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ABSTRACT

A blind opportunistic navigation (BON) framework is proposed. This framework deciphers partially known signals of
opportunity (SOPs) in a cognitive fashion. BON enables acquisition and tracking of terrestrial or space-based SOPs
with minimal prior knowledge about their beacon signal. A computationally efficient algorithm is presented to blindly
decode the beacon signals and estimate the Doppler frequency. The BON framework is applied to decipher the C/A
pseudorandom noise (PRN) sequences from four GPS satellites. Experimental results are presented demonstrating a
percentage of correctly decoded chips for these four PRN sequences ranging between 91% and 99%. These deciphered
sequences are fed to a software-defined Rx (SDR) which produce a two-dimensional (2-D) position error of 54.5m for
a stationary antenna.

I. INTRODUCTION

Signals of opportunity (SOPs), including AM/FM radio [1,2], Wi-Fi [3,4], cellular [5-9], etc., are proving to be a
reliable and accurate alternative navigation source in global navigation satellite systems (GNSS)-challenged environ-
ments. Along with terrestrial SOPs, low Earth orbit (LEO) satellite signals are particularly attractive for navigation
[10-15]. Private companies, such as OneWeb, SpaceX, Boeing, and others are planning to launch thousands of



broadband Internet satellites into LEO, which increases the availability of these signals. Adapting the broadband
protocols to support navigation capabilities due to the simpler receiver architectures and navigation algorithms have
been considered in some studies [11]. However, this adaptation comes at the cost of significant changes to existing
infrastructures. Consequently, private companies may not be willing to pay for these extra costs, and if they do so, it
is likely that they would charge for the extended positioning services they would offer. To circumvent this, one could
exploit the signals of both existing and future broadband LEO satellites in an opportunistic fashion [13,15-17].

One of the main challenges of opportunistic navigation via SOPs transmitted by private broadband systems, e.g.,
LEO broadband satellites, is that the signal specifications of these SOPs may not be available to the public. This
limitation makes acquiring and tracking these satellite signals impossible. As such, designing receivers that can blindly
acquire partially known signals is an emerging need for the future of opportunistic navigation. In this paper, a blind
opportunistic navigation (BON) framework is introduced to tackle this problem. Assuming that the SOP follows
a standard modulation, e.g. code-division multiple access (CDMA) or orthogonal frequency-division multiplexing
(OFDM), a BON framework recovers the partially known signal’s structure to provide a navigation solution in the
absence of GNSS signals. Most communication systems employ a synchronization beacon for receiver timing and
carrier recovery. For example, in cellular CDMA, pseudorandom noise (PRN) sequences are used on the forward-link
pilot channel for synchronization proposes [18]. Other examples of such beacons are the primary synchronization
signal (PSS) and secondary synchronization signal (SSS) in cellular long-term evolution (LTE) systems. Even though
different broadband services may use known modulation schemes, their underlying configuration and parameters can
be different. For instance, the Globastar satellite system supposedly uses similar protocol to the IS-95 cellular CDMA
system but with different PRN sequences [18]. As such, a crucial stage in the architecture of a BON framework is to
blindly detect the unknown PRN sequence of the SOP in an online fashion or in a pre-navigation training stage.

The problem of discovering the unknown signal characteristics has been considered in both communications and
navigation literature, e.g., see [19-24]. The algorithms for blindly detecting PRN sequences proposed in the com-
munications literature rely on coherently integrating samples of the transmitted signals [19-24]. However, such
approaches do not account for the time-varying Doppler shifts and delays, which make it impossible to accumulate
enough signal power to detect the PRN sequence. Alternative approaches make use of high-gain antennas to accu-
mulate enough signal power for PRN sequence detection [21]. Some algorithms to decipher the signals from Galileo
and Compass satellites are presented in [21], which gives an insight into overcoming the challenges in discovering
the unknown signal characteristics of a transmitting source. In contrast with these approaches, the BON framework
has the flexibility of cognitively detecting the unknown PRN sequence of any broadband signal transmitter which
uses a particular communication standard, e.g. CDMA. Therefore, unlike [21], which concentrates on deciphering
one particular system, the BON framework is able to cognitively decipher partially known SOPs via a detection
algorithm with a reasonable computational complexity and an acceptable detection performance.

