with RDKit.41

Ionization states of compounds defined in PubChem were
validated using the software OpenBabel, and the compounds
were further sanitized and standardized using “chem.Sanitize-
Mol( )” in the software RDKit. More details are provided in
the Supporting Information, Section 1.2. Atomic-level
intermolecular contacts (or “relations”) were derived from
compound−protein cocrystal structures in PDB,42 as ground
truth for the interpretablity of affinity prediction. Specifically,
we cross-referenced aforementioned compound−protein pairs
in PDBsum43 and used its LigPlot service to collect high-
resolution atomic contacts or relations. These direct, first-shell
contacts are given in the form of contact types (hydrogen bond
or hydrophobic contact), atomic pairs, and atomic distances.
The data set was randomly split into fourfolds where fold 1

did not overlap with fold 2 in compounds, did not do so with
fold 3 in proteins and with fold 4 in either compounds or
proteins. Folds 2, 3, and 4 are referred to as new-compound,
new-protein, and both-new sets for generalizability tests, and
they contain 521, 795, and 205 pairs, respectively. Fold 1 was
randomly split into training (2334) and test (591) sets. More
procedural details about data splitting are summarized in the
Supporting Information, Algorithm 1. The split of the whole
data set is illustrated in Figure 1 below. The similarity profiles
between training molecules and those in the test and
generalization sets are analyzed in the Results section later.

Although monomer structures of proteins are often
unavailable, their structural features can be predicted from
protein sequences alone with reasonable accuracy. We have
predicted the secondary structure and solvent accessibility of
each residue using the latest SCRATCH44,45 and contact maps
for residue pairs using RaptorX-contact46 (see details in the
Supporting Information, Section 1.3). These data provide
additional structural information to regularize our machine

Figure 1. Complete data set consists of training, test, compound-
unique, protein-unique, and double unique sets with compound−
protein counts provided.
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learning models. If protein structures are available, actual
rather than predicted, such data can be used instead.
Data Representation and Corresponding Basis Neu-

ral Networks. Baseline: CNN and RNN for 1D Protein and
Compound Sequences. When molecular data are given in 1D
sequences, these inputs are often processed by convolutional
neural networks (CNN)15,47 and by recurrent neural networks
(RNN) that are more suitable for sequence data with long−
term interactions.16

Challenges remain in RNN for compound strings or protein
sequences. For compounds in SMILES strings, the descriptive
power of such strings can be limited. In this study, we
overcome the challenge by representing compounds in
chemical formulae (2D graphs) and using two types of graph
neural networks (GNN). For proteins in amino-acid
sequences, the often-large lengths demand deep RNNs that
are hard to be trained effectively (gradient vanishing or
exploding and nonparallel training).48 We previously overcame
the second challenge by predicting structure properties from
amino-acid sequences and representing proteins as a much
shorter structure property sequences where each four-letter
tuple corresponds to a secondary structure.16 This treatment
however limits the resolution of interpretability to be at the
level of protein secondary structures (multiple neighboring
residues) rather than individual residues. In this study, we
overcome the second challenge while achieving residue-level
interpretability by using biologically motivated hierarchical
RNN (HRNN).
Notation Summary. Scalars, vectors, and matrices are

denoted in normal lowercase, bold-faced lowercase, and
uppercase characters, respectively. Subscripts i, t, and j are
for the ith protein residue, tth protein k-mer, and jth
compound atom, respectively. Subscript it represents the ith
residue in the tth k-mer (where i can be regarded as a global
residue index). Therefore, the jth atom of compound ?
described in dg features is denoted xj and its learned
representation (embedded through GNN) is denoted zj. The
ith residue of protein @ with dp features is denoted by yi, and
its learned representation (embedded through HRNN) is
denoted by hit, where t is the index of the k-mer containing
residue i. These residue representations hit within the k-mer are
then aggregated to obtain the k-mer representation ht, and all
k-mer representations are concatenated to reach the protein
representation.
Superscripts r, (l), and [s] indicate the rth relation about

molecular features, the lth layer of graph neural networks, and
the sth stage of DeepRelations, respectively.
Proposed: GCN and GIN for 2D Compound Graphs.

Compared to 1D SMILES strings, chemical formulae (2D
graphs) of compounds have more descriptive power and are
increasingly used as inputs to predictive models.16−19,49 In this
study, compounds are represented as 2D graphs in which
vertices are atoms and edges are covalent bonds between
atoms. Suppose that n is the maximum number of atoms in our
compound set (compounds with smaller number of atoms are
padded to reach size n), let us consider a graph

=G ( , , , )= ? , ( , where = { } =vj j
n

1= is the set of n vertices

(each with dg features), ∈ ×Rn dg? that of vertex features
( = [ ]x x x, ..., , ...,j n1? ), , that of edges, and ∈ { } ×0,1 n n( is

unweighted symmetric adjacency matrix. Let ̂ = +( ( 0 and
+̂ be the degree matrix (the diagonals of (̂).

We used the graph convolutional network (GCN)50 and
graph isomorphism network (GIN)51 which are the state-of-
the-art for graph embedding and inference. GCN consists of
multiple layers, and at layer l, the model can be written as
follows

= ̂ ̂ ̂ Θ− − −LUH Re ( H )l l l( ) 1/2 1/2 ( 1) ( )+ (+ (1)

where ∈ ×RH l n d( ) l
g
( )

is the output, Θ ∈ ×−
Rl d d( ) g

l
g

l( 1) ( )
are the

trainable parameters, and dg(l) is the number of features, all at
layer l. Initial conditions (when l = 0) are =H(0) ? and dg(0) =
dg.
GIN is the most powerful graph neural network in theory: its

discriminative or representational power is equal to that of the
Weisfeiler−Lehman graph isomorphism test.52 Similar to
GCN, GIN consists of multiple layers, and at layer l, the
model can be written as a multilayer perceptron (MLP)

= ̅ −MLPH ( H )l l l l( ) ( ) ( ) ( 1)( (2)

where ε̅ = +l l( ) ( )( ( 0, ϵ(l) can be either a trainable
parameter or a fixed hyperparameter. Each GIN layer has
several nonlinear layers compared to GCN layer with just a
ReLU per layer, which might improve predictions but suffer in
interpretability.
The fina l representa t ion for a compound i s
= [ ] =z z z, ..., . ..., Hj n

L
1

( )A if GCN or GIN has L layers.
In this study, vertex features are as in ref 19, with few
additional features detailed later in physics-inspired relational
modules. A summary of these features is provided in the
Supporting Information, Table S2.

Proposed: HRNN for 1D Protein Sequences. We aim to
keep the use of RNN that respects the sequence nature of
protein data and mitigate the difficulty of training RNN for
long sequences. To that end, inspired by the hierarchy of
protein structures, we model protein sequences using
hierarchical attention networks (HANs). Specifically, during
protein folding, sequence segments may fold separately into
secondary structures and the secondary structures can then
collectively pack into a tertiary structure needed for protein
functions. We exploit such hierarchical nature by representing
a protein sequence of length easily in thousands as tens or
hundreds of k-mers (consecutive sequence segments) of length
k (hyperparameter in this study). Accordingly, we process the
hierarchical data with hierarchical attention networks
(HANs)53 which have been proposed for natural language
processing. We also refer to it as hierarchical RNN (HRNN).
Although the inter-k-mer attentions might overcome potential
issues brought by k-mer definition as they do in natural
language processing,53 it would be interesting to examine the
potential benefit of using other domain-relevant definition of k-
mers, such as (predicted or actual) secondary structure
elements.
Given = [ ]y y y, ..., , ...,i m1@ , a protein sequence described

with dp features for each residue i ( ∈ ×Rn dp@ ), we partition it
into T consecutive, nonoverlapping k-mers. We use two types
of RNNs in hierarchy for modeling within and across k-mers.
We first use an embedding layer to represent the ith residue in
the tth k-mer as a vector eit. We use a shared RNN for all k-
mers for the latent representation of the residue: hit =
RNN(eit) (t = 1, ..., T). We then summarize each k-mer as kt
with an intra-k-mer attention mechanism
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= Θ + ∀

′ = ∑ ∀
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u v h b i t

u
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u
i t

k u h t

tanh( ) ,

exp( )
exp( )

,

it it

it
it

i i t

t
i

it it

1 1 1

(3)

With another RNN for kt, we reach the representation of the
tth k-mer: ht = RNN(kt) (t = 1, ..., T).
The final representation for a protein sequence is the

collection of ht.
Joint Attention over Protein−Compound Atomic Pairs for

Interpretability. Once the learned representation of protein
sequences (H = [h1, ..., ht, ..., hT], where t is the index of
protein k-mer) and that of compound sequences or graphs
( = [ ]z z z, ..., , ...,j n1A , where j is the index of compound
atom) are defined, they are processed with a joint k-mer−atom
attention mechanism to interpret any downstream prediction

= Θ ∀

′ = ∑ ∀
′ ′ ′ ′

h

N
N

N z t j

t j

tanh( ) ,

exp( )

exp( )
,

tj t j

tj
tj

t j t j

2

,
>

(4)

With ′tj> , the joint attention between the tth k-mer and the
jth atom, we can combine it with the intra-k-mer attention over
each residue i in the tth k-mer and reach ij> , the joint
attention between the ith protein residue and the jth
compound atom

= ′ ′ ∀u i j,ij it tj> > (5)

This joint attention mechanism is an extension of our previous
work,16 where a protein sequence was represented as a single,
“flat” RNN rather than multiple, hierarchical RNNs.
Given learned representations hi for protein residue i (the k-

mer index is ignored for simplicity) and zj for compound atom
j as well as the joint attention ij> over the pair, we further

jointly embed the pair and aggregate over all pairs to reach f
the joint embedding of protein @ , compound ?, and their
residue-atom “interactions” captured by >

