
Polynomial-Time Trace Reconstruction

in the Low Deletion Rate Regime

Xi Chen
Columbia University, New York, NY, USA

http://www.cs.columbia.edu/~xichen

xichen@cs.columbia.edu

Anindya De
University of Pennsylvania, Philadelphia, PA, USA

https://www.seas.upenn.edu/~anindyad/

anindyad@cis.upenn.edu

Chin Ho Lee
Columbia University, New York, NY, USA

https://www.cs.columbia.edu/~chlee/

c.h.lee@columbia.edu

Rocco A. Servedio
Columbia University, New York, NY, USA

http://www.cs.columbia.edu/~rocco

rocco@cs.columbia.edu

Sandip Sinha
Columbia University, New York, NY, USA

https://sites.google.com/view/sandips

sandip@cs.columbia.edu

Abstract

In the trace reconstruction problem, an unknown source string x ∈ {0, 1}n is transmitted through a

probabilistic deletion channel which independently deletes each bit with some fixed probability δ

and concatenates the surviving bits, resulting in a trace of x. The problem is to reconstruct x given

access to independent traces. Trace reconstruction of arbitrary (worst-case) strings is a challenging

problem, with the current state of the art for poly(n)-time algorithms being the 2004 algorithm of

Batu et al. [2]. This algorithm can reconstruct an arbitrary source string x ∈ {0, 1}n in poly(n)

time provided that the deletion rate δ satisfies δ ≤ n−(1/2+ε) for some ε > 0.

In this work we improve on the result of [2] by giving a poly(n)-time algorithm for trace

reconstruction for any deletion rate δ ≤ n−(1/3+ε). Our algorithm works by alternating an alignment-

based procedure, which we show effectively reconstructs portions of the source string that are not

“highly repetitive”, with a novel procedure that efficiently determines the length of highly repetitive

subwords of the source string.

2012 ACM Subject Classification Mathematics of computing → Probabilistic inference problems

Keywords and phrases trace reconstruction

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.20

Related Version Full Version: https://arxiv.org/abs/2012.02844

Funding Xi Chen: Supported by NSF grants CCF-1703925 and IIS-1838154.

Anindya De: Supported by NSF grants CCF-1926872 and CCF-1910534.

Chin Ho Lee: Supported by a grant from the Croucher Foundation and by the Simons Collaboration

on Algorithms and Geometry.

Rocco A. Servedio: Supported by NSF grants CCF-1814873, IIS-1838154, CCF-1563155, and by the

Simons Collaboration on Algorithms and Geometry.

Sandip Sinha: Supported by NSF grants CCF-1714818, CCF-1822809, IIS-1838154, CCF-1617955,

CCF-1740833, and by the Simons Collaboration on Algorithms and Geometry.

© Xi Chen, Anindya De, Chin Ho Lee, Rocco A. Servedio, and Sandip Sinha;
licensed under Creative Commons License CC-BY

12th Innovations in Theoretical Computer Science Conference (ITCS 2021).
Editor: James R. Lee; Article No. 20; pp. 20:1–20:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

20:2 Polynomial-Time Trace Reconstruction in the Low Deletion Rate Regime

1 Introduction

The trace reconstruction problem was proposed almost twenty years ago in works of [10, 11, 2],

though some earlier variants of the problem were already considered in the 1970s [9]. This

problem deals with the deletion channel, which works as follows: when an n-bit string (the

source string) is passed through a deletion channel of rate δ, each coordinate is independently

deleted with probability δ. The surviving n′ ≤ n coordinates are concatenated to form the

output of the channel, which is referred to as a trace of the original source string; we write

“z ∼ Delδ(x)” to indicate that z is a trace generated from source string x according to this

probabilistic process. As discussed in [13], this channel provides an elegant formalization for

the theoretical study of problems involving synchronization errors.

In the trace reconstruction problem, independent traces are generated from an unknown

and arbitrary source string x ∈ {0, 1}n, and the task of the algorithm is to reconstruct

(with high probability) x from its traces. The trace reconstruction problem is motivated

by applications in several domains, including sensor networks and biology [13, 1, 16, 15]. It

is also attractive because it is a clean and natural “first problem” which already seems to

capture much of the difficulty of dealing with the deletion channel.

The problem of trace reconstruction for an arbitrary (worst-case) source string x has

proved to be quite challenging.1 [2] gave an algorithm that runs in poly(n) time, uses poly(n)

traces, and with high probability reconstructs an arbitrary source string x ∈ {0, 1}n provided

that the deletion rate δ is at most n−(1/2+ε) for some constant ε > 0. Unfortunately, the

trace reconstruction problem seems to quickly become intractable at higher deletion rates.

Holenstein et al. [8] gave an algorithm that runs in time exp(O(n1/2)) and uses exp(O(n1/2))

traces for any deletion rate δ that is bounded away from 1 by a constant, and this result was

subsequently improved in simultaneous and independent works by [4, 14], both of which gave

algorithms with time and sample complexity exp(O(n1/3)). On the lower bounds side, for

δ = Θ(1) successively stronger lower bounds on the required sample complexity were given by

[12] and [5], with the current state of the art being a Ω̃(n3/2) lower bound due to Chase [3].

The low deletion rate regime. The positive result of [4] actually gives an algorithm

that is faster than exp(O(n1/3)) if the deletion rate is sufficiently low: [4] shows that for

O(log3 n)/n ≤ δ ≤ 1/2, their algorithm runs in time exp(O(δn)1/3). Consequently, for the

specific deletion rate δ = n−(1/2+ε), the [4] algorithm runs in time essentially exp(O(n1/6)),

and [4] shows that no faster running time or better sample complexity is possible for any

“mean-based” algorithm, a class of algorithms which includes those of [4, 14, 8].

