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Abstract—A framework for ground vehicle localization that uses cellular signals of opportunity (SOPs), a
digital map, an inertial measurement unit (IMU), and a Global Navigation Satellite System (GNSS) receiver
is developed. This framework aims to enable localization in an urban environment where GNSS signals
could be unusable or unreliable. The proposed framework employs an extended Kalman filter (EKF) to
fuse pseudorange observables extracted from cellular SOPs, IMU measurements, and GNSS-derived po-
sition estimates (when available). The EKF is coupled with a map-matching approach. The framework
assumes the positions of the cellular towers to be known, and it estimates the vehicle’s states (position, ve-
locity, orientation, and IMU biases) along with the difference between the vehicle-mounted receiver clock
error states (bias and drift) and each cellular SOP clock error state. The proposed framework is evaluated
experimentally on a ground vehicle navigating in a deep urban area with a limited sky view. Results show
a position root-mean-square error (RMSE) of 2.8 m across a 1,380-m trajectory when GNSS signals are
available and an RMSE of 3.12 m across the same trajectory when GNSS signals are unavailable for 330 m.
Moreover, compared to localization with a loosely coupled GNSS-IMU integrated system, a 22% reduction
in the localization error is obtained whenever GNSS signals are available, and an 81% reduction in the
localization error is obtained whenever GNSS signals are unavailable.
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ocalization technologies for navigation and ground

vehicle autonomy levels have been evolving hand

in hand. Ten years ago, ground vehicle localization

systems for navigation consisted of a GPS receiver, a
wheel odometer, and an inertial measurement unit (IMU).
Localization errors greater than lane-level and periodic
dropouts of the navigation solution were tolerable to
the driver, who had to follow the path drawn on the GPS
navigation system. Although localization and some form
of path planning from a start location to a desired desti-
nation were performed autonomously, the driver had to
steer the car, control acceleration, avoid obstacles, change
lanes, and so on. Today, as ground vehicles evolve by in-
corporating autonomous-type driving technologies (e.g.,
cruise control, active steering, collision avoidance, lane
detection, and so on), the requirements for localization
and navigation technologies hecome more stringent, ne-
cessitating the need for additional sensors (lidar, vision,
radar, among others). Large errors become less accept-
able, and the consistent availability of the navigation solu-
tion is critical.

For example, it is not enough to estimate on which free-
way the vehicle is driving, as certain autonomous actions
require lane-level localization. This is crucial for inter-
sections, exiting or entering a freeway, and at a junction
of different freeways or streets. Moreover, when entering
the freeway, for instance, the navigation solution must be
continuously available to ensure the safety of passengers
and other drivers. Looking ahead, as ground vehicles are
endowed with full autonomy, the robustness and accuracy
of their localization and navigation systems become of
paramount importance. Without a human driver-in-the-
loop, one does not expect to have to question the avail-
ability of the localization and navigation systems, which
must provide predictable performance in different driv-
ing scenarios.

Despite the promise of Global Navigation Satellite Sys-
tem (GNSS) signals as an accurate sensing modality, in
GNSS-challenged environments (e.g., deep urban streets),
these signals suffer from different error sources, includ-
ing multipath, signal blockage due to a limited sky view,
uncertainties in satellite clocks and positions, signal prop-
agation delays in the ionosphere and troposphere, user
receiver noise, and so on. In such conditions, it is impera-
tive to continuously monitor the integrity of GNSS signals.
Integrity monitoring refers to the capability of the system
to detect GNSS anomalies and warn the user when the sys-
tem should not employ GNSS measurements [1]. Integrity
monitoring frameworks are divided into internal and ex-
ternal categories [2]. External methods leverage a network
of ground monitoring stations to observe the transmitted
signals, while internal methods (e.g., receiver autonomous
integrity monitoring) typically use the redundant informa-
tion within the transmitted navigation signals.
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As shown in [3], the navigation framework can be cou-
pled with these integrity monitoring methods to detect
GNSS unreliability and unavailability. In addition to un-
availability due to anomalies, GNSS signals may become
inaccessible in jamming or spoofing situations. It is also
often the case that GNSS receivers lose track of the signals
in multipath or non-line-of-sight (NLOS) environments,
making the GNSS position solution unreliable. In such cas-
es, an integrity monitoring system would alert the user of
an unreliable or unavailable position solution. Such integ-
rity monitoring frameworks can be adapted for cellular-
based navigation, the details of which can be found in [4].

Traditional vehicular localization and navigation tech-
nologies were heavily dependent on GNSS receivers. Dur-
ing the past decade, these systems evolved hy coupling
GNSS receivers with onboard sensors, such as IMUs. More-
over, such navigation systems may have access to proxim-
ity localization techniques (e.g., lidar, camera, and radar),
which provide local position information and aid in colli-
sion avoidance. Map-matching techniques have also heen
developed to fit the direction-finding solution obtained by
the navigation system to a point on the digital map [3], [5],
[6]. More recently, signals of opportunity (SOPs) have been
fused with GNSS receivers to complement the GNSS navi-
gation solution [7] or as an alternative to the GNSS [8].

This article considers, for the first time, the fusion of
the preceding readily available, off-the-shelf technologies
to achieve a highly robust and accurate navigation solution
in urban environments by complementing the individual
technologies’ desirable attributes. Specifically, the devel-
oped system uses:

m GNSS: The GNSS can provide a meter- and submeter-
level accurate navigation solution using code and car-
rier phase measurements, respectively, in a global
frame. However, GNSS signals are highly attenuated
indoors and in deep urban canyons, which makes them
practically unusable in these environments. Moreover,
GNSS signals are sensitive to multipath and susceptible
to intentional interference (jamming) and counterfeit
signals (spoofing), which can wreak havoc in military
and civilian applications.

