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Opportunistic UAV Navigation With Carrier Phase
Measurements From Asynchronous Cellular Signals

This article presents a framework for opportunistic unmanned
aerial vehicle (UAV) navigation by exploiting carrier phase measure-
ments from ambient cellular signals of opportunity. In the proposed
framework, the cellular base transceiver stations (BTSs) are not
assumed to be synchronous. A complete framework that employs
an extended Kalman filter (EKF) is presented, including filter ini-
tialization and process and measurement noise covariance selection.
The EKF estimates the position and velocity of the UAV, as well as
the differences between the UAV-mounted receiver and each of the
BTSs’ clock bias and clock drift. The observability of the estimation
framework is analyzed, and the boundedness of the EKF’s errors is
studied. It is shown that the system is observable given a class of vehicle
and receiver clock dynamics. A lower bound for the EKF estimation
error covariance is derived, and it is shown that the covariance remains
bounded.MonteCarlo simulations are conducted to study the effect of
the number ofBTSs, the initial UAV speed, and the receiver’s oscillator
quality, on the estimation performance. Two sets of experimental
results are presented demonstrating UAVs navigating exclusively with
cellular carrier phase measurements via the developed framework,
achieving a total position root-mean-squared error of 2.94 and 5.99 m
for UAV trajectories of 2.6 and 2.9 km, respectively.

I. INTRODUCTION

Current unmanned aerial vehicle (UAV) navigation sys-
tems will not meet the stringent requirements on accuracy,
resiliency, and robustness due to their heavy reliance on
jammable and spoofable global navigation satellite sys-
tem (GNSS) signals [1], [2]. In addition to jamming and
spoofing, unintentional interference or even the possible
yet unlikely event of on-board GNSS receiver failure con-
stitute major threats on safe and reliable UAV navigation.
In such cases where GNSS signals are unusable, cellular
signals of opportunity (SOPs) could be used for navigation
either in a standalone fashion [3], [4] or an integrated
fashion, aiding the UAV’s inertial navigation system [5],

Manuscript received July 26, 2018; revisedMarch 15, 2019, June 11, 2019,
and August 8, 2019; released for publication October 11, 2019. Date of
publication October 25, 2019; date of current version August 7, 2020.

DOI. No. 10.1109/TAES.2019.2948452

Refereeing of this contribution was handled by M. Joerger.

This work was supported in part by the Office of Naval Research under
Grant N00014-16-1-2305 and in part by the National Science Foundation
under Grant 1929965.

Authors’ addresses: J. Khalife is with the Department of Electrical En-
gineering and Computer Science, University of California, Irvine, CA
92617 USA, E-mail: (khalifej@uci.edu); Z. M. Kassas is with the De-
partment of Mechanical and Aerospace Engineering and the Department
of Electrical Engineering and Computer Science, University of Califor-
nia, Irvine, CA 92617 USA, E-mail: (zkassas@ieee.org). (Corresponding
author: Zaher M. Kassas.)

0018-9251 © 2019 IEEE

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 56, NO. 4 AUGUST 2020 3285

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 29,2020 at 04:23:18 UTC from IEEE Xplore.  Restrictions apply. 



[6]. Several receiver designs have been published recently,
producing time-of-arrival (TOA) and frequency-of-arrival
(FOA) measurements from cellular code-division multiple
access (CDMA) and long-term evolution (LTE) signals [7]–
[10]. Such measurements are typically used in navigation
systems. Cellular signals are attractive for navigation, since
they are abundant, received at a much higher power than
GNSS signals, possess a favorable horizontal geometry,
and are free to use. Moreover, cellular signals received by
UAVs do not suffer from severe multipath by virtue of the
favorable channel between base stations and UAVs [11].
In fact, a recent study of UAV connectivity to the cellu-
lar network demonstrated that the received cellular signal
power on low-altitude UAVs (30–120 m) is stronger than
the receiver power on ground-based receivers, despite the
downward-tilted cellular antennas [12]. The study attributes
these findings to the fact that “free space propagation con-
ditions at altitude more than make up for antenna gain
reductions.”

While TOA-based and FOA-based navigation ap-
proaches are well studied in the literature [13], [14], ap-
plying such approaches to cellular CDMA base transceiver
stations (BTSs) or LTE eNodeBs requires perfect synchro-
nization assumptions [15], [16]. However, cellular CDMA
and LTE networks are not perfectly synchronized, and their
protocols recommend synchronization of CDMABTSs and
LTE eNodeBs to within 3 µs from GPS time [17], [18].
This translates to ranging errors of about 900 m. Several
approaches in the literature have been proposed to account
for theBTSs’ or eNodeBs’ clock biases and drifts, including
using the round-trip time (RTT) instead of the TOA [19].
Although RTT-based methods could yield good results in
asynchronous systems, two-way communication between
the receiver and the BTSs or eNodeBs is needed. This limits
the availability of RTT measurements to only paying sub-
scribers to a particular cellular provider and compromises
the privacy of the user. Some of the proposed navigation
frameworks assume the BTSs’ or eNodeBs’ clock bias and
drift to be constant [3], [20]. However, the clock bias and
drift are dynamic and stochastic [21] and, hence, must be
continuously estimated.

To deal with this challenge, a framework employing
a monitor receiver was put forth by Carter et al. [22].
Moreover, a mapper/navigator framework was proposed
in [23], where the mapper, which was assumed to have
complete knowledge of its states (e.g., by having access
to GNSS signals), is estimating the clock states of BTSs
in its environment, and is sharing these estimates with a
navigating receiver that has no knowledge of its own states,
but is making pseudorange measurements on the same
BTSs in the environment. Themapper/navigator framework
could yield centimeter-accurate UAV navigation when car-
rier phase observables extracted from cellular signals are
exploited [24]. Having a mapper may be impractical in
some environments or in the absence of a communication
channel between the mapper and navigator. To alleviate
the need of a monitor or a mapper in the case of code

phase measurements from cellular signals, the navigator
could estimate its states simultaneously with the states
(position, clock bias, and clock drift) of the BTSs in the
environment, i.e., perform radio simultaneous localization
andmapping [5], [25], [26]. Alternatively, in the case where
the navigating UAV is making carrier phase measurements
from cellular signals, the relative frequency stability of
cellular CDMA BTSs or LTE eNodeBs, which approaches
that of an atomic standard, may be leveraged. It was shown
that sophisticated measurement models that capture this
stability may be employed to achieve centimeter-accurate
navigation solutions without a mapper [24]. However, this
method may fail if the frequency stability requirement is
not met.

This article considers UAV navigation with cellular
carrier phase measurements without any assumptions on
the synchronization between cellular BTSs or eNodeBs nor
on their relative frequency stability. This article makes the
following five contributions. First, a framework for UAV
navigation with carrier phase measurements from cellular
SOPs is presented, which employs an extended Kalman
filter (EKF). The precision of carrier phase measurements
is on the order of the carrier signal wavelength, making
such measurements attractive for UAV navigation. Second,
the EKF initialization is discussed. While the stability of
the Kalman filter (KF) has been well studied for linear
systems, stability of the EKF is carried out on a case-
by-case basis. To this end, the third contribution of this
article is a complete EKF estimation error and estima-
tion error covariance analysis, performed by studying the
observability of the system under consideration as well
as the EKF’s stochastic stability. The theoretical results
produced herein can be generalized to a broader class of
problems: EKF-based navigation using SOP carrier phase
and pseudorange measurements. It is shown that the system
is observable given a class of vehicle and receiver clock
dynamics, and that the EKF estimation error is statistically
bounded. Fourth, Monte Carlo (MC) simulations are con-
ducted to demonstrate the theoretical predictions about the
system and study the effect of the number of available BTSs
and/or eNodeBs available, the initial UAV speed, and the
UAV-mounted receiver’s clock quality on the estimation
performance. Fifth, two sets of experimental results are pre-
sented demonstrating UAVs navigating with the proposed
framework achieving a root-mean-squared error (RMSE)
of 2.94 and 5.99 m for UAV trajectories of 2.6 and 2.9 km,
respectively.

