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17 Non L-space integral homology 3-spheres with no nice
orderings

XINGHUA GAO

This paper gives infinitely many examples of non L-space irreducible integer
homology 3-spheres whose fundamental groups do not have nontrivial ˜PSL2(R)
representations.

57M50; 57M27, 57M25

1 Introduction

Before stating the main result, I will review some definitions. A rational homology
3-sphere Y is called an L-space if rkĤF(Y) = |H1(Y;Z)| , i.e. its Heegaard Floer
homology is minimal. An L-space does not admit any co-orientable taut foliation
by Bowden [1], Kazez-Roberts [14] and Ozsváth-Szabó [16]. A nontrivial group G
is called left-orderable if there exists a strict total ordering of G invariant under left
multiplication. Boyer, Gordon, and Watson conjectured in [2] that an irreducible
rational homology 3-sphere is a non L-space if and only if its fundamental group is
left-orderable. A stronger conjecture states that for an irreducible Q-homology 3-
sphere, being a non L-space, having left-orderable fundamental group and admitting a
co-orientable taut foliation are the same (see e.g. Culler-Dunfield [5]).

To show the fundamental group π1(Y) of a 3-manifold Y is orderable, it is most
common to consider ˜PSL2(R) representations of π1(Y). In fact in many cases, ˜PSL2(R)
representations are sufficient to define an order on π1(Y) [5]. However, Theorem 1
in this paper shows that, even in the case of non L-space integral homology spheres,
orders coming from ˜PSL2(R) are not enough to prove the conjecture of Boyer, Gordon
and Watson.

It is conjectured that any integer homology 3-sphere different from the 3-sphere admits
an irreducible representation in SU2(C) (see e.g. Kirby’s problem list [15, Problem
3.105]). Zentner showed that if one enlarges the target group to SL2(C), then every
such integral homology 3 sphere has an irreducible representation [20]. In contrast, I
will give examples where there are no irreducible PSL2(R) representations. Let M
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be the manifold m137 [3] and M(1, n) be the integral homology sphere obtained by
(1, n) Dehn fillings on M . The main result of this paper states:

Theorem 1 For all n ≪ 0, the manifold M(1, n) is a hyperbolic integral homology
3-sphere where

a) π1(M(1, n)) does not have a nontrivial ˜PSL2(R) representation.

b) M(1, n) is not an L-space.

This means that we can not produce an order on π1(M(1, n)) simply by pulling back
the action of ˜PSL2(R) on R .

Section 1 is devoted to proving part (a) of Theorem 1. Let X0(M) be the component
of the SL2(C) character variety of M containing the character of an irreducible rep-
resentation (see Culler-Shalen [7] for definition). Here is an outline of the approach.
Let X0,R(M) be the real points of X0(M). Define [ρ] ∈ X0,R(M) and denote by s
the trace of ρ(λ) where λ is the homological longitude of M . The proof is divided
into two parts. In the first part, I show that points on the |s| < 2 components of
X0,R(M) all correspond to SU2(C) representations while points on the |s| > 2 com-
ponents correspond to SL2(R) representations. In the second part, I show that SL2(R)
representations of π1(M) give rise to no SL2(R) representations of π1(M(1, n)) when
n≪ 0. This part of the proof is basically analysing real solutions to the A-polynomial
of M under the relation µλn = 1 given by (1, n) Dehn filling , where µ is a choice of
meridian of ∂M .

In Section 2, by applying techniques in the paper by Rasmussen, Rasmussen [18] and
Gillespie [12], I show that none of the (1, n) Dehn fillings on m137 is an L-space,
completing the proof of Theorem 1.
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2 ˜PSL2(R) representations

I will prove Theorem 1 (a) in this section.

SnapPy [6] gives us the following presentation of the fundamental group of M =

m137:

π1(M) = 〈α, β | α3β2α−1β−3α−1β2〉.

The peripheral system of M can be represented as:

{µ, λ} = {α−1β2α4β2, α−1β−1} = {β2λ−1β−3λ−1β2, λ}

where λ is the homological longitude and µ is a choice of meridian. Then we can
rewrite the fundamental group as:

π1(M) = 〈λ, β | β−1λ−1β−1λ−1β2λ = λβ−2λ−1β2〉,(2–1)

and the meridian becomes µ = β2λ−1β−3λ−1β2 under this presentation.

