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Non L-space integral homology 3-spheres with no nice
orderings

XINGHUA GAO

This paper gives infinitely many examples of non L-space irreducible integer

homology 3-spheres whose fundamental groups do not have nontrivial PSL;(R)
representations.

57M50; 57M27, 5TM25

1 Introduction

Before stating the main result, I will review some definitions. A rational homology
3-sphere Y is called an L-space if rkIfI?(Y) = |H(Y;Z)|, i.e. its Heegaard Floer
homology is minimal. An L-space does not admit any co-orientable taut foliation
by Bowden [1], Kazez-Roberts [14] and Ozsvath-Szabo [16]. A nontrivial group G
is called left-orderable if there exists a strict total ordering of G invariant under left
multiplication. Boyer, Gordon, and Watson conjectured in [2] that an irreducible
rational homology 3-sphere is a non L-space if and only if its fundamental group is
left-orderable. A stronger conjecture states that for an irreducible (Q-homology 3-
sphere, being a non L-space, having left-orderable fundamental group and admitting a
co-orientable taut foliation are the same (see e.g. Culler-Dunfield [5]).

To show the fundamental group m;(Y) of a 3-manifold Y is orderable, it is most
common to consider PSL,(R) representations of 71 (Y). In fact in many cases, PSL>(R)
representations are sufficient to define an order on m;(Y) [5]. However, Theorem 1

in this paper shows that, even in the case of non L-space integral homology spheres,

orders coming from PSL,(R) are not enough to prove the conjecture of Boyer, Gordon
and Watson.

It is conjectured that any integer homology 3 -sphere different from the 3 -sphere admits
an irreducible representation in SU»(C) (see e.g. Kirby’s problem list [15, Problem
3.105]). Zentner showed that if one enlarges the target group to SL,(C), then every
such integral homology 3 sphere has an irreducible representation [20]. In contrast, |
will give examples where there are no irreducible PSL,(R) representations. Let M
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be the manifold m137 [3] and M(1,n) be the integral homology sphere obtained by
(1, n) Dehn fillings on M. The main result of this paper states:

Theorem 1 For all n < 0, the manifold M(1,n) is a hyperbolic integral homology
3 -sphere where

—_—

a) mw(M(1,n)) does not have a nontrivial PSL,(R) representation.

b) M(1,n) is not an L-space.

This means that we can not produce an order on m;(M(1,n)) simply by pulling back
the action of PSL,(R) on R.

Section 1 is devoted to proving part (a) of Theorem 1. Let Xy(M) be the component
of the SL,(C) character variety of M containing the character of an irreducible rep-
resentation (see Culler-Shalen [7] for definition). Here is an outline of the approach.
Let Xor(M) be the real points of Xo(M). Define [p] € Xor(M) and denote by s
the trace of p(A) where A is the homological longitude of M. The proof is divided
into two parts. In the first part, I show that points on the |s| < 2 components of
Xo,r(M) all correspond to SU,(C) representations while points on the [s| > 2 com-
ponents correspond to SL,(IR) representations. In the second part, I show that SL,(RR)
representations of (M) give rise to no SL(R) representations of 7 (M(1,n)) when
n < 0. This part of the proof is basically analysing real solutions to the A-polynomial
of M under the relation p\"* = 1 given by (1, n) Dehn filling , where p is a choice of
meridian of OM.

In Section 2, by applying techniques in the paper by Rasmussen, Rasmussen [18] and
Gillespie [12], I show that none of the (1,#) Dehn fillings on m137 is an L-space,
completing the proof of Theorem 1.
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2  PSL,(R) representations

I will prove Theorem 1 (a) in this section.

SnapPy [6] gives us the following presentation of the fundamental group of M =
ml137:

mM) = (o, | &’ B! 737! 52).
The peripheral system of M can be represented as:
{,ua )\} — {a_1ﬁ2a4ﬁ2, 04_1,8_1} — {,82)\_1,8_3)\_1,82, )\}

where A is the homological longitude and p is a choice of meridian. Then we can
rewrite the fundamental group as:

(2-1) M) =\ B BTIATIBTIATIBIA = AN 152,

and the meridian becomes ;1 = A2A~!373A~!3? under this presentation.

Remark The triangulation of m137 we used (included in [10]) to get these presenta-
tions is different from SnapPy’s default triangulation. We got it by performing random
Pachner moves on the default triangulation in SnapPy. In particular, our notations for
longitude and meridian in the peripheral system are meridian and longitude respectively
in SnapPy’s default notations.

