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ABSTRACT

An integrity-based path planning strategy for autonomous ground vehicle (AGV) navigation in urban environments
is developed. The vehicle is assumed to navigate by utilizing cellular long-term evolution (LTE) signals in addition to
Global Positioning System (GPS) signals. Given a desired destination, an optimal path is calculated, which minimizes
a cost function that considers both the horizontal protection level (HPL) and travel distance. The constraints are
that (i) the ratio of nodes with faulty signals to the total nodes be lower than a maximum allowable ratio and
(ii) the HPLs along each candidate path be lower than the horizontal alert limit (HAL). To predict the faults and
HPL before the vehicle is driven, GPS and LTE pseudoranges along the candidate paths are generated utilizing a
commercial ray-tracing software and three-dimensional (3D) terrain and building maps. Simulated pseudoranges
inform the path planning algorithm about potential biases due to reflections from buildings in urban environments.
Simulation results are presented showing that the optimal path produced by the proposed path planning strategy
has the minimum average HPL among the candidate paths.

I. INTRODUCTION

To enhance the safety and convenience of driving, autonomous ground vehicles (AGVs) have been extensively re-
searched by both academia and industry [1–4]. From a safety perspective, autonomous driving technology is expected
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to reduce collisions by drastically reducing human-driver errors and negligence [5]. Safety is highly dependent on the
vehicle’s navigation system. The vehicle’s safety depends on the reliability of the position solution calculated by the
vehicle’s navigation system.

The majority of AGVs developed so far rely on global navigation satellite systems (GNSS), such as the Global
Positioning System (GPS), to determine their absolute coordinates [6]. However, GNSS signals are susceptible to
interference that can be caused by nature (e.g., ionospheric disturbances owing to solar activity [7–9]) or humans
(e.g., jamming [10–12] and spoofing [13–15]). Especially in urban environments, the accuracy and availability of
GNSS position solutions can be significantly degraded due to multipath and non-line-of-sight (NLOS) conditions
caused by tall buildings. To compensate for the weakness of GNSS, navigation based on signals of opportunity
(SOPs) such as AM/FM radio signals [16, 17], cellular signals [18–21], WiFi [22–24], and low earth orbit (LEO)
satellite signals [25–28] have been actively studied. Among various SOPs, cellular long-term evolution (LTE) signals
are desirable in urban environments due to their high signal strength and geometric diversity. Furthermore, there
is no cost to receive LTE downlink signals for navigation purposes. Recent studies demonstrated meter-level and
submeter-level accuracy for cellular-signal-based ground vehicle [29, 30] and unmanned aerial vehicle (UAV) [31, 32]
navigation, respectively.

In order to ensure the safety of AGVs, it is necessary to continuously monitor the reliability of the navigation solution
calculated by the vehicle’s navigation system so that navigation integrity is guaranteed. The definition of integrity
is “the ability of the navigation system to provide timely warnings to the user when it is inadvisable to use the
system for navigation [33]”. In aviation, three architectures are typically used to guarantee integrity: ground-based
augmentation systems (GBAS), satellite-based augmentation systems (SBAS), and receiver autonomous integrity
monitoring (RAIM). Among the three architectures, GBAS and SBAS rely on additional information from external
sources (e.g., ground stations and satellites). On one hand, in open-sky environments, GBAS and SBAS can provide
high navigation availability while guaranteeing integrity, but their performances degrade in urban environments [34].
On the other hand, RAIM can guarantee the integrity by using redundant pseudorange measurements. RAIM can be
used to detect faults with redundant pseudorange measurements and calculate the protection level, which is defined
as a statistical error bound containing the position of the receiver with an acceptable level of certainty. Since it does
not require additional information from external sources, RAIM is applicable even in harsh environments, such as
urban areas [34].