m IMUs: While IMU sensors provide an accurate short-
term navigation solution, one cannot rely on them as a
stand-alone accurate solution for long-term navigation.
This is due to the fact that the noisy outputs of IMUs are
integrated through an inertial navigation system (INS),
causing pose estimation errors to accumulate through
time [9], [10]. The accumulated error rate is dependent
on the quality of the IMU. These errors compromise the
safe and efficient operation requirements for ground
vehicle navigation in urban environments. Thus, for
long-term navigation, an IMU sensor becomes unreli-
able, and an aiding source is needed to correct its drift
and improve the navigation solution.
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m Cellular SOPs: Cellular base transceiver stations (BTSs)
are abundantand availablein several bands, aggregating
to tens of megahertz of usable cellular radio-frequency
spectrum, making them robust against jamming and
spoofing attacks as well as service outages in certain
bands or providers. The cellular system BTS config-
uration, through the construction of the hexagonal
cells, possesses favorable geometry, which yields a low
horizontal dilution of precision. The received carrier-
to-noise ratio from nearby cellular BTSs is commonly
tens of decibels higher than that of GNSS space vehicle
(SV) signals, making these signals usable for localiza-
tion purposes in urban environments. However, due to
the low elevation angles of cellular towers compared
to GNSS SVs, received cellular signals are affected by
multipath (e.g., due to buildings, trees, poles, other ve-
hicles, and so on). Nevertheless, cellular signals have
a large bandwidth (up to 20 MHz), which is useful to
the receiver in detecting and alleviating multipath
effects, leading to precise time-of-arrival (TOA) esti-
mates and, in turn, a precise navigation solution.

u Map matching: Map matching for ground vehicle navi-
gation has been extensively studied [5], [11]-[14]. It has
been shown that a map-matching framework can pro-
vide integrity at the lane level [3]. Map matching can
also correct sensor errors [15]-[17]. Moreover, it has
been shown that digital map information can be used to
correct the accumulated error in dead-reckoning-type
sensors (e.g., IMUs) [18]. However, digital maps may
have displacement errors.

This article presents a robust vehicular localization
framework for navigating in both GNSS-available and
GNSS-denied urban environments. When GNSS signals
are unavailable or compromised, the framework ex-
tracts navigation ohservables from cellular signals and
fuses them with IMU and map data to continuously esti-
mate the vehicle’s states. When GNSS signals are avail-
able, the navigation solution is obtained by fusing the
IMU data, map data, cellular signals, and GNSS-derived
position estimate.

The proposed framework was tested in different envi-
ronments with a performance comparable (within 2-3 m)
to that of an expensive high-end system that uses a dual-
frequency GNSS with real-time kinematics (RTK) and
a tactical-grade IMU. The proposed approach does not
rely on the GNSS for ground vehicle navigation in urban
environments. Instead, it exploits the abundance of am-
bient cellular SOPs in such areas. It is worth noting that
the GNSS suffers from other issues beyond a lack of cover-
age, such as severe multipath in deep urban canyons and
susceptibility to jamming and spoofing. However, the focus
of this article is to develop a low-cost system that performs
well without the GNSS, which could be unavailable or un-
reliable for whatever reason.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 29,2020 at 04:18:42 UTC from IEEE Xplore. Restrictions apply.

Initial work that considered fusing map data and cellular
signals was conducted in [19], where ground vehicle naviga-
tion in GNSS-denied environments was studied. This article
extends the work in [19] through the following contribu-
tions. First, [19] did not consider any onboard navigation
sensors, while this article formulates a realistic course-plot-
ting framework for a vehicle equipped with an IMU. Second,
[19] provided a thorough study with many simulation and
experimental results, which examined the performance of
the framework under different driving conditions, such as
turning along the road, crossing junctions, and coming to
a complete stop. In contrast, this article focuses on techno-
logical and algorithmic aspects and explores the robustness
of the proposed framework in challenging environments
(e.g., a setting where both the GNSS and cellular signals are
highly attenuated by tall trees and buildings).

Third, [19] employs a particle filter, whereas in this ar-
ticle, the proposed system uses a computationally efficient
extended Kalman filter (EKF) to fuse digital map data, IMU
data, the estimated position using an off-the-shelf GNSS re-
ceiver, and cellular SOP pseudoranges. Fourth, in contrast to
[19], this article is written in a tutorial fashion that offers suf-
ficient details about the proposed system in addition to refer-
ences for the interested reader to probe for further details. It
is worth noting that the proposed framework in this article
does not specifically assume RTK-type GNSS-derived posi-
tion estimates. Instead, it considers a low-cost GNSS receiver,
producing a navigation solution with meter-level accuracy.

Figure 1 presents a high-level diagram of the proposed
ground vehicle localization system. The cellular-aided IMU
block and the map-matching block are demonstrated in this
figure. In contrast to existing map-matching approaches,
the proposed algorithm is closed-loop, where the navigation
solution is fed back to correct estimates of the receiver and
cellular SOP clock error states. To account for the unmod-
eled map’s errors (e.g., the map’s displacement error), the
proposed framework finds the smallest Mahalanobis dis-
tance between the map points and the vehicle’s estimated
position, where the inaccuracies in the map are modeled as
arandom vector with a known mean and covariance. Note
that the problems of localization and navigation are not iso-
lated from each other hut, rather, closely linked. If a vehicle
does not know its exact position at the start of a planned
trajectory, it will encounter problems in reaching the desti-
nation [20]. Hence, in the following, the term navigation is
applied to both localization and navigation purposes.

To evaluate the performance of the proposed ground
vehicle navigation algorithm, two experimental tests were
performed using ambient cellular LTE SOPs in 1) an urban
environment where signal attenuation severely affects the
received pseudoranges and 2) an environment where SOPs
have poor geometric diversity. Experimental results with
the proposed method are presented, illustrating a close match
between the vehicle’s true trajectory and the estimated one
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using the cellular-aided IMU plus map data, particularly
in a GNSS-denied environment with a limited LOS to the
open sky. The experimental results demonstrate a position
root-mean-square error (RMSE) of 2.8 m across a 1,380-
m trajectory with available GNSS signals and an RMSE of
3.12 m across the same trajectory when GNSS signals were
unavailable for 330 m.

Moreover, it is demonstrated that incorporating the pro-
posed algorithm reduces the position RMSE by 22% and
81% in GNSS-available and GNSS-denied environments, re-
spectively, from the RMSE obtained by a GNSS-IMU naviga-
tion solution. The achieved results are also compared with
the outcomes in [19] (i.e., a particle filter-based framework
without using the IMU sensor). It is demonstrated that the
proposed method achieves a maximum error of 5.03 m in an
environment with poor SOP geometric diversity, whereas
the method in [19] produces a maximum error of 11.7 m
in the same environment. Hence, adopting the proposed
method reduces the maximum error by 57%.

Navigation Framework Model Description

This section describes the models of the different compo-
nents of the vehicular navigation framework: the IMU, cel-
lular SOP, GNSS receiver, and digital map.

