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Abstract—An opportunistic framework to navigate with differ-
ential carrier phase measurements from megaconstellation low
Earth orbit (LEO) satellite signals is proposed. A computationally
efficient integer ambiguity resolution algorithm is proposed to
reduce the size of the integer least-squares (ILS) problem, whose
complexity grows exponentially with the number of satellites.
The Starlink constellation is used as a specific megaconstellation
example to demonstrate the efficacity of the proposed algorithm,
showing a 60% reduction in the size of the ILS problem. The
joint probability density function of the megaconstellation LEO
satellites’ azimuth and elevation angles is derived for efficient
and accurate performance characterization of navigation frame-
works with LEO satellites, and to facilitate system parameter
design to meet desired performance requirements. Experimental
results are presented showing an unmanned aerial vehicle (UAV)
navigating for 2.28 km exclusively using signals from only two
Orbcomm LEO satellites via the proposed framework, achieving
an unprecedented position root mean squared error of 14.8 m
over a period of 2 minutes.

Index Terms—LEO, megaconstellation, differential carrier
phase, navigation, real time kinematic (RTK).

I. INTRODUCTION

The coming decade is slated to witness a space revolution

with the launch of tens of thousands of low Earth orbit (LEO)

satellites for broadband communication [1]. The promise of

utilizing LEO satellites for navigation and timing has been

the subject of recent studies [1]–[5]. While some of these

studies call for tailoring the broadband protocol to support

navigation capabilities [1], [6], other studies propose to exploit

existing broadband LEO constellations for navigation in an

opportunistic fashion [3]–[5], [7]–[9]. The former studies

allow for simpler receiver architectures and navigation algo-

rithms. However, they require significant changes to existing

infrastructure, the cost of which private companies such as

OneWeb, SpaceX, Boeing, and others, which are planning to

aggregately launch tens of thousands of broadband Internet

satellites into LEO, may not be willing to pay. Moreover, if

the aforementioned companies agree to that additional cost,

there will be no guarantees that they would not charge for
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“extra navigation services.” In this case, exploiting broadband

LEO satellite signals opportunistically for navigation becomes

the more viable approach. This paper assesses opportunistic

navigation with differential carrier phase measurements from

broadband LEO satellite signals.

To address the limitations and vulnerabilities of global

navigation satellite system (GNSS), opportunistic navigation

has received significant attention over the past decade or so

[10]–[12]. Opportunistic navigation is a paradigm that relies

on exploiting ambient radio signal of opportunity (SOPs) for

positioning and timing [13]. Besides LEO satellite signals,

other SOPs include AM/FM radio [14]–[16], digital television

[17], [18], WiFi [19], [20], and cellular [21]–[27], with the

latter showing the promise of a submeter-accurate navigation

solution for unmanned aerial vehicles (UAVs) when carrier

phase measurements from cellular signals are used [28]–[30].

LEO satellites possess desirable attributes for positioning

in GNSS-challenged environments: (i) they are around twenty

times closer to Earth compared to GNSS satellites, which

reside in medium Earth orbit (MEO), making their received

signal power between 24 to 34 dBs higher than GNSS sig-

nals; (ii) they will become abundant as tens of thousands

of broadband Internet satellites are expected to be deployed

into LEO [1]; and (iii) each broadband provider will deploy

broadband Internet satellites into unique constellations, trans-

mitting at different frequency bands, making LEO satellite

signals diverse in frequency and direction [31]. Moreover, the

Keplerian elements parameterizing the orbits of these LEO

satellites are made publicly available by the North American

Aerospace Defense Command (NORAD) and are updated

daily in the two-line element (TLE) files. Using TLEs and

orbit determination algorithms (e.g., SGP4), the positions and

velocities of these satellites can be known, albeit not precisely.

In addition, some of these broadband LEO satellites, such

as Orbcomm satellites, are equipped with GPS receivers and

broadcast their GPS solution to terrestrial receivers.

This paper considers the problem of navigating exclusively

with LEO satellite signals in environments where GNSS

signals are unavailable or untrustworthy. To this end, there

are several challenges that must be overcome. First, there



are no publicly available receivers that can produce naviga-

tion observables from LEO satellite signals. Second, existing

navigation frameworks do not apply in a straight forward

fashion to megaconstellation LEO satellites due to the unique

error sources associated with megaconstellation LEO satellites.

Third, the achievable navigation performance with megacon-

stellation LEO satellites is not fully characterized. The first two

challenges have been partially addressed for Orbcomm satellite

signals [8], [32]. This paper makes four contributions that aim

to address the aforementioned second and third challenges:

• First, a carrier phase differential (CD)-LEO navigation

framework is developed for real broadband LEO satellite

signals and an efficient method for resolving carrier

phase integer ambiguities in a batch solver is proposed.

The performance and complexity of the proposed integer

ambiguity resolution method are also characterized.

• Second, the probability density functions (pdfs) of mega-

constellation LEO satellites’ azimuth and elevation angles

are derived. These pdfs are essential tools to efficiently

study the performance of LEO satellite-based navigation.

• Third, the performance of the CD-LEO framework is

characterized using the derived pdfs by analyzing (i) the

position dilution of precision (PDOP) of megaconstella-

tion LEO satellites, (ii) the measurement residuals due

to ephemeris errors, and (iii) the measurement residuals

due to integer ambiguity estimation errors as a function

of the system design parameters, more precisely, the

differential baseline and the batch size. This study allows

to design the system parameters to guarantee a desired

performance.

• Fourth, novel experimental results are presented showing

an unmanned aerial vehicle (UAV) localizing itself with

real LEO satellite signals using differential carrier phase

measurements to an acceptable level of accuracy.

The high level of precision of carrier phase measurements

enables a sub-meter level navigation solution as has been

demonstrated in GNSS [33] and cellular SOPs [28]–[30].

However, this precision comes at the cost of added ambiguities

that need to be resolved. This paper addresses this challenge

for megaconstellation LEO satellites. Consider a receiver on-

board a “rover” on Earth making carrier phase measurements

to broadband LEO satellites and a “base” station in the vicinity

of the rover making carrier phase measurements to the same

LEO satellites. One can form the double-difference carrier

phase measurements from base and rover measurements and

solve for the rover’s position as well as for the resulting integer

ambiguities. Without any position priors, the rover cannot

perform real-time positioning and must wait until there is

enough change in satellite geometry and solve a batch least-

squares to estimate its position and the integer ambiguities

[34]. To optimally resolve the integer ambiguities, an integer

least-squares (ILS) estimator can be employed. However, the

complexity of the ILS grows exponentially with the number

of ambiguities [35]. With the proposed LEO constellations,

hundreds of satellites are expected to be visible at any point

in time and almost anywhere on Earth, making the ILS

approach infeasible. To address this issue, this paper proposes

an integer ambiguity resolution algorithm that approaches the

performance of the ILS but with the fraction of its complexity.

Once the ambiguities are resolved, the rover can perform real-

time positioning.