Remark The triangulation of m137 we used (included in [10]) to get these presenta-
tions is different from SnapPy’s default triangulation. We got it by performing random
Pachner moves on the default triangulation in SnapPy. In particular, our notations for
longitude and meridian in the peripheral system are meridian and longitude respectively
in SnapPy’s default notations.

We will first look at irreducible SL2(C) representations of the fundamental group
of M before we look at those of Dehn fillings of M . Denote by X(M) the
SL2(C) character variety of M , that is the Geometric Invariant Theory quotient
Hom(π1(M), SL2(C))//SL2(C). It is an affine variety [7]. Suppose ρ : π1(M) −→
SL2(C) is a representation of the fundamental group of M . Recall that a representation
ρ of G in SL2(C) is irreducible if the only subspaces of C2 invariant under ρ(G) are {0}
and C2 [7]. This is equivalent to saying that ρ can’t be conjugated to a representation
by upper triangular matrices. Otherwise ρ is called reducible. We will call a character
irreducible (reducible) if the corresponding representation is irreducible (reducible).

First, I determine which components of X(M) contain characters of irreducible repre-
sentations. Computation with SnapPy [6] shows that the Alexander polynomial ∆M

of m137 is 1, which has no root. So there are no reducible non-abelian representa-
tions [4, Section 6.1]. Therefore all the reducible representations are abelian. Since
H1(M) = Z , there is only one such component and it is parameterized by the image of
β and is isomorphic to Hom(Z, SL2(C))//SL2(C) ≃ C . Moreover, it is disjoint from
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any component of X(M) containing the character of an irreducible representation [4,
Section 6.2]. For more details, we refer the readers to Tillmann’s note [19] where he
studied m137 as an example.

An abelian representation of π1(M) that induces an abelian representation of π1(M(1, n))
factors through the abelianization ab(π1(M(1, n))) = 1. So they correspond to trivial
SL2(C) representations and we don’t need to worry about them.

Now we consider components of X(M) that contain the character of an irreducible
representation. We have:

Lemma 1 There is a single component X0(M) of X(M) containing an irreducible
character. The functions s = trρ(λ) = trρ(α−1β−1) = trρ(αβ) and t = trρ(β) give
complete coordinates on X0(M), which is the curve in C2 cut out by

(−2 − 3s+ s3)t4 + (4 + 4s− s2 − s3)t2 − 1 = 0

Moreover, w := trρ(λβ) = trρ((λβ)−1) = t − 1
t(s+1) .

Proof of Lemma 1 Let X0(M) be X(M) − {reducible characters}. From the dis-
cussion above, we know that all the reducible characters form a single component of
X(M) and this component is disjoint from any other component of X(M). So X0(M)
is Zariski Closed. We will show later that X0(M) is actually an irreducible algebraic
variety, as claimed in the lemma.

Suppose [ρ] ∈ X0(M). So ρ is an irreducible representation. By conjugating ρ if
necessary, we can assume that ρ has the form

ρ(λ) =
(
z 1
0 1/z

)
, ρ(β) =

(
x 0
y 1/x

)
.

From the relator of π1(M) in (2–1) we have ρ(β)−1ρ(λ)−1β−1ρ(λ)−1ρ(β)2ρ(λ) =

ρ(λ)ρ(β)−2ρ(λ)−1ρ(β)2 . Comparing the entries of the matrices on both sides, we get
four equations. These four equations together with s = z + 1/z, t = x + 1/x and
w = zx+z−1x−1+y form a system S which defines X0(M). By computing a Gröbner
basis of this system, SageMath [8] gives the following generators of the radical ideal
I = I(X0(M)):

stw − t2 − w2 − s+ 2(2–2)
t3 − w3

+ st − sw− 2t + w(2–3)
st2 − tw− w2 − s+ 1(2–4)
sw3 − s2t + s2w− t2w− tw2

+ st − sw+ t(2–5)
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Subtracting (2–4) from (2–2), we get:

w = t −
1

t(s+ 1)
.(2–6)

Eliminating w , we get a defining equation for X0(M):

0 = (−2 − 3s+ s3)t4 + (4 + 4s− s2 − s3)t2 − 1
= (s− 2)(s + 1)2t4 − (s− 2)(s + 2)(s + 1)t2 − 1.