IMU Measurement Model

An IMU produces measurements of the angular rate and
specific force. To use these measurements, the IMU’s ori-
entation, position, velocity, and measurement bhiases must
be estimated. In this work, an IMU state vector &, consist-
ing of 16 states is used, and it is given by

T :[{}qT7 pga p;a bga bZ]Ta (1)

where /¢ is a 4D unit quaternion representing the IMU’s
orientation (i.e., rotation from a global frame G to the
IMU’s body frame /), where [rame G is set to be an iner-
tial frame, such as the Earth-centered inertial frame;
Po=[Poz, Poy, Pu:]” and p, are the 3D position and ve-
locity of the vehicle, respectively, expressed in G; and bg
and b, are the 3D gyroscope and accelerometer biases,
respectively. The IMU’s measurements of the angular rate
o and specific force a are available every 7T seconds and
can be modeled as

o="'w+bs+ng, @)

a=R[’Gq](Ga1—”g)+b,,+na, 3)

respectively, where ‘@ is the IMU’s true rotation rate; n,
is ameasurement noise vector, which is modeled as a white
noise sequence with covariance Q; R[;@] is the equiva-
lent rotation matrix of Lg; “a; is the IMU’s true accel-
eration in frame G; and n, is a measurement noise vector,
which is modeled as a white noise sequence with covari-
ance Q.. The evolution of the gyroscope and accelerom-
eter biases are modeled as random walks; i.e., ba = w, and
bs:=w,, where w, and w, are modeled as zero-mean
random vectors with covariances oz, I5x5 and o7, I5x3, re-
spectively, where I.x, denotes an n X n identity matrix.
The equivalent rotation matrix R[q] of the quaternion vec-

tor (] = [qo, Gvis Qusy C]m]T is
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FIG 1 A high-level diagram of the cellular-aided IMU framework in which the outputs of the IMU are fused in a loosely coupled fashion. The navigation
solution obtained from the map-matching block is fed back to correct estimates of the receiver’s and the cellular SOPs clock error states.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 29,2020 at 04:18:42 UTC from IEEE Xplore. Restrictions apply.

39 - FALL 2020



g+ gz — qi. — qis
[ri,re,rs], ro=| 2(qeqe. — qogw) |,
2(qviqos + qoqvs)
2(qviqo: +qoqrs)
r:=\qs—qi + qs. — qs
2(qv:qvs — qoquvr)
2(qviqvs — qoqrs)

rs = Q(C]vaqm‘f"qOQm) .
a3 — gz — qi. + g3

Riq]

The measurements in (2) and (3) will be used in the EKF
to perform a time update of the estimate of @, between
measurement updates. This will be discussed in the “EKF
Time Update” section.

GNSS Receiver Measurement Model
The GNSS receiveris assumed to estimate the vehicle-mount-
ed receiver’s 3D position according to

Panss = Po + Wanss,

where wgnss models the uncertainty about this estimate,
which is modeled as a zero-mean Gaussian random vector
with covariance X,=diag[otxss.r, Oonss.y, Oonss.c]. Note
that X, consists of different error sources, including satel-
lite and receiver clock errors, satellites’ orbit errors, and
ionospheric and tropospheric delays, but not multipath. It is
important to mention that in addition to GNSS unavailabil-
ity due to anomalies, GNSS signals may become unavailahle
in the case where the GNSS receiver loses the signal track
in severe multipath conditions or when there is a very low
carrier-to-noise ratio. Therefore, navigating in severe mul-
tipath environments (e.g., deep urban canyons), requires
modeling and accounting for the multipath in addition to
calculating > ¢. Multipath modeling is beyond the scope of
this article; however, it has been the subject of many stud-
ies [21], [22]. Relevant work in the literature surveyed dif-
ferent multipath mitigation techniques [23]-[25]. These
models may be used to construct the multipath contribution
to GNSS-based position estimates, accordingly. More details
are available in [19].

Cellular SOP Received Signal Model

Cellular towers transmit signals for synchronization and
channel estimation purposes. These signals can be used to
deduce the pseudorange between the transmitting tower
and the receiver. In code-division multiple access systems,
apilot signal consisting of a pseudorandom noise sequence,
known as the short code, is modulated by a carrier signal
and broadcast by each BTS for synchronization purposes
[26]. Therefore, by knowing the short code, the receiver
can measure the code phase of the pilot signal as well as its
carrier phase, hence forming a pseudorange measurement
to each BTS transmitting the pilot signal [27], [28].
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Two types of positioning techniques can he defined for
LTE, namely, network-based and user equipment (UE)-
based positioning. In network-based positioning, a posi-
tioning reference signal (PRS) is broadcast by the Evolved
Node B (eNodeB) [29]. The UE uses the PRS to measure the
pseudoranges to multiple eNodeBs and transfers the mea-
surements to the network, where the location of the UE
is estimated. During the past several years, research has
focused on UE-hased positioning techniques, where the
broadcast reference signals—namely, the primary syn-
chronization signal, secondary synchronization signal, and
cell-specific reference signal (CRS)—were explained for
navigation purposes [30]. Among these sequences, it was
demonstrated that the CRS yields the most precise position-
ing, due to its large transmission bandwidth [31]. The CRS
is transmitted to estimate the channel between the UE and
the eNodeB and could have a bandwidth of up to 20 MHz.
Several techniques have heen proposed to extract the TOA
from the CRS, such as 1) threshold-based approaches [32],
[33], 2) the superresolution algorithm [34], and 3) software-
defined receivers [35], [36]. Experimental results have
shown meter-level positioning accuracy using stand-alone
LTE CRS signals (i.e., without fusing other sensors).

In a very dynamic environment, e.g., for a moving re-
ceiver, the channel coherence time is relatively small (less
than the measurement’s sampling time). Therefore, in a LOS
condition, the pseudorange error due to multipath can be
modeled with a zero-mean white Gaussian sequence, and an
additive Gaussian noise model is valid for LTE pseudorange
measurements. In an NLOS scenario, the receiver tracks
the multipath signal instead of the L.OS. Therefore, a non-
zero bias must be added to the pseudorange measurement
model. Researchers have proposed multiple NLOS-identifi-
cation methods, including cooperative and noncooperative
techniques [37]. When a NLOS measurement is detected, the
receiver can either exclude it from the measurement set or
reduce the measurement’s weight to decrease the error due
to the NLOS signal [37]. NLOS identification is beyond the
scope of this research, and all measurements are considered
to be LOS.