In this paper, integrity is considered in the context of path planning. Generally, the purpose of path planning is to
find an optimal path from a start point to a target point, which can optimize a cost function generated in accordance
with desired conditions (e.g., travel distance, traffic, and toll). Numerous path planning studies for autonomous
vehicles have been conducted [35–37]. In studies related to multi-objective path planning, path planning strategies
that considered multiple objectives (e.g., obstacles, path length, and path smoothness) were proposed [38]. In studies
related to simultaneous localization and mapping (SLAM), path planning strategies for minimizing the accumulated
robot pose uncertainty [39] or minimizing the probability of becoming lost [40] were suggested. In [41], an integrity-
constrained path planning strategy that considered both the travel distance and horizontal protection level (HPL)
was proposed. This paper extends [41] in the following aspects:

• To increase the quality of the navigation solution (i.e., decrease the HPLs), cellular signals are used together with
GPS signals, whereas only GPS signals were considered in [41].
• Pseudorange bias caused by signal reflection by buildings is considered.
• Multiple faults in pseudorange measurements are considered in fault detection and HPL calculation. This is more
realistic than a single fault assumption, which was used in [41], since multiple faults can occur frequently in urban
environments owing to signal reflections from buildings.

This paper is organized as follows. Section II gives an overview of the proposed path planning strategy. Section III
presents GPS and LTE pseudorange prediction methods. Section IV discusses fault prediction and HPL calculation
methods. Section V proposes an optimal path planning method. Section VI simulation results. Section VII concludes
this paper.



II. OVERVIEW OF PATH PLANNING STRATEGY

Fig. 1 shows the block diagram of the proposed path planning algorithm. The AGV in this paper is assumed to be
equipped with GPS and LTE signal receivers, which can generate pseudorange measurements from GPS and LTE
signals, respectively. In addition, the AGV is assumed to have a database containing three-dimensional (3D) terrain
and building map, GPS ephemerides over time, and the positions of LTE base stations. The AGV desires to reach a
target position by tranversing an optimal path, which considers both the travel distance and position reliability. The
metrics for navigation reliability in this study include the HPL and the expected occurrence of faulty signals along
the candidate paths. Given a desired destination, an optimal path is calculated that minimizes a cost function, which
considers HPL and travel distance while satisfying the following constraints: (i) the ratio of nodes with faulty signals
to the total nodes be lower than a maximum allowable ratio and (ii) the HPLs along each candidate path be lower
than the horizontal alert limit (HAL). A ray-tracing simulation is conducted to predict pseudorange biases caused
by reflections due to buildings in an urban environment. These biases are used when conducting fault prediction
and HPL calculation for all nodes along each candidate path. Ray-tracing predicts GPS and LTE pseudorange
measurements at each node. Subsequently, fault prediction and HPL calculation is conducted using the predicted
GPS and LTE pseudorange measurements.

Fig. 1. Block diagram of the proposed path planning method. The vehicle is assumed to have a database of a 3D terrain and building
map, GPS ephemerides, LTE base station locations, and integrity parameters. The user inputs are departure time, a start node, and a
target node. Given the user inputs, the central computer performs ray-tracing to simulate GPS and LTE pseudoranges, predicts faults,
calculates HPLs along each candidate path, and obtains an optimal path.

III. GPS AND LTE PSEUDORANGE PREDICTION

This section presents the prediction of GPS and cellular pseudoranges, including NLOS and multipath errors.

A. AGV-Mounted Receiver States

In this paper, it is assumed that the AGV-mounted GPS and LTE receivers can measure pseudoranges from N GPS
satellites and M LTE base stations, respectively. Before being driven, the AGV computes predicted pseudoranges
using ray-tracing at each node along each candidate path. It is assumed that the coordinates of the GPS satellites
and LTE base stations are known to the AGV a priori. The coordinates of the GPS satellites are known from past
data since the GPS orbit is repeated every 12 hours in sidereal time. In addition, the coordinates of the LTE base
station can be known by radio mapping or satellite images.

The 3D positions of the n-th GPS satellite and m-th LTE base station are denoted as rGPSn
, [xGPSn

, yGPSn
, zGPSn

]T

and rLTEm
, [xLTEm

, yLTEm
, zLTEm

]T, respectively. The state vector of the receiver is denoted as xr , [rTr , cδtr]
T,



where rr , [xr, yr, zr]
T is the receiver’s position, δtr is the receiver’s clock bias, and c is the speed of light.