(2–7)

Thus, we can think of X0(M) as living in C2 .

To prove the lemma, we must show that X0(M) is irreducible or equivalently the
polynomial P(s, t) := (s− 2)(s+ 1)2t4 − (s− 2)(s+ 2)(s+ 1)t2 − 1 in (2–7) does not
factor in C[s, t]. Assume P(s, t) factors. Suppose it factors as

(at2+bt+c)(dt2+et−1/c) = adt4+ (ae+bd)t3 + (cd−a/c+be)t2 + (ce−b/c)t−1,

where a, b, d, e ∈ C[s] and c ∈ C − {0}. Setting the coefficients of t and t3 to be 0,
we get b = c2e and ae = −c2de. If e 6= 0, then a = −c2d . But this is impossible as
ad = (s− 2)(s + 1)2 is a polynomial in s of odd degree. So e = 0 and it follows that
b = 0. Comparing the coefficients of t2 and t4 , we get

(2–8) ad = (s− 2)(s+ 1)2

and

(2–9) cd − a/c = −(s− 2)(s+ 2)(s + 1).

So degree(a) + degree(d) = 3 and max{degree(a), degree(d)} ≥ 3, which implies
exactly one of a and d has degree 3 and the other has degree 0. Without loss of
generality, we can assume that degree(a) = 3 and degree(d) = 0. Multiply both sides
of (2–9) by c, we get a = c2d+ c(s− 2)(s+ 2)(s+ 1). So the coefficient of s3 in a is
c. Comparing with the coefficient of s3 in (2–8), we know that d = 1/c. Eliminating
a and d gives us an equality 1 + (s− 2)(s + 2)(s + 1) = (s− 2)(s + 1)2 , which does
not hold.

Else suppose P(s, t) factors as

(at + c)(bt3 + dt2 + et − 1/c) = abt4 + (ad + cb)t3 + (cd + ae)t2 + (ce− a/c)t − 1,

where a, b, d, e ∈ C[s] and c ∈ C − {0}. Setting the coefficients of t and t3 to be 0,
we get a = c2e and b = ced . Comparing the coefficients of t2 and t4 , we get

(2–10) c3de2
= (s− 2)(s + 1)2

and

(2–11) cd + c2e2
= −(s− 2)(s+ 2)(s + 1).
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So degree(d) + 2degree(e) = 3 and max{degree(d), 2degree(e)} ≥ 3 which implies
degree(d) = 3 and degree(e) = 0. Comparing the coefficients of s3 in (2–10) and
(2–11), we know that c2e2 = −1. Plugging into (2–10), we get cd = (s− 2)(s+ 1)2 ,
which when plugging into (2–11) implies c2e2 = −(s+ 1)(s− 2), a contradiction. So
P(s, t) is irreducible over C . Therefore X0(M) has only one component.

To find irreducible SL2(R) representations of π1(M), we need to check all real points
on X0(M), which correspond to real solutions of (2–7). Notice that equation (2–7)
has no solutions when s = −1 or 2, so (2–7) is a quadratic equation in t2 . In order for
t to be real, t2 has to be real and nonnegative. Then first we need the discriminant to
be nonnegative. That is:

∆1 = (s+ 1)2(s− 2)(s3 + 2s2 − 4s− 4) ≥ 0.

So s ∈ U := (−∞, p1] ∪ [p2, p3] ∪ (2,∞), where p1 ≈ −2.9032, p2 ≈ −0.8061 and
p3 ≈ 1.7093 are three roots of cubic polynomial s3 + 2s2 − 4s− 4.

The following lemma will help us determine when a SL2(C) representation of π1(M)
can be conjugated into SL2(R) by simply checking where it lies on the character variety.

Lemma 2 The real points X0,R(M) = X0(M) ∩ R2 of X0(M) has 6 connected
components:

Points on the two components with |s| < 2 correspond to SU2(C) representations.