A model of the LOS pseudorange made by the receiver
on the nth cellular SOP is given by [38]

Zsop,n(k) = " pt(k) - psop,n "2 +c- [atr(k) - 5tsop,n(k)]
+ Vsopa(k),
n= 1, ceey Nst)p,

where N, is the total number of available cellular SOPs;
Psop.n and Slsop,n are the 3D position vector and the clock hias
of the nth cellular SOP transmitter, respectively; p. and &¢,
are the 3D position of vehicle and the receiver’s clock bias,
respectively; and vsop,» is the measurement noise, which is
modeled as a zero-mean white Gaussian sequence with vari-
ance o2p,. Note that the pseudorange measurement noise
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variance includes both the effect of noise and multipath error.
Since cellular SOP transmitters are stationary, their positions
{Psopn }2= could be readily obtained, e.g., from cellular tow-
er location databases or hy mapping them a priori [39], [40].

The proposed framework assumes a priori knowledge of
{psopn }2=. Note that, in general, some cellular SOP trans-
mitter positions tend to overlap due to having base stations
from multiple carrier providers on the same physical tower.
In this article, only one cellular SOP is taken from a physi-
cal tower location; hence, {psop.n}r are all different. By
virtue of the hexagonal cellular system structure, cellular
SOPs from different tower locations tend to be distributed
fairly uniformly around the receiver, which significantly
reduces the dilution of the precision [40]. Optimal perfor-
mance is obtained when the SOPs form a regular polygon
around the receiver when Nsp =3 [41]. It was observed
from several data sets of LTE signals recorded in vehicu-
lar environments that typical values of N, vary between
three and five for each operator. The 5rd Generation Part-
nership Project 2 protocol requires cellular base stations
to be synchronized to within 10 gs from the GPS time [42].
Cellular base stations are typically equipped with GNSS re-
ceivers to meet this synchronization requirement.

While this level of synchronization is acceptable for
communication purposes, it might introduce significant
errors (on the order of tens of meters) in the pseudorange
measurements if not accounted for properly, which, in turn,
introduces large errors in the navigation solution. There-
fore, each cellular SOP is assumed to have its own clock er-
ror states, namely, clock bias and drift. Moreover, the SOP
clock biases are stochastic and dynamic; hence, they must
be continuously estimated. The vehicle-mounted receiver
clock error state vector is @ax- =[5t 8L,]", where &t is
the receiver’s clock drift, and the nth cellular SOP clock er-
ror state vector is Zeisop.n = [Slsop,ns Stsop,n]T, where Stsop,n
is the transmitter’s clock drift [43]. The discrete-time dy-
namics of &, and e, sop,n are given by

Zakr(k +1)=FaxZair (k) + wak,(k), (4)
x(‘lk,sop,n(lﬁ + 1) = Fclkx(:lk,s()p,n(k) + L cik,sop,n (k), (5)

where wak,, and weisop,n are zero-mean white random
sequences with covariances Qe and Qe sop,n, respec-
tively, and

1T
Fclk:[() 1

Sll'&,r T + Sl?)dl./' TT% Su‘m.r %2
Q('lk,r = T2

S Wst,r 7

where 7'is the sampling time; Si., and Sa;, are the power
spectra of the continuous-time equivalent-process noise
driving the vehicle-mounted receiver’s clock bias and drift,
respectively; and Qu,sop,» has the same form as Qe,, ex-

S Wit,r T
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cept that Sg,, and Sa;, are replaced with the nth cellular
SOP-specific spectra Sws.,, and Sas.,., respectively. The
detailed derivations of the clock bias and the drift-process
noise power spectral densities are described in [44]—[46].

[tisimportantto mention thatthe pseudorange measure-
ments drawn from the SOP transmitters are parameterized
by the difference between the SOPs’ and the receiver’s clock
bias [43]. Therefore, estimating @, and e sop,» individu-
allyis unnecessary in this framework;instead, the difference
A cicsopn = € - (Lt — Letksopn) 2 [ CASLsop,ny CASLsopn]T is €5-
timated, where cAS8Lsopn = €[Sty — Stsopn] and cASlsopn =
¢ [6t, — 8tsopn]. The augmented clock error state is de-
fined as

T T T
I clk,sop = [Axclk,sop,b ceey Ax(‘lk,sop,/\sup] . (6)

It can be readily seen that @ sop evolves according to the
discrete-time dynamics

Zclk,sop (k + 1) = ¢clkxclk,sop(k) + wclk,sop(k), (7)

where @i = diag[Fux, ..., Fax] and wesop i8 a zero-mean
white random sequence with covariance Qe sop given by

Q(‘lk,sop,r,i Q(‘,Ik,r eee Q(‘]k,r
¢ 1k, Ik, s0p, 7,2 oo 1k,
Q(‘ll'\,sop — Cz QL r QL ;Upr - QL r ,
chk,r chk,r eee chk,sop,r,N}w
where

Q(:lk,s()p,r,i = Q(:lk,s()p,i + Q(‘lk,r, fOI' l = 1, ceey Ns()p-

Map Model

The primary function of digital map technology is to pro-
duce a chart that provides a precise representation of points
of interest (e.g., road networks) in a particular area. Digital
maps collect and process landscape information and com-
pile the coordinates of geographical objects. During recent
years, incorporating digital maps for accurate vehicle guid-
ance has been the subject of many studies [15]-[17], which
resulted in the development of so-called map-matching
techniques. Map matching refers to the process of associat-
ingthe vehicle’s estimated position with the spatial informa-
tion extracted from the digital map [3], [47]. Map-matching
algorithms employ a priori information concerning geo-
graphical features to enhance the vehicle’s navigation solu-
tion by localizing the car within the road network.

The framework presented in this article uses the open
source digital map available on the Open Street Map
(OSM) database [48]. The road networks are extracted us-
ing a MATLAB parser, which interpolates coordinates be-
tween points that have a horizontal distance greater than
a predefined threshold. The elevation profile of the road
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is obtained using Google Earth. Figure 2 summarizes the
steps to extract map-matched points from a digital map.
Figure 2(a) shows the navigation environment in River-
side, California. Figure 2(b) demonstrates the same area
in the OSM database, which is downloadable from the OSM
website [48]. Figure 2(c)-(e) conveys the steps to process
the map data and extract the coordinates of the road. Fi-
nally, Figure 2(f) illustrates the map-matched points be-
fore and after interpolation. This area contains 144,670
map-matched points and 185 roads, which are indicated in
Figure 2(f) through red circles and blue lines, respectively.