∑
= Θ + Θ +

=

f h

f

z b

f

tanh( )ij i j

i j
ij ij

3 4 2

,

>
(6)

where Θ3, Θ4, and b2 are learnable parameters. The joint
embedding f is fed to a CNN and two multilayer perceptrons
(MLP) to make affinity prediction as before.16 In other words,
> for contact prediction directly forms the basis of f for
affinity prediction.
In comparison, Gao et al.’s method18 also uses joint

attention for contact prediction. However, the joint attention
matrix is marginalized for either the compound or the protein;
and the separately processed compound or protein representa-
tions were used for affinity prediction. More specifically

Figure 2. Schematic illustration of DeepRelations, an intrinsically explainable neural network architecture for predicting compound−protein
interactions. Three linked relational modules (Rel-CPI in the small yellow boxes) correspond to three stages of attention focusing. Each module
embeds relational features with joint attentions over pairs of protein residues and compound atoms (details on the right). In comparison,
DeepAffinity+ has a single module with all relational features lumped together. Both methods are structure-free, and protein structures are just for
illustration.
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The separate final representations for the compound (od) and
the protein (op) were fed to downstream layers for affinity
prediction, with much of information lost on the joint
attention (the basis of contact prediction).
DeepRelations. Overall Architecture. We have developed

an end-to-end “by-design” interpretable architecture named
DeepRelations for joint prediction and interpretation of
compound−protein affinity. The overall architecture is
shown in Figure 2.
There are three relational modules (Rel-CPI) corresponding

to three stages. Their attentions are trained to progressively
focus on putative binding k-mers, residues, and pairs; and
earlier-stage attentions guide those in the next stage through
regularization. In each Rel-CPI module, there are K = 10 types
of atomic “relational” features for proteins or compounds [nine
relation (sub)types are described next, and the last is the union
of all nine types of features]. All types of relational features are
individually fed to aforementioned neural network pairs (for
instance, HRNN for protein sequences and GCN for
compound graphs, or HRNN-GCN in short), concatenated,
and jointly embedded for proteins and compounds with
attentions over residue−compound pairs. The embedding
output (based on joint attentions for contact prediction) of the
last module is fed to CNN and MLP layers for affinity
prediction. All three modules are trained end-to-end as a single
model. In contrast, DeepAffinity+ only has one module
without multistage focusing, and its module only uses the
last type of relational features (the union of the first nine
types).
Physics-Inspired Relational Modules. The relational

modules are inspired by physics. Specifically, atomic “relations”
or interactions constitute the physical bases and explanations
of compound−protein interaction affinities and are often
explicitly modelled in force fields. We have considered the
following six types of relations with attentions paid on and
additional input data defined for.

• Electrostatic interactions: the ion feature of a protein
residue is its net charge as in the force field
CHARMM36 and that of a compound atom is its
formal charge. The dipole feature of a protein residue is
1 for polar residues (S, T, C, Y, N, Q, and H54) or 0 for
others and that of a compound atom is its Gasteiger
partial charge. The electrostatics thus include all four
combinations (subtypes) of residue-atom relations: ion−
ion, ion−dipole, dipole−ion, and dipole−dipole.

• Hydrogen bond: noncovalent interaction (A···H−D)
between an electronegative atom as a hydrogen
“acceptor” (“A”) and a hydrogen atom that is covalently
bonded to an electronegative atom called a hydrogen
“donor” (“D”). Therefore, if a protein residue or
compound atom could provide a hydrogen acceptor/

donor, its hydrogen-bond feature is −1/+1; otherwise,
the feature value is 0. A protein residue is allowed to be
both hydrogen-bond donor and acceptor. Specifically,
for protein residues, amino acids of hydrogen-bond
acceptors are N, D, Q, E, H, S, T, and Y and those of
hydrogen-bond donors are Y, W, T, S, K, H, Q, N, and
R.55 For compound atoms, the hydrogen-bond acceptor
or donor is defined as in the base features factory file
(atom types “SingleAtomAcceptor” and “SingleAtom-
Donor” in the file “BaseFeatures.fdef”) of the software
RDKit v. 2018.03.4.

• Halogen bond: a halogen bond (A···X−D) is very similar
to hydrogen bond except that a halogen “X” (rather than
hydrogen) atom (often found in drug compounds) is
involved in such interactions. As standard amino acids
do not contain halogen atoms, a protein residue can only
be a halogen bond acceptor (“A” in A···X−D) and
assigned a nonzero halogen-bond feature of −1, only if it
is amino acid S, T, Y, D, E, H, C, M, F, W,56 N, or Q.
On the compound side, only a halogen atom is assigned
a nonzero feature value. Specifically, halogen-bond
features of iodine, bromine, chlorine, and fluorine
atoms are assigned at +4, +3, +2, and +1, respectively,
for decreasing halogen-bonding strengths.56

• Hydrophobic interactions: the interactions between
hydrophobic protein residues and compound atoms
contribute significantly to the binding energy between
them. This feature is only nonzero and set at 1 for
hydrophobic residues of proteins or nonpolar atoms of
compounds (atoms whose absolute values of partial
atomic charges are less than 0.2 units57,58).

• Aromatic interactions: aromatic rings in histidine,
tryptophan, phenylalanine, and tyrosine participate in
“stacking” interactions with aromatic moieties of a
compound (π−π stacking). Therefore, if a protein
residue has an aromatic ring, its aromatic feature is set
at 1 and otherwise at 0. Similarly, if a compound atom is
part of an aromatic ring, the feature is set at 1 and
otherwise at 0.

• VdW interactions: van der Waals are weaker interactions
compared to others. However, the large amount of these
interactions contribute significantly to the overall
binding energy between a protein and a compound.
We consider the amino-acid type and the atom element
as their features and use an embedding layer to derive
their continuous representations.

For each (sub)type of atomic relations, corresponding
protein and compound features are fed into basis neural
network models such as HRNN for protein sequences and
GNN for compound graphs. The embeddings over all types are
concatenated for protein residues or compound atoms and
then jointly embedded with joint attentions over residue-atom
pairs.

Physical Constraints as Attention Regularization. The
joint attention matrices > in each Rel-CPI module, for
individual relations or overall, are regularized with the
following two types of physical constraints. We note that,
aiming at the general case where protein structures may not be
available, we use sequence-predicted rather than actual
structure properties (solvent exposure and residue contacts)
when introducing these physical constraints.
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Focusing regularization in the first regularization, a
constraint input is given as a matrix ∈ [ ] ×0,1 m n; to penalize
the attention matrix> if it is focused on undesired regions of
proteins. In addition, an L1 sparsity regularization is on the
attention matrix > to promote interpretability as a small
portion of protein residues interact with compounds. There-
fore, this “focusing” penalty can be formalized as follows

λ λ= || − ⊙ || + || ||R ( ) (1 ) L1 relation 2 1 1> ; > > (8)

where the ; term, a parameter, can be considered as soft
thresholding, and the matrix norms are element-wise. The L1
regularization term in R1(·) is only included in the first module
(stage 1), where R1(·) is the only regularization term. It is then
moved to another term in the second, and the last modules,
where multiple regularization terms, are used together.
The first regularization is used for all three Rel-CPI modules

or stages with increasingly focusing ; . Let [ ]s; be the
constraint matrix and [ ]s> be the learned attention matrix in
the sth stage. In the first stage, [ ]

ij
1; , being binary, is one only

for any residue i predicted to be solvent-exposed (relative
solvent-accessible area predicted above 0.25 by
SCRATCH44,45) in order to focus on potential surfaces. In
the second stage, =[ ]

′ ′
[ ]maxij j ij

2 1; > to focus on putative
binding residues hierarchically learned for k-mers and residues
at module/stage 1. In the third and last stage,

=[ ]
′ ′

[ ]maxij j ij
3 2; > focuses on putative contacts between

protein residues and compound atoms based on the learned
binding residues at module/stage 2.
Structure-aware sparsity regularization over protein contact

maps. We further develop a structure aware sparsity constraints
based on known or RaptorX-predicted contact maps of the
unbound protein. As sequentially distant residues might be
close in 3D and form binding sites for compounds, we define
overlapping groups of residues where each group consists of a
residue and its spatially close neighboring residues. Just in the
second stage, we introduce Group Lasso for spatial groups and
the Fused Sparse Group Lasso (FSGL) for sequential groups
on the overall, joint attention matrix >

λ λ
λ

= || || + || ||
+ || ||‐

R ( )

L

2 group group fused fused

1 overall 1

> > >

> (9)

The group Lasso penalty will encourage a structured group-
level sparsity so that few clusters of spatially close residues
share similar attentions within individual clusters. The fused
sparsity will encourage local smoothness of the attention
matrix so that sequentially close residues share similar
attentions with compound atoms. The L1 term again maintains
the sparsity of the attention matrix > . This regularization is
only introduced in the second and third stages for [ ]2> and

[ ]3> , after the first-stage attention matrix [ ]1> is supposedly
focused on protein surfaces. The attention matrix in the last
stage, [ ]3> , is used for predicting residue-atom contacts.
Supervised Attentions. It has been shown in visual question

answering that attention mechanisms in deep learning can
differ from human attentions.26 As will be revealed in our
results, they do not necessarily focus on actual atomic contacts
(relations) in compound-protein interactions either. We have
thus curated a relational subset of our compound−protein
pairs with affinities, for which known ground-truth atomic

contacts or relations are available. We summarize actual
contacts of a pair in a matrix native> of length m × n, which is
a binary pairwise interaction matrix padded with 0 to reach the
maximum number of protein residues or compound atoms and
then normalized by the total number of nonzero entries. We
have accordingly introduced an additional third regularization
term to supervise attention matrix > in the second and third
stages

λ= || − ||R ( )3 bind
native

F> > > (10)

In the case of DeepAffinity+ with a single module, all three
regularization terms are included as in the last module of
DeepRelations.

