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Abstract—A framework for ground vehicle localization that uses cellular signals of opportunity (SOPs), a 
digital map, an inertial measurement unit (IMU), and a Global Navigation Satellite System (GNSS) receiver 
is developed. This framework aims to enable localization in an urban environment where GNSS signals 
could be unusable or unreliable. The proposed framework employs an extended Kalman filter (EKF) to 
fuse pseudorange observables extracted from cellular SOPs, IMU measurements, and GNSS-derived po-
sition estimates (when available). The EKF is coupled with a map-matching approach. The framework 
assumes the positions of the cellular towers to be known, and it estimates the vehicle’s states (position, ve-
locity, orientation, and IMU biases) along with the difference between the vehicle-mounted receiver clock 
error states (bias and drift) and each cellular SOP clock error state. The proposed framework is evaluated 
experimentally on a ground vehicle navigating in a deep urban area with a limited sky view. Results show 
a position root-mean-square error (RMSE) of 2.8 m across a 1,380-m trajectory when GNSS signals are 
available and an RMSE of 3.12 m across the same trajectory when GNSS signals are unavailable for 330 m. 
Moreover, compared to localization with a loosely coupled GNSS–IMU integrated system, a 22% reduction 
in the localization error is obtained whenever GNSS signals are available, and an 81% reduction in the 
localization error is obtained whenever GNSS signals are unavailable.
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L
ocalization technologies for navigation and ground 
vehicle autonomy levels have been evolving hand 
in hand. Ten years ago, ground vehicle localization 
systems for navigation consisted of a GPS receiver, a 

wheel odometer, and an inertial measurement unit (IMU). 
Localization errors greater than lane-level and periodic 
dropouts of the navigation solution were tolerable to 
the driver, who had to follow the path drawn on the GPS 
navigation system. Although localization and some form 
of path planning from a start location to a desired desti-
nation were performed autonomously, the driver had to 
steer the car, control acceleration, avoid obstacles, change 
lanes, and so on. Today, as ground vehicles evolve by in-
corporating autonomous-type driving technologies (e.g., 
cruise control, active steering, collision avoidance, lane 
detection, and so on), the requirements for localization 
and navigation technologies become more stringent, ne-
cessitating the need for additional sensors (lidar, vision, 
radar, among others). Large errors become less accept-
able, and the consistent availability of the navigation solu-
tion is critical.

For example, it is not enough to estimate on which free-
way the vehicle is driving, as certain autonomous actions 
require lane-level localization. This is crucial for inter-
sections, exiting or entering a freeway, and at a junction 
of different freeways or streets. Moreover, when entering 
the freeway, for instance, the navigation solution must be 
continuously available to ensure the safety of passengers 
and other drivers. Looking ahead, as ground vehicles are 
endowed with full autonomy, the robustness and accuracy 
of their localization and navigation systems become of 
paramount importance. Without a human driver-in-the-
loop, one does not expect to have to question the avail-
ability of the localization and navigation systems, which 
must provide predictable performance in different driv-
ing scenarios.

Despite the promise of Global Navigation Satellite Sys-
tem (GNSS) signals as an accurate sensing modality, in 
GNSS-challenged environments (e.g., deep urban streets), 
these signals suffer from different error sources, includ-
ing multipath, signal blockage due to a limited sky view, 
uncertainties in satellite clocks and positions, signal prop-
agation delays in the ionosphere and troposphere, user 
receiver noise, and so on. In such conditions, it is impera-
tive to continuously monitor the integrity of GNSS signals. 
Integrity monitoring refers to the capability of the system 
to detect GNSS anomalies and warn the user when the sys-
tem should not employ GNSS measurements [1]. Integrity 
monitoring frameworks are divided into internal and ex-
ternal categories [2]. External methods leverage a network 
of ground monitoring stations to observe the transmitted 
signals, while internal methods (e.g., receiver autonomous 
integrity monitoring) typically use the redundant informa-
tion within the transmitted navigation signals.

As shown in [3], the navigation framework can be cou-
pled with these integrity monitoring methods to detect 
GNSS unreliability and unavailability. In addition to un-
availability due to anomalies, GNSS signals may become 
inaccessible in jamming or spoofing situations. It is also 
often the case that GNSS receivers lose track of the signals 
in multipath or non-line-of-sight (NLOS) environments, 
making the GNSS position solution unreliable. In such cas-
es, an integrity monitoring system would alert the user of 
an unreliable or unavailable position solution. Such integ-
rity monitoring frameworks can be adapted for cellular-
based navigation, the details of which can be found in [4].

Traditional vehicular localization and navigation tech-
nologies were heavily dependent on GNSS receivers. Dur-
ing the past decade, these systems evolved by coupling 
GNSS receivers with onboard sensors, such as IMUs. More-
over, such navigation systems may have access to proxim-
ity localization techniques (e.g., lidar, camera, and radar), 
which provide local position information and aid in colli-
sion avoidance. Map-matching techniques have also been 
developed to fit the direction-finding solution obtained by 
the navigation system to a point on the digital map [3], [5], 
[6]. More recently, signals of opportunity (SOPs) have been 
fused with GNSS receivers to complement the GNSS navi-
gation solution [7] or as an alternative to the GNSS [8].

This article considers, for the first time, the fusion of 
the preceding readily available, off-the-shelf technologies 
to achieve a highly robust and accurate navigation solution 
in urban environments by complementing the individual 
technologies’ desirable attributes. Specifically, the devel-
oped system uses:

■■ GNSS: The GNSS can provide a meter- and submeter-
level accurate navigation solution using code and car-
rier phase measurements, respectively, in a global 
frame. However, GNSS signals are highly attenuated 
indoors and in deep urban canyons, which makes them 
practically unusable in these environments. Moreover, 
GNSS signals are sensitive to multipath and susceptible 
to intentional interference (jamming) and counterfeit 
signals (spoofing), which can wreak havoc in military 
and civilian applications.