Aside from integer ambiguities, another major source of

error that has to be considered in the CD-LEO framework

is the error in the satellite positions obtained from the TLE

files. These errors can be on the order of kilometers as

the orbit is propagated way beyond the epoch at which the

TLE file was generated. Blindly using the satellite positions

obtained from the TLE files introduces significant errors in the

measurement residuals. Although the double-difference carrier

phase measurements will cancel out most of these errors, there

will still be significant errors if the base and rover are “too

far apart”. These errors are too large to ignore if an accurate

navigation solution is desired. This paper characterizes this

error and its statistics as a function of the differential baseline,

from which the baseline can be designed to guarantee a

desirable performance.

The performance of the proposed integer ambiguity resolu-

tion algorithm and the magnitude of the CD-LEO measure-

ment residuals due to ephemeris errors heavily depend on

the satellite-to-receiver geometry, which is captured by the

satellites’ azimuth and elevation angles. Subsequently, it is

of paramount importance to characterize the distribution of

these angles for LEO megaconstellations. While previous work

approximate the angles’ marginal distributions or study the ele-

vation angle distribution for small constellations [36], [37], this

paper characterizes the full joint distribution of the azimuth

and elevation angles for LEO megaconstellation satellites.

This characterization enables several efficient and insightful

performance analyses, as well as facilitates performance-

driven framework design, i.e., design system parameters to

meet desired performance requirements.

The paper is organized as follows. Section II describes

the models used, the CD-LEO framework, and the proposed

integer ambiguity resolution algorithm. Section III derives the

joint pdf of the megaconstellation LEO satellites’ azimuth and

elevation angles. Section IV uses these models to characterize

the performance of the CD-LEO framework and proposes

a methodology to design system parameters to meet a de-

sired performance. Section V presents experimental results

demonstrating a UAV navigating with CD-LEO measurements.

Concluding remarks are given in Section VI.

II. MODELS AND CD-LEO FRAMEWORK DESCRIPTION

This section describes the models and the CD-LEO frame-

work used in the paper. Note that in the sequel, a satellite will

be referred to as a space vehicle (SV).

A. LEO Satellite Position Error

Let rleol , [xleol , yleol , zleol ]
T

denote the l-th LEO SV

true position vector in the East-North-Up (ENU) frame. If the

true LEO SV positions are not known, they may be estimated



utilizing TLE files and orbit determination algorithms (e.g.,

SGP4), resulting with an estimate r̂leol . Denote the estimation

error as r̃leol , rleol − r̂leol . Due to the large ephemeris

errors in TLE files, ‖r̃leol‖2 can be on the order of a few

kilometers, with most of the error being in the along-track

coordinate. To illustrate this, the position error of 2 Orbcomm

LEO SVs, FM 108 and FM 116, is calculated by differencing

(i) the LEO SVs’ position estimate obtained from on-board

GPS receivers and broadcasted in the Orbcomm message and

(ii) the estimates obtained from TLE files and SGP4 software.

The total SV position error magnitude ‖r̃leol‖2 for each SV

and the along-track SV position error magnitude are shown in

Fig. 1. Fig. 1 also shows the range residual due to ephemeris

errors as observed by a terrestrial LEO receiver, i.e., it is the

difference between (i) the true range between the LEO SV

and LEO receiver and (ii) the range estimated using the LEO

position estimated obtained from TLE files. It can be seen from

Fig. 1 that (i) the SV position error can be significant (around

5 km for FM 116), (ii) most of the error is in the along-track

direction, and (iii) the range residual is on the order of the SV

position error. In order to reduce the effect of ephemeris errors,

a navigating vehicle can employ simultaneous tracking and

navigation (STAN) framework to estimate the LEO SVs’ states

simultaneously with the vehicle’s states [5], [38]. Alternatively,

a reference receiver, or base, may be deployed to provide

differential corrections, which will significantly reduce the

range residuals. This reduction is characterized in Section IV

as a function of the SV elevation and azimuth angles. The

sequel describes the carrier phase measurement model and the

CD-LEO framework.

100 200 300 400 500 600

Time (s)

0

0.2

0.4

0.6

0.8

E
rr

o
r 

m
a
g
n
it
u
d
e
 (

k
m

)

350 400 450 500 550 600

Time (s)

1

2

3

4

5

E
rr

o
r 

m
a
g
n
it
u
d
e
 (

k
m

)

Total SV position error

SV along-track error

Range residual

Fig. 1. Total SV position error magnitude and along-track SV position error
magnitude for 2 Orbcomm LEO SVs, as well as the range residual due to
ephemeris errors as observed by a terrestrial LEO receiver.

B. LEO Carrier Phase Observation Model

In this paper, availability of carrier phase measurements

from LEO SV signals is assumed. For example, the re-

ceiver proposed in [8] may be used to obtain carrier phase

measurements from Orbcomm LEO SV signals. Note that

since LEO satellite orbits are above the ionosphere, their

signals will suffer from ionospheric and tropospheric delays.

Let δt
(i)
iono,l(k) and δt

(i)
trop,l(k) denote the ionospheric and

tropospheric delays from the l-th LEO SV to the i-th receiver

at time-step k, respectively, where i denotes either the base B
or the rover R. An estimate of the ionospheric and tropospheric

delays, denoted δ̂t
(i)
iono,l(k) and δ̂t

(i)
trop,l(k), respectively, may

be obtained using standard models [34]. After ionospheric and

tropospheric delay correction, the carrier phase measurement

z
(i)
l (k) expressed in meters can be parameterized in terms of

the receiver and LEO SV states as

z
(i)
l (k) = ‖rri − rleol(k)‖2

+ c [δtri(k)− δtleol(k)] + λlN
(i)
l

+ cδ̃t
(i)
trop,l(k) + cδ̃t

(i)
iono,l(k) + v

(i)
l (k), (1)

where rri , [xri , yri , zri ]
T

is the i-th receiver’s position

vector in ENU; c is the speed of light; δtri and δtleol are

the i-th receiver’s and l-th LEO SV clock biases, respec-

tively; δ̃t
(i)
iono,l(k) , δt

(i)
iono,l(k)− δ̂t

(i)
iono,l(k) and δ̃t

(i)
trop,l(k) ,

δt
(i)
trop,l(k) − δ̂t

(i)
trop,l(k) are the ionospheric and tropospheric

delay errors, respectively; λl is the l-th LEO SV signal’s

wavelength; N
(i)
l is the carrier phase ambiguity; and v

(i)
l (k)

is the measurement noise, which is modeled as a discrete-time

zero-mean white Gaussian sequence with variance
[

σ
(i)
l (k)

]2

.

It is assumed that
{

v
(i)
l

}L

l=1
are independent and identically

distributed, but with different values of
[

σ
(i)
l (k)

]2

.