Training Strategy for Hierarchical Multiobjectives. Accu-
racy and interpretability are the two objectives we pursue at
the same time. In our case, the two objectives are hierarchical:
compound−protein affinity originates from atomic-level
interactions (or “relations”) and better interpretation in the
latter potentially contributes to better prediction of the former.
Challenges remain in solving the hierarchical multiobjective

optimization problem. Optimizing for both objectives simulta-
neously (for instance, through weighted sum of them) does
not respect that the two objectives do no perfectly align with
each other and are of different sensitivities to model
parameters. Therefore, we consider the problem as multilabel
machine learning, and we design hierarchical training strategies
to solve the corresponding hierarchical multiobjective
optimization problem, which is detailed next.
Take DeepAffinity+ as an example. We first “pre-trained” it

to minimize mean-squared error (MSE) of pKi/pKd regression
alone, with physical constraints turned on; in other words,
attentions were regularized [through R1(·) and R2(·)] but not
supervised in this stage. We tuned combinations of all
hyperparameters except λbind in the discrete set of {10−4,
10−3, and 10−2}, with 200 epochs at a learning rate of 0.001.
Over the validation set, we recorded the lowest RMSE for
affinity prediction and chose the hyperparameter combination
with the highest AUPRC for contact prediction such that the
corresponding affinity RMSE (root-mean-square error) does
not deteriorate from the lowest by more than 10%.
With the optimal values of all hyperparameters but λbind

fixed, we then loaded the corresponding optimized model in
the first stage and “fine-tuned” the model to minimize MSE
additionally regularized by supervised attentions [through
R1(·), R2(·), and R3(·)]. We used the same learning rate
(0.001) and training epochs (200) in fine-tuning; and we
tuned λbind in the set of {100, ..., 105} following the same
strategy as in pretraining.
The tuned hyperparameters for all DeepAffinity+ variants

are summarized as follows. For HRNN-GCN_cstr [modeling
protein sequences with HRNN and compound graphs with
GCN, regularized by physical constraints in R2(·)], we chose
λgroup = 10−4, λfused = 10−3, and λL1‑overall = 10−2; and for its
supervised version HRNN-GCN_cstr_sup, the additional λbind
= 104. For HRNN-GIN_cstr [modeling protein sequences
with HRNN and compound graph with GIN, regularized by
physical constraints in R2(·)], we chose λgroup = 10−4, λfused =
10−3, and λL1‑overall = 10−4; and for its supervised version
HRNN-GIN_cstr_sup, the additional λbind = 103. R1(·) was for
attentions on individual relations in DeepRelations and not
applicable for DeepAffinity+ variants, although a surface-
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focusing regularization on overall attentions could be
introduced.
We did similarly for hyperparameter tuning for Deep-

Relations while constraining (and supervising) attentions. The
whole DeepRelations model, including the three Rel-CPI
modules, is trained end-to-end.59 To save computational
resources, we used the same hyperparameters in R2(·)
(λL1‑overall, λfused, and λgroup) as those optimally tuned in
HRNN-GCN_cstr_sup. We then tuned the rest of the
hyperparameters (λL1, λrelation, andλbind) following the afore-
mentioned process of pretraining and fine-tuning. In the end,
we chose λrelation = 10−4, λL1 = 10−5, λgroup = 10−4, λfused = 10−3,
λL1‑overall = 10−2, and λbind = 103 for DeepRelations. λbind is
usually larger because it is multiplied to the attention-
supervision term that can be orders of magnitude smaller
than other terms.

■ RESULTS
We first assess the accuracy of compound−protein affinity
predictions made by state-of-the-art noninterpretable methods
and our interpretable DeepAffinity framework16 (with new
variants), using three established benchmark sets. After
establishing that DeepAffinity achieves the state-of-the-art
accuracy in affinity prediction, we then describe a newly
curated data set with both affinities and contacts of
compound−protein interactions and assess the interpretability
of various DeepAffinity versions and a competing interpretable
method adapted to affinity prediction. We find that current
attention-based interpretable models are not adequate for
interpreting affinity (i.e., predicting contacts). Thus, we
proceed to regularize and supervise attentions in DeepAffinity
to make DeepAffinity+ models. We additionally use a novel,
physics-inspired, and intrinsically interpretable deep relational
architecture to make DeepRelations models.
Over the curated data set, we compare our methods with a

competing, structure-free interpretable method in accuracy,
generalizability, and interpretability. Using a series of case
studies, we also analyze the accuracy levels and spatial patterns
of their top-predicted contacts, which are shown to benefit
protein−ligand docking. We end the section by introducing
analytics to aggregate joint attentions and decompose
predicted affinity and by demonstrating their potential utilities
toward binding site prediction for proteins and SAR for
compounds (scoring and lead optimization).
DeepAffinity with Interpretable Attentions Achieves

the State-of-the-Art Accuracy in Compound−Protein
Affinity Prediction. As the starting point of interpretability
assessment and improvement, our previous interpretable
DeepAffinity framework16 is first compared to current methods
based on prediction accuracy for established benchmark sets.
For affinity benchmark data sets, we adopt three established

ones of increasing difficulty, the Davis,60 the kinase inhibitor
BioActivity (KIBA)61 and the refined set of PDBbind (v.
2019).39 We filtered and partitioned the first two data sets
consistently with earlier studies.15,61−63 The Davis data set62

contains all 30,056 Kd-labeled pairs between 68 kinase
inhibitors (including FDA-approved drugs) and 442 kinases,
randomly split into 25,046 for training and 5010 for testing
(the widely used “S1” setting62). The filtered KIBA data
set61,62 contains 118,254 pairs between 2111 kinase inhibitors
and 229 kinases, including 98,545 for training and 19,709 for
testing (S1 split again). Other split settings were not pursued
because published performances in such settings are not always

available and comparable. The KIBA scores combine ki, kd, and
IC50 sources for consistency and are further processed.15,62 As
to the refined PDBbind data set (v. 2019), we filtered and
processed it (see details in the Supporting Information Section
S1.1) to reach 3505 pairs with ki or kd labeled between 1149
proteins and 2870 compounds. Compared to Davis and KIBA,
the PDBbind data set contains more diverse protein classes:
2157 interactions with enzymes including 72 with kinases, 62
with nuclear receptors, 33 with G protein-coupled receptors
(GPCRs), and 106 with ion channels. The portion of labeled
compound−protein pairs is much lower than that of Davis and
KIBA. We randomly split the PDBbind data set into 2921 pairs
for training and 584 for testing.
For our framework of DeepAffinity,16 we adopt various data

representations and corresponding state-of-the-art neural
network architectures as detailed in the Methods section. To
model proteins, we have adopted RNN using protein SPS16 as
input data as well as CNN and newly developed HRNN using
protein amino-acid sequences. To model compounds, we have
adopted RNN using SMILES as input data as well as GCN and
GIN using compound graphs with node features and edge
adjacency.19 In the end, we have tested five DeepAffinity
variants (including four new) for protein−compound pairs,
including RNN−RNN,16 RNN−GCN, CNN−GCN, HRNN−
GCN, and HRNN−GIN. Names before and after hyphens
indicate models to embed proteins and compounds,
respectively; and embeddings of a pair of protein and
compound are passed through joint attentions in eq 6 before
being fed to a convolutional neural network (CNN) and
multilayer perceptrons (MLP).16 For instance, the first one,
RNN−RNN indicates that protein SPS sequences are modeled
by RNN and compound SMILES or graphs are modeled by
RNN. This is essentially our previous method16 except that no
unsupervised pretraining or ensemble averaging is used here.
We have tuned hyperparameters for DeepAffinity variants
including learning rate ({10−3, 10−4}), batch size ({64, 128}
(16 for CNN-GCN because of the limit of GPU memory) and
dropout rate ({0.1, 0.2}) using random 10% of training data as
validation sets. When HRNN was used to model protein
sequences, we have also tuned k-mer lengths and group sizes in
pairs [{(40,30), (48,25), (30,40), (25,48), (15,80), (80,15)}
for Davis and {(40,25), (50,20), (25,40), (20,50)} for KIBA
and PDBbind] using the validation sets.
For comparison, we use published current methods that are

not structure-based, including DeepDTA,15 KronRLS,64 and
WideDTA,65 all of which are noninterpretable. Their results
for the Davis and KIBA sets were self-reported in individual
studies and summarized in a comparison study.63 Their results
for the PDBbind set are derived by retraining released source
codes with published hyperparameter grids and individual
training sets (except wideDTA whose codes are not available).
In addition, we compare to structure-free methods that are
interpretable. Except DeepAffinity, the only other interpretable
method published so far (Gao et al.) was for predicting binary
compound−protein interaction.18 As its codes are not publicly
available, we have implemented the method, revised its model’s
last layer (sigmoid), and retrained the model for affinity
prediction using each training set. To ensure fair comparison,
all deep-learning models including our DeepAffinity variants
here are trained for 100 epochs or until convergence (the
validation loss does not improve within 15 epochs), as
competing methods previously did.63
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We compare aforementioned competing methods and
DeepAffinity variants in accuracy using two assessment
metrics: RMSE (root-mean-squared error; see Table 1) and
CI (concordance index; see Table 2). Although RMSE
evaluates the proximity between predictions are to correspond-
ing native values, CI,66 often used for virtual screening,
measures the probability of correctly ordering nonequal pairs.
We summarize the results in Tables 1 and 2.
From both tables, we conclude that the original DeepAffinity

method16 (RNN−RNN; RNN for protein SPS; and RNN for
compound SMILES) and its variants compared favorably to
the state-of-the-art. Specifically, the DeepAffinity variants
achieved the best performances in RMSE and CI for both
the Davis data set and the most diverse and sparse data set of
PDBbind. It closely followed the best performances
(WideDTA) for the KIBA data set. In particular, the newly
introduced HRNN models for protein sequences (higher-
resolution than SPS) and graph models GCN and GIN for
compound graphs achieved the best or close-to-the-best
performances, which enables interpreting affinity prediction
at the level of protein residues and compound atoms without
sacrificing the accuracy. Considering that other methods are
not interpretable and the only exception Gao et al. did not
perform as well, the performances of interpretable DeepAffinity
variants are particularly impressive.