■■ IMUs: While IMU sensors provide an accurate short-
term navigation solution, one cannot rely on them as a 
stand-alone accurate solution for long-term navigation. 
This is due to the fact that the noisy outputs of IMUs are 
integrated through an inertial navigation system (INS), 
causing pose estimation errors to accumulate through 
time [9], [10]. The accumulated error rate is dependent 
on the quality of the IMU. These errors compromise the 
safe and efficient operation requirements for ground 
vehicle navigation in urban environments. Thus, for 
long-term navigation, an IMU sensor becomes unreli-
able, and an aiding source is needed to correct its drift 
and improve the navigation solution.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 29,2020 at 04:18:42 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  39  •  FALL 2020IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  38  •  FALL 2020

■■ Cellular SOPs: Cellular base transceiver stations (BTSs) 
are abundant and available in several bands, aggregating 
to tens of megahertz of usable cellular radio-frequency 
spectrum, making them robust against jamming and 
spoofing attacks as well as service outages in certain 
bands or providers. The cellular system BTS config-
uration, through the construction of the hexagonal 
cells, possesses favorable geometry, which yields a low 
horizontal dilution of precision. The received carrier-
to-noise ratio from nearby cellular BTSs is commonly 
tens of decibels higher than that of GNSS space vehicle 
(SV) signals, making these signals usable for localiza-
tion purposes in urban environments. However, due to 
the low elevation angles of cellular towers compared 
to GNSS SVs, received cellular signals are affected by 
multipath (e.g., due to buildings, trees, poles, other ve-
hicles, and so on). Nevertheless, cellular signals have 
a large bandwidth (up to 20 MHz), which is useful to 
the receiver in detecting and alleviating multipath 
effects, leading to precise time-of-arrival (TOA) esti-
mates and, in turn, a precise navigation solution.

■■ Map matching: Map matching for ground vehicle navi-
gation has been extensively studied [5], [11]–[14]. It has 
been shown that a map-matching framework can pro-
vide integrity at the lane level [3]. Map matching can 
also correct sensor errors [15]–[17]. Moreover, it has 
been shown that digital map information can be used to 
correct the accumulated error in dead-reckoning-type 
sensors (e.g., IMUs) [18]. However, digital maps may 
have displacement errors.
This article presents a robust vehicular localization 

framework for navigating in both GNSS-available and 
GNSS-denied urban environments. When GNSS signals 
are unavailable or compromised, the framework ex-
tracts navigation observables from cellular signals and 
fuses them with IMU and map data to continuously esti-
mate the vehicle’s states. When GNSS signals are avail-
able, the navigation solution is obtained by fusing the 
IMU data, map data, cellular signals, and GNSS-derived 
position estimate.

The proposed framework was tested in different envi-
ronments with a performance comparable (within 2–3 m) 
to that of an expensive high-end system that uses a dual-
frequency GNSS with real-time kinematics (RTK) and 
a tactical-grade IMU. The proposed approach does not 
rely on the GNSS for ground vehicle navigation in urban 
environments. Instead, it exploits the abundance of am-
bient cellular SOPs in such areas. It is worth noting that 
the GNSS suffers from other issues beyond a lack of cover-
age, such as severe multipath in deep urban canyons and 
susceptibility to jamming and spoofing. However, the focus 
of this article is to develop a low-cost system that performs 
well without the GNSS, which could be unavailable or un-
reliable for whatever reason.

Initial work that considered fusing map data and cellular 
signals was conducted in [19], where ground vehicle naviga-
tion in GNSS-denied environments was studied. This article 
extends the work in [19] through the following contribu-
tions. First, [19] did not consider any onboard navigation 
sensors, while this article formulates a realistic course-plot-
ting framework for a vehicle equipped with an IMU. Second, 
[19] provided a thorough study with many simulation and 
experimental results, which examined the performance of 
the framework under different driving conditions, such as 
turning along the road, crossing junctions, and coming to 
a complete stop. In contrast, this article focuses on techno-
logical and algorithmic aspects and explores the robustness 
of the proposed framework in challenging environments 
(e.g., a setting where both the GNSS and cellular signals are 
highly attenuated by tall trees and buildings).

Third, [19] employs a particle filter, whereas in this ar-
ticle, the proposed system uses a computationally efficient 
extended Kalman filter (EKF) to fuse digital map data, IMU 
data, the estimated position using an off-the-shelf GNSS re-
ceiver, and cellular SOP pseudoranges. Fourth, in contrast to 
[19], this article is written in a tutorial fashion that offers suf-
ficient details about the proposed system in addition to refer-
ences for the interested reader to probe for further details. It 
is worth noting that the proposed framework in this article 
does not specifically assume RTK-type GNSS-derived posi-
tion estimates. Instead, it considers a low-cost GNSS receiver, 
producing a navigation solution with meter-level accuracy.

Figure 1 presents a high-level diagram of the proposed 
ground vehicle localization system. The cellular-aided IMU 
block and the map-matching block are demonstrated in this 
figure. In contrast to existing map-matching approaches, 
the proposed algorithm is closed-loop, where the navigation 
solution is fed back to correct estimates of the receiver and 
cellular SOP clock error states. To account for the unmod-
eled map’s errors (e.g., the map’s displacement error), the 
proposed framework finds the smallest Mahalanobis dis-
tance between the map points and the vehicle’s estimated 
position, where the inaccuracies in the map are modeled as 
a random vector with a known mean and covariance. Note 
that the problems of localization and navigation are not iso-
lated from each other but, rather, closely linked. If a vehicle 
does not know its exact position at the start of a planned 
trajectory, it will encounter problems in reaching the desti-
nation [20]. Hence, in the following, the term navigation is 
applied to both localization and navigation purposes.

To evaluate the performance of the proposed ground 
vehicle navigation algorithm, two experimental tests were 
performed using ambient cellular LTE SOPs in 1) an urban 
environment where signal attenuation severely affects the 
received pseudoranges and 2) an environment where SOPs 
have poor geometric diversity. Experimental results with 
the proposed method are presented, illustrating a close match 
between the vehicle’s true trajectory and the estimated one 
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using the cellular-aided IMU plus map data, particularly 
in a GNSS-denied environment with a limited LOS to the 
open sky. The experimental results demonstrate a position 
root-mean-square error (RMSE) of 2.8 m across a 1,380-
m trajectory with available GNSS signals and an RMSE of 
3.12 m across the same trajectory when GNSS signals were 
unavailable for 330 m.

Moreover, it is demonstrated that incorporating the pro-
posed algorithm reduces the position RMSE by 22% and 
81% in GNSS-available and GNSS-denied environments, re-
spectively, from the RMSE obtained by a GNSS–IMU naviga-
tion solution. The achieved results are also compared with 
the outcomes in [19] (i.e., a particle filter-based framework 
without using the IMU sensor). It is demonstrated that the 
proposed method achieves a maximum error of 5.03 m in an 
environment with poor SOP geometric diversity, whereas 
the method in [19] produces a maximum error of 11.7 m 
in the same environment. Hence, adopting the proposed 
method reduces the maximum error by 57%. 

Navigation Framework Model Description
This section describes the models of the different compo-
nents of the vehicular navigation framework: the IMU, cel-
lular SOP, GNSS receiver, and digital map.