Algorithmic approaches other than mean-based algorithms can provably do better at low

deletion rates. This is witnessed by the algorithm of Batu et al. [2] which, as described earlier,

runs in poly(n) time and uses poly(n) samples at deletion rate δ = n−(1/2+ε). The main

algorithmic component of [2] is a “Bitwise Majority Alignment” (BMA for short) procedure,

which is further augmented with a simple procedure to determine the length of long “runs”

(subwords of x of the form 0` or 1` with ` ≥ √n). Roughly speaking, the BMA algorithm

maintains a pointer in each trace and increments those pointers in successive time steps,

attempting to always keep almost all of the pointers correctly aligned together. The analysis

of [2] shows that the BMA algorithm succeeds if the source string x does not contain any

1 We note that the average-case problem, in which the reconstruction algorithm is only required to succeed
for a 1 − o(1) fraction of all possible source strings in {0, 1}n, is much more tractable, with the current

state of the art [6, 7] being an algorithm that uses exp(O(log1/3 n)) traces and runs in poly(n) time for
any deletion rate δ that is bounded away from 1.

X. Chen, A. De, C. H. Lee, R. A. Servedio, and S. Sinha 20:3

long runs, but a challenge for the BMA algorithm is that the pointers in different traces

will inevitably become misaligned if x does contain a long run 0` or 1`; this is why the [2]

algorithm must interleave BMA with a procedure to handle long runs separately. Intuitively,

deletion rate δ = n−1/2 is a barrier for the [2] analysis because if δ = ω(n−1/2), then each

trace is likely to have multiple locations where more than one consecutive bit of x is “dropped,”

which is problematic for the analysis of BMA given in [2].

To summarize: given this state of the art from prior work, it is clear that alignment-based

approaches can outperform mean-based algorithms at low deletion rates, but it is not clear

whether, or how far, alignment-based approaches can be extended beyond the [2] results.

Further incentive for studying the low deletion rate regime comes from potential applications

in areas such as computer networks, where it may be natural to model deletions as occurring

at relatively low rates. These considerations motivate the results of the present paper, which

we now describe.

1.1 This work: An improved algorithm for the low deletion rate regime

The main result of this paper is an efficient algorithm that can handle significantly higher

deletion rates than the [2] algorithm. We prove the following:

I Theorem 1 (Efficient trace reconstruction at deletion rate δ ≥ n−(1/3+ε)). Fix any constant

ε > 0 and let δ = n−(1/3+ε). There is an algorithm Reconstruct that uses O(n4/3) indepen-

dent traces drawn from Delδ(x) (where x ∈ {0, 1}n is arbitrary and unknown to Reconstruct),

runs in O(n7/3) time, and outputs the unknown source string x with probability at least 9/10.

Note that any deletion rate δ < n−(1/3+ε) can of course be handled, given Theorem 1,

by simply deleting additional bits to reduce to the δ = n−(1/3+ε) case. Note further that

any desired success probability 1 − κ can easily be achieved from Theorem 1 by running

Reconstruct O(log(1/κ)) times and then taking a majority vote.

At a high level, the Reconstruct algorithm works by interleaving two different subroutines.

The first subroutine is (essentially) the BMA algorithm, for which we provide an improved

analysis, showing that BMA successfully reconstructs any string that does not contain

a long subword (of length at least M = 2m + 1 with m = n1/3) that is a prefix of s∞

for some short (constant-length) bitstring s. We refer to long and “highly-repetitive”

subwords of x of this form as “s-deserts” of x; see Definition 2 for a detailed definition.

The second subroutine is a new algorithm which we show efficiently determines the length

of an s-desert in the source string x.

Thus, two novel aspects of this work that go beyond [2] are (i) our improved analysis of BMA,

and (ii) our new procedure for efficiently measuring deserts (the analogous component of the

[2] algorithm could only measure runs, which correspond to s-deserts with |s| = 1).

We believe that it may be possible to further extend the kind of “hybrid” approach that

we employ in this paper to obtain efficient trace reconstruction algorithms that can handle

even larger deletion rates δ. However, there are some significant technical challenges that

would need to be overcome in order to do so. We describe some of these challenges at the

end of the next section, which gives a more detailed overview of our approach.

2 Overview of our approach

As alluded to in the introduction, at a high level our algorithm carries out a careful interleaving

of two procedures, which we call BMA and FindEnd. In this section we first give a high-level

overview of the procedure BMA as well as our improved analysis. Then we give a high-level

overview of FindEnd, and finally we explain how these two procedures are interleaved. We

close with a brief discussion of possibilities and barriers to further progress.

ITCS 2021

20:4 Polynomial-Time Trace Reconstruction in the Low Deletion Rate Regime

2.1 Overview of BMA

The procedure BMA is exactly the same as the bitwise majority alignment algorithm of [2];

our new contribution regarding BMA is in giving a more general analysis. To explain the high

level idea, let us fix the deletion rate δ = n−(1/3+ε) and a constant C = d100/εe. Let

m = n1/3 and M = 2m + 1.

The BMA procedure operates on a sample of some N = O(log n) traces y1, . . . , yN drawn

independently from Delδ(x) before the procedure begins its execution. Note that for any

i ∈ [N] and any position ` in the trace yi, there is a position fi(`) satisfying ` ≤ fi(`) ≤ n−1

in the target string x = (x0, . . . , xn−1) that maps to ` under the deletion process.2 The

high level idea of BMA is to maintain pointers current1, . . . , currentN , with currenti pointing

to a position in yi, such that most of them are correctly aligned – i.e., at the beginning

of each time step t, t = 0, 1, . . ., as we try to determine xt, we have fi(currenti) = t for

most i ∈ [N]. Note that if this alignment guarantee were to hold for more than half of the

traces for all t = 0, 1, . . . , n− 1, then we could reconstruct the unknown string x by taking a

majority vote of yi
currenti

in each time step. Indeed we show that this happens with high

probability over the randomness of y1, . . . , yN when x does not contain an s-desert for any

string s ∈ {0, 1}≤C (i.e. a subword of length at least M = 2m + 1 that is a prefix of s∞). In

contrast, the analysis of [2] requires the deletion rate to be n−(1/2+ε) but works as long as x

does not contain a run of 0’s or 1’s (or s-deserts with |s| = 1 in our notation) of length at

least
√

n.