We will first look at irreducible SL,(C) representations of the fundamental group
of M before we look at those of Dehn fillings of M. Denote by X(M) the
SL>(C) character variety of M, that is the Geometric Invariant Theory quotient
Hom (7 (M), SL,(C))//SLy(C). 1t is an affine variety [7]. Suppose p : m (M) —
SL,(C) is arepresentation of the fundamental group of M. Recall that a representation
p of G in SL,(C) is irreducible if the only subspaces of C? invariant under p(G) are {0}
and C? [7]. This is equivalent to saying that p can’t be conjugated to a representation
by upper triangular matrices. Otherwise p is called reducible. We will call a character
irreducible (reducible) if the corresponding representation is irreducible (reducible).

First, I determine which components of X(M) contain characters of irreducible repre-
sentations. Computation with SnapPy [6] shows that the Alexander polynomial A x4
of m137 is 1, which has no root. So there are no reducible non-abelian representa-
tions [4, Section 6.1]. Therefore all the reducible representations are abelian. Since
H{(M) = Z, there is only one such component and it is parameterized by the image of
S and is isomorphic to Hom(Z, SL,(C))//SL,(C) ~ C. Moreover, it is disjoint from
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any component of X(M) containing the character of an irreducible representation [4,
Section 6.2]. For more details, we refer the readers to Tillmann’s note [19] where he
studied m137 as an example.

An abelian representation of 71 (M) that induces an abelian representation of 71 (M(1, n))
factors through the abelianization ab(m(M(1,n))) = 1. So they correspond to trivial
SL,(C) representations and we don’t need to worry about them.

Now we consider components of X(M) that contain the character of an irreducible
representation. We have:

Lemma 1 There is a single component Xo(M) of X(M) containing an irreducible
character. The functions s = trp(\) = trp(a”'B~") = trp(af) and t = trp(j3) give
complete coordinates on Xo(M), which is the curve in C? cut out by

(-2 =35+ )+ @+4s—s>—sHP—1=0

Moreover, w := trp(\3) = trp(\3) ™) =t — z(s—-lH)

Proof of Lemma 1 Let Xy(M) be X(M) — {reducible characters}. From the dis-
cussion above, we know that all the reducible characters form a single component of
X(M) and this component is disjoint from any other component of X(M). So Xy(M)
is Zariski Closed. We will show later that Xo(M) is actually an irreducible algebraic
variety, as claimed in the lemma.

Suppose [p] € Xo(M). So p is an irreducible representation. By conjugating p if
necessary, we can assume that p has the form

z 1 x 0
=5 1) o= 0

From the relator of 7;(M) in (2-1) we have p(B)~'p(A\) 187 p(N) " p(B)*p(\) =
p(MN)p(B)2p(M\)~! p(B3)?. Comparing the entries of the matrices on both sides, we get
four equations. These four equations together with s = z 4+ 1/z, t = x + 1/x and
w = zx+2z " 'x~! +y form a system S which defines Xy(M). By computing a Grobner
basis of this system, SageMath [8] gives the following generators of the radical ideal
I = I(Xo(M)):

(2-2) stw—1 —w? —s+2
(2-3) £—w tst—sw—2t+w
(2-4) sP—tw—wr—s+1

(2-5) sw® — 2t + sPw — Pw — tw? st —sw+ ¢
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Subtracting (2—4) from (2-2), we get:
1
s+ 1)
Eliminating w, we get a defining equation for Xo(M):
0=(—2-3s+)"+@+4s—s* - — 1
=(s—2)(s+ D — (s —2)(s+2)(s + D> — 1.
Thus, we can think of Xo(M) as living in C?.

(2-6) W=t

-7

To prove the lemma, we must show that Xy(M) is irreducible or equivalently the
polynomial P(s, ) := (s — 2)(s + 1)>#* — (s — 2)(s + 2)(s + 1)> — 1 in (2-7) does not
factor in C[s,¢]. Assume P(s, f) factors. Suppose it factors as

(af? +bt+c)(dP +et—1/c) = adt* + (ae+ bd)® + (cd — a/c + be)t* + (ce —b/c)t — 1,

where a,b,d,e € C[s] and ¢ € C — {0}. Setting the coefficients of ¢ and > to be 0,
we get b = c¢?e and ae = —c*de. If e # 0, then a = —c?d. But this is impossible as
ad = (s — 2)(s + 1)? is a polynomial in s of odd degree. So e = 0 and it follows that
b = 0. Comparing the coefficients of 2 and #*, we get

(2-8) ad = (s — 2)(s + 1)
and
(2-9) cd—ajc=—(s—2)(s+2)(s+1).