IMU Measurement Model
An IMU produces measurements of the angular rate and 
specific force. To use these measurements, the IMU’s ori-
entation, position, velocity, and measurement biases must 
be estimated. In this work, an IMU state vector xv  consist-
ing of 16 states is used, and it is given by

	 , , , , ,x p p b bq
.

v G
I

v v g a= R R R R RRr6 @ � (1)

where qG
I r  is a 4D unit quaternion representing the IMU’s 

orientation (i.e., rotation from a global frame G to the 
IMU’s body frame I ), where frame G is set to be an iner-
tial frame, such as the Earth-centered inertial frame; 

, ,p p p p, , ,v v x v y v z_ R6 @  and p
.

v  are the 3D position and ve-
locity of the vehicle, respectively, expressed in G; and bg  
and ba  are the 3D gyroscope and accelerometer biases, 
respectively. The IMU’s measurements of the angular rate 
~  and specific force a are available every T seconds and 
can be modeled as

	 ,b nI
g g~ ~= + + � (2)

	 [ ] ,q g b na R aI
G

G
I

G
a a= - + +r ^ h � (3)

respectively, where I~  is the IMU’s true rotation rate; ng  
is a measurement noise vector, which is modeled as a white 
noise sequence with covariance ;Qg  [ ]qR I

G r  is the equiva-
lent rotation matrix of ;qI

G r  aG
I  is the IMU’s true accel-

eration in frame G; and na  is a measurement noise vector, 
which is modeled as a white noise sequence with covari-
ance .Qa  The evolution of the gyroscope and accelerom-
eter biases are modeled as random walks; i.e., b w

.
a a=  and 

,b w
.

g g=  where wa  and wg  are modeled as zero-mean 
random vectors with covariances Iw

2
3 3av #  and ,Iw

2
3 3gv #  re-

spectively, where In n#  denotes an n # n identity matrix. 
The equivalent rotation matrix [ ]qR r  of the quaternion vec-
tor , , ,q q q q qv v v0 1 2 3= Rr 6 @  is
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FIG 1 A high-level diagram of the cellular-aided IMU framework in which the outputs of the IMU are fused in a loosely coupled fashion. The navigation 
solution obtained from the map-matching block is fed back to correct estimates of the receiver’s and the cellular SOPs clock error states.
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The measurements in (2) and (3) will be used in the EKF 
to perform a time update of the estimate of xv  between 
measurement updates. This will be discussed in the “EKF 
Time Update” section.

GNSS Receiver Measurement Model
The GNSS receiver is assumed to estimate the vehicle-mount-
ed receiver’s 3D position according to

,p p wvGNSS GNSS= +t

where wGNSS  models the uncertainty about this estimate, 
which is modeled as a zero-mean Gaussian random vector 
with covariance , , .diagg y z

2 2 2
GNSS, GNSS, GNSS,xv v vR = 6 @  Note 

that gR  consists of different error sources, including satel-
lite and receiver clock errors, satellites’ orbit errors, and 
ionospheric and tropospheric delays, but not multipath. It is 
important to mention that in addition to GNSS unavailabil-
ity due to anomalies, GNSS signals may become unavailable 
in the case where the GNSS receiver loses the signal track 
in severe multipath conditions or when there is a very low 
carrier-to-noise ratio. Therefore, navigating in severe mul-
tipath environments (e.g., deep urban canyons), requires 
modeling and accounting for the multipath in addition to 
calculating g/ . Multipath modeling is beyond the scope of 
this article; however, it has been the subject of many stud-
ies [21], [22]. Relevant work in the literature surveyed dif-
ferent multipath mitigation techniques [23]–[25]. These 
models may be used to construct the multipath contribution 
to GNSS-based position estimates, accordingly. More details 
are available in [19].

Cellular SOP Received Signal Model
Cellular towers transmit signals for synchronization and 
channel estimation purposes. These signals can be used to 
deduce the pseudorange between the transmitting tower 
and the receiver. In code-division multiple access systems, 
a pilot signal consisting of a pseudorandom noise sequence, 
known as the short code, is modulated by a carrier signal 
and broadcast by each BTS for synchronization purposes 
[26]. Therefore, by knowing the short code, the receiver 
can measure the code phase of the pilot signal as well as its 
carrier phase, hence forming a pseudorange measurement 
to each BTS transmitting the pilot signal [27], [28].

Two types of positioning techniques can be defined for 
LTE, namely, network-based and user equipment (UE)-
based positioning. In network-based positioning, a posi-
tioning reference signal (PRS) is broadcast by the Evolved 
Node B (eNodeB) [29]. The UE uses the PRS to measure the 
pseudoranges to multiple eNodeBs and transfers the mea-
surements to the network, where the location of the UE 
is estimated. During the past several years, research has 
focused on UE-based positioning techniques, where the 
broadcast reference signals—namely, the primary syn-
chronization signal, secondary synchronization signal, and 
cell-specific reference signal (CRS)—were explained for 
navigation purposes [30]. Among these sequences, it was 
demonstrated that the CRS yields the most precise position-
ing, due to its large transmission bandwidth [31]. The CRS 
is transmitted to estimate the channel between the UE and 
the eNodeB and could have a bandwidth of up to 20 MHz. 
Several techniques have been proposed to extract the TOA 
from the CRS, such as 1) threshold-based approaches [32], 
[33], 2) the superresolution algorithm [34], and 3) software-
defined receivers [35], [36]. Experimental results have 
shown meter-level positioning accuracy using stand-alone 
LTE CRS signals (i.e., without fusing other sensors).

In a very dynamic environment, e.g., for a moving re-
ceiver, the channel coherence time is relatively small (less 
than the measurement’s sampling time). Therefore, in a LOS 
condition, the pseudorange error due to multipath can be 
modeled with a zero-mean white Gaussian sequence, and an 
additive Gaussian noise model is valid for LTE pseudorange 
measurements. In an NLOS scenario, the receiver tracks 
the multipath signal instead of the LOS. Therefore, a non-
zero bias must be added to the pseudorange measurement 
model. Researchers have proposed multiple NLOS-identifi-
cation methods, including cooperative and noncooperative 
techniques [37]. When a NLOS measurement is detected, the 
receiver can either exclude it from the measurement set or 
reduce the measurement’s weight to decrease the error due 
to the NLOS signal [37]. NLOS identification is beyond the 
scope of this research, and all measurements are considered 
to be LOS.