The remainder of this article is organized as follows.
Section II describes the cellular SOP and receiver dy-
namics models and the cellular carrier phase observable.
Section III describes the EKF-based navigation framework.
Section IV analyzes the observability and the EKF error
boundedness of the proposed framework. Section V char-
acterizes the performance of the proposed framework via
MC simulations. Section VI provides experimental results
showing meter-level UAV navigation accuracy. Section VII
concludes this article.
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II. MODEL DESCRIPTION

This section presents the dynamics model of the UAV-
mounted receiver and cellular SOP, as well as the cellular
carrier phase measurement model. Note that an altimeter
could be used to estimate the UAV’s altitude. Therefore,
only theUAV’s two-dimensional (2-D) position is estimated
in this article. The subsequent analysis is readily extendable
to three-dimensional (3-D); however, the vertical position
estimate will suffer from large uncertainty due to the poor
vertical diversity of cellular towers.

A. Cellular SOP Dynamics Model

The cellular SOPs emanate from spatially stationary
terrestrial BTSs or eNodeBs, and their states will consist
of their known 2-D positions and unknown clock error
states, namely the clock bias and clock drift. For sim-
plicity of notation, let the term BTS denote any type of
cellular SOP transmitter (CDMA BTS, LTE eNodeB, etc.),
unless explicitly stated otherwise. The position vector of
the nth BTS is given by rsn = [xsn, ysn ]

T. The state of the
nth BTS will only consist of its clock error state and is
given by xclk,sn (k) ! [cδtsn (k), cδ̇tsn (k)]

T, where δtsn (k) and
δ̇tsn (k) are the clock bias and clock drift at time step k,
respectively, and c is the speed of light. The nth BTS’s
dynamics can be described by the discretized state-space
model

xclk,sn (k + 1) = Fclk xclk,sn (k)+ wclk,sn (k), k = 0, 1, . . .

where n = 1, . . . ,N , with N being the total number of
BTSs, and wclk,sn (k) is a zero-mean white noise sequence
with covariance Qclk,sn , with

Fclk=
[
1 T
0 1

]
, Qclk,sn =c2

[
Sw̃δts ,n

T + Sw̃δ̇ts ,n

T 3

3 Sw̃δ̇ts ,n

T 2

2

Sw̃δ̇ts ,n

T 2

2 Sw̃δ̇ts ,n
T

]

where T is the sampling time, and Sw̃δts ,n
and Sw̃δ̇ts ,n

are the
power spectra of the continuous-time process noise driving
the clock bias and clock drift, respectively. These spectra
can be related to the power law coefficients {hα}2α=−2,
which have been shown through laboratory experiments
to be adequate to characterize the power spectral density
of the fractional frequency deviation y(t ) of an oscillator
from nominal frequency, which takes the form Sy( f ) =∑2

α=−2 hα f α [27]. It is common to approximate the clock
error dynamics by considering only the frequency random
walk coefficient h−2 and the white frequency coefficient
h0, which leads to Sw̃δts ,n

≈ h0,sn
2 and Sw̃δ̇ts ,n

≈ 2π2h−2,sn
[28].

B. UAV-Mounted Receiver Dynamics Model

The UAV-mounted receiver state consists of its un-
known position rr (k) ! [xr (k), yr (k)]T, velocity ṙr (k), and
clock error states xclk,r (k) ! [cδtr (k), cδ̇tr (k)]T. Hence,
the state vector of the receiver is given by xr (k) =
[rTr (k), ṙ

T
r (k), x

T
clk,r (k)]

T. The receiver’s position rr (k) and
velocity ṙr (k) will be assumed to evolve according to a

velocity random walk model [29]. Therefore, the UAV-
mounted receiver dynamics is modeled according to the
discretized model

xr (k + 1) = Fr xr (k)+ wr (k), k = 0, 1, . . .

where wr (k) = [wT
pv(k),w

T
clk,r]

T(k) is a discrete-time
zero-mean white noise sequence with covariance
Qr = diag[Qpv, Qclk,r], with

Fr =

⎡

⎢⎣
I2×2 T I2×2 02×2

02×2 I2×2 02×2

02×2 02×2 Fclk

⎤

⎥⎦ , Fclk =
[
1 T
0 1

]

Qclk,r = c2
[
Sw̃δtr

T + Sw̃δ̇tr

T 3

3 Sw̃δ̇tr

T 2

2

Sw̃δ̇tr

T 2

2 Sw̃δ̇tr
T

]

Qpv =

⎡

⎢⎢⎢⎢⎣

q̃x T
3

3 0 q̃x T
2

2 0

0 q̃y T
3

3 0 q̃y T
2

2

q̃x T
2

2 0 q̃xT 0

0 q̃y T
2

2 0 q̃yT

⎤

⎥⎥⎥⎥⎦

where q̃x and q̃y are the power spectral densities of the
continuous-time x and y acceleration noise, respectively.
The spectra Sw̃δtr

and Sw̃δ̇tr
are modeled similarly to the BTS

spectra, but with receiver-specific h0,r and h−2,r .

C. Cellular Carrier Phase Measurement Model

A specialized receiver (e.g., [3], [7], [9], [10]) could
produce a carrier phase observable to the nth BTS given by

φn(t ) = φn(t0)+
∫ t

t0
fD,n(τ )dτ, n = 1, . . . ,N (1)

where φn(t0) is the carrier phase at an initial time t0 and
fD,n(τ ) is the Doppler frequency at time τ . The carrier
phase observable in (1) could be parameterized in terms
of the receiver and BTS states to yield the discrete-time
measurement model given by

zn(k) ! λφn(t0 + kT )

=
∥∥rr (k) − rsn

∥∥
2
+ c

[
δtr (k) − δtsn (k)

]

+ λNn + vn(k) (2)

whereλ is thewavelength of the carrier signal,Nn represents
the carrier phase ambiguity corresponding to the nth BTS
(namely, the initial phase difference between the receiver
and thenthBTS), and vn(k) is themeasurement noise,which
is modeled as a discrete-time zero-mean white Gaussian
sequence with variance σ 2

n (k). Note that the measurements
are uncorrelated in time because it is assumed that 1) the
sampling time is larger than the channel coherence time and
2) the channels between the UAV and the cellular BTSs are
multipath free. The second practical assumption is made,
since a strong line-of-sight component is usually observed
in the received signal [12].
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III. NAVIGATION WITH CELLULAR SOP CARRIER
PHASE MEASUREMENTS

This section formulates an EKF-based framework for
standalone navigation with carrier phase measurements
from asynchronous BTSs.

A. Motivation

In GNSS, the satellites’ positions and clock biases are
known to the receiver. Subsequently, with N ≥ 4 satellites,
one can use a static estimator (e.g., least squares) to solve
for the receiver’s 3-D position and its clock bias without
the need of a dynamic estimator. A similar approach can
be taken in a generic radionavigation systems, where the
receiver is making pseudorange-type measurements and
the navigation source locations (i.e., transmitters) and their
clock biases are known to the estimator. This article consid-
ers the case of opportunistic navigationwith cellular signals,
where BTSsmay be asynchronous and have unknown clock
biases. As a result, one has to account for the receiver and
BTS clock biases, leading to an underdetermined system.
To address this, a dynamic estimator must be employed
to obtain a navigation solution. In this article, an EKF is
used as a navigation filter. The EKF relies on the dynamics
model of the receiver motion and the clock errors. With
minimal knowledge of the state dynamics, one can use
kinematic models to propagate the state estimate between
measurement updates [30]. The choice of the kinematic
model order depends on the application. In the case of a
maneuvering target, i.e., when there is some control input
on a derivative of the position coordinates, this control input
can be made available to the EKF, since it is generated
by the vehicle’s on-board controller. As a result, the EKF
implementationwill not change except for incorporating the
control input in the state time-update equations. The next
subsections describe a detailed implementation of an EKF
that estimates the state of the system defined in (3) and (4).

B. Modified Clock Error States

Estimating the terms cδtr (k), cδtsn (k), and λNn in (2)
individually is unnecessary; hence, they will be lumped into
one bias term defined as

cδtn(k) ! c
[
δtr (k) − δtsn (k)+

λ

c
Nn

]

with an associated drift state cδ̇tn(k) given by

cδ̇tn(k) ! c
[
δ̇tr (k) − δ̇tsn (k)

]
.

One may subsequently conclude that the dynamics of
xclk,n(k) ! [cδtn(k), cδ̇tn(k)]T is given by

xclk,n (k + 1) = Fclk xclk,n(k)+ wclk,n(k), n = 1, . . . ,N

wherewclk,n(k) is a discrete-time zero-mean white noise se-
quence with covariance Qclk,n = Qclk,r +Qclk,sn . Note that
now wclk,n(k) and wclk,m(k) are correlated, with

E
[
wclk,n(k)wT

clk,m(k)
]
=

{
Qclk,n, if n = m
Qclk,r, otherwise.