B. GPS Pseudorange Prediction

The n-th GPS pseudorange measurement in an urban environment at time-step k, denoted ρGPSn(k), is modeled as

ρGPSn
(k) = ‖rr(k)− rGPSn

(k)‖2 + c · [δtr(k)− δtGPSn
(k)]

+ c · δtiono,n(k) + c · δttropo,n(k) + ρNLOS,n(k) + εGPSn(k),
(1)

where c is the speed of light; δtGPSn
is the n-th satellite’s clock bias; δtiono,n and δttropo,n are ionospheric and

tropospheric delays, respectively; ρNLOS,n is the NLOS bias owing to reflection; and εGPSn is the measurement noise,
which is modeled as a zero-mean white Gaussian random sequence with variance σ2

GPSn
. The terms δtGPSn

and
δtiono,n can be corrected via the navigation messages, and δttropo,n can be corrected using a tropospheric delay
model. The corrected pseudorange of the n-th satellite is expressed as

ρ′GPSn
(k) = ‖rr(k)− rGPSn

(k)‖2 + c · δtr(k) + ρNLOS,n(k) + εGPSn
(k). (2)

GPS signals received by the receiver can be divided into two categories: LOS and NLOS. In the LOS case, the term
ρNLOS,n(k) is zero. In the NLOS case, the NLOS bias owing to reflection can be modeled as

ρNLOS,n(k) = ρreflection,n(k)− ‖rr(k)− rGPSn
(k)‖2, (3)

where ρreflection,n is the total travel distance of the NLOS signal, which can be predicted through a ray-tracing
simulation.

C. LTE Pseudorange Prediction

The m-th LTE pseudorange measurement in an urban environment at time-step k, denoted ρLTEm
(k), is modeled as

ρLTEm
(k) = ‖rr(k)− rLTEm

‖2 + c · [δtr(k)− δtLTEm
(k)] + ρMP,m(k) + εLTEm

(k), (4)

where δtLTEm
is the m-th base station’s clock bias, ρMP,m is the bias owing to NLOS and multipath signals, and

εLTEm is the measurement noise, which is modeled as a zero-mean Gaussian random sequence with variance σ2
LTEm

.
In this paper, it is assumed that the LTE clock bias δtLTEm

(1 ≤ m ≤M) can be estimated using a first-polynomial
approximation. This is accomplished using a method discussed in [42].

In general, since the elevation angle of the LTE base station is lower than that of the GPS satellite, the LTE signal
can be affected more significantly by a building than the GPS signal, resulting in a greater number of multipath
signals. Accordingly, in the case of LTE pseudorange prediction, bias owing to the NLOS and multipath signals
is considered. In this paper, it is assumed that LTE pseudoranges are measured by the code phase discriminator
developed in [29]. The bias owing to multipath can be calculated using the complex channel impulse response (CIR)
at time-step k, which is expressed as [29]:

h(k, τ) =
L−1∑
l=0

α(k, l)δ(τ − τ(k, l)), (5)

where L is the number of multipath components; α(k, l) and τ(k, l) are the relative amplitude and delay components
of the l-th path with respect to the first path, respectively; and δ(·) is the Dirac delta function. In addition, in (5),
the multipath fading channel is assumed to stay constant over the duration of a symbol [29].

The complex impulse response can be simulated by a ray-tracing software. Using the complex impulse response, the
multipath and NLOS bias, ρMP,m(k), can be calculated as

ρMP,m(k) = c · τ(k, 0)− ‖rr(k)− rLTEm‖2 + χ1(k) + χ2(k), (6)

where τ(k, 0) is the time delay of the first path. When the LOS signal is received, c · τ(k, 0) equals the geographical
distance between the receiver and base station, ideally. Further, the multipath channel impacts on the discriminator
function, χ1(k) and χ2(k), can be calculated as [29,43]:



χ1(k) = C

∣∣∣∣∣
B−1∑
b=0

L−1∑
l=1

α(k, l)e−2jπ(b/B)(τ(k,l)/Ts+e−ξ)

∣∣∣∣∣
2

− C

∣∣∣∣∣
B−1∑
b=0

L−1∑
l=1

α(k, l)e−2jπ(b/B)(τ(k,l)/Ts+e+ξ)

∣∣∣∣∣
2

, (7)

χ2(k) = 2C<

{[
B−1∑
b=0

e−j2π(b/B)(e−ξ)

]
·

[
B−1∑
b′=0

L−1∑
l=1

α∗(k, l)e−2jπ(b′/B)(τ(k,l)/Ts+e−ξ)

]}

− 2C<

{[
B−1∑
b=0

e−j2π(b/B)(e+ξ)