The proposed framework accounts for inaccuracies in
the map by incorporating a 3D displacement error wu,
which is modeled as a zero-mean random vector with cova-
riance X, = diag[o?m., 0%m,, 0°m.]. To this end, the small-
est Mahalanobis distance between the map points and
the vehicle’s estimated position is calculated at each time
step k, and the vehicle’s position is refined accordingly.
This is discussed in the “Map Matching and Closed-Loop
Clock Error State Correction” section.

Data Fusion and Map-Matching Framework

This section describes an EKF-based framework to fuse
IMU measurements with GNSS and cellular pseudo-
ranges Lo estimate the vehicle’s states (1) and clock er-
ror states (6). The framework also employs a closed-loop
map-matching step to refine the estimates of the clock
error states. A vehicle equipped with an IMU described
in the “IMU Measurement Model” section is assumed to
navigate in an environment comprising Vsop cellular SOP
transmitters with fully known locations. The framework
provides robust and accurate navigation with and with-
out GNSS signals by exploiting ambient cellular SOPs. In
contrast to traditional approaches, which employ an inte-
grated GNSS-IMU system with a digital map, the proposed
framework deals with unknown dynamic stochastic error
states of cellular SOPs by simultaneously estimating them.
These estimates are further refined via a closed-loop map-
matching step. The EKF time and measurement update
steps are outlined next, followed by the map-matching
correction step.
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FIG 2 The steps to extract the map-matched points from a digital map. (a) The navigation environment. (b) The OSM digital map (available at www
.openstreetmap.org). (c) Exporting the.osm file, which contains road data. (d) The MATLAB-based parser to extract road data from the.osm file.
(e) Processing the digital map, including extracting the road coordinates and interpolating points between successive map-matched points with a
distance greater than a specified threshold. (f) The map-matched points before (top) and after (bottom) interpolation.
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EKF Time Update

In this section, the EKF time update step is described. The
EKF’s vector x consists of the vehicle’s state @, (1) and the
clock error states (6), i.e.,

X = [x;l;y lek,sop]T~

The cellular SOPs are assumed to he stationary with known
positions { psop,. }2=. Between measurement updates (whether
from the GNSS or cellular signals), the IMU’s sampled mea-
surements of the angular velocity e and linear acceleration
a are used to perform a time update of & (k|j) for k= j,
which denotes the estimate of 2(k) using all measurements
up to time step j, to get the predicted states & (k+1|j) and
corresponding prediction error covariance P(k +1|j). The
time update of the orientation state estimate is given by

a=iae i, ®)
where ﬁf_”[} represents the estimated relative rotation of
the IMU from time step k£ to £+1. In (8), ® denotes the
quaternion multiplication operator, which functions on
two quaternion vectors g = [qo,1, Gui1s Gosty Gosi] and gz =
[Go.2, Gui2, Guo2y Gos2] Lo yield

q1®q2=[q0,1G02 — Qo1 Gvi.2 = Qoo Qo2 — Go51 G52,
q(),i qv|,2 + q1)1,1 qO,Q + (I1=2,1 q1)3,2 - q173,1 qu,Q,
q(),lqvg,Q - q1>1,1Q1v5,2 + qzu,lqo,Q + (Im,1qm,2,
Go,1Gvs2 + it Goo2 — oot Gos2 + Gos1Goz]T.

The value of 2‘_*‘[} is found by integrating the measure-
ments w(k) and w(k+1) using a fourth-order Runge-
Kutta, which yields

I

I = o+ %(d] +2ds+2ds + dy),
di =2 Q(o(k)qo, do=5Q((k))(qo+ S Td,),
ds =1 Qb(k)(qo+ 5 Td>),
di=1 0@k +1))(qo+ 5 1a5),

(k)= S(dk)+ bk +1)), §o=[1,0,0,0],

where &= — b, and

0 '

o =[

(@) o lox|
0 @z a)y

lox]=| w: 0 -w.|, o=|w.,o0y,o:].
-0y, . 0

The time update of the velocity estimate is computed
using the trapezoidal integration according to

Dol +11) = pu(hl ) + 5[50k + 3G+ )]+ T g (), (9)
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where §(k)= RI (k) a(k), a(k)= a(k)—ba(k|j), and Ry(k)=
B[Qf“f]]. The time update of the position estimate is given by

ok +11))= po(k| )+ S 1pull+117)+ pukl ). (10)

The time update of the gyroscope and accelerometer bi-
ases estimates is given by

be(k+117)=ba(klj), ba(k+11j)=ba(klj).  (11)

The time update of the clock error state estimate is readily
deduced from (7) to be given by

-’i‘cll'\,sop(k + 1|]) = (I)clk-’ifcll'\,sop(k | ]) (12)

The time update of the prediction error covariance is given by

P(k+117)=F(k) P(k|7) FT(k) + Q(k), (13)

F(k) = diag[@s(k + 1, k), ®er],
Q(k) = diag[ Qus(k), Qeik,sop]-

The discrete-time INS state transition matrix ®5 and pro-
cess noise covariance Qg, are computed using standard
INS equations, as described in [49] and [50].

Remark

The 4D quaternion vector is an over-determined represen-
tation of the orientation state. To avoid singularities due
to this over-determined representation, the estimation er-
ror covariance of the three Euler angles is maintained in
the EKF. Therefore, the block pertaining to the orientation
state in P(k|j) is 3 X 3.

EKF Measurement Update

When GNSS signals are available, the EKF measurement
update stage corrects the time-updated states using cel-
lular SOP pseudoranges, data obtained from the map,
and the estimated position provided by the GNSS ponss.
Here, the measurement vector Z (k) consists of penss and
{Zsop,a o, where Zsopn is the pseudorange drawn from the
nth cellular SOP transmitter.

When GNSS signals are cut off, the measurement up-
date stage uses only cellular SOP pseudoranges and digital
map data. Here, Z (k) includes only cellular SOP mea-
surements, {Zsop.}ht. Next, the corrected slate estimate
& (k+1|k+1) and the associated estimation error covari-
ance P(k+1]k+1) are computed using the standard EKF
measurement update equations [45]. The expressions of the
corresponding measurement Jacobian H and the measure-
ment noise covariance X, are demonstrated in Figure 3.