C. EKF Model

The EKF estimates the UAV-mounted receiver’s posi-
tion and velocity and the modified clock error states for all
BTSs, namely

x(k) !
[
rTr (k), cδt1(k), . . . , cδtN (k),

ṙTr (k), cδ̇t1(k), . . . , cδ̇tN (k)
]T

.

Note that x(k) may be expressed as x(k) = !x′(k), where
x′(k) ! [rTr (k), ṙ

T
r (k), x

T
clk,1(k), . . . , x

T
clk,N (k)]

T and ! is
some permutation matrix that could be readily calculated.
The EKF considers the systemwith the following dynamics
and measurement model:

x(k + 1) = Fx(k)+ w(k) (3)
z(k) = h [x(k)]+ v(k) (4)

with h[x(k)] ! [h1[x(k)], . . . , hN [x(k)]]T, hn[x(k)] !
∥rr (k) − rsn∥ + cδtn(k), z(k) ! [z1(k), . . . , zN (k)]T,w(k) is
a discrete-time zero-mean white sequence with covariance
Q ! !Q′!T, where Q′ ! diag[Qpv,Qclk],

Qclk !

⎡

⎢⎢⎢⎢⎣

Qclk,1 Qclk,r . . . Qclk,r

Qclk,r Qclk,2 . . . Qclk,r

...
...

. . .
...

Qclk,r Qclk,r . . . Qclk,N

⎤

⎥⎥⎥⎥⎦
,

F !
[
Ip×p T Ip×p

0p×p Ip×p

]

with p = N + 2, and v(k) ! [v1(k), . . . , vN (k)]T is a
discrete-time zero-mean white Gaussian sequence with co-
variance R(k) ! diag[σ 2

1 (k), . . . , σ
2
N (k)]. Section VI dis-

cusses how the process and measurement noise covariance
matricesQ andR(k), respectively, are selected in a practical
environment.

The EKF is producing an estimate x̂(k| j) =
E[x(k)|z(1), . . . , z( j)], j ≤ k, with an associated estimation
error covariance P(k| j) = E[x̃(k| j)x̃T(k| j)], where
x̃(k| j) ! x(k) − x̂(k| j) is the estimation error. The current
state estimate x̂(k|k) and its associated estimation error
covariance P(k|k) are obtained using the standard EKF
equations. The measurement Jacobian H(k) used in the
EKF estimation error covariance update is given by

H(k) =
[
G(k) IN×N 0(N+2)×(N+2)

]
(5)

G(k) !
[

rr (k)−rs1
∥rr (k)−rs1∥ . . .

rr (k)−rsN
∥rr (k)−rsN∥

]T
(6)

where G(k) is evaluated at x̂(k| j).

D. EKF Initialization

It is assumed that theUAVhas access toGNSS signals at
k = 0 and k = 1, from which it could estimate its position.
These position estimates, denoted by zrr (0) and zrr (1), can
be modeled as

zrr ( j) = rr ( j)+ vrr ( j), j = 0, 1 (7)
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where rr ( j) is the UAV’s true position and vrr ( j) is a
random vector that captures the estimation uncertainty,
which is modeled as a zero-mean white Gaussian ran-
dom sequence with covariance "rr ( j). Moreover, during
the same time GNSS signals are available, the receiver
makes two consecutive carrier phase measurements to the
N available BTSs prior to initializing the EKF, denoted
by z(0) and z(1). The maximum likelihood (ML) estimate
of x(1) from zini ! [zTrr (1), z

T
rr (0), z

T(1), zT(0)]T is obtained
according to Appendix A, yielding x̂MLini and its associ-
ated estimation error covariance PMLini . Finally, the EKF is
initialized with

x̂(1|1) ≡ x̂MLini , P(1|1) ≡ PMLini

and is run for k ≥ 1.

REMARK 1 Let vr1 and v̂r1 denote the true initial speed
and its estimate, respectively, and let ur1 and ûr1 denote
the true initial velocity direction unit vector and its es-
timate, respectively. Let σ 2

vr1
and Pur1 denote the initial

variance and covariance of the initial estimation errors ṽr1 !
vr1 − v̂r1 and ũr1 ! ur1 − ûr1 , respectively. It is shown in
Appendix B that

σ 2
vr1

≤ λmax,ṙ

T 2
, σ 2

ur1
!

∥∥Pur1

∥∥ ≤ λmax,ṙ

∥rr (1) − rr (0)∥2
(8)

where λmax,ṙ is a positive real number that only depends
on "̄rr ! "rr (0)+ "rr (1). It can be seen from (8) that
increasing T reduces the uncertainty in the initial speed
estimate. Increasing ∥rr (1) − rr (0)∥ improves the estimate
of the initial velocity direction unit vector. Given"rr (0) and
"rr (1), (8) may be used to choose an initial sampling time T
and/or distance ∥rr (1) − rr (0)∥ that guarantee that σ 2

vr1
and

σ 2
ur1

will be below a specified threshold. Regardless of the
choice of T and ∥rr (1) − rr (0)∥, the proposed initialization
scheme will always yield an initial state estimate that is
consistent with its initial estimation error covariance, which
is important when initializing the EKF.

IV. OBSERVABILITY AND EKF ESTIMATION ERROR
BOUNDS ANALYSES

This section shows that the system defined in (3) and (4)
is observable forN ≥ 2.Moreover, it shows that theEKFes-
timation error is exponentially bounded in the mean square
sense and bounded with probability 1. In the following, the
following assumptions are made.

A1) The BTSs are not colocated nor are all collinear.
A2) The UAV is not stationary nor is moving along a

trajectory that is collinear with the vector connect-
ing its receiver with any of the BTSs.

A3) The UAV is at a minimum distance d from each
BTS at all time, i.e., ∥r(k) − rsn∥ ≥ d , ∀ k > 0 and
∀ n = 1, . . . ,N .

This article aims at qualitatively studying the behav-
ior of the EKF estimation error and estimation error co-
variance. To this end, generic theorems and lemmas on

EKF stochastic stability are applied to the opportunistic
navigation system at hand, which is implemented in a
real-world environment. The relevant theorems and lemmas
are stated in Appendix C, which gives theoretical back-
ground on observability and boundedness of the EKF error
state.

A. Observability Analysis

The observability of an environment comprising multi-
ple receivers making pseudorange measurements on mul-
tiple BTSs, assuming different a priori knowledge sce-
narios, was analyzed in [31]. The observability analysis
utilized the l-step observability matrix of the linearized
system and considered the observability of the individ-
ual clock biases and drifts cδtr (k), cδ̇tr (k), {cδtsn (k)}Nn=1,
and {cδ̇tsn (k)}Nn=1.

In contrast, the system in (3) and (4) considers a single
receiver making carrier phase measurements on multiple
BTSs, where the individual clock biases and carrier phase
ambiguities are lumped into a single bias term {cδtn(k)}Nn=1
and the drifts are also lumped into a single drift term
{cδ̇tn(k)}Nn=1.

The observability results for the system defined in (3)
and (4) are captured in the following theorem.

THEOREM IV.1 Under Assumptions A1 and A2, the system
defined in (3) and (4) is completely l-step observable for
l ≥ 4 and N ≥ 2.

PROOF The linearization of the deterministic part of the
system (3), (4) into the form (47), (48) yields

F(k) ≡
[
I(N+2)×(N+2) T I(N+2)×(N+2)

0(N+2)×(N+2) I(N+2)×(N+2)

]
, #(k) ≡ 0

H(k) ≡
[
Hξ (k) 0N×(N+2)

]
, Hξ (k) !

[
G(k) IN×N

]
.

In the following, it will be proven by construction that the
l-step observability matrix O(k, k + l ) of the linearized
system is full rank, i.e.,

2 L∑

i=1

γiO (k, k + l ) e2L,i = 0 (9)

is satisfied if and only if γi = 0, ∀ i = 1, . . . , 2 L, where
L = N + 2 and eL,i ∈ RL is the standard basis vector con-
sisting of a one at the ith element and zeros elsewhere. Note
that sinceO(k, k + l ) ∈ Rl·N×2(N+2), then l ≥ 4 always sat-
isfies l · N ≥ 2(N + 2) for N ≥ 2. Let l = 4. Subsequently,
O(k, k + 4) may be expressed as

O (k, k + 4) =
[O11 O12

O21 O22

]

O11 !
[

Hξ (k)
Hξ (k + 1)

]
, O21 !