This paper considers the problem of cognitive deciphering of partially known SOPs via a joint detection and estimation
of unknown characteristics of SOPs for navigation purposes. For the BON framework, the Doppler frequency, the
modulation type, and the length and symbols of the beacon signal are not assumed to be known, but only the
bandwidth of the SOP is known. The main contributions of the paper are as follows. The notion of BON to enable
acquisition and tracking of partially known SOPs is introduced. Next, computationally efficient algorithms for blind
signal detection and blind Doppler estimation are proposed. Finally, the proposed BON framework is applied to
decipher the PRN sequences of GPS satellites. Experimental results are presented demonstrating a percentage of
correctly decoded chips for these four PRN sequences ranging between 91% and 99%. These deciphered sequences are
fed to a software-defined Rx (SDR), which produce a two-dimensional (2-D) position error of 54.5m for a stationary
antenna.

The rest of the paper is organized as follows. Section II formulates the BON notion. Section III describes the
architecture of the BON framework and presents the blind Doppler estimation and beacon signal detection algorithms.
Section IV presents experimental results validating the proposed BON framework on real GPS signals. Finally,
Section V gives concluding remarks.



II. PROBLEM FORMULATION AND SYSTEM MODELS
A. Problem Formulation

The main challenge a BON framework aims to address is the partially known nature of the SOPs it aims to cognitively
decipher, acquire, and track. Cognitive deciphering in the BON framework refers to blind detection and tracking of
the beacon signals, which in turn allows us to exploit the received signals for positioning and navigation purposes.
Beacon signal detection requires estimating a number of unknown parameters from the observations, given partially
known information about the SOP. For the BON framework, the Doppler frequency, the modulation type, and the
length and symbols of the beacon signal are not necessarily known to the receiver. The receiver has knowledge of the
bandwidth of the SOP only. Modulation classification and unknown signal length estimation are widely investigated
in the literature, e.g., see [25]. In this paper, without loss of generality, the length of the beacon signal is assumed
to be known (e.g., previously estimated using methods in [25]). Moreover, assuming the very likely scenario that the
beacon signal symbols are drawn from an arbitrary M phase shift keying (MPSK) constellation, a heuristic method
for estimating the order of the modulation type, i.e., M, is proposed.

It should be pointed out that, by definition, a beacon or pilot signal is a signal known by the receiver and is used for
timing and carrier synchronization, e.g., the PRN sequence in 3G cdma2000 systems or the cyclic prefix (CP), SSS, or
PSS in 4G LTE and 5G new radio (NR) systems. Correlation-based receivers are typically used to detect the presence
of beacon or pilot signals and synchronize to them. Due to the properties of correlation-based receivers, the known
beacon or pilot signals can still be detected reliably even at relatively low signal-to-noise ratios (SNRs). However,
the beacon could be unknown and the signals’ SNR could be too low for reliable blind detection. Consequently,
coherent integration becomes crucial to increase the effective SNR of the received beacon signal. To be able to
coherently integrate successive transmissions of the beacon signal, the Doppler frequency must be estimated. Even
after increasing the effective SNR via coherent integration, a naive symbol-by-symbol detection approach of the
beacon signal may fail. As such, a high-performance detection algorithm is needed to reliably estimate the beacon
signal after coherent integration.

In summary, the three building blocks of a BON framework are: (i) blind Doppler estimation/tracking, (ii) coherent
integration, and (iii) blind beacon detection/tracking. Once a blind estimate of the Doppler is produced, coherent
integration is performed and the integrated signal is fed to an algorithm to estimate the symbols of the beacon
sequence. The decoded beacon sequence is then used by an SOP navigation receiver, e.g., [26], [9], and [27], to
acquire, track, and navigate with the received SOP.