Map Matching and Closed-Loop Clock Error State Correction
Assuming that the digital map comprises Ly locations, de-
noted {Iu = [Pmas Pmys Pm=]T}o2,, the position estimate
Po(k| k) is map-matched to yield p.(k|k) according to
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FIG 3 The architecture of the proposed EKF-based approach in situations where GNSS signals are available and unavailable. (a) The EKF time
update step. (b) The EKF measurement update step. (c) The measurement update without GNSS signals. (d) The measurement update with
GNSS signals. (e) The corrected state estimate and associated estimation error covariance. (f) Calculating the clock difference correction.
(g) Refining the vehicle’s estimated position using the map data. (h) The map-matched vehicle’s position estimate.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE - 44 - FALL 2020
Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on October 29,2020 at 04:18:42 UTC from IEEE Xplore. Restrictions apply.



pu(k+1|k+1)= mlin |po(l+1k+1)— 1] 5., (14)
where

|po(k+11E+1)— 14|z,
=J1po(k+ 1k +1) = LI Za [po(k+ 1k +1)— L] .

The estimates p,(k+1/k+1) and pn(k+1|k+1) are
used to refine the clock bias state estimates according to

cAStsopn(k+1|k+1) — cAStsop (ki + 11k +1) + Acorn(k+1),
(15)

where

Acorn (b +1) = po(k + 11k +1) = Psopan 2
=Pk + 1k +1) = Psop.ale. (16)

Finally, the map-matched estimate p.(k+1|k+1) is
used to replace the estimate p.(k+1|k+1), i.e.,

po(k+1k+1) < pu(E+1E+1).

Figure 3 summarizes the architecture of the proposed nav-
igation framework.

Experimental Results

To evaluate the performance of the proposed ground ve-

hicle navigation framework, two experimental tests were

performed in 1) an urban environment in which GNSS
signals become attenuated and unreliable and 2) an area
where signals from only two cellular LTE towers are used.

In both experiments, a ground vehicle was equipped with

the following hardware and software setup:

m two consumer-grade 800/1,900-MHz cellular omnidi-
rectional Laird antennas [51]

m a Septentrio AsteRx-i V integrated GNSS-IMU, which is
equipped with a dual-antenna multifrequency GNSS re-
ceiver and a Vectornav VN-100 microelectromechanical
system IMU; the AsteRx-i V enables access to the raw mea-
surements from this IMU, which was used for the time up-
date of the orientation, position, and velocity, as described
in the “EKF Time Update” section. The carrier phase ob-
servables recorded by the Septentrio system were fused by
nearby differential GPS base stations to produce the car-
rier phase-based RTK solution [52]. This RTK solution was
used as a ground truth during postprocessing.

®m a dual-channel National Instruments (NI) universal
software radio peripheral (USRP) 2954R driven by GPS-
disciplined oscillator (GPSDO) [53]; this was used to
simultaneously down-mix and synchronously sample
cellular LTE signals at 10 megasamples/s.

m alaptop computer to store the sampled cellular signals;
these samples were then processed by the Multichannel
Adaptive Transceiver Information Extractor (MATRIX)
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software-defined radio (SDR) [12], [33], [54], which was

developed by the Autonomous Systems Perception, In-

telligence, and Navigation Laboratory at the University
of California, Riverside.

In both experiments, the ground vehicle was assumed to
have initial access to GNSS signals. This enabled estimating
the initial difference between the vehicle-mounted receiv-
er’s clock bias and the clock biases of each LTE eNodeB in
the environment {AZ i sop..(0|— 1) }2>7. Moreover, the ini-
tial estimates of the vehicle’s orientation g.(0|—1), posi-
tion p,(0|—1), and velocity p,(0|—1) were obtained from
the GNSS-IMU system. The gyroscopes’ and accelerome-
ters’ bias estimates, I3g(0 |—1) and 13,,(0 |—1), respectively,
were initialized by averaging 5 s of gravity-compensated
IMU measurements at a sampling period of 7=0.01 s while
the vehicle was stationary. It is important to note that the
IMU had been running for several minutes before the sam-
ples were collected and that the temperature was near a
steady-state value. The temperature was assumed to be con-
stant during the 5-s averaging period. Any initialization er-
ror caused by this assumption is expected to be small and is
captured in the initial estimation error covariance settings.
The original uncertainties associated with these state esti-
mates were set to P14,(0|—1) = (1x107)Isxs; Pp,(0]-1)=
blkdiag[3 I2x2, 0]; Py, (0| —1) = blkdiag[0.5 I2xe, 0],
Py, (0]—1)=(5.75%107")I5x5; Py, (0]—1)=(9.6X107)I;3x5;
and Paza.,.(0]—1)=diag[3,0.3], where blkdiag(-) and
diag(-) denote a block-diagonal and a diagonal matrix, re-
spectively. The value of X, is setto [5, 5, 5] m?, and the SOP
measurement noise variances are calculated empirically
while the vehicle has access to GNSS signals according to

1 Feutorr—1

' Sop.n (K),

2
O'sop,n =

kculoff k=0

where Kcuor is the time GNSS signals were cut off, and
’IA)/sop,n (k) = Zsop,n (k) - Hi)GNSS (k) - psop,n ”2 - CAStsop,n- (17)

Note that (17) assumes that Dsp,. is a stationary white se-
quence. However, in practice, these processes are not neces-
sarily white, and therefore a variance inflation factor is needed
to account for the colored noise. Hence, 6:3p,n < 0tG30p.n, Where
« is the inflation factor, which was chosen to be two for the
experiments presented in this article. The following sections
present the navigation results in each of the two environments.

Environment 1

The first experiment was conducted in an urban environ-
ment: downtown Riverside. The vehicle traversed a trajectory
of 1,380 m in 190 s. The traversed trajectory within this en-
vironment is surrounded by tall trees and buildings that at-
tenuate received cellular and GNSS signals. Due to the low
elevation angles of cellular towers compared to GNSS sat-
ellites, LOS obstructions (e.g., buildings, trees, poles, other
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vehicles, and so on) between the tower and the vehicle-
mounted receiver are prevalent. Figure 4 shows the envi-
ronment and the experimental hardware setup. Through
the course of the experiment, the receiver was listening to
five eNodeBs corresponding to the U.S. cellular provider
AT&T, with the characteristics summarized in Table 1.