Our New Data Set for Both Affinity and Contact
Prediction is Diverse and Challenging. To support
systematic assessment and development of explainable affinity
prediction, we have constructed a data set of 4446 compound−
protein pairs (between 1287 proteins and 3672 compounds)
with both affinity values (pKi or pKd) and atomic contacts
(available in cocrystal structures). More details are included in
the Methods section and the Supporting Information, Section
1.1.
The data set contains diverse proteins and compounds.

Among the 4446 pairs, there are 2913 interactions with
enzymes including 114 with kinases, 105 with nuclear
receptors, 89 with GPCRs, and 111 with ion channels. The
enzymes are across all seven enzyme commission classes (see
details including EC class breakdowns in the Supporting
Information, Section 1.1). The 3672 compounds cover wide
ranges of physicochemical properties (log P, molecular weight,
and affinity values) as seen in Figure 3.
The data set is split into training including validation

(2334), test (591), new-protein (795), new-compound (521),
and both-new sets (205), as illustrated in Figure 1. Compared
to the test set, the three generalization sets not only contain
new proteins or/and compounds but also mainly consist of
very dissimilar proteins or/and compounds compared to the
training set, which suggest their challenges for machine

Table 1. Comparing Current Methods (Noninterpretable Except Gao et al.) and Interpretable DeepAffinity Variants in
Prediction Accuracy (Measured by RMSE, the Lower the Better) for the Davis, KIBA, and PDBbind Benchmark Setsa

deepaffinity

RMSE deepDTA kronRLS wideDTA Gao et al.c RNN−RNN16 RNN−GCN CNN−GCN HRNN−GCN HRNN−GIN
Davis 0.5109b 0.6080b 0.5119b 0.7864 0.5032 0.5095 0.8106 0.5019 0.6604
KIBA 0.4405b 0.6200b 0.4230b 0.7368 0.4335 0.5367 0.8244 0.4480 0.6669
PDBbind 2.0631 1.8005 1.8071 1.4524 1.4277 1.5580 1.4743 1.4858

aThe best performance in each data set is bold-faced. bSelf-reported and published results as summarized in Thafar et al.63 cOriginally a binary
classifier, it was implemented and revised by us for affinity prediction.

Table 2. Comparing Current Methods (Noninterpretable Except Gao et al.) and Interpretable DeepAffinity Variants in
Prediction Accuracy (Measured by the Concordance Index or CI, the Larger the Better) for the Davis, KIBA, and PDBbind
Benchmark Setsa

deepaffinity

RMSE deepDTA kronRLS wideDTA Gao et al.c RNN−RNN16 RNN−GCN CNN−GCN HRNN−GCN HRNN−GIN
Davis 0.8780b 0.8830b 0.8860b 0.7824 0.9000 0.8808 0.7373 0.8814 0.8224
KIBA 0.8630b 0.7820b 0.8750b 0.7335 0.8423 0.7968 0.5761 0.8420 0.6893
PDBbind 0.7125 0.7197 0.7610 0.8042 0.7543 0.7119 0.7544 0.7398

aThe best performance in each data set is bold-faced. bSelf-reported and published results as summarized in Thafar et al.63 cOriginally a binary
classifier, it was implemented and revised by us for affinity prediction.

Figure 3. Distributions of compound properties across various subsets: (A) log P; (B) exact molecule weight; and (C) pKi/pKd labels.
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learning. For instance, the new-protein set only contains
proteins not present in the training set. 454 (57.1%) pairs in
the set involve new proteins whose global sequence identities
to the closest training proteins are below 30%, and 452
(56.8%) pairs involve new proteins whose local binding k-mer
identities are below 30% (note that only around 10% residues
of an average binding k-mer are binding residues). Similarly,
414 (79.5%) new-compound pairs involve new compounds
whose Tanimoto scores (details in the Supporting Information,
Section 1.4) to the closest training compounds are below 0.5.
The both-new set only contains pairs of new proteins and new
compounds with similarly low resemblance to the training set.
98 (47.8%) pairs involve new proteins with sequence identity
below 30% and new compounds with Tanimoto scores below
0.5. Therefore, the both-new set is expected to be the most
challenging set among the four for the generalizability of
machine learning models. Pair breakdowns are visualized in
part of Figure 6 (counts). In addition, Jensen−Shannon
distances between compound properties of training and those
of the other sets are given in Table S1, similarly revealing the
most challenging both-new set.
Attentions alone are Inadequate for Interpreting

Compound−Protein Affinity Prediction. Now that we
have established the accuracy of attention-embedded Deep-
Affinity and constructed a suitable data set, our first task for
interpretability is to systematically assess the adequacy of
attention mechanisms for interpreting model-predicted com-
pound−protein affinities. To that end, using our newly curated
benchmark set for both affinity and contact prediction, we have
tested six DeepAffinity variants for protein−compound pairs
(including RNN−RNN, RNN−GCN, CNN−GCN, HRNN−
RNN, HRNN−GCN, and HRNN−GIN) as well as the only
other interpretable method (Gao et al.) that is also attention-
based and adapted by us from a classifier to a regressor. All
models are retrained using the new training set with details in
the Methods section. The first two DeepAffinity (RNN−RNN
and RNN−GCN) models’ attentions on proteins are at the
secondary structure levels. Their joint attentions were thus
converted to residue-atom matrices, using equal weights across
all residues within a secondary structure, in the postanalysis of
interpretability. The rest have joint attentions at the level of
pairs of protein residues and compound atoms.

The accuracy of affinity prediction, measured by RMSE and
Pearson’s r in pKi/pKd, is summarized for the DeepAffinity
variants in the top panel of Figure 4 and Table S3. Overall, all
variants have shown affinity RMSE (Pearson’s r) around 1.5
(0.65), 1.6 (0.50), 1.4 (0.70), and 1.7 (0.50) for the default
test, new-protein, new-compound, and both-new sets,
respectively. In particular, the HRNN−GCN version achieved
an RMSE (Pearson’s r) of 1.47 (0.70), 1.46 (0.56), 1.34
(0.73), and 1.49 (0.61) for the four sets, respectively, showing
a robust accuracy profile. In contrast, the competing method
(Gao et al.) has worse RMSE values between 1.72 and 1.87
and worse Pearson’s r between 0.42 and 0.58.
The interpretability of affinity prediction is assessed against

ground truth of intermolecular residue−atom contacts, as
shown in the bottom panel of Figure 4 and Table S3.
Specifically, we use joint attention scores to classify all possible
residue-atom pairs into contacts or noncontacts. As contacts
only represent a tiny portion 0.0040 ± 0.0029 in our data set of
all possible pairs, we use the area under the precision−recall
curve (AUPRC) as the major metric and the area under the
receiver operating characteristic curve (AUROC) as a
reference, to assess such binary classification. Here, AUPRC/
AUROC is averaged over all pairs involved in the
corresponding set. Interestingly, compared to chance
(AUPRC = 0.004 and AUROC = 0.5), all attention-based
models including DeepAffinity variants and Gao et al. only had
slightly better AUPRC (around 0.006 albeit a 50% improve-
ment) except CNN−GCN for the new-protein set. The best
DeepAffinity variant, HRNN−GCN, did improve against Gao
et al.
From the results above, we conclude that attention

mechanisms alone are inadequate for the interpretability of
compound−protein affinity predictors, regardless of the choice
of commonly used, generic neural network architectures.