C. CD-LEO Framework

The framework consists of a rover and a base receiver in

an environment comprising L visible LEO SVs. The base

receiver (B), is assumed to have knowledge of its own position

state, e.g., (i) a stationary receiver deployed at a surveyed

location or (ii) a high-flying UAV with access to GNSS. The

rover (R) does not have knowledge of its position. The base

communicates its own position and carrier phase observables

with the rover. The LEO SVs’ positions are known through the

TLE files and orbit determination software, or by decoding the

transmitted ephemerides, if any. Fig. 2 illustrates the base/rover

CD-LEO framework.
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Fig. 2. Base/rover CD-LEO framework. The base receiver can be either (a)
stationary or (ii) mobile (e.g., high-flying aerial vehicle).

In what follows, the objective is to estimate the rover’s posi-

tion using double difference carrier phase measurements. How-

ever, such measurements have inherent ambiguities that must

be resolved. Recall that (L − 1) measurements are obtained

from L visible satellites [34], with one unknown ambiguity

associated with each double difference measurement. Using

only one set of carrier phase measurements with no a priori

knowledge on the rover position results in an underdetermined

system: (L + 2) unknowns (3 position states and (L − 1)
ambiguities) with only (L − 1) measurements. Therefore,

when no a priori information on the position of the rover is



known, a batch weighted nonlinear least-squares (B-WNLS)

over a window of K time-steps is employed to solve for the

rover’s position and ambiguities. The rover could either remain

stationary or move during the batch window. Subsequently,

the rover uses measurements collected at different times in a

batch estimator, resulting in an overdetermined system [34].

The total number of measurements will be K × (L − 1) in

the batch window. If the rover remains stationary, the total

number of unknowns will remain L+2. Otherwise, the number

of unknowns becomes 3K + L − 1 (3 position states at

each time-step and (L − 1) ambiguities. The dimensions of

the unknown parameters and the measurement vector set a

necessary condition on K and L in order to obtain a solution.

Once an estimate of the ambiguities is obtained, the rover

position can be estimated in real-time using a point-solution

weighted nonlinear least-squares (PS-WNLS) estimator. Both

the B-WNLS and PS-WNLS estimate the rover’s position from

LEO double difference carrier phase measurements, which is

described next.

D. LEO Double Difference Carrier Phase Observation Model

First, define the single difference across receivers adjusted

for the base-LEO SV range as

z
(R,B)
l (k) , z

(R)
l (k)− z

(B)
l (k) + ‖rrB − r̂leol(k)‖2

= ‖rrR − rleol(k)‖2 + cδt(R,B)
r (k) + λlN

(R,B)
l

+ cδ̃t
(R,B)
iono,l(k) + cδ̃t

(R,B)
trop,l(k)

− r̃
(B)
leol

(k) + v
(R,B)
l (k), (2)

where

δt(R,B)
r (k) , δtrR(k)− δtrB(k),

λlN
(R,B)
l , λlN

(R)
l − λlN

(B)
l ,

δ̃t
(R,B)
iono,l(k) , δ̃t

(R)
iono,l(k)− δ̃t

(B)
iono,l(k),

δ̃t
(R,B)
trop,l(k) , δ̃t

(R)
trop,l(k)− δ̃t

(B)
trop,l(k),

r̃
(B)
leol

(k) , ‖rrB − rleol(k)‖2 − ‖rrB − r̂leol(k)‖2 ,
v
(R,B)
l (k) , v

(R)
l (k)− v

(B)
l (k).

It was observed from real data that δ̃t
(R,B)
iono,l(k) and δ̃t

(R,B)
trop,l(k)

are negligible for VHF signals [32]. For higher frequency

signals, this difference becomes even less significant as iono-

spheric delays decrease with the square of the carrier fre-

quency [34]. Subsequently, z
(R,B)
l (k) is approximated as

z
(R,B)
l (k) ≈h

(R)
l (k) + cδt(R,B)

r (k) + λlN
(R,B)
l

+ r̃
(R,B)
leol

(k) + v
(R,B)
l (k), (3)

where h
(R)
l (k) , ‖rrR − r̂leol(k)‖2, r̃

(R,B)
leol

(k) ,

r̃
(R)
leol

(k) − r̃
(B)
leol

(k), and r̃
(R)
leol

(k) , ‖rrR − rleol(k)‖2 −
‖rrR − r̂leol(k)‖2. In vector form, the measurement equation

becomes

z(k) , hR(k)+ cδt(R,B)
r (k)1L+A+ r̃

(R,B)
leo (k)+v(k), (4)

where 1L is an L× 1 vector of ones and

z(k) ,
[

z
(R,B)
1 (k), . . . , z

(R,B)
L (k)

]T

hR(k) ,
[

h
(R)
1 (k), . . . , h

(R)
L (k)

]T

A ,

[

λ1N
(R,B)
1 , . . . , λLN

(R,B)
L

]T

r̃
(R,B)
leo (k) ,

[

r̃
(R,B)
leo1

(k), . . . , r̃
(R,B)
leoL

(k)
]T

v(k) ,
[

v
(R,B)
1 (k), . . . , v

(R,B)
L (k)

]T

.

The covariance matrix of v(k) is given by

R(k) , diag

[

[

σ
(R,B)
1 (k)

]2

, . . . ,
[

σ
(R,B)
L (k)

]2
]

, where

[

σ
(R,B)
l (k)

]2

,

[

σ
(R)
l (k)

]2

+
[

σ
(B)
l (k)

]2

.

Next, the double difference measurements are obtained.

Without loss of generality, the first LEO SV is taken as the

reference, yielding the double difference measurements

z̄(k) , Tz(k) = h̄R(k) + Ā+ ¯̃r
(R,B)
leo (k) + v̄(k), (5)

where h̄R(k) , ThR(k), Ā , TA, ¯̃r
(R,B)
leo (k) , Tr̃

(R,B)
leo (k),

v̄(k) , Tv(k), and T ,
[

−1L−1 I(L−1)×(L−1)

]

is the

differencing matrix. Note that the covariance matrix of v̄(k) is

given by R̄(k) = TR(k)TT. If λl is not equal to λ1, then Ā

cannot be expressed as λN , where N is a vector of integers.

If λl = λ, ∀ l, then Ā = λN and the integer ambiguity

resolution algorithm described in Subsection II-G is used to

resolve the integers.

E. B-WNLS Solution

If the rover remains stationary during the batch window,

then the parameter to be estimated is given by

xstationary ,

[

rTrR(0), Ā
T
]T

,

otherwise, it is given by

xmobile ,

[

rTrR(0), . . . , r
T

rR
(K − 1), Ā

T
]T

.