[
Hξ (k + 2)
Hξ (k + 3)

]

O12 !
[

0
THξ (k + 1)

]
, O22 !

[
2THξ (k + 2)
3THξ (k + 3)

]
.
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The matrix O11 may also be expressed as

O11 =
[

G(k) IN×N

G(k + 1) IN×N

]
. (10)

Note thatO11 ∈ R2N×(N+2). Moreover, the inequality 2N ≥
N + 2 holds, for N ≥ 2. Therefore, we have

rank [O11] ≤ N + 2. (11)

From (10), it can be seen that rank[O11] ≥ N . Moreover,
for N ≥ 2, and if A1 and A2 hold, then the (N + 1)th and
(N + 2)th rows of O11 will be linearly independent from
the first N rows and from each other, yielding

rank [O11] ≥ N + 2. (12)

Combining (11) and (12), it can be deduced that
rank[O11] = N + 2. Similarly, it can be shown that
rank[O21] = N + 2. Subsequently, we have that

L∑

i=1

αiO11eL,i = 0,
L∑

i=1

βiO21eL,i = 0

are satisfied if and only if αi = βi = 0, ∀ i = 1, . . . , L.
Therefore, the equality

L∑

i=1

πiHξ

(
k + j

)
eL,i = 0 ∀ j = 0, . . . , 3 (13)

is satisfied if and only if πi = 0, ∀ i = 1, . . . ,L.
The left-hand side of (9) can be expressed as

2L∑

i=1

γiO (k, k + 4) e2L,i =
[
ρT
0 , . . . , ρ

T
3

]T
(14)

ρ j !
L∑

i=1

(
γi + jT γL+i

)
Hξ

(
k + j

)
eL,i (15)

where j = 0, . . . , 3. It can be seen from (13) that ρ j = 0
for all j = 0, . . . , 3 if and only if

γi + jT γL+i = 0 ∀ i = 1, . . . ,L; ∀ j = 0, . . . , 3. (16)

Since (16) holds for all j = 0, . . . , 3, then evaluating (16)
at j = 0 yields

γi = 0 ∀ i = 1, . . . ,L. (17)

Combining (16) and (17) for j > 0 yields

γL+i = 0 ∀ i = 1, . . . ,L. (18)

Equations (16)–(18) imply (9); therefore,O(k, k + 4) is full
rank. Using Theorem VII.1 in Appendix C, the system is
observable. "
REMARK 2 Note that the l-step observability matrix
O(k, k + l ) is an l · N × 2(N + 2) matrix; hence,
rank[O(k, k + l )] ≤ min{l · N, 2(N + 2)}. Subsequently,
one necessary condition for the observability matrix to
be full rank is that l · N ≥ 2(N + 2), i.e., the UAV makes
carrier phase measurements at l epochs to the N cellular
BTSs. For N ≥ 2, this condition is satisfied for l ≥ 4. For
N ≥ 4, this condition is satisfied for l ≥ 3.

REMARK 3 The result of Theorem IV.1 is only valid lo-
cally and in a deterministic sense, i.e., with no process or
measurement noise. However, this result can be extended
to the stochastic system (52), (53). Let the measurement
JacobianG(k) with respect to the position states [cf. (6)] be
reparameterized in terms of the bearing angles {θn(k)}Nn=1
between each BTS and the UAV according to

G(k) =
[
cos [θ1(k)] . . . cos [θN (k)]
sin [θ1(k)] . . . sin [θN (k)]

]T

.

The presence of process noise will yield new bearing an-
gle trajectories θ ′

n(k) = θn(k)+ δθn(k), where δθn(k) is the
bearing angle error due to process noise. With assumptions
A.1 and A.2, the new bearing angles will not change the
structure nor the rank of H(k) [cf. (5)], which will remain
a combination of cosine and sine functions and other con-
stants. This, in turn, will satisfy the observability condition
of the system with process noise. More details can be found
in [32, Lemma 4.1] and [33, Corollary 5.2].

REMARK 4 The velocity random walk model considered
in this article is simple yet informative enough to capture
the UAV dynamics between the EKFmeasurement updates.
In particular, the EKF will use this model to perform the
time-update step, and for sufficiently small T , the UAV’s
dynamics model would not deviate drastically from this
model. Nevertheless, this model may not necessarily cover
the variety of flight modes that are achievable using typical
rotary wing UAVs. To address this, one may employ a mul-
tiple model approach to estimate the UAV’s state, with each
model matched to a different flight mode [30], [34]–[36].
The observability analysis presented in this article can be
performed for each of the dynamics model assumed by the
multiple model filter, such as acceleration random walk,
constant turn rate, or even a stationary UAV. Theorem IV.1
can be extended to study the observability of higher order
UAVdynamicsmodels (e.g., acceleration randomwalk, jerk
randomwalk, etc. [29]) and higher order clock error dynam-
ics models (e.g., three-state clock error dynamics compris-
ing time, frequency, and frequency aging [37], [38]). It can
be readily shown that the system becomes unobservable
when the UAV stops.

B. Lower Bound on the EKF Estimation Error Covariance

Theoptimal geometric configuration of sensors (or navi-
gation sources) around an emitter (or receiver) has beenwell
studied in the literature [39], [40]. It was found that in the
presence of independent and identically distributed mea-
surement noise, the trace of the estimation error covariance
in a nonlinear least-squares estimator isminimizedwhen the
end points of the unit line of sight vectors pointing from the
receiver to each navigation source form a regular polygon
around the receiver, i.e., θn = 2π (n−1)

N , n = 1, . . . ,N ≥ 3
[41]. The aforementioned configuration will be referred to
as the optimal configuration.

Although the system discussed in Section III-C is non-
linear, one may devise a scenario for N ≥ 3 that will define
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a lower bound (LB) on the estimation error covariance in
the EKF. To this end, it is assumed that the optimal BTS
configuration around the receiver is maintained at all time,
implying that Assumption A1 is satisfied. Assumption A2
implies that the measurement Jacobian cannot be the same
at all time. In order to satisfy A1 and A2 simultaneously, it
is assumed that the optimal configuration is maintained and
that the BTSs rotate around the receiver on the unit circle
by 2π/N at each time step. Therefore, the optimal bearing
angles at any given time step k will be given by

θ⋆
n (k)=

2π ·mod(n − 1+ k,N )
N

, n=1, . . . ,N, k=1, . . .

where mod(·, ·) is the modulo operator. Note that this pa-
rameterization is independent of the state. Therefore, the
Riccati equation may be iterated offline with the optimal
configuration and measurement noise covariance R⋆(k) ≡
λmin[R(k)]I to produce anLBon the estimation error covari-
ance for the EKF, denoted Pmin(k + 1|k), from which a real
number p > 0 such that pI ≼ Pmin(k + 1|k) can be deduced.
Note thatλmin[A] indicates the smallest eigenvalue ofmatrix
A. It is also important to note that while this scenario could
never be physically realized, it is only used to define an LB
on the estimation error covariance.

REMARK 5 The intuition behind obtaining this LB is ex-
plained next. Assume two configurations for N BTSs: (i)
the optimal one and (ii) any other arbitrary configuration.
Given the same prior for both configurations, i.e., Pi(k|k) =
Pii (k|k), then Pi(k + 1|k) = Pii(k + 1|k), since the dynam-
ics are linear time-invariant. The covariance measurement
updates can be expressed in the information form as

P−1
i (k + 1|k + 1) = P−1

i (k + 1|k)

+
1
σ 2

HT
i (k + 1)Hi(k + 1) (19)

P−1
ii (k + 1|k + 1) = P−1

ii (k + 1|k)

+
1
σ 2

HT
ii (k + 1)Hii (k + 1) (20)

Since (i) is the optimal configuration, then

HT
i (k + 1)Hi (k + 1) ≽ HT

ii (k + 1)Hii (k + 1). (21)

From (19)–(21), it can be seen that Pi(k + 1|k + 1) ≼
Pii (k + 1|k + 1). Repeating this recursion yields Pi(k +
j|k + j) ≼ Pii (k + j|k + j) for all j ≥ 1.

C. EKF Estimation Error Bounds Analysis

Consider the following two notions of estimation error
boundedness defined in [32].

DEFINITION IV.1 The stochastic sequence x̃(k|k) is said to
be exponentially bounded in mean square, if there are real
numbers η, ν > 0 and 0 < ϑ < 1 such that

E
[
∥x̃(k|k)∥2

]
≤ η ∥x̃(1|1)∥2 ϑk + ν (22)

holds for every k > 0.