B. Received Baseband Signal Model

Let s(t) denote the beacon signal consisting of L consecutive symbols with symbol duration Tsymb. Each symbol is
drawn from an arbitrary MPSK constellation. The beacon signal is continuously transmitted at a period of L - Txymp.
After channel propagation and baseband sampling at an interval T}, the received signal can be modeled as

yn] = _Z ad; exp [j (2rAfn]n + 00)] s[n — iL — ng[n]] + w(n), (1)

where y[n] is the complex baseband sample at the nth time slot; N = L% is the length of the beacon in samples;

Af[n] £ fp[n]T; is the normalized Doppler frequency and fp is the true Doppler frequency in Hz; g is the initial
beat carrier phase; w[n] models noise and interference; « is an unknown complex amplitude; d; is a low rate data
symbol drawn from the same constellation of the beacon signal, e.g., navigation bits in GPS signals; and ng is the
unknown delay of the received beacon signal which can be modeled as

o) = | S] ) 2, - 221 )

where ¢4, is the initial delay in seconds of the received beacon signal and f. is the carrier frequency.




It is worth noting that the signal model in (1) is descriptive of the majority of BON scenarios. In some cases, (1)
directly applies, i.e., the received signal consists purely of one signal of interest and observation noise. In other
scenarios, such as CDMA-based communication systems, the presence of interference should also be taken into
account. For example, there is a total of 128 logical channels multiplexed onto one cdma2000 forward-link channel:
(i) one pilot channel, (ii) one sync channel, (iii) up to seven paging channels, and (iv) traffic on the remaining
channels. Each of these logical channels is spread orthogonally by a 128-Walsh code, multiplexed with the rest of
the channels, and the resulting signal is multiplied by a complex PRN sequence which consists of a pair of maximal-
length sequences. The CDMA signal is then filtered to limit its bandwidth before transmission. In such a system,
and CDMA systems in general, the signal on the pilot channel simplifies to the complex PRN sequence, which is the
beacon of interest. Therefore, one can look at the CDMA signal as the sum of two terms: (i) the signal on the pilot
channel, or the beacon signal, and (ii) the sum of the signals on the remaining channels. Due to the properties of
Walsh codes and assuming the symbols on the sync, paging, and traffic channels are uncorrelated, one can model
the sum of the signals on the remaining channels as noise. In fact, for a large number of logical channels such as
in ¢cdma2000, the central limit theorem practically applies and the resulting noise can be modeled as a zero-mean
Gaussian random variable. Consequently, the CDMA signal can be modeled according to (1), where s[n] is the
beacon on the pilot channel, and w[n| captures channel noise and interference from the rest of the logical channels.

III. THE BON FRAMEWORK

The core of the BON framework comprises: (i) detection of multiple SOPs, (ii) blind Doppler tracking, (iii) coherent
accumulation, and (iv) beacon signal decoding (see Fig. 1).

— — —

Multiple SOP | | Blind Doppler | Coherent | . Beacon signal| .
detection estimation | : | Integration | : | decoding

Fig. 1. BON framework.

This paper mainly focuses on the blind Doppler estimation and the beacon signal decoding steps. However, properly
designed algorithms for signal activity detection of multiple SOPs in the bandwidth of interest and the coherent
integration of the observations are essential steps to cognitively decipher the SOPs. It should be pointed out that
signal activity detection of multiple SOPs may also include an additional modulation classification step to identify
the modulation type of the beacon signals of the corresponding SOPs. Spectrum sensing techniques in cognitive
radio systems, e.g, the energy detector [28], and blind modulation classification methods, e.g., [25] and the references
therein, can be employed to detect the presence of SOPs and classify the modulation type of their beacon signal. In
the BON framework developed in this paper, a heuristic algorithm for joint signal activity detection and modulation
classification is presented. The algorithm performs a nonlinear operation to wipe-off the data symbols and turn the
received signal into a pure tone. Then, the fast Fourier transform (FFT) of the resulting signal is taken to detect
the tone and estimate its location in the frequency spectrum. For instance, for MPSK modulated data, raising the
received signal to the power of M wipes off the data symbols. For an MPSK signal where M is unknown, the signal
is raised to varying powers until a pure tone is observed in the FFT. The value of M for which the tone appears
determines the order of the PSK modulation of the unknown signal. Next, the Doppler frequency of the resulting
tone is tracked and the beacon symbols are subsequently decoded using the methods discussed in the following
subsections. It is important to note that this operation can be performed simultaneously on multiple SOPs with
different Doppler frequencies. In the sequel, M is assumed to be known via the aforementioned procedure.

