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A census of exceptional
Dehn fillings

Nathan M. Dunfield

Abstract. This paper describes the complete list of all 205,822 exceptional Dehn
fillings on the 1-cusped hyperbolic 3-manifolds that have ideal triangulations
with at most 9 ideal tetrahedra. The data is consistent with the standard con-
jectures about Dehn filling and suggests some new ones.

1 Introduction

1.1 Dehn filling. Suppose M is a compact orientable 3-manifold with M a torus.
A slope on 0M is an unoriented isotopy class of simple closed curve, or equiva-
lently a primitive element of H;(0M;Z) modulo sign. The set of all slopes will be
denoted SI(M), which can be viewed as the rational points in the projective line
P'(Hy(0M;R)) = RP'. The Dehn fillings of M are parameterized by a € SI(M), with
M (a) being the Dehn filling where @ bounds a disk in the attached solid torus. When
the interior of M admits a hyperbolic metric of finite volume, it is called a I-cusped
hyperbolic 3-manifold. For such hyperbolic M, Thurston showed that all but finitely
many M (a) are also hyperbolic [Thu]. The nonhyperbolic Dehn fillings are called
exceptional, and the corresponding slopes the exceptional slopes. Understanding
the possible exceptional fillings has been a major topic in the study of 3-manifolds
over the past 40 years; see the surveys [Gorl, Gor2, Gor3, Gor4] for further back-
ground.

This paper gives a census of all exceptional Dehn fillings on a certain collection
of 1-cusped hyperbolic 3-manifolds. Specifically, let 6; be the set of all orientable
1-cusped hyperbolic 3-manifolds that have ideal triangulations with at most ¢ ideal
tetrahedra. For ¢ <9, the set “6; has been enumerated by [HW, CHW, Thi, Bur2]
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and is included with SnapPy [CDGW], whose nomenclature for these manifolds
(e.g. m004, s011, 1002, 12345, and 09¢p000) I will use freely throughout. Each man-
ifold M in 6 ; has a preferred basis for H; (0M; Z), and so I will denote slopes in SI(M)
by elements in Z2. See Figure 1 for some basic statistics on the 59,107 manifolds in
“69. The main result of this paper is:

1.2 Theorem. There are precisely 205,822 exceptional Dehn fillings on the man-
ifolds in 69, that is, pairs (M, a) where M (a) is not hyperbolic, of the types listed
in Table 2 and distributed as in Figure 3.

The list of these exceptional (M, a) together with the precise topology of each M(«)
is available at [Dun]. Here, in addition to describing the proof of Theorem 1.2 in
Section 5, I will give summaries of this data as it relates to known results and open
questions about Dehn filling in Sections 3 and 4.

1.3 Prior work. In the 1990s, Hodgson and Weeks studied the exceptional Dehn
fillings on the 286 manifolds in “65; this work was never published but is referred to
extensively in [Gorl] and provided many key examples in the subject. The series of
papers [MP, MPR, Mar] classified all exceptional fillings on an important series of
chain links with as many as 7 components; as noted in [Mar, §3], this determines
the exceptional fillings on more than 95% of the 4,587 manifolds in “6-. John Berge
(personal communication) independently did a search for exceptional fillings on
“69 using a new version of his program Heegaard [Ber], and found more than 99.3%
of the exceptional fillings included in Theorem 1.2.

1.4 Acknowledgements. I thank Ken Baker, Bruno Martelli, and Jake Rasmussen
for helpful discussions on the topic of this paper and also thank John Berge for shar-
ing his unpublished data on this topic with me. This work was done at the University
of Illinois, the University of Melbourne, and IAS, and was funded in part by the Si-
mons Foundation and the US National Science Foundation, the latter under grants
DMS-1510204, DMS-1811156, and the GEAR Network (DMS-1107452). I also thank
the referee for their helpful comments on this paper, especially their observation in
Section 4.3.