To explain BMA in more detail, let us initialize t = 0 and pointers

current1(0), . . . , currentN (0) to position 0. (Note that most pointers are correctly aligned

as desired given that δ = n−(1/3+ε) and thus, x0 is not deleted in most traces and

fi(currenti(0)) = fi(0) = 0 for most i.) The way the pointers are updated is as follows: At

each time step t, we let wt be the majority element of the N -element multiset {yi
currenti(t)}i∈[N].

For those traces yi with yi
currenti(t) = wt (i.e., the bit of yi at the current pointer is the ma-

jority bit), we move the pointer to the right by 1, i.e. we set currenti(t + 1)← currenti(t) + 1;

otherwise the pointer stays the same, i.e., we set currenti(t + 1) ← currenti(t). Next we

increment t and start the next round, repeating until t = n when BMA outputs the string

(w0, . . . , wn−1).

For intuition we observe that if most of the pointers were aligned at the beginning of

time step t (i.e., fi(currenti(t)) = t for most i ∈ [N]), then wt = xt is indeed the next bit in

x. Moreover, if currenti(t) is aligned and wt = xt, then moving currenti to the right by 1 is

justified by noting that most likely xt+1 is not deleted in yi (with probability 1− δ), and

when this happens fi(currenti(t + 1)) = t + 1 so currenti remains aligned at the beginning of

the next time step.

In more detail, our analysis shows that when x does not contain an s-desert for any s ∈
{0, 1}≤C BMA maintains the following invariants at the beginning of time step t = 0, 1, . . . , n:

1. At time t, BMA has reconstructed x0, . . . , xt−1 correctly as w0, . . . , wt−1.

2. For every trace yi, i ∈ [N], it holds that fi(currenti(t)) ≥ t.

3. Finally,
∑

i∈[N]

(
fi(currenti(t))− t

)
≤ 2N/C.

The intuitive meaning behind conditions (2) and (3) is as follows: while (2) says that the

“original position” of currenti(t) never falls behind t, condition (3) ensures that on average,

the original positions of these pointers do not surpass t by too much. In fact, since C is a

large constant, most of the pointers are perfectly aligned, i.e., they satisfy fi(currenti(t)) = t.

2 It will be convenient for us to index a binary string x ∈ {0, 1}` using [0 : ` − 1] as x = (x0, . . . , x`−1).

X. Chen, A. De, C. H. Lee, R. A. Servedio, and S. Sinha 20:5

We now discuss how the invariants (1), (2) and (3) are maintained. First, we observe

that invariant (1) for time step t + 1, i.e., wt = xt, follows immediately from (3) at time step

t. Invariant (2) for time step t + 1 follows almost immediately from (2) at t and wt = xt.

(If fi(currenti(t)) > t, then fi(currenti(t + 1)) ≥ fi(currenti(t)) ≥ t + 1 given that both fi

and currenti are nondecreasing; if fi(currenti(t)) = t is aligned at time step t, then wt = xt

implies currenti(t + 1) = currenti(t) + 1 and thus, fi(currenti(t + 1)) ≥ t + 1.) The main

challenge is to show that invariant (3) is maintained. While this is not true for a general

string x, we show that this holds with high probability (over y1, . . . , yN ∼ Delδ(x)) for any

string x which does not have an s-desert for any s ∈ {0, 1}≤C . (We note here that the value

of m is selected so as to satisfy mδ � 1; on the other hand, when we discuss the FindEnd

procedure below, we will see that we also require m to satisfy m�
√

δn.)

In a nutshell, the main proof idea for (3) is to exploit the fact that when we draw

y1, . . . , yN ∼ Delδ(x), with high probability they satisfy two properties: (i) for every yi and

every subword of roughly C2m consecutive positions in the original string x, no more than

C positions within the subword are deleted in the generation of yi; (ii) for every subword of

roughly m consecutive positions in x, the number of yi that have at least one deletion in the

subword is no more than N/C3. These two properties can be shown using straightforward

probabilistic arguments by taking advantage of the aforementioned mδ � 1. Using these

two properties, a detailed (non-probabilistic) argument shows that BMA can reconstruct the

string x with high probability if x contains no s-desert.

The above discussion sketches our argument that if the target string x does not have

an s-desert, then BMA correctly reconstructs x. More generally, our arguments show that if

x does have an s-desert, then BMA correctly reconstructs the prefix of x up to the position

when an s-desert shows up: Let r be the first position in x that is “deep in an s-desert”; this

is the first position in x such that x[r−m:r+m]
3, the length-M subword of x centered at r, is

an s-desert. Then BMA correctly reconstructs the prefix of x up to position r + m. Having

reached such a position, it is natural to now ask – “how do we determine the end of this

desert?”. This naturally leads us to the next procedure FindEnd.

2.2 Overview of FindEnd

Suppose that x has an s-desert with |s| = k ≤ C, so BMA reconstructs the length-(r + m + 1)

prefix of x, where r is the first position that is “deep in the s-desert” (note that it is easy to

determine the position r from the output of BMA). The algorithm FindEnd takes as input the

prefix x[0:r+m] of x and the location r, and its task is to compute the end of the s-desert:

the first position end ≥ r + m such that xend+1 6= xend−k+1. The FindEnd algorithm is rather

involved but at a high level it consists of two stages: an initial coarse estimation of the end

of the desert followed by alignments of traces from Delδ(x) with the end of the desert (using

the coarse estimate).