A model of the LOS pseudorange made by the receiver 
on the nth cellular SOP is given by [38]

( ) ( ) ( ) ( )
( ),

, , ,

p pz k k c t k t k
v k

n N1

, , ,

,

n v n r n

n

2sop sop sop

sop

sop

$

f

< < d d= - + -

+

=

6 @

where Nsop  is the total number of available cellular SOPs; 
p ,nsop  and t nsop,d  are the 3D position vector and the clock bias 
of the nth cellular SOP transmitter, respectively; pv  and trd  
are the 3D position of vehicle and the receiver’s clock bias, 
respectively; and v ,nsop  is the measurement noise, which is 
modeled as a zero-mean white Gaussian sequence with vari-
ance .,n

2
sopv  Note that the pseudorange measurement noise 
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variance includes both the effect of noise and multipath error. 
Since cellular SOP transmitters are stationary, their positions 

p n n
N

1sop,
sop

=" ,  could be readily obtained, e.g., from cellular tow-
er location databases or by mapping them a priori [39], [40].

The proposed framework assumes a priori knowledge of 
.p n n

N
1sop,

sop

=" ,  Note that, in general, some cellular SOP trans-
mitter positions tend to overlap due to having base stations 
from multiple carrier providers on the same physical tower. 
In this article, only one cellular SOP is taken from a physi-
cal tower location; hence, p n n

N
1sop,

sop

=" ,  are all different. By 
virtue of the hexagonal cellular system structure, cellular 
SOPs from different tower locations tend to be distributed 
fairly uniformly around the receiver, which significantly 
reduces the dilution of the precision [40]. Optimal perfor-
mance is obtained when the SOPs form a regular polygon 
around the receiver when N 3sop $  [41]. It was observed 
from several data sets of LTE signals recorded in vehicu-
lar environments that typical values of Nsop  vary between 
three and five for each operator. The 3rd Generation Part-
nership Project 2 protocol requires cellular base stations 
to be synchronized to within 10 sn  from the GPS time [42]. 
Cellular base stations are typically equipped with GNSS re-
ceivers to meet this synchronization requirement.

While this level of synchronization is acceptable for 
communication purposes, it might introduce significant 
errors (on the order of tens of meters) in the pseudorange 
measurements if not accounted for properly, which, in turn, 
introduces large errors in the navigation solution. There-
fore, each cellular SOP is assumed to have its own clock er-
ror states, namely, clock bias and drift. Moreover, the SOP 
clock biases are stochastic and dynamic; hence, they must 
be continuously estimated. The vehicle-mounted receiver 
clock error state vector is , ,x t t,r r rclk _ d d

Ro6 @  where trdo  is 
the receiver’s clock drift, and the nth cellular SOP clock er-
ror state vector is , ,x t t, , ,n n nclk,sop sop sop_ d d

Ro6 @  where t ,nsopdo  
is the transmitter’s clock drift [43]. The discrete-time dy-
namics of x ,rclk  and x ,nclk,sop  are given by

	 ( ) ( ) ( ),x x wk k k1 F, , ,r r rclk clk clk clk+ = + � (4)

	 ( ) ( ) ( ),x x wk k k1 F, , ,n n nclk,sop clk clk,sop clk,sop+ = + � (5)

where w ,rclk  and w ,nclk,sop  are zero-mean white random 
sequences with covariances Q ,rclk  and ,Q ,nclk,sop  respec-
tively, and
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where T is the sampling time; Sw ,t rdu  and Sw ,t rdu o  are the power 
spectra of the continuous-time equivalent-process noise 
driving the vehicle-mounted receiver’s clock bias and drift, 
respectively; and Q ,nclk,sop  has the same form as ,Q rclk,  ex-

cept that Sw ,t rdu  and Sw ,t rdu o  are replaced with the nth cellular 
SOP-specific spectra Sw , ,t nsopdu  and ,Sw , ,t nsopdu o  respectively. The 
detailed derivations of the clock bias and the drift-process 
noise power spectral densities are described in [44]–[46].

It is important to mention that the pseudorange measure-
ments drawn from the SOP transmitters are parameterized 
by the difference between the SOPs’ and the receiver’s clock 
bias [43]. Therefore, estimating x ,rclk  and x ,nclk,sop  individu-
ally is unnecessary in this framework; instead, the difference 

,x x xc c t c t, , , , ,n r n n nclk,sop clk clk,sop sop sop$T TT_ d d= -
Ro^ h 6 @  is es-

timated, where c t c t t, ,n r nsop sop$T _d d d-6 @ and c t ,nsopT _do  
.c t t ,r nsop$ d d-o o6 @  The augmented clock error state is de-

fined as

	 , , .x x x Nclk,sop clk,sop,1 clk,sop, sopfT T_
R R R6 @ � (6)

It can be readily seen that xclk,sop  evolves according to the 
discrete-time dynamics

	 ( ) ( ) ( ),x x wk k k1clk,sop clk clk,sop clk,sopU+ = + � (7)

where , ,diag F Fclk clk clkf_U 6 @ and wclk,sop  is a zero-mean 
white random sequence with covariance Qclk,sop  given by
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, , , .i N1forQ Q Q, ,r i i rclk,sop clk,sop, clk, sopf_ + =

Map Model
The primary function of digital map technology is to pro-
duce a chart that provides a precise representation of points 
of interest (e.g., road networks) in a particular area. Digital 
maps collect and process landscape information and com-
pile the coordinates of geographical objects. During recent 
years, incorporating digital maps for accurate vehicle guid-
ance has been the subject of many studies [15]–[17], which 
resulted in the development of so-called map-matching 
techniques. Map matching refers to the process of associat-
ing the vehicle’s estimated position with the spatial informa-
tion extracted from the digital map [3], [47]. Map-matching 
algorithms employ a priori information concerning geo-
graphical features to enhance the vehicle’s navigation solu-
tion by localizing the car within the road network.

The framework presented in this article uses the open 
source digital map available on the Open Street Map 
(OSM) database [48]. The road networks are extracted us-
ing a MATLAB parser, which interpolates coordinates be-
tween points that have a horizontal distance greater than 
a predefined threshold. The elevation profile of the road 
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is obtained using Google Earth. Figure 2 summarizes the 
steps to extract map-matched points from a digital map. 
Figure  2(a) shows the navigation environment in River-
side, California. Figure 2(b) demonstrates the same area 
in the OSM database, which is downloadable from the OSM 
website [48]. Figure 2(c)–(e) conveys the steps to process 
the map data and extract the coordinates of the road. Fi-
nally, Figure 2(f) illustrates the map-matched points be-
fore and after interpolation. This area contains 144,670 
map-matched points and 185 roads, which are indicated in 
Figure 2(f) through red circles and blue lines, respectively.