2 Background and conventions

I first review the different types of nonhyperbolic 3-manifolds to establish my con-
ventions on the kinds of exceptional Dehn fillings one can study. Sources vary
slightly on the latter point, and here I use a relatively fine-grained division, which
is illustrated in Figure 4. The summary for experts, who may safely skip this sec-
tion, is that here atoroidal means geometrically atoroidal, the manifold S? x S is
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Figure 1. Some basic statistics on the manifolds in “69. The table in the lower left
shows the number of manifolds in “6,\6,_1, that is, those whose minimal ideal trian-
gulations have exactly ¢ tetrahedra. In the top left, the hyperbolic volume is shown via
aviolin plot. Here, each “violin” shows the distribution of volume for 6,;\6;_1, where
the top and bottom horizontal bars are the min and max, the middle horizontal bar
is the mean, and the violin “body” is a smoothed histogram of the volumes. The plot
in the upper right shows the cusp volume, i.e. the volume of a maximal cusp neigh-
borhood bounded by an embedded horotorus. The plot in the lower right shows the
minimal slope length, that is, the shortest essential curve in the maximal horotorus.
See Section 4.3 for the relevance of this cusp data.




b (M(@)=0 b (M(a)) >0

atoroidal

s3 1,267

lens space 44,487

finite 7, 13,446 §%x St 242

Seifert fibered 71,111 Seifert fibered 118

connected sum 4,296 connected sum 169
toroidal

Seifert fibered 1,730 Seifert fibered 159

graph manifold 63,325 graph manifold 3,043

hyperbolic piece 2,136 hyperbolic piece 74

Sol torus bundle 219

totals 201,798 4,024

Table 2. Summary of the topological types of the 205,822 exceptional fillings from
Theorem 1.2, broken down by betti number and whether the filling is toroidal. See
Section 2 for precise definitions. Here, each filling is listed only once in the most
restricted category possible from Figure 4, and there are no fillings that are both
toroidal and connected sums.
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Figure 3. This figure describes how the exceptional fillings of Theorem 1.2 are dis-
tributed over the manifolds in 69. The number of exceptional fillings on M is de-
noted e(M), and the table at left shows the number of manifolds in ‘69 having each

possible value of e(M), which is at most 10 by [LM]. At right is a violin plot of e(M) as
a function of the number of tetrahedra of M; see Figure 1 for more on violin plots.
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Figure 4. The different types of nonhyperbolic 3-manifolds, and hence different
types of exceptional Dehn fillings. See Section 2 for definitions.

neither reducible nor an honorary lens space, and the term Seifert fibered will not
include RP3#RP3. I will assume familiarity with basic 3-manifold topology, the
Geometrization Theorem, and the resulting general structure of 3-manifolds, see
e.g. [Hat, Sco, Bon] for details. Throughout, all 3-manifolds will be compact, ori-
entable, and be either closed or have boundary that is a union of tori; the symbol M
will always refer to such a manifold.

Our first two kinds of nonhyperbolic 3-manifolds are those containing certain
spheres and tori. An embedded 2-sphere in M is essential if it does not bound
a 3-ball. If there are no essential spheres then M is irreducible, and this includes
all hyperbolic M. Those M containing separating essential spheres are called con-
nected sums; here, I avoid the more common term reducible for this as for some
authors reducible is the complement of irreducible and so includes §? x S! whose
only essential sphere is nonseparating. When M is not a connected sum it is prime.
An M is toroidal when it contains an embedded essential torus T, that is, one where
m1 T — m M is injective and T is not isotopic to a component of d M; this is some-
times called geometrically toroidal. When M is not toroidal it is atoroidal. All hyper-
bolic M are atoroidal.

When M has a foliation by circles it is Seifert fibered and called a Seifert fibered
space; 1 will shortly revise this definition to exclude a particularly unusual such
manifold. The Seifert fibered manifolds are exactly those admitting these six of the
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eight possible geometries: S3 3, H? xR, S%2 x R, Nil, and m and in particular are
not hyperbolic. Those with spherical geometry are precisely the 3-manifolds with
finite 711, including S3 itself and the lens spaces L(p, g) which are all quotients of S
by a cyclic group. There are only two M with an S? x R geometry, namely S? x S!
and RP3#RP3, which are both rather special. First, S? x S! is the only closed 3-man-
ifold with Heegaard genus one that is not a lens space, and also the only one whose
fundamental group is infinite cyclic. Second, RP3#RP? is the unique Seifert fibered
manifold that is a connected sum. I henceforth adopt the nonstandard convention
that RP3 #RP3 is not Seifert fibered; this way, all Seifert fibered spaces are prime.