Coarse estimation: The goal of the coarse estimation stage is to identify an integer β̂

that is close to (1 − δ)end: |β̂ − (1 − δ)end| ≤ 2σ, where σ := Õ(
√

δn) � m is basically

how far an entry xi of x can deviate from its expected location (1− δ)i in a typical trace

y ∼ Delδ(x). Intuitively, β̂ is an estimation of the location of xend in a trace y ∼ Delδ(x) that

contains it, i.e., when xend is not deleted in y. To do this, we draw α = O(1/ε) many traces

y1, . . . , yα ∼ Delδ(x). Roughly speaking, we split each trace yi into overlapping intervals of

3 For a string x ∈ [0 : n − 1] integers 0 ≤ a < b ≤ n − 1, we write x[a:b] to denote the subword
(xa, xa+1, . . . , xb).

ITCS 2021

20:6 Polynomial-Time Trace Reconstruction in the Low Deletion Rate Regime

length 4σ. The first interval starts at (1− δ)r and each successive interval shifts to the right

by σ (so it overlaps with the previous interval by 3σ). Since m� σ = Õ(
√

δn) (which is one

of the bottlenecks that requires δ � n−1/3), the s-desert is unlikely to end before (1− δ)r in

a trace y ∼ Delδ(x) and must end in one of constantly many intervals with high probability,

by the choice of σ. To identify one such interval, we make the following observation. Let

Cycs be the set of all k-bit strings that can be obtained as cyclic shifts of s. Given end as

the end of the s-desert that starts at xr−m, every k-bit subword of x[r−m:end] is in Cycs but

(xend−k+2, . . . , xend+1) /∈ Cycs, and these k ≤ C bits will most likely remain in a trace given

the low deletion rate. This motivates us to look for the leftmost interval I∗ such that in at

least half of y1, . . . , yα, it holds that yi
I∗ contains a k-bit subword not in Cycs. We show

that with high probability, setting β̂ to be the right endpoint of I∗ gives us a coarse estimate

of (1− δ)end up to an accuracy of ±2σ.

In addition to obtaining β̂, the coarse estimation stage recovers the following 8σ-bit

subword of x: (xend−k+2, . . . , xend−k+8σ+1), which we will refer to as the tail string of the

s-desert and denote by tail ∈ {0, 1}8σ. To this end, we draw another α = O(1/ε) fresh traces

y1, . . . , yα and examine the subword of each yi of length 6σ centered at location β̂. Each yi

looks for the first k-bit subword in this interval that is not in Cycs and votes for its 8σ-bit

subword that starts at this non-cyclic shift as its candidate for tail. We show that with high

probability, the string with the highest votes is exactly tail. (We note that both parts of this

coarse estimation procedure require that with high probability, any fixed interval of length

O(σ) in x does not get any deletions in a random trace, i.e., σδ � 1. This follows from the

two constraints mδ � 1 and m� σ.)

Alignments: Suppose the first stage succeeds in computing β̂ and tail ∈ {0, 1}8σ. The

second stage is based on a procedure called Align which satisfies two crucial criteria. These

criteria are as follows: if Align is given an input trace y ∼ Delδ(x), then (a) with fairly high

probability (by which we mean 1− n−Θ(ε) for the rest of the overview) it returns a location

` in y such that y` corresponds to xend in x, and moreover (b) the expectation of ` (over the

randomness of y) is a “sharp estimate” of (1− δ)end that is accurate up to an additive ±0.1

error.4 To pin down the exact end of the s-desert, FindEnd simply draws Õ(n2/3−ε) many

traces, runs Align on each of them and computes the average ̂̀of the locations it returns. It

is easy to show that rounding ̂̀/(1− δ) to the nearest integer gives end with high probability.

The case when k = |s| = 1 (so the desert is a long subword consisting either of all 0’s

or of all 1’s) is significantly easier (and was implicitly handled in [2]), so in the following

discussion we focus on the case when k = |s| ≥ 2 and the desert has a more challenging

structure. For this case our Align procedure uses a new idea, which is that of a “signature.”

A signature is a subword of x, denoted sig, of length between 2k and 8σ that starts at the

same location xend−k+2 as tail (so sig is contained in tail, since |tail| = 8σ) and either ends at

a location d which is the smallest integer d ∈ [end + k + 1 : end + 8σ − k + 1] such that the

k-bit subword that ends at d is not in Cycs, or has length 8σ if no such d exists (in this case

sig is the same as tail). We remind the reader that the first k-bits of tail, and hence also of

sig, is a string not in Cycs, and the same is true of the last k bits of sig if its length is less

than 8σ.

4 We note that item (b) is not an immediate consequence of item (a). In more detail, the failure probability

of (a) is roughly 1/nΘ(ε), but if when Align fails in (a) it returns a location that is inaccurate by

� nΘ(ε) positions, then (b) would not follow from (a). Indeed significantly more effort is required in
our analysis to ensure (b).

X. Chen, A. De, C. H. Lee, R. A. Servedio, and S. Sinha 20:7

Given a trace y ∼ Delδ(x), Align (roughly speaking) attempts to locate the image of

xend in y by locating the image of sig within an interval in y of length O(σ) around β̂. In

a bit more detail, it checks whether the restriction of y to a certain interval J around β̂

is of the form w ◦ sig ◦ v, such that the first k bits of sig is the leftmost k-bit subword of

yJ that is not in Cycs. If y does not satisfy this condition then Align discards that trace

and outputs nil. We note that if the only goal of Align were to locate a position ` in y

such that with fairly high probability y` corresponds to xend (i.e. item (a) above), then in

all other cases (i.e. whenever y does satisfy the above condition) Align could return the

index of the (k − 1)-th bit of sig in yJ . (By doing this, Align always returns the correct

position whenever the subword of x of length O(σ) centered at end has no deletion in y and

xend deviates from its expected location in a trace by at most σ in y, which happens with

probability O(σδ) = n−Θ(ε).) However, it turns out that Align must proceed in a slightly

(but crucially) different way in order to additionally satisfy item (b) above (i.e., have the

expected value of its output locations provide an accurate “sharp estimate” of (1− δ)end).

The actual execution of Align is that in the case when yJ does satisfy the above condition,

Align returns the index of the (k− 1)-th bit of sig in yJ with high probability and with some

small remaining probability (the precise value of which depends on the location of sig within

yJ), Align opts to still output nil. A detailed analysis, which we provide in Section 6.2.2,

shows that this Align procedure satisfies both criteria (a) and (b) described above.