]
·

[
B−1∑
b′=0

L−1∑
l=1

α∗(k, l)e−2jπ(b′/B)(τ(k,l)/Ts+e+ξ)

]}
,

(8)

where <{·} denotes the real part, and Ts is the sampling interval, which is defined as Ts , Tsymb/Nc, where Nc is

the total number of subcarriers (2048 when the bandwidth is 20 MHz), Tsymb , 1/∆f , and ∆f = 15-kHz spacing is
assigned between subcarriers in orthogonal frequency division multiplexing (OFDM). Furthermore, B is the number
of subcarriers in the cell-specific reference signal (CRS), and B = 200 in this paper because the bandwidth of the
LTE signal is assumed to be 20 MHz. C is the signal power owing to the antenna gain and implementation loss [29],
ξ is the time shift in the tracking loop (ξ = 0.5 is chosen in this paper), and e is the normalized symbol error (e is
set to zero in this paper while assuming perfect tracking).

IV. FAULT PREDICTION AND HPL CALCULATION

A fault detection and HPL calculation method based on the multiple hypothesis solution separation (MHSS) algo-
rithm [44,45] is used. The MHSS algorithm, unlike certain RAIM algorithms, can consider multiple faults. Because
the probability of having large biases in pseudoranges for both LTE and GPS signals in a high-building environment
could be high, multiple faults need to be considered. Therefore, using the MHSS-based fault detection and HPL
calculation method is appropriate for AGV navigation with GPS and LTE signals in urban areas.

The basic idea of the solution separation technique is to create multiple hypothesis tests that account for the difference
between the all-in-view position solution and the fault-tolerant position solution [45]. The fault detection and HPL
calculation methods in this section adapt the methods in [44,45].

A. Fault-Free and Fault-Tolerant Position Solutions

The fault-free position solution can be obtained from all-in-view satellites from weighted least squares (WLS) as

∆x0
r = S0∆ρ, (9)

where S0 ,
(
GTWG

)−1
GTW; ρ = [ρ′GPS1

, . . . , ρ′GPSN
, ρLTE1

, . . . , ρLTEM
]; and ∆x0

r , x0
r − x̂0

r is the difference

between the receiver’s state vector x0
r and its estimate x̂0

r , and ∆ρ , ρ− ρ̂ is the difference between the pseudorange

vector ρ and its estimate ρ̂. The geometry matrix is defined as G , [GGPS
T,GLTE

T]
T

, where the i-th row of the
GGPS and GLTE is defined as

Gi = [− cosEli sinAzi − cosEli cosAzi − sinEli 1], (10)

where Eli and Azi refer to the elevation angle and azimuth angle, respectively, to the i-th GPS satellite or LTE base
station. Furthermore, the weighting matrix W is defined as

W = diag
[
σ2

GPS1
, . . . , σ2

GPSN
, σ2

LTE1
, . . . , σ2

LTEM

]−1
, (11)

where diag(·) denotes a diagonal matrix.

In a similar way, the fault-tolerant position solution is calculated by the WLS estimator. The fault-tolerant position
solution of the i-th fault mode is obtained from

∆xir = Si∆ρ, (12)



where Si ,
(
GTRiWG

)−1
GTRiW, and Ri is an (N + M) × (N + M) identity matrix in which the zero terms

correspond to the faulty signals of the i-th fault mode.

B. Fault Prediction

Fault detection in the MHSS algorithm is conducted using the difference between the all-in-view solution and the
i-th fault-tolerant solution corresponding to the east (q = 1) and north (q = 2) axes. This is denoted as ∆ri,q ,∣∣r̂ir,q − r̂0

r,q

∣∣. The faulty signals can be detected by an exclusion test [44]:

θi = 1 if ∆ri,q ≤ Di
q for all q

θi = 0 otherwise
(13)

where Di
q is the detection threshold for the difference between the i-th subset position solution and the all-in-view

position solution, which is given in [44, 45]. A value of θi = 1 in (13) indicates a risk that the wrong satellite has
been excluded [44]. On the other hand, a value of θi = 0 means that exclusion of faulty signals corresponding to the
i-th fault mode should be attempted.