Points on the four components with |s| > 2 correspond to SL2(R) representations.

Remark The above lemma shows that in our case, the absolute value of one character
being smaller than 2 implies that the representation is SU2(C). But in general, this is
not true.

To prove this lemma, we need to determine when [ρ] ∈ X0,R(M) corresponds to
ρ ∈ SU2(C) and when it corresponds to ρ ∈ SL2(R). It can’t be in both because
otherwise it would be reducible [5, Lemma 2.10] and we know X0(M) contains only
irreducible characters. The tool we use is a reformulation of Proposition 3.1 in [13]
which states that given three angles θi ∈ [0, π], i = 1, 2, 3, there exist three SU2(C)
matrices Ci , satisfying C1C2C3 = I with eigenvalues exp(±iθi) respectively if and
only if these angles satisfy:

|θ1 − θ2| ≤ θ3 ≤ min{θ1 + θ2, 2π − (θ1 + θ2)}.(2–12)

We want to rewrite the above inequality in terms of traces of C1,C2 and C3 . We have
the following lemma:
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Lemma 3 Suppose t1, t2, t3 ∈ (−2, 2) are the traces of three matrices C1,C2,C3 ∈

SL2(C) satisfying C1C2C3 = I . Then C1,C2,C3 are simultaneously conjugate into
SU2(C) if and only if

(2t3 − t1t2)2 ≤ (4 − t21)(4 − t22).

Proof Suppose t1 = 2 cos(θ1), t2 = 2 cos(θ2) and t3 = 2 cos(θ3) where θ1, θ2, θ3 ∈

[0, π].

If 0 ≤ θ1 + θ2 ≤ π , then the inequality (2–12) becomes |θ1 − θ2| ≤ θ3 ≤ θ1 + θ2 .
Taking cosine, we get cos(θ1 + θ2) ≤ cos(θ3) ≤ cos(θ1 − θ2).

If π ≤ θ1 + θ2 ≤ 2π , then the inequality becomes |θ1 − θ2| ≤ θ3 ≤ 2π − (θ1 + θ2).
Taking cosine, we also get cos(θ1 + θ2) ≤ cos(θ3) ≤ cos(θ1 − θ2).

Use the relations t1 = 2 cos(θ1), t2 = 2 cos(θ2), and t3 = 2 cos(θ3), we get in both
cases that:

t1t2
4

−

√(
1 −

t21
4

)(
1 −

t22
4

)
≤
t3
2
≤
t1t2
4

+

√(
1 −

t21
4

)(
1 −

t22
4

)
.

Then

−

√(
1 −

t21
4

)(
1 −

t22
4

)
≤
t3
2
−
t1t2
4

≤

√(
1 −

t21
4

)(
1 −

t22
4

)
.

So we have:
∣∣∣ t32 −

t1t2
4

∣∣∣ ≤
√(

1 −
t21
4

)(
1 −

t22
4

)
.

Squaring both sides and simplifying, we get

(2t3 − t1t2)2 ≤ (4 − t21)(4 − t2),

as desired.

With the criterion of Lemma 3 in hand, we now can prove Lemma 2.

Proof of Lemma 2 The six components correspond to s ∈ (−∞, p1] ∪ [p2, p3] ∪
(2,∞) and t ∈ (−∞, 0) ∪ (0,∞).

Set C1 = ρ(λ), C2 = ρ(β) and C3 = ρ(β−1λ−1) = ρ((λβ)−1). Then t1 = s, t2 = t
and t3 = w . Applying Lemma 3 we have:

(2w − st)2 ≤ (4 − s2)(4 − t2).(2–13)
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Plugging (2–6) into (2–13) and simplifying:

(s− 2)2t2 +
4(s− 2)
s+ 1

+
4

t2(s+ 1)2 ≤ (4 − s2)(4 − t2).

Multiplying both sides by t2(s+ 1)2 , we get:

(s+ 1)2(s− 2)2t4 + 4(s− 2)(s + 1)t2 + 4 ≤ (4 − s2)(s+ 1)2(4 − t2)t2.

which simplifies to:

−(s+ 1)2(s− 2)t4 + (s2 + 3s+ 3)(s − 2)(s+ 1)t2 + 1 ≤ 0.