Any irreducible M has a collection of disjoint essential tori that cut it up into
pieces that are either Seifert fibered or hyperbolic. The minimal such collection
is unique up to isotopy and gives the JSJ decomposition of M. A graph manifold
is one where all the pieces in the JS] decomposition are Seifert fibered. So Seifert
fibered manifolds are graph manifolds as are those that admit the Sol geometry;
the latter are virtually torus bundles over the circle with Anosov monodromy. An
irreducible M that is neither hyperbolic nor a graph manifold has a nontrivial JS]
decomposition where at least one piece is hyperbolic; such M have a hyperbolic
piece.

Figure 4 summarizes all the different types of nonhyperbolic 3-manifolds. Of
course, many manifolds satisfy several of these conditions, and in certain tables I
will want each nonhyperbolic manifold to have a single type. In such cases, the
type used will be the most restricted possible in Figure 4; for example, the type of
L(3,1) will be a lens space, even though it also has finite m,, is Seifert fibered, and is
a graph manifold. (This always makes sense because I set up the various definitions
to minimize overlaps that are not containments.) This more restrictive convention
is used in Tables 2 and Tables 6 only; Table 5 is correct with either convention.

3 Evidence for standard conjectures

A great deal has been proven about the possibilities for exceptional Dehn fillings;
with regards to the gaps in our knowledge, the fillings of Theorem 1.2 are consistent
with the standard conjectures as I now describe.

3.1 Knots in the 3-sphere. I start with the 1,267 manifolds in 69 that are exteriors
of knots in S3, which collectively have some 2,615 additional exceptional fillings.

(a) There are no Dehn fillings that are connected sums, consistent with the Cabling
Conjecture [Gor3, §2.2].

(b) The Berge Conjecture [Gor3, §3.2] holds for the 178 nontrivial lens space fillings.
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(c) All 1,143 nontrivial Seifert fibered fillings are along integral slopes and have the
form S%(q1, g2, g3) or RP?(qy, g»); compare [Gor3, §3.3]. In particular, all fillings
with finite fundamental group are integral.

We now turn to considering all of the manifolds in 6.

3.2 Distances between exceptional slopes. A key topological invariant of a pair of
slopes a and f on a torus is their geometric intersection number A(a, ). When
a and B are exceptional slopes for a particular M, then A(a, ) < 8 by [LM]. Gor-
don conjectured there are only four possible M with exceptional slopes where A =5
[Gorl, Conjecture 3.4], and this holds for 69. Much of the work on exceptional fill-
ings has focused on understanding the maximum possible A(«, ) where M (a) and
M(p) are particular types of exceptional fillings. I summarize what is observed for
“69 and how it relates to the known upper bounds on A(a, ) in Table 5. In all cases,
the maximum value of A(a, B) for 69 is the same as that already found in the liter-
ature, compare with [Gorl, Gor2, Gor3, Gor4] and also page 971 and Section A.2 of
[MP]. I think it very likely that all possible maximum values of A(a, ) have been
observed at this point.

3.3 Atoroidal Seifert fibered and finite 7, fillings. There are two cases of M in 6q
with slopes a and  with A(a, f) = 4 where M(a) is an atoroidal Seifert fibered
space with 71 (M(a)) infinite and 7;(M(f)) is finite and noncyclic. These are al-
ready contained in [MP], but this aspect is not highlighted there and so is worth
describing here. The first example is m007 where m007(-2,1) is the Seifert fibered
space $%((2,1),(3,1),(9,—7)) and m007(2,1) is $?((2,1), (3,2), (3, —1)) which has non-
abelian fundamental group of order 120; this example is M3, with slopes —4 and 0 in
Table A.3 of [MP]. The second is m034 with m034(2,1) = $*((2,1),(3,1),(11,-9)) and
m034(-2,1) = §*((2,1),(3,2), (5,—3)) where the latter has nonabelian fundamental
group of order 2,040; it is the example described in Table A.8 [MP], with r/s =2 and
slopes —4 and 0. Here, my conventions for describing Seifert fibered spaces follow
Regina [BBP™].