DEFINITION IV.2 The stochastic sequence x̃(k|k) is said to
be exponentially bounded with probability 1, if

sup
k>0

∥x̃(k|k)∥ < ∞ (23)

holds with probability 1.

Next, it is shown that the EKF estimation error for the
system at hand is bounded according to Definitions IV.1 and
IV.2. From the system defined in (3) and (4), it can be seen
that F(k) = F is nonsingular and

∥F∥ = 1 (24)

for all k ≥ 0.Moreover, from the definition ofQ andR(k) in
Section III-C, it can be seen thatQ(k) = Q ≻ 0 andR(k) ≻
0; hence, there exist real numbers q, r > 0 such that

Q ≽ qI, R(k) ≽ rI (25)

for all k > 0. Itwas established inTheorem IV.1 that the sys-
tem is observable; hence, using Lemma C.1 in Appendix C,
there exist real numbers p, p̄ > 0 such that

pI ≼ P(k + 1|k) ≼ p̄I ∀ k > 0. (26)

An approach for obtaining p is given in Section IV-B. Since
the dynamics of the system in (3) are linear, then

∥ϕ(k)∥ = 0 ∀ k > 0. (27)

The following two lemmas establish the rest of the condi-
tions for Theorem VII.2 in Appendix C to hold.

LEMMA IV.1 The 2-norm of the measurement Jacobian
defined in (5) is bounded by

∥H(k)∥ ≤
√
N + 1 ∀ k > 0. (28)

PROOF Equation (28) follows from showing that

HT(k)H(k) ≼ (N + 1)I. (29)

The matrix & ! (N + 1)I − HT(k)H(k) is expressed as

& =
[
M 0
0 (N + 1)I

]

M !
[
(N + 1)I − GT(k)G(k) −GT(k)

−G(k) NI

]

which implies that (29) is satisfiedwhenM ≽ 0. SinceNI ≻
0, thenM is positive semidefinite if the Schur complement
of its bottom-right block given by

MSchur ! (N + 1)I − GT(k)G(k) − 1
N
GT(k)G(k)

is positive semidefinite. For any matrix A, the following
holds:

ATA ≼ trace
[
ATA

]
I.

It can be readily shown that trace[GT(k)G(k)] = N for all
k ≥ 0. Subsequently, we have

MSchur ≽ (N + 1)I − NI − I = 0 ⇒ M ≽ 0

from which (29) and consequently (28) follow. "
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LEMMA IV.2 Consider the system defined in (3) and (4). If
A3 holds, then

max
1≤n≤N

sup
x(k)

∥Hess hn [x(k)]∥ ≤ 1
d

(30)

where Hess denotes the Hessian operator.

PROOF It can be readily shown that

Hess hn [x(k)] =
1∥∥rr (k) − rsn

∥∥diag
[
U, 0(2N+2)×(2N+2)

]

where U ! I2×2 − vvT and v ! rr (k)−rsn
∥rr (k)−rsn∥

. It can be seen
that the matrix U is an annihilator matrix, and therefore,
its eigenvalues consist of ones and zeros. Subsequently, we
have

∥Hess hn [x(k)]∥ =
1∥∥rr (k) − rsn

∥∥ .

Since A3 holds, i.e., ∥rr (k) − rsn∥ ≥ d , then
∥Hess hn[x(k)]∥ ≤ 1

d , which in turn implies (30). "
Using Taylor’s theorem and Lemma IV.2, it can be

deduced that

∥χ(k)∥ ≤ κχ ∥x̃(k|k)∥2 (31)

where κχ = 1
d [32]. Now, the main result for the EKF error

bounds is stated.

THEOREM IV.2 Consider the system defined in (3) and (4)
whose state is being estimated using an EKF as described
in Section III-C. If A1–A3 hold, then the EKF error x̃(k|k)
is exponentially bounded in the mean square and bounded
with probability 1 as per Definitions IV.1 and IV.2, respec-
tively, assuming

∥x̃(1|1)∥ ≤ ϵ, R(k) ≼ δI, Q ≼ δI

for some ϵ, δ > 0.

PROOF Combining (24)–(28), (31), and the fact that F
is nonsingular, one can see that all the conditions of
Theorem C.2 in Appendix C are satisfied, from which one
concludes that x̃(k|k) is exponentially bounded andbounded
with probability 1. "

The significance of the results presented in
Theorems IV.1 and IV.2 are in the fact that it is possible
for a UAV to reliably navigate for long periods of
time exclusively with cellular signals transmitted by
asynchronous BTSs.

REMARK 6 While the observability and EKF stability anal-
ysis establishes bounds on the estimation error covariance,
it does not specify how to obtain such bounds. However,
it is worth noting that the observability analysis can be
extended for higher order models or for models with known
control input. It can also be shown that the system will
be l-step observable for such models. Subsequently, the
EKF output covariance for these dynamics models will be
bounded as well. As a result, Theorem IV.2 can be readily
extended to show that an EKF using kinematic models with

Fig. 1. Simulation environment layout. The blue and red colors
represent cells and BTSs from two different cellular providers. The

UAV’s trajectory is shown in black.

or without known control inputs will have bounded errors
as per Definitions IV.1 and IV.2.

V. SIMULATION RESULTS

This section presents simulations to analyze the perfor-
mance of the proposed EKF framework by varying: 1) the
number of available BTSs; 2) the initial speed of the UAV;
and 3) the quality of the oscillator on-board the UAV. The
simulation setup and settings are discussed first; then, the
results are provided.

A. Simulation Setup

The simulated environment consisted of 12 BTSs from
two cellular providers and is illustrated in Fig. 1. It can be
seen that due to the cellular structure, the geometry between
the UAV and BTSs is favorable. The cell size was picked to
be2km,which is a typical value in semiurban environments.
MC simulations were ran for different values of the number
of available BTSs N , the initial speed of the UAV vr1 ,
and the UAV-mounted receiver’s clock states’ process noise
covarianceQclk,r . The number of available BTSswas varied
in N ∈ {6, 8, 10, 12}. The initial speed of the UAV vr1 was
varied in vr1 ∈ {4, 9, 13}m/s. The process noise covariance
of the UAV-mounted receiver’s oscillator was varied to
correspond to that of a temperature-compensated crystal
oscillator (TCXO) and to that of an oven-controlled crystal
oscillator (OCXO). Subsequently, 24 cases were simulated.
The UAV’s position and velocity and the UAV-mounted
receiver’s and BTSs’ clock states were simulated using
the dynamics discussed in Sections II-A and II-B with a
sampling time T = 0.1 s. The carrier phase measurement
to each BTS was simulated according to (1) with λ = 33.96
cm, which corresponds to a wavelength dedicated for a
cellular CDMA channel. The 3GPP2 protocol requires cel-
lular BTSs to be synchronized within 3 µs to GPS with a
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TABLE I
Simulation Settings

∗U (a, b) denotes the probability density function of a continuous uni-
formly distributed random variable in (a, b).∗∗ U{c, d} denotes the prob-
ability mass function of a discrete uniformly distributed random variable
in [c, d].

frequency stability of 50 ppb [17], [18]. It was assumed
that the BTSs are equipped with OCXOs to meet these
requirements [42], [43]. The EKF was initialized according
to the framework in Section III-D. The simulation settings
are summarized in Table I.

B. Single Realization Simulation Results

A single realization of the EKF errors and associated
±3σ bounds for the UAV’s position and velocity and the
clock error states corresponding to cδt1 and cδ̇t1 are plotted
in Fig. 2 withN = 10, vr1 = 9m/s, and an OCXO-equipped
receiver. The decreasing ±3σ bounds and converging er-
rors shown in Fig. 2 do not contradict the main results
in Section IV-C that the estimation error can be expo-
nentially bounded and bounded with probability 1, as per
Definitions IV.1 and IV.2. The remaining clock error states,
namely cδtn and cδ̇tn for n = 2, 3, . . . , 9, behave similarly
to the ones plotted in Fig. 2.

C. MC Simulation Results

Next, MC simulations were conducted by randomizing
the process and measurement noise, as well as the initial
UAV position estimates r̂r (0) and r̂r (1). A total of 200
MC simulations were performed for each case described in

Fig. 2. Simulation results: single realization of EKF errors and
associated ±3σ bounds for the UAV position and velocity and the clock
error states corresponding to cδt1 and cδ̇t1 with N = 10, vr1 = 9 m/s, and

an OCXO-equipped receiver.