Since this paper aims to predict faulty signals before the vehicle is driven, the conventional fault detection and
exclusion (FDE) with live signals, which is suitable for real-time operations, is not conducted. For the purpose of
path planning, we focus on predicting faults before driving based on the predicted GPS and LTE signals from the
ray-tracing simulation.

C. HPL Calculation

The protection levels corresponding to the all-in-view fault-free position solution for the east (q = 1) and north
(q = 2) axes, (PL0)q, are obtained from

(PL0)q = K0
MD,q · σ0

q +
N+M∑
j=1

|(S0)q,j | · bint,j , (14)

where σ0
q ,

√
(GTWG)

−1
q,q, and (·)i,j denotes the element of the i-th row and j-th column of a matrix. Furthermore,

bint,j is the maximum nominal bias of the range measurement for the j-th satellite or base station when the integrity
is considered, and K0

MD,q is the scale factor that satisfies the missed detection probability. This is calculated as

K0
MD,1 = K0

MD,2 = −Q−1

(
PHMI

4 · (Nmaxsub + 1)

)
, (15)

where PHMI is the probability of hazardously misleading information that satisfies the integrity requirement, and
Nmaxsub is the total number of subset geometries. Further, Q denotes the tail probability function of the standard
normal distribution.

The protection level corresponding to the fault-tolerant solution of the i-th fault mode in the q direction, (PLi)q, is
obtained from

(PLi)q = Ki
MD,q · σiq +

N+M∑
j=1

|Siq,j | · bint,j +Di
q, (16)

where σiq ,
√

(GTRiWG)
−1
q,q. The scale factor that satisfies the missed detection probability for the i-th fault mode

in the q direction, Ki
MD,q, that considers the prior probability of the i-th fault mode occurring, P if , is calculated as

Ki
MD,1 = Ki

MD,2 = −Q−1

(
PHMI

4 · P if · (Nmaxsub + 1)

)
. (17)

The final PL solution for each axis is the maximum value of the PLs calculated from both the fault-free and fault-
tolerant modes according to

PLq = max
{

(PL0)q,max
i

((PLi)q)
}
. (18)



The HPL at each node along each candidate path, which is used as the path planning metric in this paper, is defined
as follows

HPL =

√
PL2

1 + PL2
2. (19)

V. OPTIMAL PATH SELECTION

This section deals with a set of objectives and a formulation of the proposed path planning problem. The optimization
problem in this paper accounts for the ratio of nodes with faulty signals to the total nodes, HPLs, and travel distance.

1. The ratio of nodes with faulty signals to the total nodes : The existence of faulty signals can cause an erroneous
and intolerable position solution. In order to increase the accuracy and reliability of navigation, it is recommended
to choose a path that avoids faulty signals. Therefore, paths in which the ratio of nodes with faulty signals to the
total nodes exceed the maximum allowable threshold that is specified are excluded.

2. HPL: The HPLs can represent the reliability of navigation solutions along the given path. This reliability infor-
mation is useful because the quality of navigation solutions between two different paths can be significantly different
although their travel distances may be similar in urban areas owing to the multipath and NLOS environment. For
AGV navigation, a path with higher-quality navigation solutions is desirable, so the HPLs are considered in the
proposed path planning algorithm. In addition, by excluding paths in which HPL exceeds HAL, the reliability of
the navigation solution is maintained at a quality above a certain threshold.

3. Travel distance: Travel distance is considered as an objective. This avoids the selection of a path that is too
long.

Given candidate paths, the optimal path is determined by solving the following optimization problem.

minimize
π∈P

∑
pk∈π

dist(pk) ·HPL(pk, t)

subject to

∑nnodes

k=1 fault(pk, t)

nnodes
≤ faultmax and HPL(pk, t) ≤ HAL,

(20)

where dist(pk) is the length between nodes pk and pk−1; HPL(pk, t) is the predicted HPL at node pk at time t;
fault(pk, t) indicates the existence of a faulty signal at node pk at time t (0 when a faulty signal does not exist and
1 when a faulty signal exists); nnodes is the total number of nodes along a given path; faultmax is the maximum
allowable ratio of the nodes with faulty signals to the total nodes; and HAL is the maximum allowable horizontal
position error under the given integrity requirement. Further, a path from the start to a target node is denoted by
π ∈ P , where P is the set of all possible paths. The path π is represented by a sequence of node indices between the
start node index ps and the target index pt, namely, π = {ps, p1, p2, . . . , pt}.