The parameter xstationary or xmobile are estimated from the

collection of measurements from 0 to (K − 1) given by

z̄K ,
[

z̄T(0), . . . , z̄T(K − 1)
]T

,

to yield an estimate x̂stationary or x̂mobile, respectively. Let ˆ̄A
denote the estimate of Ā. For a mobile receiver, the estimation

error covariance QA associated with ˆ̄A is given by

QA =

(

K−1
∑

k=0

Y
1

2

k ΩkY
1

2

k

)−1

,

where Y
1

2

k is a square-root of Yk , R̄−1(k), and

Ωk , I(L−1)×(L−1) −Ψk,

Ψk , Y
1

2

k TH(k)
[

HT(k)TTYkTH(k)
]−1

HT(k)TTY
1

2

k ,



where H(k) is the geometry matrix at time-step k, which can

be parameterized by the SVs’ azimuth and elevation angles

{φl}Ll=1 and {θl}Ll=1, respectively, according to

H(k),−







cos[θ1(k)]sin[φ1(k)] cos[θ1(k)]cos[φ1(k)] sin[θ1(k)]
...

...
...

cos[θL(k)]sin[φL(k)] cos[θL(k)]cos[φL(k)] sin[θL(k)]






.

For a stationary receiver, QN is given by

QA =

[

K−1
∑

k=0

Yk −BKA−1
K BT

K

]−1

,

AK ,

K−1
∑

k=0

HT(k)TTYkTH(k), BK ,

K−1
∑

k=0

YkTH(k).

If Ā = λN , then an estimate of the integers N̂ and

an associated estimation error covariance QN are obtained

according to

N̂ =
1

λ
ˆ̄A, QN =

1

λ2
QA.

Note that if all measurement noise variances are equal, i.e.,
[

σ
(i)
l (k)

]2

= σ2 ∀ i, l, k, then QA and QN may be expressed

as

QA = σ2Q̄A, QN = µ2Q̄A,

where µ2 , σ2/λ2 and Q̄A is obtained by setting R(k) ≡
2σ2IL×L.

F. PS-WNLS Solution

After resolving the ambiguities, a point solution for the

rover position can be computed at each time-step. Let Ň

denote the integer estimates of N . The double difference

measurement vector adjusted for the integer ambiguities is

hence expressed as

z̄f (k) , z̄(k)− λŇ = h̄R(k) + λÑ + ¯̃r
(R,B)
leo (k) + v̄(k),

where Ñ , N − Ň is the integer ambiguity error. The

rover uses z̄f (k) to solve for rrR(k) in a PS-WNLS. For

small measurement noise variances, which is the case for

high frequency carriers, the positioning performance heavily

depends on ¯̃r
(R,B)
leo (k), which is characterized in Section IV.

G. Reduced-Sized Integer Least Squares Algorithm

When the proposed LEO constellations are fully deployed,

hundreds of LEO satellites will be visible from almost any-

where on Earth. As an example, Fig. 3 shows a heat map of

the number of visible Starlink LEO SVs for an elevation mask

of 5◦. Dozens of satellites will still be visible for even higher

elevation masks. For example, 60 Starlink LEO SVs will be

visible over Irvine, CA, U.S.A. for a 25◦ elevation mask. For

such number of satellites, it is impractical to solve the ILS, as

its complexity grows exponentially with the number of integer

ambiguities [35]. This subsection proposes an integer ambigu-

ity resolution algorithm, referred to as reduced-size ILS, which

approaches the performance of the Least-squares AMbiguity

Decorrelation Adjustment (LAMBDA) method [35], but with a

significantly smaller fraction of the LAMBDA method’s com-

plexity. The reduced-size ILS relies on the tradeoff between

complexity and performance. That is, for every integer, a test

is formulated to determine whether the Integer Rounding (IR)

method, which has negligible complexity, is a good estimate

of the corresponding integer, or whether the integer must be

estimated using an ILS.

Fig. 3. Heat map of the number of visible Starlink LEO satellites at any
point on Earth for an elevation mask of 5◦ .

The test is of the form

[Q̄N ]ll
?
≤ 1

µ2
η, (6)

where [Q̄N ]ll is the l-th diagonal element of Q̄N after decor-

relation. The choice of η is discussed in Subsection IV-B. An

integer estimated by IR is said to be reliable if it satisfies (6).

Next, define the set of reliable integers SR as

SR =

{

l

∣

∣

∣

∣

[Q̄N ]ll ≤
1

µ2
η

}

. (7)

The complimentary set is denoted by S̄R. The next step of

the algorithm is reducing the size and performing the ILS

on the reduced set S̄R. To this end, the vector N̂ and its

corresponding covariance matrix are rearranged as

N̂P =
[

N̂
T

SR
N̂

T

S̄R

]T

, QNP
=

[

QSR
QSRS̄R

QS̄RSR
QS̄R

]

,

(8)

where each element of N̂SR
belongs to the set

{

[N̂ ]l |l ∈ SR

}

. Let ŇR denote the IR solution of N̂SR
.

Subsequently, the original ILS problem may be reduced as

Ň eff = arg min
Neff∈Z

Leff

‖N̂ eff −N eff‖2QSR

, (9)

where N̂ eff ∈ R
Leff is the “effective” real-valued estimate

of the remaining integers to be resolved using the ILS, and

is computed using the minimum mean square error (MMSE)

estimate given by

N̂ eff = N̂ S̄R
+QS̄RSR

Q−1
S̄R

(

N̂SR
− ŇR

)

. (10)

Let Ň denote the final integer estimate, which combines the

reliable IR estimates and the estimates obtained from the

reduced ILS. It is shown in Subsection IV-B that Leff may

approach zero at some regimes of µ2. This implies that the pro-

posed method achieves the LAMBDA method’s performance

without any ILS search for many practical realizations of QN .



III. DERIVATION OF THE JOINT DISTRIBUTION OF

MEGACONSTELLATION LEO SVS’ AZIMUTH AND

ELEVATION ANGLES

In this section, the joint pdf of megaconstellation LEO SVs’

azimuth and elevation angles is derived. This pdf offers an

efficient way to characterize the performance of the CD-LEO

framework as well as to enable performance-driven design of

the CD-LEO framework, such as the differential baseline and

the B-WNLS batch window. The orbit of a LEO SV is defined

by its inclination angle il and orbital altitude hl. Define the

normalized orbital radius

αl , 1 +
hl

RE

, (11)

where RE is the average radius of the Earth, which is assumed

to be spherical. The SV’s position will be uniformly distributed

over its orbital plane. The surface over which the LEO SV

can exist is defined as Bo(il, Rhl
), which is a capless sphere

of radius Rhl
, αlRE , as shown in Fig. 4. Let φl and θl

denote the azimuth and elevation angles, respectively, of the

l-th LEO SV. These angles are specific to a receiver location

given by longitude λ0 and latitude ϕ0. Moreover, let γ(θl)
denote the angle between the LEO SV and receiver position

vectors. Using the law of sines, γ(θl) can be expressed as

γ(θl) = cos−1

[

1

αl

cos θl

]

− θl. (12)

x

y

z

Bo (i, Rh)

Earth

LEO SV

h

Receiver

Fig. 4. LEO SV-to-receiver geometry. The subscript l is omitted for simplicity.