3.4 Many exceptional fillings. For a 1-cusped manifold M, let e(M) denote the
number of exceptional fillings. The distribution of e(M) is shown in Figure 3. There
are only 11 manifolds in ‘69 where e(M) = 7, namely m003, m004, m006, m007,
m009, m016, m017, m023, m035, m038, and m039. According to Gordon [Gorl,
pages 136-7], these 11 were first noticed by Hodgson when he examined the 286
manifolds in “65. Gordon writes there that “In view of this data it is tempting to be-
lieve that these eleven manifolds are the only ones with e(M) = 7”, and it was later
shown [LM] that one always has e(M) < 10. These 11 are also the only manifolds
with e(M) = 7 among all Dehn fillings on the magic manifold [MP]. In light of the



s3 lens finite #sum  S?xS!  SFS(A) tor
$8 —00 1 1 —00 —00 1 2
lens space [CGLS] 1 2 1 1 2 3
finite 7 §3(c) [BZ1] 3 1 1 4 5
conn. sum §3(a) [BZ2] [BGZ1] 1 —00 2 3
§2 x St [Gab2] [CGLS] [BGZ1]  [GL3] —00 1 2
Seifert (ator.) | $§3(c) [BCSZ] 6 7
toroidal [GL2] [Lee2] [Oh, Wu] [Leel] [BGZ2] 8

Table 5. This table lists the maximum value of A(a, ) where M € 69 and the fillings
M(a) and M(B) have the indicated types; here it is implicit that @ # § and —oo is
used when no such pair exists. As these values form a symmetric matrix, only the
entries on or above the diagonal are given. Below the diagonal is a reference for the
strongest proven upper bound on A(a, §) for that pair of types, with references for
the diagonal being, in order, [GL1, CGLS, BZ3, GL3, Gabl, LM, Gor]. Cases where the
value for €9 is strictly smaller than the best proven upper bound are indicated by the
shaded boxes. Thus in the unshaded cases the maximum possible value of A(«, ) for
all 3-manifolds has been established exactly by the indicated reference.

additional data here, it is safe to promote this temptation to a conjecture.

3.5 Connected sums. The connected sums in this census are all built of quite sim-
ple pieces. Specifically, the summands all have finite 7, or are S? x S!; there are only
two summands in all but three cases: the filling 0939343(1,0) is RP3#RP3#RP3 and
both 0941447(1,0) and 0943255(1,0) are the manifold L(3,1) #RP3#RP3. While there
are infinite families with two connected sum fillings [EMW], it is an open question
whether there is a manifold with three such fillings, see [HM, §4]. In 64 there are
only 14 manifolds with two distinct Dehn fillings that are connected sums, and none
with more than two. Another question from [HM, §4] is when there are two such fill-
ings, must both have at least one summand that is RP3 = L2,1), L(3,1), or L(4,1)?
The answer is yes for the 14 such manifolds in €.
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Type of M(a) min (¢(a)) max(¢(a))

s3 1.000 3.323
§2x St 1.288 3.328
connected sum 1.398 3.707
lens space 1.189 3.928
Sol torus bundle 2.288 4.185
finite 7 1.520 4.443
Seifert (toroidal) 1.906 4.583
Seifert (atoroidal) 1.935 4.841
graph manifold 2.178 5.318
hyperbolic piece 3.520 6.000

Table 6. This table gives minimum and maximum lengths of each type of exceptional
slope in Theorem 1.2 as measured in the torus bounding a maximal cusp. Lengths
have been rounded to three decimal places, and here type refers to the most re-
stricted category possible from Figure 4, which is why the min (¢(a)) for lens spaces
is bigger than that for S3. Compare with [HP, Table 1].

4 New observations

Here are some interesting patterns that I couldn’t find in the existing literature. I
encourage you to download the complete data at [Dun] and find others that I have
missed.