Regularizing Attentions with Physical Constraints
Modestly Improves Interpretability. Our next task is to
enhance the interpretability of compound−protein affinity
prediction beyond the level achieved by attention mechanisms
alone. The first idea is to incorporate domain-specific physical
constraints into model training. The rationale is that, by
bringing in the (predicted) structural contexts of proteins and

Figure 4. Comparing accuracy and interpretability among various versions of DeepAffinity with unsupervised joint attention mechanisms as well as
another interpretable method (Gao et al.). Separated by hyphens in legends are neural network models for proteins and compounds respectively. A
horizontal dashed line indicates the performance of a random predictor.
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protein−compound interactions, attention can be guided in
their sparsity patterns accordingly for better interpretability.
We start with the two best-performing DeepAffinity variants

so far (HRNN−GCN and HRNN−GIN), where protein
amino-acid sequences are modeled by hierarchical RNN and
compound graphs by various GNNs (including GCN and
GIN). We introduce structure-aware sparsity regularization
R2(·) to the two models to make “DeepAffinity+” variants. The
resulting HRNN-GCN_cstr and HRNN-GIN_cstr models
with physical constraints are assessed in Figure 5 and Table S4.
Compared to the nonregularized counterparts in Figure 4 and
Table S3, both models achieved similar accuracy levels across
various test sets for affinity prediction. As to their
interpretability, HRNN−GCN_cstr had similar AUPRC as
before regularization (0.006) and HRNN−GIN_cstr slightly
improved AUPRC to around 0.008, although both were still
close to the baseline (0.004). These results suggest that
incorporating physical constraints to structurally regularize the
sparsity of attentions is useful for improving interpretability but
may not be enough.
Supervising Attentions Significantly Improves Inter-

pretability. As regularizing attentions with physical con-
straints was not enough to enhance interpretability, our next
idea is to additionally supervise attentions with ground-truth
contact data available to training examples. Again, we
introduce “DeepAffinity+” models starting with HRNN−
GCN and HRNN−GIN, by both regularizing and supervising
attentions (using R2(·) and R3(·)).
The performances of resulting HRNN−GCN_cstr_sup and

HRNN−GIN_cstr_sup models are shown in Figure 5.
Importantly, HRNN−GCN_cstr_sup (light blue) significantly
improved interpretability of affinity prediction without the
sacrifice of accuracy. The average AUPRC improved to 0.197,
0.048, 0.200, and 0.041 for the default test, new-protein, new-
compound, and both-new sets, representing a 30.4-, 9.2-, 31.2-,
and 6.3-fold increase, respectively, compared to the version
with just regularization but not supervision of attentions
(HRNN−GCN_cstr). The performances also represented a
32.9-, 9.9-, 35.1-, and 8.6-fold increase, respectively, compared
to Gao et al. Interestingly, supervising attentions in HRNN−
GIN did not lead to significant improvement in interpret-
ability.

Building Explainability into DeepRelations Architec-
ture Further Improves Interpretability. Toward better
interpretability, besides regularizing and supervising attentions,
we have further developed an explainable, deep relational
neural network named DeepRelations. Here, atomic “relations”
constituting physical bases and explanations of compound−
protein affinities are explicitly modeled in the architecture with
multistage gradual “zoom-in” to focus attention. In other
words, the model architecture itself is intrinsically explainable
by design.
The performances of the resulting DeepRelations (with both

regularized and supervised attentions) are shown in Figure 5
(yellow-green “DeepRelations_cstr_sup”). With equally com-
petitive accuracy in affinity prediction as all previous models,
DeepRelations achieved further improvements in interpret-
ability. The AUPRC values were similar to the best
DeepAffinity+ model (HRNN-GCN_cstr_sup): 0.187, 0.052,
0.191, and 0.047 for the default test, new-protein, new-
compound, and both-new sets, respectively. The AUROC
values improved to 0.76, 0.67, 0.76, and 0.66 for the four sets,
representing an increase of 0.03, 0.07, 0.03, and 0.07 compared
to those of the best DeepAffinity+, respectively.
To disentangle various components of DeepRelations and

understand their relative contributions to DeepRelations’
improved interpretability, we removed components from
DeepRelations for the ablation study. Besides regularized and
supervised attentions, we believe that the main contributions in
the architecture itself are (1) the multistage “zoom-in”
mechanisms that progressively focus attentions from surface,
binding k-mers, binding residues to binding residue-atom pairs;
and (2) the explicit modeling of atomic relations that can
explain the structure feature-affinity mappings consistently
with physics principles.
We thus made three DeepRelations variants: DeepRelations

without multistage focusing, without explicit atomic relations,
or without both. We compare them with DeepRelations in
Figure S1. Consistent with our conjecture, we found that, the
explicit modeling of atomic relations was the main contributor
as its removal led to worse affinity and contact predictions in
new-protein and both-new sets. The multistage focusing also
contributes as its removal led to worse affinity prediction for
both new-compound and both-new sets.

Figure 5. Comparing accuracy and interpretability among various versions of DeepAffinity+ (DeepAffinity with regularized and supervised
attentions) and DeepRelations. “cstr” in legends indicates physical constraints imposed on attentions through regularization term R2(·), whereas
“sup” indicates supervised attentions through regularization term R3(·). A horizontal dashed line indicates the performance of a random predictor.
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Validation of Affinity Prediction. To validate the affinity
accuracy of our two final models HRNN−GCN_cstr_sup
(DeepAffinity+ hereinafter) and DeepRelations_cstr_sup
(DeepRelations hereinafter), we have performed several
randomization tests. First, using random sampling of the
training set would lead to affinity RMSEs above 2.7 and
Pearson’s r around 0; whereas using the sample mean would
lead to affinity RMSEs between 1.85 and 2.02 and an
undefined Pearson’s r. Both random affinity predictors
performed considerably worse than DeepAffinity+ and Deep-
Relations (RMSE between 1.3 and 1.6 and Pearson’s r between
0.5 and 0.7). Second, Y-randomization tests67 of DeepAffinity+
and DeepRelations (20 trials each) led to much worse affinity
prediction (RMSE between 2.20 and 2.45 and Pearson’s r
around 0). Compound-randomization tests of our two models
had similar results (RMSE between 1.95 and 2.22 and
Pearson’s r around 0 for new proteins). More details can be
found in Tables S5−7. Therefore, we conclude that our
models’ affinity accuracy is significantly better than chance
correlations.
To further improve the accuracy of affinity prediction, we

have constructed ensembles of DeepAffinity+, DeepRelations,
and both, by using combinations of hyperparameters (such as
the dropout ratio, λbind, and the width of fully-connected
layers). More details can be found in the Supporting
Information, Section 2.5. Notably, the DeepAffinity+ ensemble

decreased affinity RMSE from 1.49 to 1.29, increased Pearson’s
r from 0.68 to 0.77, and increased predictive R2 from 0.45 to
0.59 for the test set. It similarly improved the accuracy of
affinity prediction, albeit to a lesser extent, for other sets
involving new molecules. More results are reported in Table
S8.

Better Interpretability Helps Better Accuracy and
Generalizability of Affinity Prediction. To examine
whether the more interpretable affinity predictors are also
more accurate in affinity prediction, we compare our two final
models HRNN−GCN_cstr_sup (DeepAffinity+ hereinafter)
and DeepRelations_cstr_sup (DeepRelations hereinafter) to
the competing interpretable affinity predictor Gao et al. Re-
examining earlier results (Figure 5 and Table S4) shows that
DeepAffinity+ and DeepRelations with much better interpret-
ability (AUPRC increase between 8.6 and 59-fold) than Gao et
al. are also more accurate in affinity prediction (RMSE drop
between 0.15 and 0.42 and Pearson’s r increase around 0.25)
over all sets considered. Even when we compare DeepAffiity+
and DeepRelations to their attention-unsupervised counter-
parts (HRNN−GCN_cstr and DeepRelations_cstr), we find
that better interpretability (contact prediction) leads to better
accuracy (lower RMSE and higher Pearson’s r for affinity
prediction) in 6 of 8 cases where the only exceptions occurred
when AUPRC values were low.

Figure 6. Comparing DeepAffinity+, DeepRelations, and Gao’s method in the generalizability of affinity prediction (RMSE and Pearson’s r) and
contact prediction (AUPRC and AUROC) to molecules unlike training data. A horizontal dashed line indicates the performance of a random
predictor.
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Here, we further compare DeepAffinity+ and DeepRelations
to Gao et al. in affinity and contact prediction over multiple
difficulty ranges (measured by protein global sequence
identity, protein local binding k-mer sequence identity, or
compound Tanimoto scores) of the new-compound, new-
protein, and both-new sets. The results are reported in Figure 6
as well as Figures S2−7 and Table S9. We find that the same
conclusion (better interpretability leads to better accuracy)
also applies, where model generalizability is needed the most:
pairs involving very dissimilar proteins (global or local
sequence identity below 30%) or/and compounds (Tanimoto
scores below 0.5) compared to training molecules. Impor-
tantly, in those cases demanding generalizability the most,
DeepAffinity+ and DeepRelations have much better accuracy
(affinity-prediction RMSE decrease between 0.14 and 0.40 and
Pearson’s r increase between 0.10 and 0.18) as well as
significantly improved interpretability (contact-prediction
AUPRC increase between 5.9 and 33.3-fold) compared to
Gao et al.
DeepAffinity+ and DeepRelations also showed competitive

generalizability in both affinity and contact prediction. From
the most similar proteins (sequence identity above 60%) to the
least (sequence identity below 30%), affinity-prediction RMSE

values of DeepAffinity+ (DeepRelations) only increased 0.13
(0.08) for the new-compound set and increased 0.00 (0.16) for
the most challenging both-new set. From the most similar
compounds (Tanimoto scores above 0.8) to the least
(Tanimoto scores below 0.5), affinity-prediction RMSE values
of DeepAffinity+ (DeepRelations) only increased 0.14 (0.08)
for the new-compound set and increased 0.43 (0.48) for the
most challenging both-new set. Similar conclusions can be
made about their generalizability in contact prediction.

Case Studies. Now that we have established and explained
how DeepAffinity+ and DeepRelations significantly improve
the interpretability of compound−protein affinity prediction,
we went on to delve into their affinity and contact predictions
in comparison to Gao et al. using a series of cases studies of
increasing difficulty. Summary performances of the five cases
are reported in Table 3. DeepAffinity+ and DeepRelations had
better affinity and contact prediction in all cases compared to
the competing method whose top-10 predicted contacts failed
to produce any native contacts. In order to understand model
behaviors, our analysis next would focus on the patterns of top-
10 contacts predicted by DeepAffinity+ and DeepRelations
compared to Gao et al.