2.3 The overall algorithm

The overall algorithm works by alternately running BMA and FindEnd. It starts with BMA,

which draws N = O(log n) traces of x and returns the first position r in x that is deep in

a desert as well as the prefix w = x[0:r+m] of the target string x. Then the algorithm runs

FindEnd to compute end, the right end of the desert. Note that the execution of BMA will

misalign some small fraction of the traces it uses, but these errors do not affect FindEnd as

FindEnd is run using fresh traces.

With end from FindEnd, the algorithm has now reconstructed the prefix x[0:end] by

extending x[0:r+m]. Next the algorithm runs BMA again on N traces that are, ideally, drawn

from x[end+1:n−1], in order to reconstruct the next segment of x until a new desert shows

up (at which point the algorithm repeats). These traces are obtained by running the Align

procedure used by FindEnd on N fresh traces y1, . . . , yN of x. Let `i be the output of Align

running on yi. As noted in (a) earlier, all but a small fraction of `i’s are such that the desert

ends at yi
`i

in yi. We then run BMA on z1, . . . , zN , where zi is the suffix of yi starting at

`i + 1 for each i. Even though z1, . . . , zN are not exactly N fresh traces of x[end+1:n−1] (since

a small and arbitrary fraction of yi might be misaligned), BMA is able to succeed because of

a crucial robustness property. This property is that the correctness guarantee of BMA holds

even when a small and “adversarially” picked constant fraction of the N traces given to it

are misaligned; intuitively, BMA enjoys this robustness because it works in each time step by

taking a majority vote over its input traces, so as long as a substantial majority of the traces

are correctly aligned, even a small constant fraction of adversarial traces cannot affect its

correctness. The algorithm continues alternating between BMA and FindEnd, and is thereby

able to reconstruct the entire target string x.

3 Preliminaries

Notation. Given a positive integer n, we write [n] to denote {1, . . . , n}. Given two integers

a ≤ b we write [a : b] to denote {a, . . . , b}. We write ln to denote natural logarithm and log

to denote logarithm to the base 2. We denote the set of non-negative integers by Z≥0. We

write “a = b± c” to indicate that b− c ≤ a ≤ b + c.

ITCS 2021

20:8 Polynomial-Time Trace Reconstruction in the Low Deletion Rate Regime

Subword. It will be convenient for us to index a binary string x ∈ {0, 1}n using [0 : n− 1]

as x = (x0, . . . , xn−1). Given such a string x ∈ {0, 1}n and integers 0 ≤ a ≤ b ≤ n− 1, we

write x[a:b] to denote the subword (xa, xa+1, . . . , xb) of x. An `-subword of x is a subword of

x of length `, given by (xa, xa+1, . . . , xa+`−1) for some a ∈ [0 : n− `].

Distributions. When we use bold font such as D, y, z, etc., it is to emphasize that the entity

in question is a random variable. We write “x ∼ D” to indicate that random variable x is

distributed according to distribution D.

Deletion channel and traces. Throughout this paper the parameter δ : 0 < δ < 1

denotes the deletion probability. Given a string x ∈ {0, 1}n, we write Delδ(x) to denote the

distribution of the string that results from passing x through the δ-deletion channel (so the

distribution Delδ(x) is supported on {0, 1}≤n), and we refer to a string in the support of

Delδ(x) as a trace of x. Recall that a random trace y ∼ Delδ(x) is obtained by independently

deleting each bit of x with probability δ and concatenating the surviving bits. 5

A notational convention. In several places we use sans serif font for names such as tail

(which is a subword of the target string x), end (which is a location in the target string

x), and so on. To aid the reader, whenever we use this font the corresponding entity is an

“x-entity,” i.e. a location, subword, etc. that is associated with the source string x rather

than with a trace of x.

4 The main algorithm

In this section we describe the main algorithm Reconstruct. We begin by giving a precise

definition of the notion of an s-desert. To do this, here and throughout the paper we fix

C := d100/εe, and we recall that m = n1/3 and M = 2m + 1.

I Definition 2. For s ∈ {0, 1}≤C , a binary string z ∈ {0, 1}∗ is said to be an s-desert if z

is a prefix of s∞ and |z| ≥M . A string is said to be a desert if it is an s-desert for some

s ∈ {0, 1}≤C . Given a string x ∈ {0, 1}n, we say that a location i ∈ [0 : n− 1] is deep in a

desert if the length-M subword x[i−m:i+m] centered at i is a desert. We say a string x has

no desert if no subword of x is a desert (or equivalently, no location i ∈ [0 : n− 1] is deep in

a desert in x); otherwise we say that it has at least one desert.

4.1 The preprocessing step

Before stating the main algorithm, we first describe a simple preprocessing step.

I Lemma 3. There is a randomized algorithm Preprocess which satisfies the following

with probability 1− n−ω(1) (over its internal randomness):

1. It outputs a string v ∈ {0, 1}n/2.

2. For any unknown string x ∈ {0, 1}n, given access to a sample from Delδ(x), it can output

a sample from Delδ(z), where z = x ◦ v, in linear time.

3. For any s ∈ {0, 1}≤C , the string v does not have a s-desert. Consequently, any desert in

the string z = x ◦ v ends at least n/2− (2m + 1) bits before the end of z.

5 For simplicity in this work we assume that the deletion probability δ is known to the reconstruction
algorithm. We note that it is possible to obtain a high-accuracy estimate of δ simply by measuring the
average length of traces received from the deletion channel.

X. Chen, A. De, C. H. Lee, R. A. Servedio, and S. Sinha 20:9

Algorithm 1 Algorithm Reconstruct for δ = n−(1/3+ε).