A. Blind Doppler Estimation
A.1 Coherent Processing Interval for Doppler Estimation

As mentioned previously, blind Doppler estimation is one of the main challenges that has to be addressed in the
BON framework. To this end, a blind Doppler estimation algorithm is discussed next. Define a coherent processing
interval (CPI) of length I samples in which the Doppler frequency is assumed to be constant. Therefore, for a CPI
index k, the Doppler within the kth CPI can be expressed as fp[n] = fp, for kI <n < (k+ 1)I — 1. The blind



Doppler estimator in the BON framework processes one CPI at a time to estimate the time history of the Doppler
frequency. Define the vector of wiped-off observations in the kth CPI as

g & [RI)™, MR+ )Y, Y[+ DT - 1] 3)

which can now be approximated by samples of a pure tone with normalized Doppler frequency M A f. The Doppler

tracking algorithm relies on estimating the frequency of this tone in each CPI, and is stated in Algorithm 1. Define
the vector of estimated Doppler frequencies as

£ 2 [fosFows- oo do]

Algorithm 1 summarizes the steps to obtain f'g from {g,i‘/[ }5;01.

Algorithm 1 Blind Doppler estimator

Input: {ﬂ,iw}f;;
Output: fg
For k€ {0,..., K — 1}
- Find by, = arg max{‘FFT (g,i”)\}
b b, < é
L
2

- Calculate Afy, =< MJT 7
G be>
- Calculate fp, = ATf .

End

B. Coherent Integration

In this subsection, it is assumed that I = N. The following results can be extended to I > N. Given an estimate
of the Doppler frequency, an estimate of the change in the beacon signal delay fdk at the kth CPI can be formed

according to
k—1 3

fa, =" fjf’l NT,.
=0 ‘€

Subsequently, the Doppler frequency can be wiped-off from the original observation, resulting in

gr[m] £ ylm + k] exp [—j (QWAfkm-i-ék)] ® 6[m + kI — g, ], 0<m<N-1, (4)

where g, = Z‘i—k , 0, 2 27 fcfdk is the estimated carrier phase, and ® denotes the circular convolution. Subsequently,

F frames of the\resulting signal are accumulated according to

glm] = % <Q0[m] + i d;@dm]) ~ a's[m — no| + w'[m], (5)
k=0

where ng £ LZ‘?—"J is the initial beacon signal delay; w’ models the resulting noise; o/ is a constant complex amplitude

capturing the channel effect, initial beat carrier phase, and the residual Doppler; and di, = Hﬁzod} is the estimate

of the low rate data, where
N-1
dy, :sgn{Re{Z QT[m]gT_l[m]*}} ; (6)

m=0
where Re {-} denotes the real part. Note that the signal part of the right-hand side of (5) is a shifted version of the

beacon signal with a complex scaling. Let the vector z of length L denote the resampled vector Z £ [§[0], ... [N —1]]7
down to the symbol rate. The vector z is then fed to the beacon decoding algorithm to decipher the beacon signal.



C. Blind Beacon Decoding

After wiping-off the Doppler, performing coherent integration, and resampling, the symbols of the beacon signal are
decoded. The decoding problem can be modeled as

z=as+w, (7)

where @ is the unknown complex amplitude and w the resulting noise vector after resampling. Consider the set £
consisting of all M* combinations of L-dimensional vectors q whose elements are the integers between 0 to M — 1.
For MPSK signals, a beacon sequence is given by s = exp (J]%—}Tq), where ¢ € £. The maximum likelihood (ML)

decoder of q is
" i
— 8
o (57a)]. ©

where (-)* and (-)¥ are the complex conjugate and Hermitian operators, respectively.

q = argmax
qeLl

A naive solution to the optimization problem (8) consists of a brute-force search over all possible values of g, which
has exponential complexity. The order of the brute-force search is M*. In an effort to solve (8) in less than quadratic
complexity, the methods described in [29] and later again in [30] are used to decode the beacon signal. It can be
shown that the complexity of the algorithms proposed in [29] and [30] are on the order Llog, L.