Table 3. Performance Summary of Three Interpretable Methods for Five Case Studies

DeepAffinity+ DeepRelations Gao et al.

affinity contact contact
top-10
contact affinity contact contact

top-10
contact affinity contact contact

top-10
contact

protein ligand error AUROC AUPRC precision error AUROC AUPRC precision error AUROC AUPRC precision

Two Compounds Bind to the Same Pocket of a New, Nonhomologous Protein (Different Affinity-Prediction Quality)
CA2 AL1 1.89 0.658 0.284 0.5 2.70 0.828 0.075 0.6 3.28 0.500 0.006 0.0

IT2 2.92 0.601 0.034 0.3 3.03 0.780 0.309 0.5 3.09 0.630 0.009 0.0
Two New Compounds Bind to Distinct Pockets of a Protein

PYGM CPB 0.10 0.552 0.006 0.1 0.39 0.513 0.005 0.0 0.61 0.522 0.001 0.0
T68 0.68 0.944 0.675 1.0 0.66 0.908 0.610 1.0 1.80 0.635 0.006 0.0

A New Compound Very Dissimilar to Training Compounds Binds to a New Protein Nonhomologous to Training Proteins
LCK LHL 2.12 0.500 0.053 0.4 1.30 0.702 0.053 0.4 2.89 0.540 0.005 0.0

Figure 7. Structural visualization of top-10 intermolecular contacts predicted by DeepAffinity+ (left), DeepRelations (middle), and Gao et al.
(right) for two test cases. Here, two compounds [AL1: top panels (A−C) and IT2: bottom panels (D−F); stick representations] bind to the same
pocket of the human carbonic anhydrase II that is new and nonhomologous to training data (wheat cartoons where binding residues are highlighted
in red). Shown in dashed lines are top-10 predicted contacts (interactions between protein residues and compound atoms). The dashed lines in red
and pale cyan highlight correct and incorrect predictions, respectively, according to native, direct contacts retrieved by LigPlot.
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Two Compounds Bind to the Same Pocket of a New
Protein Nonhomologous to Training Examples. Our first
case study involves a protein from the new-protein set, human
carbonic anhydrase II (CA2, UniProt ID: P00918), that has no
close homologue in the training set. Specifically, the closest
training protein would be human carbonic anhydrase IV (CA4,
UniProt ID: P22748) with a sequence identity below the 30%
threshold (29%). We choose two compounds (HET IDs: AL1
and IT2) that bind to the same pocket of CA2 with distinct
sizes (AL1 is larger by 14 heavy atoms) and affinity-prediction
quality (see Table 3).
We compare in Figure 7 the top-10 contacts between

protein residues and compound atoms that are predicted by
three methods. Top-predicted contacts by Gao et al. were
scattered across protein residues that are far from the binding
site, failing to match any native contact. In contrast, those top-
10 contacts predicted by DeepAffinity+ and DeepRelations
were more focused in or near the binding site, containing 3−6
native contacts that are direct, first-shell contacts. Between our
two models, DeepRelations showed better contact prediction
in these two cases: its top-10 predictions were more focused in
the binding site and contained 60 and 50% native contacts for
compounds AL1 and IT2, respectively. The more focused
contact prediction of our methods could be attributed to
structure-aware regularization using protein residue−residue
contact maps. DeepRelations had better focus than Deep-
Affinity+, possibly because of the multistage focusing strategy.
Even the incorrect predictions of DeepRelations can

correspond to residue-atom pairs that are close (but above
the 4 Å-cutoff used in the first-shell contact definition). For
instance, in the case of compound AL1, the four incorrect
predictions all corresponded to correct binding residues that
were paired to wrong compound atoms. In the case of
compound IT2, the five incorrect predictions included two that
paired correct binding-site residues to wrong atoms and three
that included (the very next) sequence neighbors of correct
binding-site residues.

These two cases also provided examples to interpret the
values of AURPC and top-10 contact precision. A seemingly
“low” AUPRC value of 0.075 can lead to 5 of 10 top
predictions being correct. The reason is that native contacts
represent a rare minority (0.004) among all possible residue-
atom pairs, and an AUPRC value of 0.075 actually represents
over 18-fold increase compared to the baseline AUPRC by
chance. Meanwhile, a top-10 contact precision of 0.4 predicted
by our structure-free methods is close to the average level
(0.44) achieved by a popular structure-based protein−ligand
docking program, AutoDock Vina,68 under default settings.69

Two New Compounds Bind to Distinct Pockets of a
Protein. Our next case study involves two compound−protein
pairs from the new-compound set, where two compounds
(HET ID: CPB and T68) not present in the training set bind
to two distinct pockets of the rabbit glycogen phosphorylase
(PYGM, UniProt ID: P00489). The protein is present in the
training set with 38 ligands (all but one are occupying the same
pocket as T68). In addition, the compound CPB does not
resemble its closest training example interacting with the same
protein (HET ID: 62N) when 62N rather occupies the same
pocket as T68. Therefore, contact prediction for the CPB case
would be much more challenging. Indeed, our results
supported the conjecture (Table 3). In their top-10 contact
predictions, our both models achieved 100% native contacts
for T68 but just 10% (DeepAffinity+) or even 0% (Deep-
Relations) for CPB. They had good estimation of binding
affinity for both cases.
A closer look into their contact predictions reveal more

insights. As seen in Figure 8, consistent with our earlier
observations, Gao et al.’s contact predictions are dispersed
across the whole protein, whereas ours are focused. In the case
of T68, our predictions are focused in the correct binding site
(and even the correct binding residues). However, in the case
of CPB, our predictions are actually still focused in the same
site as they did for T68, only being wrong this time.
Interestingly many falsely-predicted contacts for CPB were

Figure 8. Structural visualization of top-10 intermolecular contacts predicted by DeepAffinity+ (left), DeepRelations (middle) and Gao et al.
(right) for another two test cases. Here, two compounds that are new to training data [CPB: top panels (A−C) and T68: bottom panels (D−F);
stick representations] bind to distinct pockets of the human glycogen phosphorylase (wheat cartoons where binding residues are highlighted in
red). Shown in dashed lines are top-10 predicted contacts (interactions between protein residues and compound atoms), including correct (red)
and incorrect (pale cyan) ones according to LigPlot’s definition of native, direct contacts. The black hollow arrow in panel A points to the only
correct prediction by DeepAffinity+ and the black circle there indicates the binding site for T68. Interestingly, many incorrect predictions by
DeepAffinity+ and DeepRelations for CPB were with binding residues to T68.
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not only in the other binding site (circled area) but also with
the T68 binding residues. This model behavior is under-
standable when almost all training examples, including a very
similar compound, are indicating a different site. It also reveals
a situation that would challenge more generalizability and
demand more explainability from machine learning methods.
Intriguingly, DeepAffinity+ still managed to make one correct
contact prediction (pointed at by a red arrow).
Pair of New Protein and New Compound Very Dissimilar

to Training Examples. Our last case study is even more
challenging in that both the protein (the human tyrosine-
protein kinase Lck, LCK in short, UniProt ID: P06239) and
the compound (HET ID: LHL) are new and they do not even
resemble training examples. Specifically, the most similar
training protein would be the human tyrosine-protein kinase
BTK, BTK in short, UniProt ID: Q06239) with sequence
identity at 28%. The most similar training compound would be
K60 (HET ID) with the Tanimoto score at 0.12. Indeed, our
results (Table 3) showed that contact AUPRC is just around
0.053. Given the explanation to interpret AUPRC and top-10
contact precision in the first case study, one would notice that
the AUPRC value is 14-fold of the baseline (0.004) and 40% of
our top-10 contact predictions were true positives (a level close
to average protein−ligand docking performances).
As seen in Figure 9, again, our contact predictions are more

focused in or near the binding site compared to the competing
methods, which can be attributed to our structure-aware
attention regularization (and supervision). A closer look into
the false positives reveal more into our methods. Take

DeepAffinity+ as an example. Among the six false-positive
contact predictions, four were pairing correct binding residues
with wrong compound atoms, one was paired to a protein
residue that is a close sequence neighbor (two residues away)
of a correct binding residue, and one was paired to a protein
residue that is not present in the cocrystal structure but
predicted to be spatially close to a correct binding residue. In
other words, the origins of false positives in contact prediction
include (but are not limited to) pairing with other (nearby)
compound atoms and pairing with sequential or predicted
spatial neighbors of protein binding-residues. When the
criterion of native contacts is relaxed from direct, first-shell
contacts within 4 Å to more contacts within longer distance
cutoffs, the precision level would further increase, which is
detailed next.

Global Patterns of Top-10 Predicted Contacts. We
extended the analysis of the patterns of predicted contacts to
all test cases. Considering that the native contacts are defined
strictly as direct, first-shell contacts within 4 Å, we assess 4−10
Å distance distributions of residue-atom pairs predicted by
DeepAffinity+ (HRNN−GCN_cstr_sup) and DeepRelations
in comparison with Gao et al. As seen in the global analysis in
Figure 10 and Table S10, DeepAffinity+ and DeepRelations
significantly outperform the competing method in all distance
ranges over all test sets. Specifically, among their top-10
contact predictions, around 40% for the default test and new-
compound sets were first-shell contacts within 4 Å and the
ratios increased to about 70% when considering contacts
within 10 Å. For the more challenging cases of new-protein

Figure 9. Structural visualization of top-10 intermolecular contacts predicted by (A) DeepAffinity+, (B) DeepRelations, and (C) Gao et al. for a
difficult test case. Here, both the compound (LHL, in sticks) and the protein (tyrosine-protein kinase Lck, in wheat cartoons with binding residues
highlighted in red) are new and very dissimilar to training data. The red and pale cyan dashed lines represent correct and incorrect top-10 predicted
contacts, respectively. DeepAffinity+ and DeepRelations still managed to achieve the precision of 40% in their top-10 contact predictions.