TABLE II
MC Simulation Results

SectionV-A. The total position RMSE and the final position
error RMSE are tabulated in Table II.

The following can be deduced from Table II. First,
as expected, the estimation performance improves as the
number of available BTSs increases. Second, the receiver’s
clock quality significantly affects the estimation perfor-
mance for N ≤ 10. For N > 10, the effect of the receiver’s
oscillator quality becomes less significant. Third, as the ini-
tial speed increases, the estimation performance improves.
Faster UAV speeds result in a faster change in the bearing
angles between the UAV and the BTSs, yielding an increase
in the amount of information coming from cellular carrier
phase measurements.

Next, the LB proposed in Section IV-B is studied. To
this end, 200MC simulations were performedwithN = 10,
vr1 = 9 m/s, and an OCXO-equipped receiver. The time
history of the logarithm of the determinant of the esti-
mation error covariance for each realization, denoted by
logdet[P(k|k)], is plotted in Fig. 3 along with the logarithm
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Fig. 3. MC simulation results: 200 realizations of logdet[P(k|k)] along
with the logarithm of the determinant of the theoretical LB obtained

according to Section IV-B with N = 10, vr1 = 9 m/s, and an
OCXO-equipped receiver.

Fig. 4. MC simulation results: 200 realizations of 1σ bound for the
UAV’s position and velocity as well as the clock error states

corresponding to cδt1 and δ̇t1, and the corresponding theoretical LB
obtained according to Section IV-B with N = 10, vr1 = 9 m/s, and an

OCXO-equipped receiver.

of the determinant of the theoretical LB obtained according
to Section IV-B. Note that logdet[P(k|k)] is related to the
volume of the uncertainty ellipsoid [44]. Moreover, the
1σ bound calculated by the EKF is plotted for each MC
realization in Fig. 4 for the UAV’s position and velocity as
well as the clock error states corresponding to cδt1 and cδ̇t1.
The theoretical LB calculated using the method proposed
in Section IV-B is also plotted. Note that the σ bounds of
the remaining clock error states, namely cδtn and cδ̇tn for
n = 2, 3, . . . , 10, behave similarly to the ones plotted in
Fig. 4.

The following can be concluded from these plots. First,
the logdet[P(k|k)] plot in Fig. 3 shows that: 1) the estima-
tion error uncertainty is decreasing for all MC realizations
and 2) the theoretical LB is not violated. Second, each
component of the theoretical LB in Fig. 4 bounds the
respective component in the estimation error covariance.
This result is not guaranteed to hold by the algorithm to
compute the theoretical LB; however, it seems to hold.

Third, the theoretical LB is tight for the velocity and clock
drift states, but not tight for the position and clock bias
states.

VI. EXPERIMENTAL RESULTS

In this section, two experiments are conducted demon-
strating UAV navigation via the framework developed
in this article. In the following experiments, the altitude
of the UAVs was known from their on-board navigation
system.

A. Measurement Noise Statistics

The CDMA and LTE receivers employed in the ex-
periments use second-order coherent phase-locked loops
(PLLs), for which it can be shown that the measurement
noise variance σ 2

n is given by σ 2
n (k) = λ2 BPLL

C/N0n (k)
, where

BPLL is the receiver’s PLL noise equivalent bandwidth and
C/N0n (k) is the nth BTS’s carrier-to-noise ratiomeasured by
the receiver [45]. In the following experiments, BPLL was
set to 3 Hz.

B. Hardware and Filter Description

An Autel Robotics X-Star Premium UAV was used
for the first experiment and a DJI Matrice 600 was used
for the second experiment. In each experiment, the UAVs
were equipped with an Ettus E312 universal software ra-
dio peripheral (USRP), a consumer-grade 800/1900-MHz
cellular antenna, and a small consumer-grade GPS antenna
to discipline the on-board oscillator. In both experiments,
the UAV-mounted receivers were tuned to listen to cellular
signals in the two bands allocated for cellular communica-
tion in the U.S.: the 800- and 1900-MHz bands. An E312
USRP was tuned to a 882.75-MHz carrier frequency (i.e.,
λ = 33.96 cm), which is a cellular CDMA channel allo-
cated for the U.S. cellular provider Verizon Wireless. In
the second experiment, the UAV was also equipped with a
second antenna and another E312 USRP, which was tuned
to a 1955-MHz carrier frequency (i.e.,λ= 15.33 cm),which
is an LTE channel allocated for the U.S. cellular provider
AT&T. Samples of the received signals were stored for
offline postprocessing. The cellular carrier phase measure-
ments were given at a rate of 37.5 Hz, i.e., T = 26.67 ms.
The ground-truth reference for each UAV trajectory was
taken from its on-board navigation system,which usesGPS,
an inertial measurement unit (IMU), and other sensors. The
hovering horizontal precision of the UAVs are reported to
be 2m for the X-Star Premium byAutel Robotics and 1.5 m
for the Matrice 600 by DJI. The E312 USRPs are equipped
with TCXOs with h0,r = 2 × 10−19 and h−2,r = 2 × 10−20,
and the BTSs are assumed to be equipped with OCXOs
with h0,sn = 8 × 10−20 and h−2,sn = 4 × 10−23. The x and
y continuous-time acceleration noise spectra were set to
q̃x = q̃y = 0.03 m2/s3 for both experiments. The EKF was
initialized according to the framework in Section III-Dwith
initial position estimates obtained from theUAVs’ on-board
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Fig. 5. Experimental setup and BTS and eNodeB layout. The
environment consists of nine cellular CDMA BTSs (cyan towers) and

two LTE eNodeBs (magenta towers).

Fig. 6. Experiment 1 (N = 8): True UAV trajectory and estimated UAV
trajectory via cellular carrier phase measurements with the proposed
EKF framework. The true and estimated trajectories are shown in
solid and dashed lines, respectively. Map data: Google Earth.

navigation systems. The experimental setup and BTS and
eNodeB layout is shown in Fig. 5.

C. Experiment 1: UAV Navigation Results

In the first experiment, the UAV’s total traversed tra-
jectory was 2.6 km, which was completed in 4 min and
40 s. Over the course of the experiment, the UAV-mounted
receiver was listening to eight cellular CDMA BTSs, as
shown in Fig. 5 (denoted BTSs 1–8). The positions of
the BTSs were obtained in two steps: 1) the framework
described in [40] was used to obtain an initial map of the
cellular BTS locations; then, 2) Google Earth was used
to determine the final position of the BTSs. Fig. 6 shows
the true and estimated UAV trajectories. The total position
RMSE was found to be 2.94 m with a final estimation
error at the end of the UAV’s flight of 2.23 m. The EKF
position error and the associated ±3σ bounds as well as
the position 1σ LB obtained according to Section IV-B
are shown in Fig. 7. In order to study the effect of the
number of BTSs and their relative geometry, the EKF was
run again using BTSs 1 through 4 (N = 4) and then BTSs
1 through 6 (N = 6). The resulting EKF position errors
and the associated ±3σ bounds as well as the position
1σ theoretical LB obtained according to Section IV-B are
shown in Fig. 8. The total position RMSEs and final errors
are summarized in Table III.

Fig. 7. Experiment 1 (N = 8). (Top) UAV’s position estimation error
trajectories and associated ±3σ bounds. (Bottom) position estimation
error standard deviations and the theoretical LB obtained according to

Section IV-B.

Fig. 8. Experiment 1 (N = 4 and N = 6). (Top) UAV’s position
estimation error trajectories and associated ±3σ bounds. (Bottom)
position estimation error standard deviations and the theoretical LB

obtained according to Section IV-B.

TABLE III
Experimental Results

D. Experiment 2: UAV Navigation Results

In the second experiment, the UAV’s total traversed
trajectorywas 2.9 km,whichwas completed in 5min. In this
experiment, the receiver on-board the UAV was listening
to seven cellular CDMA BTSs and two LTE eNodeBs
shown in Fig. 5. The BTS and eNodeB positions were
determined the same way as in the first experiment. The
true and estimated UAV trajectories are shown in Fig. 9.
The total position RMSE was found to be 5.99 m with
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Fig. 9. Experiment 2 (N = 9): True UAV trajectory and estimated UAV
trajectory via cellular carrier phase measurements with the proposed

EKF framework. The true and estimated trajectories are shown in solid
and dashed lines, respectively. Map data: Google Earth.