Input: Length n of an unknown x ∈ {0, 1}n and access to Delδ(x) where

δ = n−(1/3+ε)

Output: A string u, where the algorithm succeeds if u = x

1 Set N := O(log n)

2 Draw N fresh traces z1, . . . , zN independently from Delδ(x)

3 Run BMA(n, {z1, . . . , zN}) and let w be its output

4 if w has no desert then return w

5 else

6 Let r be the first location that is deep in a desert in w and let u = w[0:r+m]

// Main loop

7 for n/m rounds do

8 Draw N fresh traces y1, . . . , yN independently from Delδ(x)

9 Run FindEnd(r, u, {y1, . . . , yN}) and let b and `i, i ∈ [N], be its output

10 Set r = b and extend u to be a string of length b such that u[r−m:b] is a desert

11 if b = n− 1 then output “FAILURE”

12 Let zi be the suffix of yi starting at yi
`i+1 for each i ∈ [N]

13 Run BMA(n− b− 1, {z1, . . . , zN}) and let w be its output

14 if w has no desert then

15 return u ◦ w

16 else

17 Let r∗ be the first location that is deep in a desert in w and set r ← r + r∗

and u← u ◦ w[r∗+m]

18 return u if u is of length n

19 return u

The algorithm chooses v to be a random string of length n/2. In order to obtain the original

n-bit string x it suffices for us to reconstruct the (3n/2)-bit string z. The proof of correctness

involves standard probabilistic arguments and is deferred to the full version.

For convenience of notation, we rename z as x and rename n to be the length of this string

z, so we still have x = (x0, . . . , xn−1). Now x is an n-bit string that has the following property:

any desert in x ends at least n/4 bits before the right end of x. With this preprocessing

accomplished, we now describe Algorithm Reconstruct in Algorithm 1.

4.2 The high level idea of the Reconstruct algorithm

At a high level the algorithm works as follows. It starts (lines 1-3) by drawing

N = O(log n)

independent traces z1, . . . , zN from Delδ(x) and using them to run BMA. An important

component of our analysis is the following new result about the performance of BMA (note

that later we require, and will give, a more robust version of the theorem below; see

Theorem 6):

ITCS 2021

20:10 Polynomial-Time Trace Reconstruction in the Low Deletion Rate Regime

I Theorem 4. Let δ = n−(1/3+ε) for some fixed constant ε > 0. Given N traces drawn

independently from Delδ(x) for some unknown string x ∈ {0, 1}n, BMA runs in Õ(n) time

and returns a string w of length n with the following performance guarantees:

1. If x has no desert, then w = x with probability at least 1− 1/n2;

2. If x has at least one desert, then w and x share the same (r + m + 1)-bit prefix with

probability at least 1− 1/n2, where r is the first location that is deep in a desert of x.

Let w be the string BMA returns. By Theorem 4, we have the following two cases:

1. If w has no desert, then also x has no desert and the algorithm can just return w (line 4);

2. If w has at least one desert, then writing r to denote the first location that is deep in a

desert in w, it is safe to assume that w[0:r+m] = x[0:r+m] and r is also the first location

that is deep in a desert in x (line 6).

Suppose that we are in the second case with w[0:r+m] = x[0:r+m]. Then w[r−m:r+m] is an

s-desert for some string s ∈ {0, 1}k of some length k ≤ C. We let s be the shortest such

string and let k be its length (so if w[r−m:r+m] were, for example, a subword of the form

001001001001· · · of length a multiple of 12, we would take s = 001 and k = 3).

Next (lines 8-9) we run FindEnd to figure out where this repetition of s ends in x. We

use end to denote the end of the desert, where end ≥ r + m is the smallest integer such that

xend+1 6= xend−k+1. By the preprocessing step we may assume that end exists and satisfies

end ≤ 3n/4. (We note that FindEnd has access to Delδ(x) to draw fresh traces by itself; we

send N fresh traces y1, . . . , yN to FindEnd so that it can help align them to the end of the

desert, which are used to run BMA later.) The performance guarantee for FindEnd is given

below:

I Theorem 5. Let δ = n−(1/3+ε) for some fixed constant ε > 0. There is an algorithm

FindEnd with the following input and output:

Input: (i) a location r ∈ [0 : 3n/4], (ii) a string u ∈ {0, 1}r+m+1, (iii) a multiset of

strings {y1, . . . , yN} from {0, 1}≤n where N = O(log n), and (iv) sample access to Delδ(x)

for some unknown string x ∈ {0, 1}n.

Output: An integer b, and an integer `i for each i ∈ [N].

The algorithm FindEnd draws Õ(n2/3−ε) many independent traces from Delδ(x), runs in

O(n5/3) time and has the following performance guarantee. Suppose that r is the first

location that is deep in some desert of x; u = x[0:r+m]; the unknown end of the desert to

which xr belongs is at most 3n/4; and y1 = y1, . . . , yN = yN are independent traces drawn

from Delδ(x). Then the integers b and `i that FindEnd outputs satisfy the following properties

with probability at least 1 − 1/n2: b = end, and `i = last(yi) for at least 0.9 fraction of

i ∈ [N]. Here last(y) for a trace y denotes the location ` in y such that y` corresponds to the

last bit of x[0:end] that survives in y (and we set last(y) = −1 by default if all of x[0:end] gets

deleted in y).

Line 9 runs FindEnd with fresh independent traces y1, . . . , yN drawn from Delδ(x). By

Theorem 5, with high probability FindEnd returns the correct location b = end, from which

we can then recover x[0:b] as the unique extension of w[0:r+m] in which the pattern s keeps

repeating until (and including) location b. Moreover, we have from Theorem 5 that, for at

least a 9/10-fraction of all i ∈ [N], the suffix zi of yi starting from yi
`i+1 is a trace drawn

from Delδ(x[b+1:n−1]). We further note that our preprocessing ensures b ≤ 3n/4 and thus,

the algorithm does not halt on line 11.