Figure 10. Distributions of top-10 contacts, predicted by DeepAffinity+, DeepRelations, and Gao’s method, in various distance ranges.
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and both-new sets, the ratios of predicted contacts within 4 Å
and 10 Å were around 20 and 50%, respectively. These results
significantly outperformed the competing method whose ratios
were merely 4−6% over all sets. Between our two models,
DeepRelations behaved similarly as DeepAffinity+ and had
more top-10 predictions falling in the long range of 8−10 Å.
Predicted Contacts Assist and Improve Protein−Ligand

Docking. From the case studies and the global analysis above,
we have concluded that top-10 contact predictions by our
methods are enriched with native contacts within 4 Å (20−
40%) as well as dominated by longer-range “contacts” within
10 Å (50−70%). We therefore test how much the top-10
contact predictions, including false positives, could make a
positive impact in the drug discovery process. Picking a typical
taskprotein−ligand docking and a popular toolAutoDock
Vina,68 we assess how our contact predictions could assist the
task by reducing the search space.
Specifically, we chose the five case studies (except the case

where DeepRelations made no correct contact prediction) and
performed unbound protein−ligand docking (all protein
structures are unbound except PYGM whose structure is
cocrystallized with its cognate phosphate AMP). Each pair
(rigid protein and flexible ligand) is docked twice: one with the
default procedure to define a search “box” covering the entire
protein and the other using a restricted box that barely covers
all residues in the top-10 DeepRelations contact predictions
(including false positives) and then has 20 Å-padding. All the
other docking parameters in AutoDock Vina are default,
including a total of nine protein−ligand complex models
ordered and reported at the end. Docking performances were
evaluated by ligand rmsd of the top few models using the
software DOCKRMSD.70

Results in Table 4 show that AutoDock Vina assisted by
DeepRelations top-10 contact predictions had much improved

docking performance compared to otherwise. When the top-10
contact precision was 40, 50, 50, and 100%, respectively, the
best ligand rmsd (among all nine complex models) reduced
from 2.77, 4.01, 16.62, and 18.75 Å down to 2.45, 1.59, 4.73,
and 1.88 Å, respectively. The quality of the top-1 models also
drastically improved in three of four cases. Although the way to
incorporate predicted contacts into protein−ligand docking
remains to be optimized, these results have proved that the
precision and spatial pattern of our structure-free contact
prediction is at a level useful to assist and improve structure-
based protein−ligand docking for pose prediction.

Affinity Prediction for Target Prioritization. Using the two
aforementioned CA2 (human carbonic anhydrase II) com-
pounds (AL1 and IT2) in the first case study, we also explore
the utility of our models for target prioritization for given
compounds. As no affinity data were observed in our data set
for AL1 or IT2 with proteins other than CA2, we approximate
the set of “off-targets” with all the 1286 non-CA2 proteins in
our data set. For either compound AL1 or IT2, we assessed the
distribution of its off-target affinities predicted by DeepAffinity
+ and compared the distribution (see Figure S8) to its
predicted on-target (CA2) affinity. As shown in Figure S8,
83.1% (100%) and 88.2% (99.7%) of predicted off-target
affinities are weaker than the predicted (actual) affinity to the
target CA2, for compounds AL1 and IT2, respectively.
Removing CA2 homologues (4 in total) from the non-CA2
proteins led to nearly the same results (data not shown). We
note that this case is particularly challenging because no
homologues of the target CA2 are in the training set, and the
errors of target affinity prediction are higher than average.
More systematic and dedicated studies are needed for this
topic in future.

More Utilities from Explainable Affinity Prediction. In
the last part of the results, we explore additional utilities of our

Table 4. Ligand Docking Performances for Case Studiesa

rmsd (Å)vina rmsd (Å)contact-assisted vina

protein (UniProt, PDB) ligand complex PDB top-10 contact precision (%) top 1 top 3 top 5 best top 1 top 3 top 5 best

LCK (P06239, 3LCK) LHL 3KMM 40 3.02 3.02 2.77 2.77 4.65 2.98 2.45 2.45
CA2 (P00918, 2CBA) AL1 1BNN 60 18.55 16.62 16.62 16.62 4.78 4.78 4.73 4.73
CA2 (P00918, 2CBA) IT2 3P5A 50 15.98 15.98 4.01 4.01 3.65 3.65 3.65 1.59
PYGM (P00489, 8GPB) T68 3ZCU 100 36.40 18.75 18.75 18.75 9.08 2.23 2.23 1.88

aThe default Autodock Vina is compared with that assisted by DeepRelations top-10 contact predictions.

Figure 11. Comparing three interpretable methods (DeepAffinity+, DeepRelations, and Gao et al.) in binding-site prediction.
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methods toward facilitating drug discovery: binding-site
prediction for proteins and structure−activity relationship
(SAR) for compounds. Our methods do not demand protein
structures or protein−ligand docking to make these
predictions. Rather, they simply aggregate predicted attentions
(or predicted weights of residue-atom contacts) or/and
decompose predicted affinities. Although not directly designed
or optimized for these tasks, our explainable models have
shown promising potentials in the tasks toward rational drug
discovery.
Binding Site Prediction. The first extended utility we aim at

is structure-free and ligand-specific binding-site prediction for
proteins. To this end, we feed an arbitrary pair of protein and
compound to the trained DeepAffinity+ and DeepRelations
models and predict the weights of residue-atom pairs ( ij>
where i and j are the indices of a protein residue and a
compound atom, respectively). We then calculate the max-
marginal attention (max j ij> ) for each residue i as a weight for
ranking. The performances of the residue weights toward
ligand-specific binding site prediction are summarized in
Figure 11 and Table S11. Here, binding-site residues of a
protein are strictly defined as those making direct, first-shell
contacts with a paired compound. Without the help of protein
structures, predicted residue-contact maps, or protein−ligand
docking, our methods on average achieved AUPRC (AUROC)
of around 0.43 (0.77) for the default test and new-compound
sets as well as AUPRC (AUROC) of around 0.18 (0.69) for
the more challenging new-protein and both-new sets. In
contrast, the competing method had AUPRC and AUROC
close to the random performances of 0.004 and 0.50,
respectively.
Between DeepAffinity+ and DeepRelations, we noticed that

the latter had better performance in predicting binding sites for
new proteins. Specifically, the AUPRC (AUROC) increased
from 0.17 (0.65) to 0.21 (0.73) for the new-protein set and did
from 0.16 (0.65) to 0.20 (0.72) for the both-new set.
Structure Activity Relationship (SAR). The second ex-

tended utility we aim at is SAR for compounds. To test the
utility, we choose two subchallenges (SC3 and SC4) from
Grand Challenge 3 of D3R:71 Janus kinase 2 (JAK2) and
Angiopoietin-1 receptor (TIE2) that were excluded in our
training set (thus new proteins). The most similar proteins to
JAK2 and TIE2 in our training set are calcium/calmodulin-
dependent protein kinase kinase 2 (CAMKK2, sequence
identity 48%) and cyclin-dependent kinase 2 (CDK2, sequence
identity 39%), respectively. The two data sets include 17 and
18 congeneric compounds, respectively, with Kd values

measured. They were meant to “detect large changes in
affinity because of small changes in chemical structure”
(https://drugdesigndata.org/about/grand-challenge-3). In
other words, the data sets focus on the sensitivity of methods
targeting SAR. Chemical graphs, actual pKd, and Deep-
Relations-predicted pKd of the JAK2 and TIE2 compounds
are in Figures S9 and S10, respectively.
Here, we compare our DeepAffinity+ and DeepRelations not

only to structure-free Gao et al. but also to 18 structure-based
methods from the community that participated in the
subchallenges. The assessment metrics for affinity ranking are
Kendall’s τ and Spearman’s ρ as in D3R. A summary of the
performances is in Table 5. In the case of JAK2, the 18
structure-based methods had τ ranging from 0.71 to −0.56 and
ρ ranging from 0.86 to −0.70, including eight methods with
negative τ and ρ (see details in Table S13). As to the structure-
free affinity predictors, Gao et al. had τ = −0.42 and ρ = −0.54,
whereas our DeepAffinity+ had slightly better τ = −0.36 and ρ
= −0.47, both outperforming just one structure-based method.
However, our DeepRelations achieved τ = 0.15 and ρ = 0.21,
outperforming 12 (two-thirds) of the structure-based methods.
In the case of TIE2, the 18 structure-based methods had τ
ranging from 0.57 to −0.57 and ρ ranging from 0.76 to −0.69,
including eight methods with negative τ and ρ (see details in
Table S14). Interestingly, the best structure-based method for
JAK2 was only placed 12th among 18 with slightly negative τ
and ρ for TIE2. In contrast, all the structure-free affinity
predictors performed well for TIE2: Gao et al., DeepAffinity+,
and DeepRelations had τ (ρ) reaching 0.60 (0.74), 0.65 (0.79),
and 0.61 (0.72), respectively, and they all outperformed the
best structure-based method. The scatter plots of actual versus
our predicted pKd are in Figure S11. We note that all 18
structure-based methods used crystal structures of proteins and
often-expensive ligand docking, whereas structure-free meth-
ods did not. Our methods only cost a fraction of a second
when making quality predictions for tens to hundreds of
compound−protein pairs, thus a useful complement to
structure/docking-based methods toward virtual screening.
Beyond affinity scoring, we further examine DeepRelations

in extracting SAR knowledge toward drug discovery. A central
question in lead optimization is where and how to modify a
lead compound to improve its property (affinity here). As a
stepping stone, we construct predictors from our Deep-
Relations in order to anticipate the affinity changes when a
functional-group substituent is introduced to a lead. Specifi-
cally, we regard our predicted pKd (pK̂d) as estimated binding
energy for a compound−protein pair and our predicted joint-
attention ij> as the fraction of contribution between protein