4.1 Finite nonabelian fillings. The maximum number of fillings on M in ‘69 where
the fundamental group is finite and nonabelian is three. There are only four such
M, namely m011, s757, v2702, and v2797. I conjecture that these are the only four
manifolds with this property.

4.2 Toroidal fillings. The maximum number of toroidal fillings on M in 6 is 4,
and there only 27 such M, namely s772, s778, s911, v2640, 108282, t11538, 112033,
112035, 12036, £12041, 12043, £12045, t12050, £12548, 112648, 0935259, 0936732,
0937030, 0938039, 0939094, 0940054, 0941000, 0941004, 0941006, 0941007, 0941008, 0943799.
Are there are infinitely many such examples? Perhaps we should expect there to be
since the previous list includes manifolds with 6, 7, 8, and 9 ideal tetrahedra. None
of the examples with 4 toroidal Dehn fillings is the exterior of a knot in S3, consistent
with a conjecture of [EM, Page 60].
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M a M(a) T (M@)| @

105002 (-1,1)  $%((2,1),(3,2),(3, —1)) 120 4.004139
098194 (-1,1)  S$%((2,1),(3,2),4,-1) 528 4.017192
0935417 (1,1) $%(2,1),(2,1), (8, 3)) 352 4.021047
0935413 (1,1)  S%((2,1),(2,1),(11,-3)) 352 4.021047
v3479 (11D  S$*((2,1),3,2),(5,-1) 3,480 4.028619
0936221 (1,1)  S%((2,1),(2,1),(10,3)) 520 4.033399
0936224 (-1,1)  S*((2,1),(2,1),(13,-3)) 520 4.033399
v2420 (-1,1) 52((2 1),(3,2),4, —1)) 528  4.060890
m342 (1,1 2,1),3,2),3,-1) 120  4.067597
) 2,040 4.085768
) 528 4.184451
) 2,040 4.195283
1)) 528 4.207000
) 2,040 4.442966

S(
moll  (2,1)  S*((2,1),3,2),5,-3)
09134 (-L,1)  $*((2,1),(3,2),4,-1)
0912592 (-1,1)  $%((2,1),(3,2),(5,-3)
$954  (L,1)  S?((2,1),(3,2),(4,—
s546  (-1,1)  S*((2,1),(3,2),(5,-3)

Table 7. All pairs (M, @) with M € €9 and 7, (M ()) finite where () > 4.

4.3 Lengths of exceptional slopes. Hoffman and Purcell [HP] studied the length
of exceptional slopes «a in the horotorus cutting off a maximal cusp for M. By the
6-Theorem, the length ¢(a) of such «a is at most 6. Table 6 details the longest excep-
tional slopes of each type observed in 69; compare with Table 1 of [HP]. The new
feature is slopes of length more than 4 yielding manifolds with finite fundamental
group; these are listed in Table 7. Can some of these be made into an infinite family
of finite exceptional slopes with ¢(a) — 5 analogous to Proposition 4.2 of [HP]?

The referee kindly pointed out that one can use a covering trick to create even
longer slopes for some types starting with the examples in Table 7. Specifically, the
extreme example for lens spaces comes from M = 09,3855 and the slope a = (1,1)
where M(a) = L(39,16) and ¢(a) = 3.92794. The core curve of the Dehn filling
turns out to generate H;(M(a);Z) = Z/39Z, and consequently one can take a 39-
fold cyclic cover of M to get the exterior of a knot in S* whose meridian y also has
() = 3.92794. As discussed in [HP], it is conjectured that for an S3 filling one al-
ways has ¢(u) < 4, and there are several families of such where ¢ () — 4 from below.

One can apply the same trick to s546(—1,1) from Table 7 to produce a hyper-
bolic knot in the Poincaré homology sphere where the meridian has length about
4.442966; specifically, take the 17-fold cyclic cover of s546 corresponding to the ker-
nel of the map 71 (s546(-1,1)) — H;(s546(—1,1);Z) =Z/17Z.

4.4 A cabling conjecture for S? x S!. As per Table 5, there are no known hyperbolic
knot exteriors in S% x S! with a Dehn filling that is a connected sum. Thus, as in
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Section 3(a) for the case of S3, I conjecture that none exist, i.e. that no hyperbolic
knot in S? x S! has a Dehn surgery yielding a connected sum.