The proposed framework accounts for inaccuracies in 
the map by incorporating a 3D displacement error ,wm  
which is modeled as a zero-mean random vector with cova-
riance , , .diagm m m m

2 2 2
x y zv v vR = 6 @  To this end, the small-

est Mahalanobis distance between the map points and 
the vehicle’s estimated position is calculated at each time 
step  k, and the vehicle’s position is refined accordingly. 
This is discussed in the “Map Matching and Closed-Loop 
Clock Error State Correction” section.

Data Fusion and Map-Matching Framework
This section describes an EKF-based framework to fuse 
IMU measurements with GNSS and cellular pseudo-
ranges to estimate the vehicle’s states (1) and clock er-
ror states (6). The framework also employs a closed-loop 
map-matching step to refine the estimates of the clock 
error states. A vehicle equipped with an IMU described 
in the “IMU Measurement Model” section is assumed to 
navigate in an environment comprising Nsop  cellular SOP 
transmitters with fully known locations. The framework 
provides robust and accurate navigation with and with-
out GNSS signals by exploiting ambient cellular SOPs. In 
contrast to traditional approaches, which employ an inte-
grated GNSS–IMU system with a digital map, the proposed 
framework deals with unknown dynamic stochastic error 
states of cellular SOPs by simultaneously estimating them. 
These estimates are further refined via a closed-loop map-
matching step. The EKF time and measurement update 
steps are outlined next, followed by the map-matching 
correction step.

(b)

(c)

(d)

(f)(a)

Extract Road
Coordinates

Interpolate
Points

(e)

Export the Road
Data From the

Digital Map
(.osm File)

FIG 2 The steps to extract the map-matched points from a digital map. (a) The navigation environment. (b) The OSM digital map (available at www 
.openstreetmap.org). (c) Exporting the.osm file, which contains road data. (d) The MATLAB-based parser to extract road data from the.osm file. 
(e) Processing the digital map, including extracting the road coordinates and interpolating points between successive map-matched points with a 
distance greater than a specified threshold. (f) The map-matched points before (top) and after (bottom) interpolation.
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EKF Time Update
In this section, the EKF time update step is described. The 
EKF’s vector x consists of the vehicle’s state xv  (1) and the 
clock error states (6), i.e.,

, .x x xv clk,sop= R R R6 @

The cellular SOPs are assumed to be stationary with known 
positions .p ,n n

N
1sop

sop

=" ,  Between measurement updates (whether 
from the GNSS or cellular signals), the IMU’s sampled mea-
surements of the angular velocity ~  and linear acceleration 
a are used to perform a time update of ( )x k j;t  for k j$ , 
which denotes the estimate of x(k) using all measurements 
up to time step j, to get the predicted states ( )x k j1 ;+t  and 
corresponding prediction error covariance ( ).k j1P ;+  The 
time update of the orientation state estimate is given by

	 ,q qq
G
I

I
I

G
I| |k j

k
k k j1 1 7=+ +rt rt rt � (8)

where qI
I
k

k 1+ rt  represents the estimated relative rotation of 
the IMU from time step k to .k 1+  In (8), 7  denotes the 
quaternion multiplication operator, which functions on 
two quaternion vectors , , ,q q qq q, , , ,v v v1 0 1 1 1 11 2 3_ 6 @ and q2 _  

, , ,q q q q, , , ,v v v0 2 2 2 21 2 36 @ to yield
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The value of qI
I
k

k 1+ rt  is found by integrating the measure-
ments ( )k~  and ( )k 1~ +  using a fourth-order Runge–
Kutta, which yields
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The time update of the velocity estimate is computed 
using the trapezoidal integration according to

	 ( ) ( ) ( ) ( ) ( ),p p s gsk j k j T k k T k1 2 1v v
G; ;+ = + + + +ot ot t t6 @ � (9)

where ( ) ( ) ( ),s ak k kRq_
Rt tt  ( ) ( ) ( ),a a bk k k ja_ ;-t t  and ( )kRq _t  

.qR
G
I |k j rt8 B  The time update of the position estimate is given by

	 ( ) ( ) ( ) ( ) .p p pp k j k j T k j k j1 2 1v v v v; ; ; ;+ = + + +t t ot ot6 @ � (10)

The time update of the gyroscope and accelerometer bi-
ases estimates is given by

	 ( ) ( ), ( ) ( ) .b b bb k j k j k j k j1 1g g a a; ; ; ;= =+ +t t t t � (11)

The time update of the clock error state estimate is readily 
deduced from (7) to be given by

	 ( ) ( ).x xk j k j1clk,sop clk clk,sop; ;U=+t t � (12)

The time update of the prediction error covariance is given by

	 ( ) ( ) ( ) ( ) ( ),k j k k j k k1P F P F Q; ;= ++ R � (13)

( ) ( , ), ,
( ) ( ), .
k k k
k k

1diag
diag

F
Q Q Q

B

d

clk

clk,sopB

_

_

U U+6
6 @

@

The discrete-time INS state transition matrix BU  and pro-
cess noise covariance QdB  are computed using standard 
INS equations, as described in [49] and [50].

Remark
The 4D quaternion vector is an over-determined represen-
tation of the orientation state. To avoid singularities due 
to this over-determined representation, the estimation er-
ror covariance of the three Euler angles is maintained in 
the EKF. Therefore, the block pertaining to the orientation 
state in ( )k jP ;  is 3 # 3.

EKF Measurement Update
When GNSS signals are available, the EKF measurement 
update stage corrects the time-updated states using cel-
lular SOP pseudoranges, data obtained from the map, 
and the estimated position provided by the GNSS .pGNSSt  
Here, the measurement vector ( )kZ  consists of pGNSSt  and 

,z ,n n
N

1sop
sop

=" ,  where z nsop,  is the pseudorange drawn from the 
nth cellular SOP transmitter.

When GNSS signals are cut off, the measurement up-
date stage uses only cellular SOP pseudoranges and digital 
map data. Here, ( )kZ  includes only cellular SOP mea-
surements, .z ,n n

N
1sop

sop

=" ,  Next, the corrected state estimate 
( )x k k1 1;+ +t  and the associated estimation error covari-

ance ( )k k1 1P ;+ +  are computed using the standard EKF 
measurement update equations [45]. The expressions of the 
corresponding measurement Jacobian H and the measure-
ment noise covariance sR  are demonstrated in Figure 3.