To continue, we would like to run BMA again on z1, . . . , zN (the suffixes of y1, . . . , yN) to

recover x[b+1:n−1] (or a prefix of x[b+1:n−1] if it contains a desert). However, observe that now

we need BMA to be robust against some noise in its input traces because by Theorem 5, up to

X. Chen, A. De, C. H. Lee, R. A. Servedio, and S. Sinha 20:11

1/10 of z1, . . . , zN might have been obtained from an incorrect alignment of y1, . . . , yN . Thus

we require the following more robust performance guarantee from BMA, given by Theorem 6

below. (To state this we need a quick definition: we say two multisets of strings of the same

size are η-close if one can be obtained from the other by substituting no more than η-fraction

of its strings. One should also consider x′ in the statement below as x[b+1:n−1] and n′ as

n− b− 1.)

I Theorem 6. Let δ = n−(1/3+ε) for some fixed constant ε > 0. Suppose z̃1, . . . , z̃N

are N independent traces drawn from Delδ(x′) for some unknown string x′ ∈ {0, 1}n′

with

n′ ≤ n. The following holds with probability at least 1 − 1/n2 over the randomness of

z̃1, . . . , z̃N ∼ Delδ(x′):

1. If x′ has no desert, then BMA running on n′ and any multiset {z1, . . . , zN} that is (1/10)-

close to {z̃1, . . . , z̃N} returns w = x′;

2. If x′ has at least one desert, then BMA running on n′ and any multiset {z1, . . . , zN} that

is (1/10)-close to {z̃1, . . . , z̃N} returns a string w that shares the same (r′ + m + 1)-bit

prefix with x′, where r′ is the first location that is deep in a desert in x′.

Given Theorem 6, we can indeed successfully run BMA on z1, . . . , zN and with high

probability, it correctly recovers a prefix of x[b+1:n−1] up to the first point deep in the next

desert (if any exists), in which case the algorithm repeats (if there is no next desert, then

with high probability BMA will correctly recover the rest of x).

4.3 Correctness of Reconstruct

The case when x has no desert is handled by Theorem 6. Assuming that x has at least

one desert, it follows from Theorem 6 that r, u together satisfy the following property with

probability at least 1 − 1/n2 at the beginning of the main loop (lines 7-18): r is the first

location that is deep in a desert in x and u = x[0:r+m]. This gives the base case for the

following invariant that the algorithm maintains with high probability:

Invariant: At the beginning of each loop, r is the first location deep in some desert

in x and u = x[0:r+m].

Assume that the invariant is met at the beginning of the current loop. Let end denote the

end of the current desert (i.e., the smallest value end ≥ r + m such that xend+1 6= xend−k+1;

we observe that end ≤ 3n/4 always exists by the guarantee of the preprocessing step). Let

y1, . . . , yN be fresh traces drawn at the beginning of this loop. For each i ∈ [N], we write z̃i

to denote the suffix of yi starting at last(yi)+1. Given that y1, . . . , yN ∼ Delδ(x), z̃1, . . . , z̃N

are indeed independent traces drawn from Delδ(x′), where x′ = x[end+1:n−1]. Then we note

that, for the algorithm to deviate from the invariant in the current round, one of the following

two events must hold for y1, . . . , yN :

1. FindEnd(r, u, {y1, . . . , yN}) fails Theorem 5; or

2. {z̃1, . . . , z̃N} fails Theorem 6, i.e., there is a multiset {z1, . . . , zN} that is (1/10)-close to

{z̃1, . . . , z̃N} but BMA(n− end− 1, {z1, . . . , zN}) violates the condition in Theorem 6.

This is because whenever FindEnd succeeds, the strings {z1, . . . , zN} on which we run BMA

on line 13 must be (1/10)-close to {z̃1, . . . , z̃N}. Theorem 5 ensures that item 1 happens

with probability at most 1/n2; Theorem 6 ensures that item 2 happens with probability at

most 1/n2, given that z̃1, . . . , z̃N are independent traces from Delδ(x′) as required in the

assumption of Theorem 6.

ITCS 2021

20:12 Polynomial-Time Trace Reconstruction in the Low Deletion Rate Regime

Algorithm 2 Algorithm BMA.

Input: A length n′ and a multiset {z1, . . . , zN} of strings, each of length at most n′

Output: A string w = (w0, . . . , wn′−1) ∈ {0, 1}n′

1 For each i ∈ [N] pad each zi to be a string ui of length n′ by adding 0’s to the end

2 Set t = 0 and currenti(t) = 0 for each i ∈ [N]

3 while t ≤ n′ − 1 do

4 Set wt ∈ {0, 1} to be the majority of the N bits u1
current1(t), . . . , uN

currentN (t)

5 For each i ∈ [N], set currenti(t + 1) to currenti(t) + 1 if ui
currenti(t) = wt;

otherwise set currenti(t + 1) to currenti(t)

6 Increment t.

7 return w.

By a union bound, the invariant holds with high probability in every round given that

we only repeat for n/m rounds. Finally, observe that we only need to repeat for n/m rounds

to reconstruct the entire n-bit string x, since in each round the pointer r increases by at

least 2m.

This concludes the proof of correctness of Reconstruct and the proof of Theorem 1,

modulo the proofs of Theorem 6 and Theorem 5. In the rest of the paper we prove those two

theorems.

5 Improved analysis of the Bitwise Majority Algorithm:
Proof of Theorem 6

The bitwise majority algorithm was first described and analyzed in [2]. The analysis given

in [2] established that BMA successfully reconstructs any unknown source string x ∈ {0, 1}n

that does not contain any “long runs” (i.e., subwords of the form 0n1/2+ε

or 1n1/2+ε

) provided

that the deletion rate δ is at most n−(1/2+ε). We describe the BMA algorithm in Algorithm 2.

As the main result of this section we establish an improved performance guarantee for BMA.

Our discussion and notation below reflects the fact that we will in general be running BMA

“in the middle” of a string x for which we have already reconstructed a (b + 1)-bit prefix of x

(this is why Theorem 6 is stated in terms of a source string x′ of length n′ ≤ n, which should

be thought of as a suffix of x). Our goal is to prove Theorem 6.