5 Outline of the proof of Theorem 1.2

I turn now to the proof of Theorem 1.2. Initially, I found a candidate & for the list of
all exceptional fillings as a byproduct of another project. However, the proof of the
correctness of & follows the approach of [MPR]. Thelist &, related data, and the code
used in the proof can all be obtained from [Dun]; to run the code, which requires
using several software packages together in consort, the Docker image [ComTop]
may be helpful.

Proof of Theorem 1.2. The set & consists of 205,822 pairs (M, @) where M € 69 and
a € SI(M). There are two things to show: that every M(a) is not hyperbolic of the
type claimed in Table 2 and that all other fillings on M € 64 are hyperbolic.

For the latter task, for each M € ‘69 I found an embedded cusp neighborhood
so that I could measure the lengths of slopes in its horotorus boundary; this was
done rigorously in SnapPy [CDGW] running inside [Sage] using the approach of
[HIKMOT] and [DHL, §3.6]. By the 6-Theorem of [Ago, Lac], it suffices to exam-
ine all slopes § € SI(M) where ¢() < 6. For the cusp neighborhoods I used, overall
there were some 355,128 such slopes. For the 149,306 pairs (M, ) that were not in
&, I checked that M(f) was hyperbolic using the method of [HIKMOT] as reimple-
mented in SnapPy. As in the proof of Theorem 5.2 of [HIKMOT], it was sometimes
necessarily to search around for a triangulation that could be used to certify the
existence of a hyperbolic structure. This completes the proof that filling along any
slope not in & yields a hyperbolic manifold.

In the other direction, to show that each M(a) in & is not hyperbolic, I primarily
used Regina [BBP"], specifically its combinatorial recognition methods [Burl, §4].
These work when the input triangulation has the very particular form associated
to a standard triangulation of a Seifert fibered space or graph manifold. Of course,
there are many triangulations of such manifolds which do not have this structure, so
I generated many different 1-vertex triangulations of each M(«a) and fed them into
Regina until it succeeded in recognizing the topology. This worked for all but 2,890
of the M(a). Of those remaining, in 680 cases the Recognizer program of [Mat, MT]
showed that they were graph manifolds. (Currently, Regina can only identify graph
manifolds where the graph in question is either a segment with two or three vertices
or a loop with one vertex. These 680 all have slightly more complicated graphs,
for example a loop with either two or three vertices.) For each of the remaining
2,210 manifolds, Regina found at least one essential normal torus. Cutting along a
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suitable collection of such essential tori gave pieces that always included a cusped
hyperbolic 3-manifold with an ideal triangulation with at most 6 ideal tetrahedra;
in particular, each of these 2,210 manifolds is nonhyperbolic with a non-trivial JSJ
decomposition with a hyperbolic piece. Thus every M(a) in & is not hyperbolic.
This completes the proof that & is precisely the list of exceptional fillings on the
manifolds in 6.

To prove the correctness of Table 2, the hard part is ensuring that nothing listed
as a (proper) graph manifold is actually Seifert fibered. Everything else can be read
off from the Seifert/graph descriptions found in the previous step, though I double-
checked much of it in other ways. For example, I used Magma [BCP] to give an
independent check that the 59,200 spherical manifolds had the claimed type of
fundamental group (this could also be done with GAP [GAP]). I also had Regina
compute directly which manifolds are toroidal using normal surface techniques
and this matched what follows from the Seifert/graph descriptions. As mentioned,
Regina identifies structure in the given triangulation, which might well be a graph
manifold structure that can be simplified after the fact. For example, it will some-
times return graph manifolds where one of the nodes is a solid torus. In such in-
stances, additional triangulations were examined until a more concise description
was found. To certify a graph description as minimal, I just checked that all Seifert
pieces have incompressible boundary (i.e. no solid tori) and that no two Seifert
pieces are glued together so that the fibers match up; here, I took care to consider
the possibility of switching the Seifert fibration for the exceptional piece which is

both D?((2,1),(2,1)) and the twisted circle bundle over the M&bius band. O
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