A. Stationarity of Elevation and Azimuth Angle Distribution

It is important to establish the stationarity of the azimuth

and elevation angle distribution. The analysis in Section IV as-

sumes that the elevation angle are stationary and uncorrelated

in time. This assumption becomes valid for megaconstellations

where the distribution does remain close to stationary. To

illustrate this, the Starlink LEO SV constellation is shown in

Fig. 5(a). The constellation parameters are obtained from the

proposed Starlink constellation in [39] and are summarized

in Table I. Fig. 5(b) shows an SV orbit with orbital radius

αRE and phase ν between SVs. If CD-LEO measurements

are taken at intervals Tν , where Tν is the time needed for

an SV to cross the phase ν, then the SV distribution will

seem stationary to the receiver. In the case of the Starlink

constellation, Tν ≈ 128 seconds, and will be even smaller

for their future very LEO (VLEO) constellation (Tν ≈ 68
seconds). This time will become even smaller when all the

LEO constellations are combined in the analysis. In the sequel,

it is assumed that the elevation and azimuth angles are sampled

at the sampling interval T > Tν .

TABLE I
STARLINK ORBITAL CONFIGURATION

Parameter LEO constellation

Satellites per altitude 1600 1600 400 375 450

Altitude (km) 1150 1110 1130 1275 1325

Inclination (◦) 53 53.8 74 81 70

x

y

z

ν

αRE

ανRE

(a) (b)

Fig. 5. (a) Starlink constellation obtained from the parameters in Table I.
The SV coordinates were normalized by the average Earth radius RE . (b)
SV orbit showing the phase ν between successive SVs.

B. Satellite Longitude and Latitude Distribution Model

Given an SV’s longitude λl measured from the ascending

node, it can be shown that the SV’s latitude ϕl is given by

ϕl = sin−1 [sin il · sinλl] . (13)

By design, λl is uniformly distributed over the [0, 2π) interval.

Subsequently, using random variable transformation, the

pdfs of λl and ϕl are given by

fΛ(λl) =

{

1
2π , 0 ≤ λl < 2π
0, elsewhere,

(14)

fΨ(ϕl) =

{

cosϕl

π
√

sin2 il−sin2 ϕl

, |ϕl| < il

0, elsewhere,
(15)

with the joint pdf given by

fΛ,Ψ(λl, ϕl) = fΛ(λl)fΨ(ϕl). (16)

The histogram obtained from the Starlink constellation and the

analytical pdfs for il = 53◦ are shown in Fig. 6.

Fig. 6. Histogram and analytical pdfs of λl and ϕl for il = 53◦ .

C. Satellite Elevation and Azimuth Distribution Model

The joint pdf of φl and θl, denoted by fΦ,Θ(φl, θl), can be

obtained from fΛ,Ψ(λl, ϕl) through coordinate transformation.

To this end, the mapping from the pair (φl, θl) to (λl, ϕl) must

be established. The result is captured in the following lemma.



Lemma III.1. Given a spherical Earth, an SV orbit charac-

terized by il and αl, and a receiver’s longitude λ0 and latitude

ϕ0, the inverse mapping from (φl, θl) to (λl, ϕl) is given by

y(φl, θl) ,

[

λl

ϕl

]

=

[

tan−1
[

a02(φl,θl)
a01(φl,θl)

]

sin−1[a03(φl, θl)]

]

, (17)

where

a01(φl, θl) , sin [γ (θl)] f01 (φl, θl) +
1

αl

cosϕ0 cosλ0

a02(φl, θl) , sin [γ (θl)] f02 (φl, θl) +
1

αl

cosϕ0 sinλ0

a03(φl, θl) , sin [γ (θl)] f03 (φl, θl) +
1

αl

sinϕ0,

f01(φ, θ) , cosϕ0 cosλ0 tanθ −sinλ0 sinφ− sinϕ0 cosλ0 cosφ

f02(φ, θ) , cosϕ0 sinλ0 tanθ + cosλ0 sinφ− sinϕ0 sinλ0 cosφ

f03(φ, θ) , sinϕ0 tan θ + cosϕ0 cosφ.

Proof. For a spherical Earth, the l-th satellite position in Earth-

centered Earth-fixed (ECEF) may be expressed as

r̄leol = αlRE [cosϕl cosλl, cosϕl sinλl, sinϕl]
T .

Subsequently, given r̄leol , the longitude and latitude λl and

ϕl, respectively, may be obtained according to

λl = tan−1

[

eT2 r̄leol

eT1 r̄leol

]

, ϕl = sin−1

[

eT3 r̄leol
‖r̄leol‖2

]

. (18)

The SV position in ENU can also be expressed as

rleo,l , dl [cos θl sinφl, cos θl cosφl, sin θl]
T
, (19)

where dl is the distance between the SV and the receiver.

Using the law of sines, dl may be expressed as

dl = αlRE

sin [γ (θl)]

cos θl
. (20)

Using coordinate frame transformation, the SV position in

ECEF can be obtained from rleo through

r̄leol = RT (ϕ0, λ0) rleo,l + r̄ri , (21)

where r̄ri = RE [cosϕ0 cosλ0, cosϕ0 sinλ0, sinϕ0]
T

is the

receiver’s position in ECEF and R (ϕ0, λ0) is the ECEF to

ENU rotation matrix with

R (ϕ0, λ0) ,





− sinλ0 cosλ0 0
− sinϕ0 cosλ0 − sinϕ0 sinλ0 cosϕ0

cosϕ0 cosλ0 cosϕ0 sinλ0 sinϕ0



 .

Equation (17) is readily obtained by combining (18)–(21).

Finally, fΦ,Θ(φl, θl) is given by

fΦ,Θ(φl, θl)=







|det[Jy(φl,θl)]|
√

1−a2

03
(φl,θl)

2π2

√
sin2 il−a2

03
(φl,θl)

, |a03(φl, θl)|<sinil

0, elsewhere,
(22)

where Jy(φl, θl) ,

[

∂λl

∂φl

∂λl

∂θl
∂ϕl

∂φl

∂ϕl

∂θl

]

. The expression of

Jy(φl, θl) and its determinant are given in Appendix A.

D. Azimuth and Elevation Joint Distribution for a Set Eleva-

tion Mask

Since the visible SVs have non-negative elevation angles,

one is interested to know the pdf for θl ≥ 0. In practice, a

positive elevation mask θmin is set. The pdf for θl ≥ θmin is

hence given by

fθmin

Φ,Θ (φl, θl)=







|det[Jy(φl,θl)]|
√

1−a2

03
(φl,θl)

Cil,θmin

√
sin2 il−a2

03
(φl,θl)

, (φl, θl) ∈ Dil,θmin

0, elsewhere,
(23)

where the domain Dil,θmin
is defined as

Dil,θmin
= [(φl, θl) |(|a03(φl, θl)| < sin il) ∩ (θl ≥ θmin) ] ,

and the normalization constant Cil,θmin
is given by

Cil,θmin
= 2π2

∫ ∫

Dil,θmin

fΦ,Θ(φl, θl)dφldθl.

Note that one can find the average number of visible satellites

L̄ according to

L̄ = L× Pr [θl ≥ θmin] = L
Cil,θmin

2π2
, (24)

where L is the total number of SVs in the constellation.