Map Matching and Closed-Loop Clock Error State Correction
Assuming that the digital map comprises LN  locations, de-
noted [ , , ] ,l p p pn mx my mz n

L
1n n n

N_ R
=

" ,  the position estimate 
( )p k kv ;t  is map-matched to yield ( )p k km ;t  according to
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FIG 3 The architecture of the proposed EKF-based approach in situations where GNSS signals are available and unavailable. (a) The EKF time 
update step. (b) The EKF measurement update step. (c) The measurement update without GNSS signals. (d) The measurement update with 
GNSS signals. (e) The corrected state estimate and associated estimation error covariance. (f) Calculating the clock difference correction.  
(g) Refining the vehicle’s estimated position using the map data. (h) The map-matched vehicle’s position estimate.
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The estimates ( )p k k1 1v ;+ +t  and ( )p k k1 1m ;+ +t  are 
used to refine the clock bias state estimates according to

( ) ( ) ( ),c t k k c t k k k 11 1 1 1, , ,n n nsop sop corr!T T T; ;d d + ++ + + +t t
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Finally, the map-matched estimate ( )p k k1 1m ;+ +t  is 
used to replace the estimate ( ),p k k1 1v ;+ +t  i.e.,

( ) ( ).p pk k k k1 1 1 1mv !; ;+ + + +t t

Figure 3 summarizes the architecture of the proposed nav-
igation framework.

Experimental Results
To evaluate the performance of the proposed ground ve-
hicle navigation framework, two experimental tests were 
performed in 1) an urban environment in which GNSS 
signals become attenuated and unreliable and 2) an area 
where signals from only two cellular LTE towers are used. 
In both experiments, a ground vehicle was equipped with 
the following hardware and software setup:

■■ two consumer-grade 800/1,900-MHz cellular omnidi-
rectional Laird antennas [51]

■■ a Septentrio AsteRx-i V integrated GNSS–IMU, which is 
equipped with a dual-antenna multifrequency GNSS re-
ceiver and a Vectornav VN-100 microelectromechanical 
system IMU; the AsteRx-i V enables access to the raw mea-
surements from this IMU, which was used for the time up-
date of the orientation, position, and velocity, as described 
in the “EKF Time Update” section. The carrier phase ob-
servables recorded by the Septentrio system were fused by 
nearby differential GPS base stations to produce the car-
rier phase-based RTK solution [52]. This RTK solution was 
used as a ground truth during postprocessing.

■■ a dual-channel National Instruments (NI) universal 
software radio peripheral (USRP) 2954R driven by GPS-
disciplined oscillator (GPSDO) [53]; this was used to 
simultaneously down-mix and synchronously sample 
cellular LTE signals at 10 megasamples/s.

■■ a laptop computer to store the sampled cellular signals; 
these samples were then processed by the Multichannel 
Adaptive Transceiver Information Extractor (MATRIX) 

software-defined radio (SDR) [12], [33], [54], which was 
developed by the Autonomous Systems Perception, In-
telligence, and Navigation Laboratory at the University 
of California, Riverside.
In both experiments, the ground vehicle was assumed to 

have initial access to GNSS signals. This enabled estimating 
the initial difference between the vehicle-mounted receiv-
er’s clock bias and the clock biases of each LTE eNodeB in 
the environment ( ) .x 0 1,n n

N
1clk,sop

sopT ;- =
t" ,  Moreover, the ini-

tial estimates of the vehicle’s orientation ( ),q 0 1G
I

v ;-rt  posi-
tion ( ),p 0 1v ;-t  and velocity ( )p 0 1v ;-ot  were obtained from 
the GNSS–IMU system. The gyroscopes’ and accelerome-
ters’ bias estimates, ( )b 0 1g ;-t  and ( ),b 0 1a ;-t  respectively, 
were initialized by averaging 5 s of gravity-compensated 
IMU measurements at a sampling period of T = 0.01 s while 
the vehicle was stationary. It is important to note that the 
IMU had been running for several minutes before the sam-
ples were collected and that the temperature was near a 
steady-state value. The temperature was assumed to be con-
stant during the 5-s averaging period. Any initialization er-
ror caused by this assumption is expected to be small and is 
captured in the initial estimation error covariance settings. 
The original uncertainties associated with these state esti-
mates were set to ( ) ( ) ;0 1 1 10P Iq

3
3 3

G
I v #;- = #

-
r  ( )0 1Ppv ;- = 

, ;3 0blkdiag I2 2#6 @  ( ) . , ,0 1 0 5 0blkdiagP Ip 2 2
.

v ; - = #6 @  
( ) . ;0 1 3 75 10P Ib

9
3 3g #;- = #

-^ h  ( ) . ;0 1 9 6 10P Ib
5

3 3a #;- = #
-^ h  

and ( ) , . ,0 1 3 0 3diagP x ,nclk,sop ;- =T 6 @  where ( )blkdiag $  and 
( )diag $  denote a block–diagonal and a diagonal matrix, re-

spectively. The value of gR  is set to [5, 5, 5]m ,2  and the SOP 
measurement noise variances are calculated empirically 
while the vehicle has access to GNSS signals according to

( ),k v k1
, ,n n

k

k
2

0

1
2
sop

cutoff
sop

cutoff

.v
=

-

lt/

where kcutoff  is the time GNSS signals were cut off, and

	 ( ) ( ) ( ) .p pv k z k k c t, , , ,n n n n2sop sop GNSS sop sopT_ < < d- - -lt t t � (17)

Note that (17) assumes that v ,nsoplt  is a stationary white se-
quence. However, in practice, these processes are not neces-
sarily white, and therefore a variance inflation factor is needed 
to account for the colored noise. Hence, ,, ,n n

2 2
sop sop!v av  where 

a  is the inflation factor, which was chosen to be two for the 
experiments presented in this article. The following sections 
present the navigation results in each of the two environments.

Environment 1
The first experiment was conducted in an urban environ-
ment: downtown Riverside. The vehicle traversed a trajectory 
of 1,380 m in 190 s. The traversed trajectory within this en-
vironment is surrounded by tall trees and buildings that at-
tenuate received cellular and GNSS signals. Due to the low 
elevation angles of cellular towers compared to GNSS sat-
ellites, LOS obstructions (e.g., buildings, trees, poles, other 
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vehicles, and so on) between the tower and the vehicle-
mounted receiver are prevalent. Figure 4 shows the envi-
ronment and the experimental hardware setup. Through 
the course of the experiment, the receiver was listening to 
five eNodeBs corresponding to the U.S. cellular provider 
AT&T, with the characteristics summarized in Table 1.