It has been shown that the pseudorange measurement
noise variance and multipath error are lower for signals
with a higher transmission bandwidth [12]. Therefore, LTE
signals with a 20-MHz bandwidth can provide more ac-
curate pseudorange measurements compared to LTE sig-
nals with a 10-MHz bandwidth. Note that the transmission

MATLAB Based Estimator

Cellular Antennas

o X

Integrated
GNSS-IMU

Multifrequency
GNSS Antennas

AsteRx-i
Module

VN-100 IMU

J

FIG 4 The experimental environment and experimental setup. (a) The environment layout, LTE SOP positions, and the true vehicle trajectory. The
traversed path was surrounded by tall trees, and the received signal experienced a severe attenuation effect. (Source: Google Earth.) (b) The experimental
hardware and software setup. The LTE antennas were connected to a dual-channel NI USRP-2954R driven by a GPSDO. The stored LTE signals were

processed via the MATRIX SDR.
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bandwidth of LTE signals is not unique and depends on the

LTE network provider. Figure 5(a) shows the LTE pseudo-

range (solid lines) and actual range (dashed lines) varia-

tions, and Figure 5(b) provides the empirical CDF of LTE
pseudoranges for eNodeB 1-5. The standard deviations of
the pseudoranges for eNodeB 1-5 were calculated to he

9.19, 3.61, 4.18, 7.75, and 6.01 m, respectively. It is worth

noting that one cannot fairly compare the results of these

eNodeBs with each other since the received signals from
these eNodeBs have experienced different carrier-to-noise
ratio and multipath conditions.

The performance of the proposed navigation frame-
work is studied in two scenarios. The first one compares
the performance against three existing approaches:

u  GPSonly: This emulates a low-cost technology, which uses
only GPS pseudoranges to estimate the vehicle’s states.

m GPS-IMU: This approach fuses GPS-produced positions
with an IMU, which exhibits <10°h of gyroscope bias
stability (such an IMU is typically considered tactical-
grade) in a loosely coupled fashion to estimate the ve-
hicle’s state.

u  GPS-IMU-map matching: This emulates an existing high-
end vehicular navigation system, which map-matches the
estimated vehicle’s position from the GPS-IMU system
produced in the second approach.

The second scenario studies the performance of the pro-

posed framework in the absence of GNSS signals. To this

end, the GPS navigation solution pcxss was discarded in a

portion of the vehicle’s trajectory to emulate GNSS unavail-

ability (see Figure 3).

Throughout the experimental test, the postprocessing
software development kit was configured to produce a
navigation solution at 1 Hz from GPS Level 1C/A measure-
ments to emulate only a low-cost, low-quality GPS receiver.
In contrast, the ground truth against which the proposed
framework and the three previously discussed approaches
were compared was produced with the expensive high-end
GNSS-IMU RTK Septentrio AsteRx-i V system.

Scenario 1: Comparison Against Existing Technologies

In the first scenario, GPS signals were available along the
entire trajectory. Figure 6 shows the vehicle’s ground truth
trajectory versus its estimated trajectory from GPS-only
and GPS-IMU sources as well as the proposed framework.
Table 2 compares the navigation performance of the pro-
posed framework versus that of the three approaches: GPS
only, GPS-IMU, and GPS-IMU-map. It can be seen from
these results that the proposed framework outperforms
all three approaches. Most notably, the proposed frame-
work, which incorporated a standard GPS receiver whose
navigation solution was loosely coupled with cellular pseu-
doranges and closed-loop map matching, outperforms a
high-end vehicular navigation system that uses an expen-
sive tightly coupled GPS-IMU system with map matching.
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Table 1. The LTE eNodeB characteristics used in environment 1.

Carrier Cell Bandwidth
eNodeB Frequency (MHz) Identification (MHz)
1 1,955 216 20"
2 739 319 10
3 739 288 10
4 739 151 10
5 739 232 10
*Here, 1,024 middle subcarriers were used instead of 2,048.
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FIG 5 The (a) LTE pseudorange (solid lines) and actual range (dashed
lines) variations and (b) the empirical cumulative distribution function
(CDF) of the LTE pseudoranges for eNodeB 1-5.

Note the sharp change of direction in the proposed frame-
work’s trajectory (yellow curve) in Figure 6(b). This is due
to a correction during the map-matching stage, which usu-
ally happens at crossroads; however, this affects only a few
time steps and gets resolved after passing the crossroad.

Scenario 2: Performance When GNSS Signals Are Unavailable

In this scenario, the proposed framework’s performance in
the absence of GNSS signals was evaluated. To this end,
the navigation solution obtained from the GPS receiver
was discarded from the total trajectory for 330 m to emu-
late GPS unavailability. Figure 7 illustrates the portion of
the vehicle’s trajectory where GPS signals were unavail-
able. The vehicle’s estimated trajectory from the proposed
framework is also shown versus the vehicle’s estimated
trajectory from the GPS-IMU system. To differentiate the
influence of the map matching from the use of LTE mea-
surements, the GPS-IMU-LTE solution (i.e., the proposed
framework without map matching) is also demonstrated in
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FIG 6 (a)—(d) The experimental results in an urban environment. The vehicle’s estimated trajectory with our proposed framework is compared against the
estimated trajectory with GPS-only and GPS-IMU systems. The ground truth was obtained with an expensive GPS—-IMU system with RTK. Experimental
results indicate a 2.8-m RMSE for the proposed approach. (a) The overall trajectory. (b) A turn segment at a crossroad. (c) A straight segment at a
crossroad. (d) A straight segment surrounded by tall trees. (Source: Google Earth.)