IV. EXPERIMENTAL RESULTS

In order to demonstrate the capability of the BON framework in cognitively deciphering a signal of interest, an
experiment was conducted with real GPS signals. The GPS L1 C/A signals contain PRN codes at 1.023 Mega chips
per second (Mcps), modulated by binary PSK (BPSK) (M = 2) navigation bits at 50 bits per second (bps). Multiple
GPS satellites transmit simultaneously in the same channel using CDMA. In what follows, the experimental setup
is first described. Next, GPS PRNs are decoded using the BON framework. The decoded PRNs are then used in an
SDR to produce pseudorange measurements on GPS satellites and in turn solve for a stationary receiver’s position.

A. Experimental Setup

The setup consists of a GPS antenna, which was mounted on the roof of the Winston Chung Hall at the University
of California, Riverside, USA. The GPS signals were down-mixed and sampled via a National Instruments universal
software radio peripheral (USRP), driven by a GPS-disciplined oscillator (GPSDO). The samples of the received
signals were stored for off-line post-processing.

B. Deciphering GPS PRNs with the BON Framework
B.1 Multiple Signal Detection

A heuristic method to detect and localize multiple SOPs in the frequency-domain was proposed in Section III. In
order to detect and classify multiple SOPs, the observations are raised to the power of M to wipe off the PRNs and
the low rate data symbols and detect the resulting pure tone. Since GPS satellites transmit BPSK signals, when the
received signal is raised to the power M = 2, the data is wiped off and results in complex exponentials with twice the
Doppler frequencies. This allows the BON framework to detect several satellites that transmit in the same channel,
and multiple peaks will be seen in the Fourier transform of the dataless signal, as shown in Fig. 2.

B.2 Blind Doppler Estimation

Next, the peaks shown in Fig. 2 are tracked over time by performing Algorithm 1 on sequential CPIs of the stored
samples, producing Doppler frequency estimates to each satellite, as shown in Fig. 3(b). The CPI is considered to be



I = 120N. The estimated Doppler was compared with the Doppler calculated from the known receiver position and
the satellite positions obtained from the two-line element (TLE) files and orbit determination software (e.g., SGP4
[31]). TLE files contain the Keplerian elements parameterizing the orbits of LEO satellites and are made publicly
available and updated daily by the North American Aerospace Defense Command (NORAD) [32]. As it can be seen
in Fig. 3(b) and 3(c), the blind chirp parameter estimator successfully tracks the Doppler frequency of multiple
SOPs producing negligible residuals when subtracted from the Doppler frequencies obtained from TLE and SGP4.
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Fig. 2. (a) Joint signal activity detection and modulation classification of the beacon signals: Recall that the frequency component

of power of two will be double that of the original signal. (b) Multiple satellite detection: FFT peaks corresponding to different GPS
satellites. (¢) FFT peaks of PRN 21 at ¢t =0 s and ¢t = 120 s.
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Fig. 3. (a) Skyplot of 4 of the visible GPS satellites. (b) Time history of (i) the Doppler frequency of 4 of the GPS satellites obtained

from the TLE and SGP4 orbit determination software and (ii) the estimated Doppler frequencies of the corresponding satellites using the
BON framework. (c) Errors between the Doppler frequencies obtained from the TLE and the ones obtained using the BON framework.

B.3 Beacon Signal Decoding

Once the Doppler frequencies are estimated, the residual carrier is wiped off from the received signal, compensated
for delays due to Doppler, and coherently accumulated. The navigation bits are wiped off by two successive frames
to determine whether a transition occurred or not. The resulting accumulations are decimated to the chipping
rate of GPS PRNs and processed by the beacon decoding algorithm of the BON framework. A scatter plot of the
accumulated signal before beacon signal decoding is shown in Fig. 4(a) for the 4 satellites. While the scatter plots
of PRNs 20, 21, and 25 look significantly noisy, their effective SNR is high enough for the blind beacon decoding
algorithm to decode the PRNs with less than 10% chip error, as shown in Table I. The correlation function between
the decoded and true PRNs of the 4 GPS satellites are shown in Fig. 4(b). In addition to Table I, the correlation
plots in Fig. 4(b) also demonstrate that the PRN of each of the 4 satellites was adequately decoded.