It has been shown that the pseudorange measurement 
noise variance and multipath error are lower for signals 
with a higher transmission bandwidth [12]. Therefore, LTE 
signals with a 20-MHz bandwidth can provide more ac-
curate pseudorange measurements compared to LTE sig-
nals with a 10-MHz bandwidth. Note that the transmission 

eNodeB 2

eNodeB 1

eNodeB 3
eNodeB 4

eNodeB 5

Start Point

USRP RIO

Cellular Antennas Multifrequency
GNSS Antennas

GNSS Antennas Integrated
GNSS-IMU

AsteRx-i
Module

VN-100  IMU

Storage

LabVIEW-Based LTE SDR MATLAB-Based Estimator

(a)

(b)

FIG 4 The experimental environment and experimental setup. (a) The environment layout, LTE SOP positions, and the true vehicle trajectory. The 
traversed path was surrounded by tall trees, and the received signal experienced a severe attenuation effect. (Source: Google Earth.) (b) The experimental 
hardware and software setup. The LTE antennas were connected to a dual-channel NI USRP-2954R driven by a GPSDO. The stored LTE signals were 
processed via the MATRIX SDR.
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bandwidth of LTE signals is not unique and depends on the 
LTE network provider. Figure 5(a) shows the LTE pseudo-
range (solid lines) and actual range (dashed lines) varia-
tions, and Figure 5(b) provides the empirical CDF of LTE 
pseudoranges for eNodeB 1–5. The standard deviations of 
the pseudoranges for eNodeB 1–5 were calculated to be 
9.19, 3.61, 4.18, 7.75, and 6.01 m, respectively. It is worth 
noting that one cannot fairly compare the results of these 
eNodeBs with each other since the received signals from 
these eNodeBs have experienced different carrier-to-noise 
ratio and multipath conditions.

The performance of the proposed navigation frame-
work is studied in two scenarios. The first one compares 
the performance against three existing approaches:

■■ GPS only: This emulates a low-cost technology, which uses 
only GPS pseudoranges to estimate the vehicle’s states.

■■ GPS–IMU: This approach fuses GPS-produced positions 
with an IMU, which exhibits 1 10º/h of gyroscope bias 
stability (such an IMU is typically considered tactical-
grade) in a loosely coupled fashion to estimate the ve-
hicle’s state.

■■ GPS–IMU–map matching: This emulates an existing high-
end vehicular navigation system, which map-matches the 
estimated vehicle’s position from the GPS–IMU system 
produced in the second approach.

The second scenario studies the performance of the pro-
posed framework in the absence of GNSS signals. To this 
end, the GPS navigation solution pGNSSt  was discarded in a 
portion of the vehicle’s trajectory to emulate GNSS unavail-
ability (see Figure 3).

Throughout the experimental test, the postprocessing 
software development kit was configured to produce a 
navigation solution at 1 Hz from GPS Level 1C/A measure-
ments to emulate only a low-cost, low-quality GPS receiver. 
In contrast, the ground truth against which the proposed 
framework and the three previously discussed approaches 
were compared was produced with the expensive high-end 
GNSS–IMU RTK Septentrio AsteRx-i V system.

Scenario 1: Comparison Against Existing Technologies
In the first scenario, GPS signals were available along the 
entire trajectory. Figure 6 shows the vehicle’s ground truth 
trajectory versus its estimated trajectory from GPS-only 
and GPS–IMU sources as well as the proposed framework. 
Table 2 compares the navigation performance of the pro-
posed framework versus that of the three approaches: GPS 
only, GPS–IMU, and GPS–IMU–map. It can be seen from 
these results that the proposed framework outperforms 
all three approaches. Most notably, the proposed frame-
work, which incorporated a standard GPS receiver whose 
navigation solution was loosely coupled with cellular pseu-
doranges and closed-loop map matching, outperforms a 
high-end vehicular navigation system that uses an expen-
sive tightly coupled GPS–IMU system with map matching. 

Note the sharp change of direction in the proposed frame-
work’s trajectory (yellow curve) in Figure 6(b). This is due 
to a correction during the map-matching stage, which usu-
ally happens at crossroads; however, this affects only a few 
time steps and gets resolved after passing the crossroad.

Scenario 2: Performance When GNSS Signals Are Unavailable
In this scenario, the proposed framework’s performance in 
the absence of GNSS signals was evaluated. To this end, 
the navigation solution obtained from the GPS receiver 
was discarded from the total trajectory for 330 m to emu-
late GPS unavailability. Figure 7 illustrates the portion of 
the vehicle’s trajectory where GPS signals were unavail-
able. The vehicle’s estimated trajectory from the proposed 
framework is also shown versus the vehicle’s estimated 
trajectory from the GPS–IMU system. To differentiate the 
influence of the map matching from the use of LTE mea-
surements, the GPS–IMU–LTE solution (i.e., the proposed 
framework without map matching) is also demonstrated in 

eNodeB
Carrier 
Frequency (MHz)

Cell 
Identification

Bandwidth 
(MHz) 

1 1,955 216 20*

2 739 319 10

3 739 288 10

4 739 151 10

5 739 232 10

*Here, 1,024 middle subcarriers were used instead of 2,048.

Table 1. The LTE eNodeB characteristics used in environment 1.

FIG 5 The (a) LTE pseudorange (solid lines) and actual range (dashed 
lines) variations and (b) the empirical cumulative distribution function 
(CDF) of the LTE pseudoranges for eNodeB 1–5.
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Figure 7. Table 3 compares the navigation performance of 
the proposed framework versus that of the GPS–IMU and 
GPS–IMU–LTE systems.

The following may be concluded from this test scenario. 
First, as expected, when GPS signals were unavailable, the 
IMU’s solution drifted due to the lack of assistive corrections 
from GPS signals (red line in Figure 7). Note that the ve-
hicle came to a stop at the traffic light for 9 s, during which 
the IMU’s solution drifted forward and to the right. Subse-
quently, the IMU’s solution continued to drift after the ve-
hicle resumed its forward motion. This error accumulation 
is particularly hazardous for semi- and fully autonomous 

Navigation Solution
Position 
RMSE

Mean Distance 
Error

Maximum 
Distance Error

GPS only 5.61 m 6.18 m 13.3 m

GPS–IMU 4.01 m 4.53 m 10.38 m

GPS–IMU–map 3.03 m 3.54 m 8.4 m

Proposed framework 2.8 m 3.41 m 8.09 m

Improvement over 
GPS–IMU

30.17% 24.72% 22.06%

Table 2. The navigation performance comparison in  
an urban environment.