Table 2. The navigation performance comparison in Figure 7. Table 3 compares the navigation performance of

an urban environment. the proposed framework versus that of the GPS-IMU and
GPS-IMU-LTE systems.

o . Position  Mean Distance ~ Maximum The following may be concluded from this test scenario.
VTN ST A S DIEfED Fy First, as expected, when GPS signals were unavailable, the
GPS only 561m 6.18 m 133 m IMU’s solution drifted due to the lack of assistive corrections
GPS-IMU 401 m 453m 10.38m from GPS signals (red line in Figure 7). Note that the ve-
GPS—IMU—-map 303m 354m 84m hicle came to a stop at the traffic light for 9 s, during which

the IMU’s solution drifted forward and to the right. Subse-
Proposed framework 28m 341m 8.09m

quently, the IMU’s solution continued to drift after the ve-
Improvement over  30.17% 24.72% 22.06% hicle resumed its forward motion. This error accumulation
GPS—IMU is particularly hazardous for semi- and fully autonomous
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FIG 7 The vehicle’s estimated trajectory from the GPS—-IMU system versus the proposed framework when GPS signals become unavailable and then
available. As can be seen, the GPS—IMU solution drifts in the absence of GPS signals. In contrast, the proposed framework does not exhibit such drift,
as cellular signals are used as an aiding source to the IMU. (Source: Google Earth.)

ground vehicles. In contrast, the GPS-IMU-LTE solution
(greenline in Figure 7) did not exhibit such drift, as cellular
signals were used as an assistive source to the IMU. Second,
the effect of map matching on the achieved accuracy can be
investigated by comparing the GPS-IMU-LTE solution and
the proposed method (yellow line in Figure 7). It is evident
that the proposed framework improves the GPS-IMU-LTE
solution. The estimated position RMSE using the GPS-IMU-
LTE solution was found to be 4.13 m, whereas the estimated
position RMSE using the proposed framework was 3.12 m.

Environment 2
To assess the performance of the proposed framework in
the case where a small number of cellular towers is avail-
able, the second experiment was performed in a deep ur-
ban environment in downtown Riverside, where GNSS and
LTE signals experienced severe multipath and the vehicle
encountered 15 s of a GNSS unavaiability condition. In this
test, the vehicle traversed a 345-m trajectory while simul-
taneously listening to two LTE SOPs corresponding to the
U.S. cellular providers T-Mobile and AT&T. Table 4 summa-
rizes the LTE eNodeB characteristics used in experiment 2.
Figure 8 shows the experimental environment, the loca-
tion of the LTE towers, and the vehicle’s ground truth trajec-
tory versus those estimated with the proposed framework
and those estimated with the GPS-IMU system. To evaluate
the performance of the proposed framework in the GNSS-
cutoff condition, the navigation solution obtained from the
GPS receiver is discarded during 40 m of the total trajec-
tory to emulate GPS unavailability. Table 5 summarizes the
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Table 3. The navigation performance comparison

without GPS signals.
Mean Maximum
Position Distance Distance
Navigation Solution RMSE Error Error
GPS-IMU 8.37m 1487 m 57.12m
GPS-IMU-LTE 413 m 5.66m 12.38 m
Proposed framework 312m 422 m 10.67m

Improvement over GPS-IMU  62.72% 71.6% 81.32%

Table 4. The LTE eNodeB characteristics used in environment 2.

LTE Carrier Cell Bandwidth
SOP  Operator  Frequency (MHz) Identification ~ (MHz)

1 T-Mobile 2,145 79 20

2 AT&T 1,955 350 20

navigation performance in this environment. It can be seen
that the proposed approach yielded a 32% reduction in the
position RMSE and a 43% decrease in the maximum dis-
tance error despite using a very limited number of cellular
SOPs. For a comparative analysis, the results achieved by
the proposed framework were compared with those pro-
duced by the particle-filter-based framework without us-
ing an IMU, presented in [19]. The method presented in [19]
achieved a maximum error of 11.7 m across a trajectory of
345 m, while the maximum error obtained by the proposed
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FIG 8 (a)—(c) The second experimental environment layout, including LTE SOP tower locations, the true vehicle trajectory, and the different navigation
solutions, where the estimated vehicle position obtained from the GPS-IMU method and the proposed framework are shown using yellow and red
lines, respectively. In this experiment, the vehicle-mounted receiver traversed 345 m across urban streets while simultaneously listening to only two
LTE SOPs. It is worth mentioning that in the experiment area, the LTE towers were obstructed by buildings. The first LTE tower was far from the
vehicle, and a large portion of the car’s trajectory had no clear LOS to it. As can be seen, the estimated position using the proposed framework
closely follows the ground truth trajectory during the drive. Experimental results indicate a 3.43-m RMSE for the proposed approach. (a) The
environment layout showing the vehicle’s trajectory and eNodeB locations. (b) A top view of the vehicle trajectory. (c) A camera angle showing the
GPS-IMU solution drifting in the absence of GPS signals. Even after GPS returns, the GPS-IMU system performs poorly after the turn due to multipath.
(Source: Google Earth.)

framework was 5.03 m for the same trajectory. Hence, as
expected, incorporating an IMU in the EKF-based frame-

Table 5. The navigation performance comparison

MR FSEIER work significantly reduced the maximum error.
Mean Maximum .
o ‘ Position  Distance  Distance Conclusions and Future Work
_ Navigation Solution ~ ~~ ~~ RMSE  Emor ~  Emor —  Thjg article presented a novel framework for vehicular
GPS-IMU 51m 4.75m 8.96 m navigation in urban environments. The framework uses an
Proposed framework 343m 418 m 503 m IMU, cellular signals, and GNSS signals (when available)
Improvement over GPS—IMU 2% 18% 43% along with closed-loop map matching. On the one hand, when

GNSS signals are unavailable, the proposed framework uses
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cellular signals and map data as assistive sources to the
IMU, bounding the IMU drift and producing an accurate
estimate of the vehicle’s state. On the other hand, when
GNSS signals are available, the proposed framework fuses
estimates from the GNSS receiver with cellular measure-
ments to produce an estimate that is within a few meters of
the solution produced by a very expensive high-end GNSS-
IMU system with RTK and map matching.

Experimental results in two urban environments are
presented, demonstrating the accuracy of the proposed frame-
work versus existing technologies. It was shown that the pro-
posed framework achieved a position RMSE of 2.8 m across a
trajectory of 1,380 m while GNSS signals were available and a
position RMSE of 3.12 across the same trajectory while GNSS
signals were not available for 330 m. In addition, the robust-
ness of the proposed framework against a limited number
of cellular towers (only two) was demonstrated, showing a
position RMSE of 3.43 m across a trajectory of 345 m where
GNSS signals were unavailable for 40 m. While this article
considered a map displacement error with a zero-mean ran-
dom vector, more sophisticated map models could be investi-
gated in future work in an attempt to improve the robustness
of the framework against unmodeled map errors.
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