Plugging in (2–7), we get

(s+ 1)3(s− 2)t2 ≤ 0,

which always holds when s ∈ (p2 ≈ −0.8061, p3 ≈ 1.7093) ⊂ (−2, 2).

So, points on X0,R(M) correspond to SU2(C) representations if and only if |s| < 2
and correspond to SL2(R) representations if and only if |s| > 2.

Proof of Theorem 1 (a) Lemma 2 tells us a SL2(C) representation ρ of m137 is
real if and only if eigenvalues of ρ(λ) are real. Moreover, the condition µλn = 1
forces the eigenvalues of ρ(µ) to also be real in this case. So we could restrict our
attention to |s| > 2 and look at the A-polynomial instead (see e.g. [4] for definition of
A-polynomial). Recall that z is an eigenvalue of ρ(λ). Denote by m the eigenvalue
of ρ(µ) which shares the same eigenvector with z. The A-polynomial of m137 is
computed by SAGE [8] as:

(z4 + 2z5 + 3z6 + z7 − z8 − 3z9 − 2z10 − z11) + m2(−1 − 3z− 2z2 − z3

+ 2z4 + 4z5 + z6 + 4z7 + z8 + 4z9 + 2z10 − z11 − 2z12 − 3z13 − z14)

+ m4(−z3 − 2z4 − 3z5 − z6 + z7 + 3z8 + 2z9 + z10).

Denote by A = −1 − 2z− 3z2 − z3 + z4 + 3z5 + 2z6 + z7 = (z− 1)(z2 + z+ 1)3 and
B = 1+3z+2z2+ z3 −2z4−4z5 − z6 −4z7 − z8−4z9 −2z10 + z11 +2z12 +3z13 + z14 .
So the A-polynomial could be simplified as −z4A− Bm2 + z3Am4 . We are interested
in the real solutions of

(2–14) − z4A− Bm2
+ z3Am4

= 0.

Now consider the (1, n) Dehn filling on m137. Then we are adding an extra relation
µλn = 1, which is ρ(µ)ρ(λ)n = I under the representation ρ , i.e.

ρ(µ) = ρ(λ)−n =
(
z−n ∗

0 zn

)
.
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Restricting to ∂M gives us the relation m = z−n .

When n is negative, we shall denote n′ = −n. So we have m = zn′ . Plugging into
(2–14) and dividing both sides by z4 , we get

(2–15) − A− Bz2n
′−4

+ Az4n
′−1

= 0.

We will show the following lemma is true, completing the proof of Theorem 1 (a).

Lemma 4 Equation (2–15) has no real solutions when n′ is large enough.

Proof of Lemma 4 Define F(z) = A(z4n′−1 − 1) − Bz2n′−4 . We’ll show F(z) > 0.

First notice that A = 0 only when z = 1. And A > 0 when z > 1 while A < 0 when
z < 1. The polynomial B has 6 real roots which are all simple: −2.3396, −1.4121,
−0.7082, −0.4274, 0.8684, 1.1516 (rounded to the fourth digit).

As we saw earlier, the domain for s is U := (−∞, p1 ≈ −2.9032] ∪ [p2 ≈

−0.8061, p3 ≈ 1.7093] ∪ (2,∞). So the |s| > 2 condition restricts s to (−∞, p1 ≈

−2.9032] ∪ (2,∞). Then z ∈ V := (−∞,−2.5038] ∪ [−0.3994, 0) ∪ (0, 1) ∪ (1,∞).
Notice that z7A(1/z) = −A(z) and z14B(1/z) = B(z). Interchange z with 1/z in F(z)
gives us F(1/z) = A(1/z)(z−(4n′−1) − 1) − B(1/z)z−(2n′−4) = F(z)/z4n′+6 . So we can
assume |z| < 1.

case 1: 0.8684 ≤ z < 1

In this case, we have A(z) < 0, B(z) ≤ 0 and z4n′−1 − 1 < 0. So F(z) > 0.

case 2: −0.3994 ≤ z < 0.8684 and z 6= 0

In this case, we have A(z) < C5 < 0 and C6 > B(z) > 0 for some constants C5
and C6 . When n′ is large enough, we have |C5| × |(z4n′−1 − 1)| > C6z2n

′−4 . So
A(z4n′−1 − 1) = |A| × |(z4n′−1 − 1)| > Bz2n′−4 and it follows that F(z) > 0.