E. Multi-constellation Azimuth and Elevation Joint Distribu-

tion

Recall that the pdf in (23) is constellation-specific, i.e., it is

parameterized by one inclination angle il and one normalized

orbital radius αl. For the case of multi-constellations, as is

the case for LEO megaconstellation, the joint pdf for all

constellations, each of which defined by is given by

allfθmin

Φ,Θ (φl, θl) =

J
∑

j=1

pjjf
θmin

Φ,Θ (φl, θl), (25)

where J is the total number of constellations, Lj is the number

of satellites in the j-th constellation, jfθmin

Φ,Θ (φl, θl) is the pdf

of the j-th constellation obtained according to (23), and pj ,
Lj∑

J
j=1

Lj
is the probability of a particular SV being part of the

j-th constellation.

IV. PERFORMANCE CHARACTERIZATION AND

PERFORMANCE-DRIVEN CD-LEO FRAMEWORK DESIGN

This section studies the PDOP, shows a methodology to

obtain the optimal threshold for the proposed reduced-ILS

method, and characterizes the measurement error in the PS-

WNLS due to satellite position errors.

A. PDOP Characterization

One important measure of the estimability (i.e., degree of

observability) of the receiver’s position is the PDOP. Assuming

equal measurement noise variances, the PDOP in the CD-LEO

framework is given by PDOP = trace [P], where P is the

PDOP matrix given by

P = 2
[

HTTT
(

TTT
)−1

TH
]−1

.



Another metric of interest is the horizontal dilution of preci-

sion (HDOP), which gives a measure of the estimability of the

horizontal components of the position vector. This metric is

appropriate to study in the case where the rover is equipped

with an altimeter and is using LEO signals mainly to estimate

its horizontal position. The HDOP is calculated according to

PDOP = trace [P2×2], where P2×2 indicates the 2×2 block

of the PDOP matrix corresponding to the horizontal position

coordinates. The PDOP and HDOP cumulative density func-

tions (cdfs) are characterized numerically using the pdfs of

the SV azimuth and elevation angles derived in Section III for

the Starlink constellation with the parameters in Table I. The

cdfs, shown in Fig. 7 are computed for a receiver in Irvine, CA,

U.S.A., and for three elevation angle masks: 5◦, 25◦, and 35◦.

Fig. 7 shows that the PDOP is mostly less than 2 for elevation

angle masks of 25◦ or below, and above 2 almost all the time

for elevation angle masks of 35◦. This is mainly due to the

fact that the vertical component becomes poorly observable for

such elevation angle masks. This is validated in the HDOP cdf,

which shows that the HDOP is almost always below unity for

elevation masks of 35◦ or below. In fact, the HDOP is mostly

below 0.6 for elevation angles of 25◦, showing that highly

accurate horizontal positioning may be achieved.
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PDOP

0

0.5
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Fig. 7. Cdf of the PDOP and HDOP in the CD-LEO framework for the
Starlink constellation.

B. Reduced-Size ILS Threshold Selection

The optimal threshold η for the integer ambiguity resolution

algorithm presented in Subsection II-G was characterized

numerically for the Starlink constellation with the parameters

shown in Table I. The receiver was assumed stationary and

was located on the UCI campus. Several realizations of SV

elevation and azimuth angles were generated for different

values of σ2, and the threshold η(σ2) was selected as the

minimum threshold that maximizes the success rate of the

proposed method. The elevation mask was set to 35◦.

Fig. 8(a) demonstrates the success rate, i.e., Pr
[

Ň = N
]

[40], for (i) the method proposed in Subsection II-G using the

numerically computed threshold, (ii) the IR method, and (iii)

the LAMBDA method for θmin = 35◦, L = 25, and K = 7. It

can be observed that the performance of the proposed method

approaches that of the LAMBDA method as µ2 decreases. Fig.

8(b) shows the average size of N eff denoted by Leff , which is

the dimension of the unknown integer vector in the proposed

reduced-size ILS algorithm. It can be seen that Leff is at most

32% that of the size of the original ILS problem, reducing the

complexity of the ILS search by orders of magnitude.

C. Measurement Errors Due to Ephemeris Errors

Recall that the SV positions are obtained by non-precise

ephemerides. The effect of the estimated SV position error

0.2 0.4 0.6 0.8 1
0.8

0.9

1

LAMBDA

Reduced-size ILS

IR

0.2 0.4 0.6 0.8 1
0

5

10

L = 25

Fig. 8. (a) Success rates of (i) the LAMBDA method, (ii) IR, (iii) and the
proposed reduced-size ILS method with the numerically computed threshold.
(b) The effective number of integers to solve for in the reduced-size ILS.

onto the CD-LEO measurement is first characterized as a

function of the SV elevation angle. Next, the pdf of the

elevation angle derived in III is used to obtain the cdf of

the measurement error due to ephemeris errors. A first-order

Taylor series expansion around r̂leol yields

‖rri − rleol‖2 ≈ ‖rri − r̂leol‖2 + hT

il
r̃leol ,

where hil is the unit line-of-sight vector between the l-th LEO

SV and the i-th receiver. A first-order Taylor series expansion

around hBl
yields

hRl
≈ hBl

+
1

‖rrB − r̂leol‖2

(

I− hBl
hT

Bl

)

∆rb,

where ∆rb is the baseline vector between the base and the

rover. Subsequently, the residual due to SV position errors

can be expressed as

r̃leol
(R,B) = ‖rrR − rleol‖2 − ‖rrB − rleol‖2

− ‖rrR − r̂leol‖2 + ‖rrB − r̂leol‖2

⇒ r̃leol
(R,B) ≈ (Ξlr̃leol)

T
(Ξl∆rb)

‖rrB − r̂leol‖2
,

where Ξl ,

(

I− hBl
hT

Bl

)

. The residual can be interpreted

as the dot product between the baseline projected onto the

range-space of Ξl, denoted R(Ξl), and the SV position error

vector also projected onto R(Ξl), as shown in Fig. 9.

∆rb

~rleo

hB

θ

Base

LEO SV

Earth
SV

orbit

β

γ(θ)

β

R (Ξ)

R (Ξ)

Fig. 9. Baseline-to-SV geometry. The subscript l was omitted for simplicity.
The red lines show the range-space of Ξ, denoted by R(Ξ), which is
orthogonal to the unit line-of-sight vector hB.

It can be seen from Fig. 9 that the magnitude of r̃leol
(R,B)

is maximized when the SV’s ground track is collinear with the

baseline. In such cases, using (20), the magnitude of r̃leol
(R,B)

may be bounded according to
∣

∣

∣
r̃leol

(R,B)
∣

∣

∣
≤

∣

∣

∣
g
(

θ
(B)
l , αl

)∣

∣

∣

‖∆rb‖2 ‖r̃leol‖2
RE

, (26)

where

g(θ, α) =
sin θ cos θ

√
α2 − cos2 θ

α2 sin
[

cos−1
(

cos θ
α

)

− θ
] .