Table 5. Summary of Scoring Performances Among Three Structure-free Methods (including Our DeepAffinity+ and
DeepRelations and Eighteen Structure-based Methods

JAK2 (subchallenge 3) TIE2 (subchallenge 4)

rankinga method(s) Τ ρ ranking method(s) τ ρ

1−5 5 structure-based methods in D3R 0.16−0.71 0.25−0.86 1 structure-free DeepAffinity+ (ours) 0.65 0.79
6 structure-free DeepRelations (ours) 0.15 0.21 2 structure-free DeepRelations (ours) 0.61 0.72
6 1 structure-based method in D3R 0.13 0.32 2 structure-free Gao et al. 0.60 0.74
8−18 11 structure-based methods in D3R −0.31−0.05 −0.50−0.05 2 2 structure-based methods in D3R 0.57 0.74−0.76
19 structure-free DeepAffinity+ −0.36 −0.47 6−21 16 structure-based methods in D3R −0.57−0.50 −0.69−0.67
20 structure-free Gao et al. −0.42 −0.54
21 1 structure-based method in D3R −0.56 −0.70

aThe 18 structure-based methods participated in the D3R subchallenges and were assessed officially. The three structure-free methods were
assessed post hoc.
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residue i and compound atom j. Borrowing the idea of energy
decomposition, we calculate the binding-energy contribution
of a functional group R as the product of the predicted
binding-energy and the sum-marginals of joint attention:

̂ = ̂ · ∑ ∑∈( )K Kp p j R i ijd
R

d > . In this way, the difference of this

R-group contribution, ΔpK̂d
R, can be a predictor of affinity

change when introducing a substituent R-group to a
compound.
To test our predictor for lead optimization, we use the JAK2

data set involving 17 compounds that share a common scaffold
and have distinct combinations of two functional groups (3
choices for R1 and 10 for R2; see Figure 12A and S9). We
construct 121 pairs of compounds between a weaker binder
(origin) and a stronger binder (end). 7, 36, and 78 of the
structural changes from the origin to the end compound
involve R1, R2, and both-R substitutions, respectively. We
compare three methods in predicting these 121 affinity
changes with assessment metrics including Pearson’s r (main
assessment), Spearman’s ρ, and Kendall’s τ (Figure 12B−D). A
straightforward predictor using DeepRelations’ ΔpKd without
decomposition had r = 0.218, whereas the decomposed
affinity-change predictor ΔpKd

R improved r to 0.361. If one
has access to the protein in complex with a previously
discovered compound and can have an accurate estimate of the
binding residues, the summation of protein residue i in pK̂d

R

can be just over binding residues rather than all residues. In
that case, the new ΔpKd

R can slightly improve r further to
0.363. Our decomposed affinity-change predictor ΔpKd

R

similarly improved ρ and τ. Compared to the 18 structure-
based competing methods that participated in the D3R JAK2
subchallenge, our structure-free predictor with decomposition
outperformed 15 (five-sixths) of them in r, ρ, and τ, as detailed
in Tables S15 and S16.
When we split the analysis into three series involving R1, R2,

and both-R separately, we observed that ΔpKd
R improved r

from 0.267 to 0.753, −0.081 to 0.137, and 0.244 to 0.377,
respectively (Figure S13). Using the binding-residue informa-
tion could slightly improve the correlation further. Interest-
ingly, when both R-groups are substituted (78 cases), Δ Kp d

R1

had a better Pearson’s correlation (0.405) with the actual
affinity changes than Δ Kp d

R 2 (−0.121) and even Δ +Kp d
R R1 2

(0.375) did (Figure S14), potentially suggesting that the R1
group could be explored first for affinity optimization. Once a
functional group R is chosen, affinity changes upon any
proposed substitution can be predicted using our group-
decomposed ΔpKd

R.

■ CONCLUSIONS
Toward accurate and interpretable machine learning for
structure-free prediction of compound−protein interactions,
we have curated compound−protein interaction data set
annotated with both affinities and intermolecular atom-
contacts, assessed the adequacy of current attention-based
deep learning models for both accuracy and interpretability,
and developed novel machine-learning models (in particular,
DeepAffinity+ and DeepRelations) to remarkably enhance

Figure 12. Actual (x-axis) vs DeepRelations-predicted (y-axis) affinity changes when introducing functional-group substitutions [R1, R2, or both in
(A)] to lead compounds for JAK2. The three predictors are as follows: (B) predicted affinity change ΔpK̂d; (C) group-decomposed affinity change
ΔpK̂d

R using all protein residues and the substituent group R alone; and (D) group-decomposed affinity change ΔpK̂d
R using estimated protein

binding residues and the substituent group R alone.
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interpretability without sacrificing accuracy. We have also
shown that our methods’ accuracy for affinity prediction is
comparable or better than competing (noninterpretable)
methods using established benchmark data sets. This is the
first study with dedicated model development and systematic
model assessment for interpretability in affinity prediction.
Our study has found that commonly-used attention

mechanisms alone, although better than chance in most
cases, are not satisfying in interpretability. The most attended
protein−ligand contacts in affinity prediction do not reveal
native contacts underlying affinities at a useful level. The
conclusion maintains regardless of the representation of
molecules (sequences/strings or graphs) or the architecture
of neural networks. We have tackled the challenge with three
innovative, methodological advances. First, we introduce
structure-aware constraints to regularize attentions (or guide
their sparsity patterns), using sequence-predicted structural
contexts such as protein surfaces and protein residue−residue
contact maps. Second, we exploit available native contacts to
supervise novel joint attentions, that is, to teach neural network
how to weigh residue-atom pairs when making affinity
predictions. Lastly, we build intrinsically explainable model
architecture where various atomic relations, reflecting physics
laws, are explicitly modeled and aggregated for affinity
prediction. Joint attentions are embedded over residue-atom
pairs for their relations. A multistage hierarchy, trained end-to-
end, progressively focuses attentions on protein surfaces,
binding k-mers and residues, and residue-atom contact pairs.
The first two advances are introduced in both DeepAffinity+
and DeepRelations; and the last is additionally introduced in
DeepRelations. Their best versions involve hierarchical
recurrent neural networks (HRNN) to embed protein
sequences and graph convolutional networks (GCN) to
embed compound graphs.
Empirical results demonstrate the superiority of Deep-

Affinity+ and DeepRelations in interpretable and accurate
prediction of compound−protein interactions. Their affinity
prediction shows generalizability to compounds or/and
proteins that are new or even dissimilar to training data.
Compared to a competing interpretable method, they boosted
the AUPRC for contact prediction (a measure of interpret-
ability) by around 33-, 10-, 35-, and 9-fold for the default test,
new-protein, new-compound, and both-new sets, respectively.
Importantly, improved model interpretability has shown to
contribute to improve model accuracy and generalizability.
Case studies suggest that DeepAffinity+ and DeepRelations

predict not only more correct but also more well-patterned
contacts that are focused in or near binding sites, thanks to the
structure-aware regularization and supervision of joint
attentions. A global analysis indicates that around 40%
(20%) of our top-10 predicted contacts are native contacts
that are direct and first-shell for the test and the new-
compound set (the new-protein and both-new set). Many
“incorrect” predictions because of the strict definition of native
contacts were within reasonable rangesin fact, around 70%
(50%) of the top-10 predicted contacts correspond to residue-
atom pairs within 10 Å when the set does not (does) involve a
new protein. With the precision level and the focused pattern,
our top-10 contact predictions (including false positives) have
demonstrated their value in assisting and improving protein−
ligand docking, while the protocol to incorporate the
predictions into docking remains to be optimized.

By aggregating joint attention and decomposing predicted
affinities, we also demonstrate additional utilities of our
explainable affinity and contact predictor, toward drug-
discovery tasks such as binding site prediction, SAR (scoring),
and SAR (lead optimization). Although not directly designed
nor optimized for these tasks, our methods and analyses have
shown great potentials in these tasks toward facilitating drug
discovery.
An additional benefit of our structure-free methods is their

broad applicability toward the vast chemical and proteomic
spaces. They do not rely on 3D structures of compound−
protein complexes or even proteins alone when such structures
are often unavailable. The only inputs needed are protein
sequences and compound graphs. Meanwhile, they adopt the
latest technology to predict structural contexts from protein
sequences (such as surfaces, secondary structures, and
residue−residue contact maps). They introduce structure-
aware regularization to incorporate the predicted structural
contexts into affinity and contact predictions. When structure
data are available, DeepRelations can readily integrate such
data by using actual rather than predicted structural contexts.
We tested the use of actual versus predicted protein residue−
residue contact maps and did not observe significant
performance differences in our cases (Table S12).
Our study demonstrates that it is much more effective to

directly teach explainability to machine learning models (such
as our structure-aware regularization and supervision of joint
attentions) and build explainability into model architectures
(such as our explicit modeling of atomic relations in
DeepRelations) than to demand explainability from general-
purpose models (such as seeking contact-interpretation from
unsupervised, generic attention mechanisms). In other words,
designing intrinsically interpretable machine learning models
incorporated with domain knowledge, although more difficult,
can be much more desired than pursuing interpretability in a
post hoc manner.
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