Therefore when n′ = −n is large enough, we always have F(z) > 0 on the domain V .
So equation (2–15) has no real solution when n′ ≫ 0.

It follows from the above lemma that equation (2–14) has no real solution when n≪ 0
and thus equality ρ(µ)ρ(λ)n = I does not hold for n≪ 0.
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From all the discussion above, we can now conclude that M(1, n) has no nontrivial
SL2(R) representation and thus no nontrivial PSL2(R) representation for n≪ 0. Since
the first Betti number of M(1, n) is 0, the lift of a trivial PSL2(R) representation of
π1(M(1, n)) into P̃SL2(R) will be trivial. So all representations of π1(M(1, n)) into
P̃SL2(R) are trivial for n≪ 0, proving Theorem 1 (a).

In contrast, when n is positive there are examples of non trivial SL2(R) representations.

Plugging m = z−n into (2–14) and multiplying both sides by z4n−3 , we get

−A+ Bz2n−3
+ Az4n+1

= 0.

Similarity, define G(z) = A(z4n+1 − 1) + Bz2n−3 . Since G(1) = −4, G(0.8684) > 0,
G(z) must have at least one root in [0.8684, 1). So π1(M(1, n)) has at least one
nontrivial SL2(R) representation for any n > 0. They lift to a P̃SL2(R) representations,
since the Euler number of any representation of an integral homology sphere vanishes
[11, Section 6].

3 No L-space fillings

In this section, I will prove Theorem 1 (b) using results from Gillespie’s paper [12],
which is based on Rasmussen and Rasmussen’s paper [18]. In fact, I will show that
none of the non-longitudinal fillings of m137 is an L-space. The homology groups in
this section are all homology with integral coefficients.

Suppose Y is a compact connected 3-manifold with a single torus as boundary. I will
follow Gillespie’s [18] notation. Define the set of slopes on ∂Y as:

Sl(Y) = {a ∈ H1(∂Y)| a is primitive}/± 1.

Define the set of L-space filling slopes of Y :

L(Y) = {a ∈ Sl(Y)| Y(a) is an L-space}.

Moreover, Y is said to have genus 0 if H2(Y, ∂Y) is generated by a surface of genus 0.

We will use Theorem 1.2 from Gillespie’s paper [12] which is stated as:

Theorem 2 The following are equivalent

1) L(Y) = Sl(Y) − {l}.
2) Y has genus 0 and has an L-space filling.
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Proof of Theorem 1 (b) Let l ∈ Sl(M) be the homological longitude. In our case l
can be taken to be [λ]. I will show that none of the (1, n) fillings to M is an L-space.

I will find one non L-space filling first. Snappy [6] shows that (1,−1) filling on the knot
820 complement with homological framing is homeomorphic to m011(2, 3), which is
also homeomorphic to M(1,−3). Ozsváth and Szabó showed that if some (1, p) Dehn
filling of a knot complement in S3 with homological framing is an L-space, then the
Alexander polynomial of the knot has coefficients ±1 [17, Corollary 1.3]. We can
compute with SnapPy [6] that the Alexander Polynomial of 820 is x4−2x3+3x2−2x+1.
So M(1,−3) is not an L-space. Therefore

−3l+ [µ] /∈ L(M) 6= Sl(M) − {l} ∋ −3l+ [µ],

By Theorem 2, either M has no L-space fillings or M has positive genus.

The manifold M can be viewed as the complement of a knot K in S2 × S1 [9]. This
knot K intersects each S2 three times. So [K] 6= 0 in H1(S2 × S1;Z). It follows that
H2(M, ∂M) is generated by genus 0 surface (S2 × {P}) ∩M for generic point P on
K . So M has genus 0, which forces M to have no L-space filling. Therefore none of
the integral homology spheres M(1, n) is an L-space.
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