Fig. 10. Experiment 2 (N = 9). (Top) UAV’s position estimation error
trajectories and associated ±3σ bounds. (Bottom) position estimation
error standard deviations and the theoretical LB obtained according to

Section IV-B.

a final estimation error at the end of the UAV’s flight of
3.46 m. The EKF position error and the associated ±3σ
bounds as well as the position 1σ LB obtained according
to Section IV-B are shown in Fig. 10. In order to study
the effect of the number of BTSs and their relative ge-
ometry as in the first experiment, the EKF was run again
using BTSs 1 through 4 (N = 4) and then BTSs 1 through
5 and eNodeB 1 (N = 6). The resulting EKF position errors
and the associated ±3σ bounds as well as the position
1σ theoretical LB obtained according to Section IV-B are
shown in Fig. 11. The total position RMSEs and final errors
are summarized in Table III.

E. Discussion

First, it is important to note that the favorable geometry
of the BTSs and eNodeBs comes by virtue of: 1) the cellular
network structure where cells are typically organized in
adjacent hexagons with servicing BTSs at the center of each
hexagon and 2) diversity of cellular providers. Moreover,
since the wireless channel is particularly good for UAVs
(line of sight is almost always maintained), it is very likely
the UAV will be able to reliably listen to geometrically
diverse BTSs, as shown in Fig. 5.

Second, it was shown in Section IV-C that the estima-
tion error can be exponentially bounded and bounded with

Fig. 11. Experiment 2 (N = 4 and N = 6). (Top) UAV’s position
estimation error trajectories and associated ±3σ bounds. (Bottom)
position estimation error standard deviations and the theoretical LB

obtained according to Section IV-B.

probability 1, as per Definitions IV.1 and IV.2, respectively,
and the estimation error covariance is bounded according to
(26). None of the experiments contradicts this result, since
they both show a decreasing ±3σ bounds and converging
errors, as shown in Figs. 7, 8, 10, and 11 without violating
the proposed LB.

Third, the UAVs in both experiments were flying at
almost constant speeds of 9.3 and 9.7 m/s for experiments
1 and 2, respectively. Based on the simulation results pre-
sented in Section V, the RMSE and final error are expected
to decrease as the UAV speed increases.

Fourth, note that the proposed framework considers
imperfect knowledge of the initial state (i.e., it is ini-
tialized with an initial estimate and corresponding uncer-
tainty). It is important that the initial estimate be consistent
with the initial estimation error covariance (uncertainty).
The initialization scheme proposed in Section III-D en-
sures that the initial error and the initial uncertainty are
consistent.

Fifth, the framework studied in this article assumed the
BTSs’ positions to be known a priori with no uncertainty.
Having uncertainty in the BTS’s position does not guaran-
tee the applicability of Theorem IV.2. Future work could
extend this work to the case with unknown/uncertain BTS
positions. The reader is encouraged to look at the work
in [5] and [26] for more details on how uncertainty in the
BTS positions affects the performance of an opportunistic
navigation framework.

Sixth, the UAV’s on-board oscillator was disciplined
using GPS signals during the experiment. The effect of
not disciplining the on-board oscillator can be captured by
increasing the clock process noise covariancematrix. Based
on the results in Section V, the RMSE and the final error are
expected to increase slightly when the on-board oscillator
is not disciplined by GPS signals. It is important to note that
now one has to find a new (ϵ, δ) pair for Theorem V.2 to
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hold. SinceQ increases in a GPS-denied environment, then
δ is likely to increase. Intuitively, one expects ϵ to decrease
in this case for Theorem V.2 to hold. More details can be
found in [32].

REMARK 7 The EKF employs statistical models to propa-
gate the position and velocity of the UAV and the clock bias
and drift differences. Suchmodels will inherentlymismatch
the true dynamics of the UAV and clock states, possibly
yielding large estimation errors. Using an IMU to propagate
the position and velocity states of the UAV should yield bet-
ter results [5].Moreover, an adaptive filtermay be employed
to simultaneously estimate the clock states’ process noise
covariance to reduce the clock model mismatch [43].

VII. CONCLUSION

This article presented a framework for UAV naviga-
tion with asynchronous cellular signals. The framework
employs precise cellular carrier phase measurements and
an EKF to estimate the position and velocity of the UAV
as well as the difference of the biases and drifts between
the receiver’s and each BTS’s clock. An EKF initialization
scheme was also proposed. Moreover, it was shown that:
1) this framework is observable and 2) the EKF error state
is asymptotically stable in amean square sense and bounded
with probability 1. An LB for the EKF’s estimation error
covariance was provided. MC simulations showed that this
bound is not violated and studied the performance of the
proposed framework for varying number of BTSs, initial
UAV speeds, and UAV-mounted receiver clock qualities. It
was also shown that the EKF estimation error covariance
is upper bounded. Finding such an upper bound is involved
and could be the subject of future work. Two sets of ex-
perimental results on two different UAVs showed that this
framework can achieve 2.94 and 5.99 m position RMSE,
over UAV trajectories of 2.6 and 2.9 km, respectively.

APPENDIX A
DERIVATION OF THE ML ESTIMATE FOR EKF
INITIALIZATION

This appendix derives x̂MLini and PMLini used in the EKF
initialization. For a sufficiently small T , the receiver veloc-
ity at k = 1 may be expressed as

ṙr (1) =
1
T

[rr (1) − rr (0)] (32)

and the nth BTS’s clock drift at k = 1 as

cδ̇tn(1) ≈ 1
T

[cδtn(1) − cδtn(0)] . (33)

From (32) and (33), one may express x(0) as

x(0) = F−1x(1). (34)

Using (4), (7), and (34), the following measurement equa-
tion is obtained:

zini = hini [x(1)]+ vini (35)

where the vector-valued function hini is given by

hini [x(1)] =

⎡

⎢⎢⎢⎣

rr (1)

rr (1) − T ṙr (1)

h [x(1)]

h
[
F−1x(1)

]

⎤

⎥⎥⎥⎦

and the measurement noise vector is given

vini =
[
vTrr (1), vTrr (0), vT(1), vT(0)

]T

which is a zero-mean white Gaussian random vec-
tor with the block-diagonal covariance matrix "ini =
diag["rr (1),"rr (0),R(1),R(0)]. The ML estimate of x(1)
can be, therefore, obtained from (35) according to

x̂MLini = argmax
x(1)

3 [zini; x(1)] (36)

where 3[zini; x(1)] is the likelihood function of zini pa-
rameterized by x(1), which is the multivariate Gaussian
probability density function with zero-mean and covariance
"ini. The maximization problem in (36) is equivalent to

x̂MLini = argmin
x(1)

{zini − hini [x(1)]}T "−1
ini {zini − hini [x(1)]}

which can be solved using the Gauss–Newton method. It
can be shown that

x̂MLini =
[
r̂Tr,MLini

, cδ̂t1,MLini , . . . , cδ̂tN,MLini ,

ˆ̇rTr,MLini
, c ˆ̇δt1,MLini , . . . , c

ˆ̇δtN,MLini

]T

r̂r,MLini = zrr (1) (37)

ˆ̇rr,MLini =
1
T

[
zrr (1) − zrr (0)

]
(38)

cδ̂tn,MLini = zn(1) − dr,n(1) (39)

c ˆ̇δtn,MLini =
1
T

[
zn(1) − zn(0)+ dr,n(0) − dr,n(1)

]
(40)

with dr,n( j) ! ∥zrr ( j) − rsn∥ for j = 0, 1. It can also be
shown that the estimation error covariance associated with
x̂MLini is given by

PMLini = Aini"iniAT
ini

Aini !

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2×2 02×2 02×N 02×N

−hT
r,1(1) 01×2 eTN,1 01×N

...
...

...
...

−hT
r,N (1) 01×2 eTN,N 01×N

1
T I2×2 − 1

T I2×2 02×N 02×N

− 1
T h

T
r,1(1)

1
T h

T
r,1(0)

1
T e

T
N,1 − 1

T e
T
N,1

...
...

...
...

− 1
T h

T
r,N (1)

1
T h

T
r,N (0)

1
T e

T
N,N − 1

T e
T
N,N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)
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with hr,n( j) ! zrr ( j)−rsn
dr,n( j)

for j = 0, 1, and eN,n ∈ RN is the
standard basis vector consisting of a one at the nth element
and zeros elsewhere.