Subsequently, the cdf of
∣

∣r̃leol
(R,B)

∣

∣ can be characterized from

(26) and the joint distribution of the LEO SVs’ azimuth and

elevation angles derived in Section III. To this end, the cdf of

g(θ, α) is calculated for the Starlink LEO constellation using

the parameters in Table I. The receiver was assumed to be on

the UCI campus. The cdf was computed for three elevation

masks: θmin = 5◦, θmin = 25◦, and θmin = 35◦. The cdf

of g(θ, α) is shown in Fig. 10(a), and the expected value of

g(θ, α), denoted by E [g(θ, α)] is shown in Fig. 10(b) as a

function of θmin.
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Fig. 10. (a) Cdf of g(θ, α) for θmin = 5◦, θmin = 25◦, and θmin = 35◦ .
(b) Expected value of g(θ, α) as a function of θmin.

V. EXPERIMENTAL RESULTS

This section presents experimental results of a UAV nav-

igating with signals from Orbcomm LEO SVs via the CD-

LEO framework discussed in Section II. First, the experi-

mental setup is discussed. Then, the navigation frameworks

implemented in the experiments and their associated results

are presented.

A. Experimental Setup

To demonstrate the CD-LEO framework discussed in Sec-

tion II, the rover was a DJI Matrice 600 UAV equipped

with an Ettus E312 USRP, a high-end VHF antenna, and

a small consumer-grade GPS antenna to discipline the on-

board oscillator. The base was a stationary receiver equipped

with an Ettus E312 USRP, a custom-made VHF antenna, and

a small consumer-grade GPS antenna to discipline the on-

board oscillator. The receivers were tuned to a 137 MHz

carrier frequency with 2.4 MHz sampling bandwidth, which

covers the 137–138 MHz band allocated to Orbcomm SVs.

Samples of the received signals were stored for off-line post-

processing using the software-defined radio (SDR) developed

in [8]. The LEO carrier phase measurements were produced

at a rate of 4.8 kHz and were downsampled to 10 Hz.

The the base’s position was surveyed on Google Earth, and

the UAV trajectory was taken from its on-board navigation

system, which uses GNSS (GPS and GLONASS), an inertial

measurement unit (IMU), and other sensors. The hovering

horizontal precision of the UAV is reported to be 1.5 meters

by DJI. The experimental setup is shown in Fig. 11. The UAV

traversed a total trajectory of 2.28 km in 120 seconds.

Over the course of the experiment, the receivers on-board

the base and the UAV were listening to 2 Orbcomm SVs,

namely FM 108 and FM 116. The SVs transmit their position

as estimated by their on-board GPS receivers. These positions

were decoded and used as ground-truth. A position estimate

of FM 108 and FM 116 was also obtained from TLE files and

SGP4 software [41]. The satellites were simultaneously visible

for 2 minutes. A sky plot of the 2 Orbcomm SVs is shown in

Fig. 12(a). The Doppler frequency measured by the rover using

the SDR in [8] for the 2 Orbcomm SVs is shown along the

expected Doppler calculated from the TLE files in Fig. 12(b).

The SV position error and the range residuals were shown in

Fig. 1 for each SV. Fig. 13(a) shows the SV trajectories.

DJI Matrice 600

VHF quadrifilar
helix antenna

Ettus E312
USRP

Custom-built
VHF quadrifilar
helix antenna

Ettus E312
USRP

Rover Base

Laptop

Fig. 11. Base/rover experimental setup of the CD-LEO framework.

(a) (b)

Fig. 12. (a) Sky plot of the geometry of the 2 Orbcomm SVs during the
experiment. (b) The measured Doppler frequencies using the proprietary SDR
and the expected Doppler calculated from the TLE for both Orbcomm SVs.

Since only 2 satellites were visible at a time, which is

the case with many of the current LEO constellations, an

extended Kalman filter (EKF) was used to estimate the three-

dimensional (3–D) position and velocity of the UAV from

single difference measurements. To demonstrate the potential

of the CD-LEO navigation framework, two frameworks were

implemented for comparison: (i) a modified version of the

CD-LEO framework discussed in Section II and (ii) a non-

differential framework that employs carrier phase LEO mea-

surements from the UAV’s receiver only. The results of each

framework are presented next.

B. CD-LEO Framework Experimental Results

Single difference measurements provide more information

on the SV-to-receiver geometry than double difference mea-

surements since the differencing matrix T is not applied [42].

This comes at the cost of an additional state to be estimated:

the common clock bias δt
(R,B)
r (k). To this end, the UAV’s

position and velocity states were estimated along with the

common clock bias δt
(R,B)
r (k) and the constant ambiguity

N
(R,B)
2 . Note that N

(R,B)
1 was lumped into δt

(R,B)
r (k). The

UAV’s position and velocity were assumed to evolve according

to a nearly constant velocity model, and the common clock

state was assumed to evolve according to the standard model

of double integrator driven by noise as discussed in [43], [44].

A prior for the UAV position and velocity was obtained from

the UAV’s on-board system. The prior was used to initialize the

EKF. After initialization, the EKF was using single-difference

Orbcomm LEO SV measurements to estimate the states of the



UAV. To study the effect of ephemeris errors on the navigation

solution, two EKFs were implemented: (i) one that uses the

Orbcomm LEO SV positions estimated by the SVs’ on-board

GPS receiver and (ii) one that uses the Orbcomm LEO SV

positions estimated from TLE files. The estimated trajectories

are shown in Fig. 13(b) and Fig. 13(c). The EKF position

estimation errors are shown in Fig. 14 along with the 3σ
bounds. Note that since the UAV mainly travels in the North

direction, the East direction becomes poorly estimable; hence,

the 3σ bounds in the East direction increase at a higher rate

than the 3σ bound in the North direction, as shown in Fig.

14. The common clock bias estimate and the corresponding

±3σ bounds are also shown in Fig 14. The 3–D position root

mean squared errors (RMSEs) and final errors for both EKFs

are shown in Table II.

C. Non-Differential LEO Framework Experimental Results

To demonstrate the importance of the CD-LEO framework,

a non-differential LEO framework is implemented. To this

end, the UAV’s position and velocity are estimated in an EKF

using the non-differential measurements in (1). In this case,

two clock biases must be estimated capturing the difference

between the receiver’s clock bias and each of the Orbcomm

LEO SVs’ bias. The same dynamics models and initialization

method employed in Subsection V-B were used in the non-

differential framework. Similarly to Subsection V-B, two EKFs

were implemented: (i) one that uses the Orbcomm LEO SV

positions estimated by the SVs’ on-board GPS receiver and (ii)

one that uses the Orbcomm LEO SV positions estimated from

TLE files. The estimated trajectories are shown in Fig. 13(b)

and Fig. 13(c). The EKF position estimation errors are shown

in Fig. 15 along with the associated 3σ bounds. The clock bias

estimate associated with FM 108 and the corresponding ±3σ
bounds are also shown in Fig 14. The 3–D position RMSEs

and final errors for both EKFs are shown in Table II.