So degree(a) + degree(d) = 3 and max{degree(a), degree(d)} > 3, which implies
exactly one of ¢ and d has degree 3 and the other has degree 0. Without loss of
generality, we can assume that degree(a) = 3 and degree(d) = 0. Multiply both sides
of (2-9) by ¢, we get a = c*d + c(s — 2)(s + 2)(s + 1). So the coefficient of s> in a is
c. Comparing with the coefficient of s° in (2-8), we know that d = 1/c. Eliminating
a and d gives us an equality 1 + (s — 2)(s + 2)(s + 1) = (s — 2)(s + 1), which does
not hold.

Else suppose P(s,t) factors as
(at + )b + di + et — 1/c¢) = abt* + (ad + cb)® + (cd + ae)t® + (ce — a/c)t — 1,

where a,b,d,e € C[s] and ¢ € C — {0}. Setting the coefficients of # and #* to be 0,
we get a = c?e and b = ced. Comparing the coefficients of > and ¢*, we get

(2-10) Ade* = (s —2)(s + 1)
and

(2-11) cd+c*e* = —(s — 2)(s + 2)(s + 1).



6 Xinghua Gao

So degree(d) + 2degree(e) = 3 and max{degree(d), 2degree(e)} > 3 which implies
degree(d) = 3 and degree(e) = 0. Comparing the coefficients of s in (2-10) and
(2-11), we know that ¢?¢*> = —1. Plugging into (2—10), we get cd = (s — 2)(s + 1),
which when plugging into (2—11) implies ¢?e?> = —(s + 1)(s — 2), a contradiction. So
P(s, ) is irreducible over C. Therefore Xy(M) has only one component. O

To find irreducible SL,(R) representations of m;(M), we need to check all real points
on Xo(M), which correspond to real solutions of (2—7). Notice that equation (2—7)
has no solutions when s = —1 or 2, so (2—7) is a quadratic equation in 2. In order for
t to be real, #* has to be real and nonnegative. Then first we need the discriminant to
be nonnegative. That is:

A=+ 1D s —2)s* +25° —4s —4) > 0.

Sos e U:=(—oo,p1]U|[p2,p3] U (2,00), where p; =~ —2.9032, p, ~ —0.8061 and
p3 =~ 1.7093 are three roots of cubic polynomial s 4 25> — 4s — 4.

The following lemma will help us determine when a SL,(C) representation of 7 (M)
can be conjugated into SL,(IR) by simply checking where it lies on the character variety.

Lemma 2 The real points Xor(M) = Xo(M) N R? of Xo(M) has 6 connected
components:

Points on the two components with |s| < 2 correspond to SU,(C) representations.

Points on the four components with |s| > 2 correspond to SL,(R) representations.

Remark The above lemma shows that in our case, the absolute value of one character
being smaller than 2 implies that the representation is SU,(C). But in general, this is
not true.

To prove this lemma, we need to determine when [p] € Xor(M) corresponds to
p € SU(C) and when it corresponds to p € SLy(R). It can’t be in both because
otherwise it would be reducible [5, Lemma 2.10] and we know Xo(M) contains only
irreducible characters. The tool we use is a reformulation of Proposition 3.1 in [13]
which states that given three angles 0; € [0, 7], i = 1,2, 3, there exist three SU,(C)
matrices C;, satisfying C,C,C; = I with eigenvalues exp(=+if;) respectively if and
only if these angles satisfy:

(2-12) 01 — 05| < 03 <min{0; + 65,27 — (61 + 62)}.

We want to rewrite the above inequality in terms of traces of C;, C; and C3. We have
the following lemma:
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Lemma 3 Suppose t1,t,13 € (—2,2) are the traces of three matrices C1,C,,C; €
SLy(C) satistying C1C,C3 = I. Then Cy, C,, Cs are simultaneously conjugate into
SU,(C) if and only if

23 —n162)* < (4 — )4 - 5).
Proof Suppose t; = 2cos(01), to = 2cos(6,) and 3 = 2 cos(63) where 01, 6,,03 €
[0, 7].

If 0 < 6 + 6, < , then the inequality (2-12) becomes [0} — 0,| < 03 < 0, + 6,.
Taking cosine, we get cos(d; + 62) < cos(f3) < cos(f; — 6).