TABLE I
THE PERCENTAGE OF CORRECTLY DECODED GPS PRN CHIPS USING THE BON FRAMEWORK

PRN number

PRN 20

PRN 21

PRN 25

PRN 29

Percentage of correctly decoded Chips

96%

94%

91%

99.9%
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Fig. 4. (a) Scatter plots of the coherent accumulation for the 4 satellites before beacon detection. (b) Correlations between the decoded
PRN of each satellite and the true PRNs.

B.4 Producing Navigation Observables from Decoded PRNs

The decoded beacons are then used to produce pseudorange observables from the received GPS signals. The initial
Doppler is known from the previous steps. The code phases are also known to be zero, since the decoded beacon has
the phase of the PRN at the time of initial reception. Therefore, signal acquisition is already performed; however, it
is shown in Fig. 5(a) for illustration purposes. The initial Doppler and code phase estimates are used to initialize an
SDR’s tracking loops: a third-order phase-locked loop (PLL) with a carrier-aided delay-locked loop (DLL) with the
dot product discriminator. The in-phase and quadrature components of the tracked prompt correlation for PRN 21
are shown in Fig. 5(b) for a period of 5 seconds. Since GPS signals are exploited opportunistically in this paper, it
is not assumed that the receiver can decode the navigation message. As a result, the code phase estimate expressed
in meters will be considered as the pseudorange estimate. The delta range of PRN 21 measured using the BON
framework is shown in Fig. 5(c) along with the delta range estimated via TLE and SGP4 software. The delta range
is a pseudorange from which the initial value is subtracted.
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Fig. 5. (a) Signal acquisition for PRN 21 using the decoded beacon. (b) Signal tracking of PRN 21 over a period of 5 seconds. (c) Delta
range computed from the TLE and the code phase measured by the BON receiver expressed in meters.



C. Navigation Solution

This section presents the navigation solution from the BON framework. The altitude 7, . of the stationary antenna
which collected the GPS signals is assumed to be known; hence, only the two-dimensional (2-D) states r,, and r, ,
are estimated. The pseudorange from the ith satellite at time-step k can be modeled as

pi(k) = |lrr = rs;(B)lly + b +ei(k),  k=1,2,..., 9)

where 7, = [Pr.a, Try, T‘T7Z]T is the three-dimensional (3-D) position of the receiver, rs, is the 3-D position vector of
the ith satellite obtained from the TLEs, b; is a bias term that captures the unknown bias between the receiver’s and
ith satellite’s clocks, and ¢; is the measurement error capturing ionospheric and tropospheric delays and measurement
noise. The pseudorange measurements for all satellites at all time-steps are stacked in one measurement vector p
and a batch nonlinear least-squares (NLS) estimator is implemented to solve for @ £ [r] by, .., bS]T, where S is
the total number of visible satellites. The receiver’s position in the NLS was initialized around 150 km from the true
receiver’s position, and all the biases {bi}le were initialized with zeros. The resulting position error with 4 satellites
over a 110-second period was found to 54.4 meters. The experimental setup and results are shown in Fig. 6.
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Fig. 6. (a) Experimental environment. (b) True and estimated receiver positions. (¢) Experimental hardware setup.

V. CONCLUSION

This paper proposed a BON framework to exploit SOPs with partially known signal specifications. Two main
challenges of BON were addressed. First, a blind Doppler tracking algorithm was proposed to estimate the Doppler
frequencies of detected SOPs. Second, a blind decoding algorithm was proposed to decode the unknown beacon
signals transmitted by SOP emitters. The BON framework was applied to decipher the GPS satellites” PRN codes
from L1 C/A signals. The experimental results show that the BON framework is capable of cognitively decoding
the PRNs of GPS satellites with a percentage of correctly decoded chips ranging between 91% and 99%. The PRNs
decoded by the BON framework were used to produce a navigation solution, which was only 54.5 m away from the
true position.
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