APPENDIX B
DERIVATION OF THE UPPER BOUNDS IN (8)

In this appendix, the estimation error covariance associ-
ated with the initial speed estimate v̂r1 ! ∥ ˆ̇rr,MLini∥ and the

initial velocity direction unit vector estimate ûr1 !
ˆ̇rr,MLini

∥ ˆ̇rr,MLini∥

are studied. Let vr1 ! ∥ṙr (1)∥ denote the true initial speed
and ur1 ! ṙr

∥ṙr∥ denote the true initial direction unit vector.
Using first-order Taylor series expansion around ṙr (1), the
initial speed estimate may be approximated with

v̂r1 ≈ vr1 − uT
r1
˜̇rr,ini (42)

where ˜̇rr,ini ! ṙr (1) − ˆ̇rr,MLini . The initial speed estimation
error can be calculated from (42) as

ṽr1 ! vr1 − v̂r1 = uT
r1
˜̇rr,ini

and its associated estimation error variance may obtained
according

σ 2
vr1

! E
[
ṽ2r1

]
= uT

r1E
[
˜̇rr,ini ˜̇rTr,ini

]
ur1 .

It can be shown from (38) and (41) that

Pṙ,ini ! E
[
˜̇rr,ini ˜̇rTr,ini

]
=

1
T 2

"̄rr

where "̄rr ! "rr (0)+ "rr (1). Since ur1 is a unit vector, σ
2
vr1

may be bounded according to

σ 2
vr1

≤ λmax,ṙ

T 2
(43)

where λmax,ṙ denotes the maximum eigenvalue of "̄rr . Note
that since "̄rr is positive definite, then λmax,ṙ is a positive
real number that only depends on "̄rr .

Next, the estimation error covariance of ûr1 is charac-
terized. Using first-order Taylor series expansion around ṙr ,
ûr1 may be approximated with

ûr1 ≈ ur1 − ( ˜̇rr,ini (44)

where( ! 1
vr1

(I2×2 − ur1u
T
r1 ). The initial direction unit vec-

tor estimation error can be calculated from (44) as

ũr1 ! ur1 − ûr1 = ( ˜̇rr,ini

The matrix ( is an annihilator matrix; therefore, ∥(∥ = 1.
The estimation error covariance associated with ũr1 is given
by

Pur1 ! E
[
ũr1 ũ

T
r1

]
=

1
v2r1

("̄rr(
T. (45)

Using (32) and (45), ∥Pur1 ∥ may be bounded according to

σ 2
ur1

!
∥∥Pur1

∥∥ ≤ λmax,ṙ

∥rr (1) − rr (0)∥2
. (46)

APPENDIX C
THEORETICAL BACKGROUND ON OBSERVABILITY
AND EKF ESTIMATION ERROR BOUNDS

This appendix provides relevant theoretical background
on observability and EKF estimation error bounds.

A. OBSERVABILITY OF LINEAR AND NONLINEAR
SYSTEMS

Consider the discrete-time linear time-varying system

x (k + 1) = F(k)x(k)+ #(k)u(k) (47)

y(k) = H(k)x(k) (48)

where x ∈ Rnx is the system’s state, u ∈ Rnu is the input,
and y ∈ Rny is the measurement.

Observability of the discrete-time linear time-varying
system defined in (47) and (48) is usually determined by
studying the rank of either the observability Gramian or
the observability matrix. The following theorem from [46]
states a necessary and sufficient condition for observability
of linear time-varying systems through the l-step observ-
ability matrix.

THEOREM C.1 The discrete-time linear time-varying sys-
tem defined in (47) and (48) is l-step observable if and only
if the l-step observability matrix, defined as

O (k, k + l ) !

⎡

⎢⎢⎢⎢⎣

H(k)

H (k + 1)) (k + 1, k)
...

H (k + l − 1)) (k + l − 1, k)

⎤

⎥⎥⎥⎥⎦
(49)

is full rank, i.e., rank[O(k, k + l )] = nx. The matrix func-
tion )(k, j) is the discrete-time state transition matrix,
which is defined as

)(k, j) !
{
F (k − 1)F (k − 2) · · ·F( j), k ≥ j + 1

I, k = j.

Linear observability tools may be applied to nonlinear
systems by linearizing the dynamics and measurements to
obtain F(k), #(k), and H(k) [31]. The observability results
in such case are only valid locally.

B. EKF ERROR BOUNDS

The following useful lemma from [47] establishes
bounds on the KF’s estimation error covariance.

LEMMA C.1 Consider the discrete-time linear time-varying
stochastic system

x (k + 1) = F(k)x(k)+ #(k)u(k)+ w(k) (50)

z(k) = H(k)x(k)+ v(k) (51)

where x ∈ Rnx is the system’s state, u ∈ Rnu is the in-
put, w ∈ Rnx is a zero-mean white sequence with covari-
ance Q(k), z ∈ Rnz is the measurement, and v ∈ Rnz is a
zero-mean white sequence with covariance R(k). Assume
that w(k) and v( j) are uncorrelated for all k and j. Let
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P(k + 1|k) be a solution to the matrix Riccati difference
equation in the KF estimating the state of system (50), (51)
given by

P(k + 1|k) = F(k)
{
P(k|k − 1) − P(k|k − 1)HT(k) ·

[
H(k)P(k|k − 1)HT(k)+ R(k)

]−1 ·

H(k)P(k|k − 1)}FT(k)+Q(k).

Let the following hold.

1) There are real numbers q, q̄, r, r̄ > 0 such that Q(k)
and R(k) are bounded by

qI ≼ Q(k) ≼ q̄I, rI ≼ R(k) ≼ r̄I.

2) The matrices F(k) and H(k) satisfy the uniform
observability condition.

3) The initial condition P(1|0) of the matrix Riccati
difference equation in the KF is positive definite.

Then, there are real numbers p, p̄ > 0 such that P(k +
1|k) is bounded via

pI ≼ P(k + 1|k) ≼ p̄I ∀ k > 0.

Next, theoretical background on EKF estimation error
bounds is provided. Consider the discrete-time nonlinear
stochastic system

x(k + 1) = f [x(k), u(k)]+ w(k) (52)

z(k) = h [x(k)]+ v(k) (53)

where x ∈ Rnx is the system’s state, u ∈ Rnu is the input,
w ∈ Rnx is a zero-mean white sequence with covariance
Q(k), z ∈ Rnz is the measurement, and v ∈ Rnz is a zero-
mean white sequence with covariance R(k).

An EKF is employed to estimate x(k). Define the EKF
linearization errors

ϕ(k) ! f [x(k), u(k)] − f [x̂(k|k), u(k)]
− F(k) [x(k) − x̂(k|k)] (54)

χ(k) ! h [x(k)] − h [x̂(k + 1|k)]
− H(k) [x(k) − x̂(k + 1|k)] (55)

where F(k) and H(k) are the dynamics and observa-
tion Jacobians, respectively, evaluated at x̂(k|k) and x̂(k +
1|k), respectively. The main theorem from [32] that es-
tablishes conditions for the boundedness of x̃(k|k) is
stated.

THEOREM VII.2 Consider the system defined in (52) and
(53) and consider an EKF estimating its state vector. More-
over, let the following assumptions hold.

1) There are positive real numbers f̄ , h̄, p, p̄, q, r >
0 such that the following bounds hold for
every k > 0

∥F(k)∥ ≤ f̄ (56)

∥H(k)∥ ≤ h̄ (57)

pI ≼ P(k + 1|k) ≼ p̄I (58)

qI ≼ Q(k) (59)

rI ≼ R(k). (60)

2) The matrix F(k) is nonsingular for every k > 0.
3) There are positive real numbers ϵϕ, ϵχ , κϕ, κχ > 0

such that the nonlinear functions ϕ(k) and χ(k) are
bounded via

∥ϕ(k)∥ ≤ κϕ ∥x̃(k|k)∥2 (61)

∥χ(k)∥ ≤ κχ ∥x̃(k|k)∥2 (62)

with ∥x̃(k|k)∥ ≤ ϵϕ and ∥x̃(k|k)∥ ≤ ϵχ .

Then, the estimation error x̃(k|k) is exponentially
bounded in mean square and bounded with probability
1 as per Definitions IV.1 and IV.2, respectively, provided
that the initial estimation error satisfies

∥x̃(1|1)∥ ≤ ϵ (63)

and that the covariance matrices of the noise terms are
bounded via

Q(k) ≼ δI, R(k) ≼ δI (64)

for some ϵ, δ > 0.
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