If 7 < 0; + 6, < 2, then the inequality becomes |0 — 05| < 63 < 27w — (6; + 603).
Taking cosine, we also get cos(d; + 0,) < cos(f3) < cos(6; — 63).

Use the relations #; = 2cos(0y), t = 2cos(d2), and t3 = 2cos(f3), we get in both
cases that:

Then

So we have:

2 4 4 4
Squaring both sides and simplifying, we get

2t — hh)* < (@4 —1)E — 1),

as desired. O
With the criterion of Lemma 3 in hand, we now can prove Lemma 2.

Proof of Lemma 2 The six components correspond to s € (—oo,pi] U [p2,p3] U
(2,00) and ¢ € (—o0,0) U (0, 00).

Set C1 = p(\), C2 = p(B) and C3 = p(B~'A"") = p(AB)™"). Then 1y =5, 1 = ¢
and 13 = w. Applying Lemma 3 we have:

(2-13) Qw —st)? < (4 — 24 — ).
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Plugging (2-6) into (2—13) and simplifying:
4(s —2)
<4
s+1 i (s + 1)? = (
Multiplying both sides by 2(s + 1), we get:

(s4+ 12— 2% + 4@ —2)(s+ D +4 < (4 —s*) (s + 1)>(4 — )P

(s — 2% + — )4 - ).

which simplifies to:
—H+ D=+ (P +35+3) (s -2+ DA +1<0.
Plugging in (2-7), we get
(s+ D*(s—2)F* <0,
which always holds when s € (p» = —0.8061, p3 ~ 1.7093) C (-2,2).

So, points on Xor(M) correspond to SU,(C) representations if and only if |s| < 2
and correspond to SL,(R) representations if and only if |s| > 2. O

Proof of Theorem 1 (a) Lemma 2 tells us a SL,(C) representation p of m137 is
real if and only if eigenvalues of p(\) are real. Moreover, the condition puA" = 1
forces the eigenvalues of p(u) to also be real in this case. So we could restrict our
attention to |s| > 2 and look at the A-polynomial instead (see e.g. [4] for definition of
A-polynomial). Recall that z is an eigenvalue of p(\). Denote by m the eigenvalue
of p(w) which shares the same eigenvector with z. The A-polynomial of m137 is
computed by SAGE [8] as:

422 +30 42 =B -3 -2 Y (-1 =322 -2
4244485 + 0+ 47 + B4 210 M 012 38 214)
+mt(—2> =224 =32 — 5 427 4328 422 +219).
Denoteby 4 = —1 -2z —322 — 22 + 24 + 322 4225+ 27 = (z — 1)(2> +z+ 1)? and
B=1+43242242 2447 26— 477 -8 47 27104 711 1 2512 4 3,13 4 714

So the A-polynomial could be simplified as —z*4 — Bm? + z3Am*. We are interested
in the real solutions of

(2-14) —2*4 — Bm* + 2 Am* = 0.

Now consider the (1,7) Dehn filling on m137. Then we are adding an extra relation
uA" =1, which is p(u)p(A)" = I under the representation p, i.e.

n Z—ﬂ *
pp) = p(N) ™" = ( 0 z”> :
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Restricting to 0 M gives us the relation m = z7".

When 7 is negative, we shall denote n’ = —n. So we have m = 2. Plugging into
(2—-14) and dividing both sides by z*, we get

(2-15) —A—BA 4 =0,

We will show the following lemma is true, completing the proof of Theorem 1 (a).

Lemma 4 Equation (2—15) has no real solutions when n’ is large enough.

Proof of Lemma 4 Define F(z) = A" ~' — 1) — Bz*"~*. We’ll show F(z) > 0.

First notice that A = 0 only when z=1. And 4 > 0 when z > 1 while 4 < 0 when
z < 1. The polynomial B has 6 real roots which are all simple: —2.3396, —1.4121,
—0.7082, —0.4274, 0.8684, 1.1516 (rounded to the fourth digit).