FIG 6 (a)–(d) The experimental results in an urban environment. The vehicle’s estimated trajectory with our proposed framework is compared against the 
estimated trajectory with GPS-only and GPS–IMU systems. The ground truth was obtained with an expensive GPS–IMU system with RTK. Experimental 
results indicate a 2.8-m RMSE for the proposed approach. (a) The overall trajectory. (b) A turn segment at a crossroad. (c) A straight segment at a 
crossroad. (d) A straight segment surrounded by tall trees. (Source: Google Earth.) 
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ground vehicles. In contrast, the GPS–IMU–LTE solution 
(green line in Figure 7) did not exhibit such drift, as cellular 
signals were used as an assistive source to the IMU. Second, 
the effect of map matching on the achieved accuracy can be 
investigated by comparing the GPS–IMU–LTE solution and 
the proposed method (yellow line in Figure 7). It is evident 
that the proposed framework improves the GPS–IMU–LTE 
solution. The estimated position RMSE using the GPS–IMU–
LTE solution was found to be 4.13 m, whereas the estimated 
position RMSE using the proposed framework was 3.12 m.

Environment 2
To assess the performance of the proposed framework in 
the case where a small number of cellular towers is avail-
able, the second experiment was performed in a deep ur-
ban environment in downtown Riverside, where GNSS and 
LTE signals experienced severe multipath and the vehicle 
encountered 15 s of a GNSS unavaiability condition. In this 
test, the vehicle traversed a 345-m trajectory while simul-
taneously listening to two LTE SOPs corresponding to the 
U.S. cellular providers T-Mobile and AT&T. Table 4 summa-
rizes the LTE eNodeB characteristics used in experiment 2.

Figure 8 shows the experimental environment, the loca-
tion of the LTE towers, and the vehicle’s ground truth trajec-
tory versus those estimated with the proposed framework 
and those estimated with the GPS–IMU system. To evaluate 
the performance of the proposed framework in the GNSS-
cutoff condition, the navigation solution obtained from the 
GPS receiver is discarded during 40 m of the total trajec-
tory to emulate GPS unavailability. Table 5 summarizes the 

navigation performance in this environment. It can be seen 
that the proposed approach yielded a 32% reduction in the 
position RMSE and a 43% decrease in the maximum dis-
tance error despite using a very limited number of cellular 
SOPs. For a comparative analysis, the results achieved by 
the proposed framework were compared with those pro-
duced by the particle-filter-based framework without us-
ing an IMU, presented in [19]. The method presented in [19] 
achieved a maximum error of 11.7 m across a trajectory of 
345 m, while the maximum error obtained by the proposed 

FIG 7 The vehicle’s estimated trajectory from the GPS–IMU system versus the proposed framework when GPS signals become unavailable and then 
available. As can be seen, the GPS–IMU solution drifts in the absence of GPS signals. In contrast, the proposed framework does not exhibit such drift, 
as cellular signals are used as an aiding source to the IMU. (Source: Google Earth.)

GPS Unavailable

GPS Available

GPS–IMU
GPS–IMU–LTE
Ground Truth

Proposed Framework

Navigation Solution
Position 
RMSE

Mean 
Distance 
Error

Maximum 
Distance 
Error

GPS–IMU 8.37 m 14.87 m 57.12 m

GPS–IMU–LTE 4.13 m 5.66 m 12.38 m

Proposed framework 3.12 m 4.22 m 10.67 m

Improvement over GPS–IMU 62.72% 71.6% 81.32%

Table 3. The navigation performance comparison  
without GPS signals.

LTE 
SOP Operator

Carrier 
Frequency (MHz)

Cell 
Identification

Bandwidth 
(MHz)

1 T-Mobile 2,145 79 20

2 AT&T 1,955 350 20

Table 4. The LTE eNodeB characteristics used in environment 2.
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framework was 5.03 m for the same trajectory. Hence, as 
expected, incorporating an IMU in the EKF-based frame-
work significantly reduced the maximum error.

Conclusions and Future Work
This article presented a novel framework for vehicular 
navigation in urban environments. The framework uses an 
IMU, cellular signals, and GNSS signals (when available) 
along with closed-loop map matching. On the one hand, when 
GNSS signals are unavailable, the proposed framework uses 

Navigation Solution
Position 
RMSE

Mean 
Distance 
Error

Maximum 
Distance 
Error

GPS–IMU 5.1 m 4.75 m 8.96 m

Proposed framework 3.43 m 4.18 m 5.03 m

Improvement over GPS–IMU 32% 18% 43%

Table 5. The navigation performance comparison  
without GPS signals.

FIG 8 (a)–(c) The second experimental environment layout, including LTE SOP tower locations, the true vehicle trajectory, and the different navigation 
solutions, where the estimated vehicle position obtained from the GPS–IMU method and the proposed framework are shown using yellow and red 
lines, respectively. In this experiment, the vehicle-mounted receiver traversed 345 m across urban streets while simultaneously listening to only two 
LTE SOPs. It is worth mentioning that in the experiment area, the LTE towers were obstructed by buildings. The first LTE tower was far from the 
vehicle, and a large portion of the car’s trajectory had no clear LOS to it. As can be seen, the estimated position using the proposed framework 
closely follows the ground truth trajectory during the drive. Experimental results indicate a 3.43-m RMSE for the proposed approach. (a) The 
environment layout showing the vehicle’s trajectory and eNodeB locations. (b) A top view of the vehicle trajectory. (c) A camera angle showing the  
GPS-IMU solution drifting in the absence of GPS signals. Even after GPS returns, the GPS-IMU system performs poorly after the turn due to multipath. 
(Source: Google Earth.) 
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cellular signals and map data as assistive sources to the 
IMU, bounding the IMU drift and producing an accurate 
estimate of the vehicle’s state. On the other hand, when 
GNSS signals are available, the proposed framework fuses 
estimates from the GNSS receiver with cellular measure-
ments to produce an estimate that is within a few meters of 
the solution produced by a very expensive high-end GNSS–
IMU system with RTK and map matching.

Experimental results in two urban environments are 
presented, demonstrating the accuracy of the proposed frame-
work versus existing technologies. It was shown that the pro-
posed framework achieved a position RMSE of 2.8 m across a 
trajectory of 1,380 m while GNSS signals were available and a 
position RMSE of 3.12 across the same trajectory while GNSS 
signals were not available for 330 m. In addition, the robust-
ness of the proposed framework against a limited number 
of cellular towers (only two) was demonstrated, showing a 
position RMSE of 3.43 m across a trajectory of 345 m where 
GNSS signals were unavailable for 40 m. While this article 
considered a map displacement error with a zero-mean ran-
dom vector, more sophisticated map models could be investi-
gated in future work in an attempt to improve the robustness 
of the framework against unmodeled map errors.
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