D. Discussion

Table II summarizes the experimental results for the CD-

LEO and non-differential LEO frameworks. It can be seen

from Fig. 1 that the residuals in the non-differential carrier

phase measurements are on the order of kilometers, which

explains the unacceptably large RMSEs of the non-differential

framework. While using the SV positions transmitted by

the Orbcomm SVs reduces the RMSEs, the errors remain

unacceptably large in the non-differential framework due to

other unmodeled errors. Such errors cancel out in the CD-

LEO framework, yielding acceptable performance whether SV

positions from GPS or TLE are used. The accuracy of these

results is unprecedented, considering that (i) only 2 LEO SVs

were used, (ii) no other sensors were fused into the navigation,

and (iii) these LEO SVs are not intended for navigation and

are exploited opportunistically. The double difference residual

due to ephemeris errors was calculated, and is shown in Fig.

16. During the experiment, the baseline varied between 20 m

and 200 m. According to Subsection II-A, the function g(θ, α)
averages to 1.346 for the Orbcomm constellation, which has

FM 116

FM 108

CD-LEO with SV positions

Base’s position

UAV’s initial
position

UAV’s final
position 100 m

White curve:
UAV’s true trajectory

obtained from GPS
CD-LEO with SV positions
obtained from TLE

Non-differential LEO with SV positions
obtained from GPS
Non-differential LEO with SV positions
obtained from TLE

(a)

(b) (c)

N

E

Fig. 13. (a) Trajectories of the 2 Orbcomm LEO SVs. (b)–(c) True and
estimated trajectories of the UAV. Map data: Google Earth.

an inclination angle of 45◦ and orbital altitude of 800 km and

θmin = 5◦. From the SV position errors in Fig. 1, the expected

range of the residuals is from 0.3 to 16 cm. It can be seen from

Fig. 16 that the magnitude of the double difference residual is

on the order of centimeters and matches the expected values,

showing (i) the robustness of the CD-LEO framework against

ephemeris errors and (ii) the accuracy of the performance

analysis framework discussed in Section IV.

TABLE II
EXPERIMENTAL RESULTS RMSES AND FINAL ERRORS

Framework SV position source RMSE Final error

CD-LEO GPS 14.8 m 3.9 m

CD-LEO TLE 15.0 m 4.8 m

Non-differential GPS 338.6 m 590.4 m

Non-differential TLE 405.4 m 759.5 m

VI. CONCLUSION

This paper proposed a differential framework for oppor-

tunistic navigation with carrier phase measurements from

megaconstellation LEO satellites. A computationally efficient

integer ambiguity resolution algorithm was proposed to re-

duce the size of the ILS problem, with simulation using the

Starlink constellation as a specific megaconstellation example

showing a 60% reduction in the size of the ILS problem while

maintaining optimality. Moreover, the joint pdf of the mega-

constellation LEO satellites’ azimuth and elevation angle was

derived. A performance characterization of the proposed CD-

LEO framework was conducted using derived joint azimuth

and elevation angle pdf, showing the potential of LEO satellite

signals for precise navigation. The performance characteriza-

tion conducted herein also facilitates system parameter design

to meet desired performance requirements. Experimental re-

sults were presented showing a UAV navigating for 2.28 km

exclusively using signals from only two Orbcomm LEO SVs



via the proposed framework with an unprecedented position

RMSE of 14.8 m over a period of 2 minutes.
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Fig. 14. EKF position estimation error and ±3σ bounds for the CD-LEO
framework. The estimates and sigma bounds for the case where SV positions
are obtained from GPS and the ones for the case where the SV positions are
obtained from TLE files are almost identical.
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Fig. 16. Double difference residuals due to ephemeris errors for Orbcomm
LEO SVs FM 108 and FM 116.
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APPENDIX A

DERIVATION OF THE JACOBIAN

Define gγ(θl),
∂ sin [γ(θl)]

∂θl
=





sin θl

αl

√

1−cos2 θl
α2

l

−1



cos [γ(θl)] ,

gφ01(φl, θl) ,
∂f01(φl, θl)

∂φl

=sinλ0sinφl−sinϕ0cosλ0cosφl,

gθ01(φl, θl) ,
∂f01(φl, θl)

∂θl
=

cosϕ0 cosλ0

cos2 θl
,

gφ02(φl, θl) ,
∂f02(φl, θl)

∂φl

=−cosλ0sinφl−sinϕ0sinλ0cosφl,

gθ02(φl, θl) ,
∂f02(φl, θl)

∂θl
=

cosϕ0 sinλ0

cos2 θl
,

gφ03(φl, θl) ,
∂f03(φl, θl)

∂φl

= cosϕ0 cosφl,

gθ03(φl, θl) ,
∂f03(φl, θl)

∂θl
=

sinϕ0

cos2 θl
,

bφ01(φl, θl) ,
∂a01(φl, θl)

∂φl

= sin [γ(θl)] g
φ
01(φl, θl),

bθ01(φl, θl) ,
∂a01(φl, θl)

∂θl
= gγ(θl)f01(φl, θl) + sin [γ(θl)] g

θ
01(φl, θl),

bφ02(φl, θl) ,
∂a02(φl, θl)

∂φl

= sin [γ(θl)] g
φ
02(φl, θl),

bθ02(φl, θl) ,
∂a02(φl, θl)

∂θl
= gγ(θl)f02(φl, θl) + sin [γ(θl)] g

θ
02(φl, θl),

bφ03(φl, θl) ,
∂a03(φl, θl)

∂φl

= sin [γ(θl)] g
φ
03(φl, θl),

bθ03(φl, θl) ,
∂a03(φl, θl)

∂θl
= gγ(θl)f03(φl, θl) + sin [γ(θl)] g

θ
03(φl, θl).

Since by definition ‖rleo,l‖2 = αlRE , then the following holds

a201(φl, θl) + a202(φl, θl) + a203(φl, θl) = 1. (27)

Subsequently, the elements of the jacobian matrix Jy(φl, θl)
are given by

∂λl

∂φl

,
bφ02(φl, θl)a01(φl, θl)− bφ01(φl, θl)a02(φl, θl)

a201(φl, θl) + a202(φl, θl)

∂λl

∂θl
,

bθ02(φl, θl)a01(φl, θl)− bθ01(φl, θl)a02(φl, θl)

a201(φl, θl) + a202(φl, θl)

∂ϕl

∂φl

,
bφ03(φl, θl)

√

a201(φl, θl) + a202(φl, θl)

∂ϕl

∂θl
,

bθ03(φl, θl)
√

a201(φl, θl) + a202(φl, θl)
,

and the determinant of Jy(ql) is given by

|Jy(ql)| =
a01

(

bφ02b
θ
03−bθ02b

φ
03

)

−a02

(

bφ01b
θ
03−bθ01b

φ
03

)

(a201 + a202)
3

2

. (28)
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