As we saw earlier, the domain for s is U = (—oo,p; =~ —2.9032] U [p» =~
—0.8061,p3 =~ 1.7093] U (2,0). So the |s| > 2 condition restricts s to (—oo,p; ~
~2.9032] U (2,00). Then z € ¥ := (— o0, —2.5038] U [—0.3994, 0) U (0, 1) U (1, 0).
Notice that z74(1/z) = —A(z) and z'*B(1/z) = B(z). Interchange z with 1/z in F(z)
gives us F(1/z) = A(1/2)z=*" =D — 1) — B(1/2)z= "% = F(2)/z*"*%. So we can
assume |z| < 1.

case 1: 0.8684 <z < 1

In this case, we have A(z) < 0, B(z) < 0 and z*'~' — 1 < 0. So F(z) > 0.

case 2: —0.3994 <z < 0.8684 and z # 0

In this case, we have A(z) < C5 < 0 and Cg > B(z) > 0 for some constants Cs
and Cs. When #’ is large enough, we have |Cs| x | ~' — 1)| > C¢z*"~*. So
AT 1) = 4] x | = 1)| > B2~ and it follows that F(z) > 0.

Therefore when n’ = —n is large enough, we always have F(z) > 0 on the domain V.

So equation (2—15) has no real solution when n’ > 0. O

It follows from the above lemma that equation (2—14) has no real solution when n < 0
and thus equality p(u)p(A)" = I does not hold for n < 0.
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From all the discussion above, we can now conclude that M(1,7) has no nontrivial
SL,(R) representation and thus no nontrivial PSL,(RR) representation for » < 0. Since
the first Betti number of M(1,n) is 0, the lift of a trivial PSL,(R) representation of
w1 (M(1,n)) into FS?L/Z(R) will be trivial. So all representations of 71 (M(1, n)) into
l/’g_L/z(R) are trivial for n < 0, proving Theorem 1 (a). O

In contrast, when 7 is positive there are examples of non trivial SL,(IR) representations.

Plugging m = z~" into (2—14) and multiplying both sides by z*~3

, we get
—A +B22n—3 +AZ4n+l — O

Similarity, define G(z) = A(Z**! — 1) 4+ Bz*"~3. Since G(1) = —4, G(0.8684) > 0,
G(z) must have at least one root in [0.8684,1). So m(M(1,n)) has at least one
nontrivial SL,(IR) representation forany » > 0. They lifttoa FS\'L/Z(R) representations,
since the Euler number of any representation of an integral homology sphere vanishes
[11, Section 6].

3 No L-space fillings

In this section, I will prove Theorem 1 (b) using results from Gillespie’s paper [12],
which is based on Rasmussen and Rasmussen’s paper [18]. In fact, I will show that
none of the non-longitudinal fillings of m137 is an L-space. The homology groups in
this section are all homology with integral coefficients.

Suppose Y is a compact connected 3-manifold with a single torus as boundary. I will
follow Gillespie’s [18] notation. Define the set of slopes on 0Y as:

SI(Y) = {a € H|(9Y)| a is primitive}/ + 1.
Define the set of L-space filling slopes of Y
L(Y) = {a € SI(Y)| Y(a) is an L-space}.
Moreover, Y is said to have genus 0 if H,(Y, dY) is generated by a surface of genus 0.

We will use Theorem 1.2 from Gillespie’s paper [12] which is stated as:

Theorem 2 The following are equivalent

1) L(Y)=SKY) - {1}.
2) Y has genus 0 and has an L-space filling.



Non L-space integral homology 3-spheres with no nice orderings 11

Proof of Theorem 1 (b) Let / € SI(M) be the homological longitude. In our case /
can be taken to be [A]. I will show that none of the (1, n) fillings to M is an L-space.

I will find one non L-space filling first. Snappy [6] shows that (1, —1) filling on the knot
820 complement with homological framing is homeomorphic to m011(2, 3), which is
also homeomorphic to M(1, —3). Ozsvath and Szab6 showed that if some (1, p) Dehn
filling of a knot complement in S°with homological framing is an L-space, then the
Alexander polynomial of the knot has coefficients £1 [17, Corollary 1.3]. We can
compute with SnapPy [6] that the Alexander Polynomial of 859 is x* —2x* +3x? —2x+1.
So M(1,—3) is not an L-space. Therefore

=31+ [p] & LM) # SUM) — {1} > =31+ [u],
By Theorem 2, either M has no L-space fillings or M has positive genus.

The manifold M can be viewed as the complement of a knot K in S? x S! [9]. This
knot K intersects each S? three times. So [K] # 0 in H (S x S';Z). It follows that
Hy(M, OM) is generated by genus 0 surface (S x {P}) N M for generic point P on
K. So M has genus 0, which forces M to have no L-space filling. Therefore none of
the integral homology spheres M(1, n) is an L-space. m]
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