VI. SIMULATION RESULTS

This section presents results from the simulation study for the proposed path planning strategy. The integrity
parameters were according to Table I. Ray-tracing was conducted using the commercial software package Wireless
InSite [46], and the commercial 3D terrain and building map from 3dbuildings [47]. When ray-tracing the GPS
signals, diffraction and penetration are not considered, and only a single reflection is considered for computational
efficiency. Thus, only the direct path and a single reflected path are utilized. For LTE signals, multiple reflections
are considered because multipath is more pronounced than the case of GPS, but signals with path losses greater than
the threshold are excluded (the path loss threshold in this paper is set to −130 dB). It is assumed that all walls and
floors are made of concrete in the simulated ray propagation environment.



TABLE I

Integrity Parameters

Parameter Definition Value

bint,j
Maximum nominal bias on range measurement for

the j-th satellite or base station
0.5 m

PHMI Probability of hazardously misleading information 0.01

P if Prior probability of the i-th fault mode occurring 2× 10−4

Nmaxsub Total number of subset geometries

∑3
k=1

(
N+M
k

)
(i.e., up to three faults

are considered)

faultmax
Maximum allowable ratio of the nodes with faulty

signals to the total nodes
0.15

HAL Horizontal alert limit 40 m

Fig. 2(a) shows four candidate paths and the locations of the LTE base stations. The locations of the LTE base
stations were obtained from Cellmapper [48]. Also, Fig. 2(b) depicts the 3D terrain and building map of the
simulation area and Fig. 2(c) presents a ray-tracing example. The GPS ephemerides corresponding to the driving
start time of 4:23 pm, January 22, 2020 in Coordinated Universal Time (UTC) were used, and the UGV’s velocity
was set to 40 km/h. The fault predictions and HPL calculations were conducted at all the nodes along the four
candidate paths.

Fig. 2. (a) Four candidate paths between the start and target node. It is assumed that LTE signals are received from four base stations
shown on the map (map image is exported from Google Earth [49]), (b) 3D terrain and building map of the simulation area (University
of California, Irvine), (c) Four example nodes with HPL(pk, t), faults(pk, t), and dist(pk), (d) ray-tracing example at a single node.



Fig. 3 shows the fault prediction and HPL calculation results for each candidate path. Table II shows the travel
distance, average HPL, maximum HPL, the ratio of nodes with faulty signals, and value of the cost function defined
in (20) of each path. The optimal path determined by the proposed path planning strategy is Path 3, while Path 4
was determined by Google Maps as the shortest path [50].

Fig. 3. Existence of a faulty signal (left) and HPLs (right) along a candidate path: (a) path 1, (b) path 2, (c) path 3 (optimal), (d) path
4 (shortest).



TABLE II

Travel distance, average HPL, maximum HPL, ratio of nodes with faulty signals, and value of the cost function of the

four candidate paths

Path
Travel

distance [m]
Average
HPL [m]

Maximum
HPL [m]

Ratio of nodes
with faulty
signals [%]

Cost

Path 1 4,506 m 22.8 m 40.5 m 10.3% 1,449,761

Path 2 4,828 m 22.6 m 40.5 m 12.8% 1,992,598

Path 3 (optimal) 3,541 m 19.3 m 37.0 m 11.1% 994,581

Path 4 (shortest) 3,219 m 20.0 m 37.1 m 20.7% 1,028,836

VII. CONCLUSION

This paper presented an integrity-based path planning strategy utilizing GPS and cellular signals for AGV navigation
in urban areas. The decision metrics for the integrity-based path planning were (i) the ratio of nodes with faulty
signals to the total nodes, (ii) HPL along a candidate path, and (iii) travel time. Ray-tracing using a 3D terrain
and building map was performed to predict GPS and LTE pseudoranges in the multipath-rich and NLOS urban
environment. With the predicted pseudoranges, fault prediction and HPL calculation were conducted. To enhance
the reliability of navigation, candidate paths with the ratio of nodes with faulty signals or HPLs exceeding predefined
thresholds were excluded. A simulation study demonstrating the efficacy of the proposed strategy was presented.
Among the four candidate paths considered in the simulation study, the path that minimizes the cost function that
considered both travel distance and HPLs was selected as the optimal path.
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