We break the proof of Theorem 6 into two steps (Lemma 8 and Lemma 14 below). For

ease of exposition, in the rest of this section if x′ has at least one desert then as stated in

item (2) of the theorem, we let r′ be the first location that is deep in a desert in x′. If x′ has

no desert, then we let r′ = n′ −m− 1. Note that with this definition of r′, it is guaranteed

that there is no desert in x′
[0:r′+m−1] and the goal of BMA is to return a string that shares the

same (r′ + m + 1)-prefix with x.

Let R = 9N/10. We first prove in Lemma 8 that if a multiset of R traces Z =

{z1, . . . , zR} of x′ satisfies a certain sufficient “goodness” condition (see Definition 7 for

details), then BMA(n′, Z) not only returns a string w = (w0, . . . , wn′−1) ∈ {0, 1}n that satisfies

w[0:r′+m] = x′
[0:r′+m] as desired but moreover, the bitwise majority during each of the first

r′ + m + 1 rounds of BMA is “robust” in the following sense: for each one of those rounds,

at least 9R/10 = 81N/100 of the R strings zi’s agree with each other. This immediately

implies that when Z satisfies this condition, adding any multiset of N/10 strings to Z and

running BMA on the resulting multiset of size N cannot affect the output of BMA during the

first r′ + m + 1 rounds, so its output w still satisfies w[0:r′+m] = x′
[0:r′+m]. The next lemma,

X. Chen, A. De, C. H. Lee, R. A. Servedio, and S. Sinha 20:13

Lemma 14, shows that if Z̃ = {z̃1, . . . , z̃N} is a multiset of N traces drawn independently

from Delδ(x′) (as in the assumption part of Theorem 6), then with high probability every

R-element subset of Z̃ satisfies the sufficient condition (Definition 7) for BMA to succeed

robustly. Theorem 6 follows easily by combining Lemma 8 and Lemma 14. Due to lack of

space, we defer most proofs in this section to the full version.

5.1 Notation for traces

We start with some useful notation for analyzing traces of x′. When a trace y is drawn from

Delδ(x′) we write D to denote the set of locations deleted when x′ goes through the deletion

channel, i.e., D is obtained by including each element in [0 : n′ − 1] independently with

probability δ, and y is set to be x′
[0:n′−1]\D

. In the analysis of BMA when it is given as input

R traces Z = {z1, . . . , zR}, our analysis will sometimes refer to the set Di ⊆ [0 : n′ − 1] of

locations that was deleted when generating zi.

Note that in the execution of BMA we pad each trace zi to a string ui of length n′ by

adding 0’s to its end . In the rest of the section it will be convenient for us to view x′ as a

string of infinite length by adding infinitely many 0’s to its end. We can then view each ui

as generated by first deleting the bits in Di ⊆ [0 : n′ − 1] from x′ and taking the n′-bit prefix

of what remains. This motivates the definition of the following map fi : [0 : n′ − 1]→ N for

each i ∈ [R]: For each j ∈ [0 : n′− 1], fi(j) is set to be the unique integer k such that k /∈ Di

and k − |Di ∩ [k − 1]| = j. In words, fi(j) is simply the original location in x′ of the j-th bit

in the padded version ui of zi.

We specify some parameters that will be used in the rest of Section 5. Let C = d100/εe
(so C should be thought of as a large absolute constant) and M = 2m + 1 with m = n1/3,

and recall that by definition M is the shortest possible length of a desert.

5.2 BMA is robust on good sets of traces

The main result of this subsection is Lemma 8, which establishes that BMA is robustly correct

in its operation on traces that satisfy a particular “goodness” condition given in Definition 7

below.

Let Z = {z1, . . . , zR} be a multiset of traces of x′. As described above we write ui ∈
{0, 1}n′

to denote the 0-padded version of zi, Di ⊆ [0 : n′ − 1] to denote the set of locations

that were deleted from x′ to form zi, and fi to denote the map defined as above for each

i ∈ [R]. We introduce the following condition for Z and then prove Lemma 8:

I Definition 7. We say Z = {z1, . . . , zR} is good if the following two conditions hold:

(i) For every i ∈ [R] and every interval [left : right] ⊂ [0 : n′− 1] of length right− left + 1 =

L1 := 2C2M , we have |Di ∩ [left : right]| ≤ C.

(ii) For every interval [left : right] ⊂ [0 : n′− 1] of length right− left + 1 = L2 := M + C + 1,

the number of elements i ∈ [R] such that Di ∩ [left : right] 6= ∅ is at most R/C3.

Intuitively, (i) says that no interval of moderate length (note that this length 2C2M is

polynomially less than 1/δ) has “too many” deletions in it in any trace, whereas (ii) says

that for every interval of moderate length (again polynomially less than 1/δ), most of the R

traces have no bit deleted within that interval.

Now we are ready to state Lemma 8:

I Lemma 8. Let Z = {z1, . . . , zR} be a good multiset of R traces of x′. Then the string

w ∈ {0, 1}n′

that BMA(n′, Z) outputs satisfies w[0:r′+m] = x′
[0:r′+m]. Moreover, during each

of the first r′ + m + 1 rounds of the execution of BMA, at least 9R/10 of the R bits in the

majority vote taken in Step 4 of BMA agree with each other.

ITCS 2021

20:14 Polynomial-Time Trace Reconstruction in the Low Deletion Rate Regime

We start the proof of Lemma 8 by defining a map distancei(t) for each zi in Z. Recall that

currenti(t) is the current location of the pointer into the padded trace ui at the beginning

of round t in BMA.6 We let positioni(t) = fi(currenti(t)), i.e. the original position in x′ of

the currenti(t)-th bit of ui. Then distancei(t) is defined as distancei(t) = positioni(t)− t, the

distance between t and positioni(t). In Corollary 10 we will show that distancei(t) is always

nonnegative, and so it actually measures how many bits positioni(t) is ahead at round t. It

may be helpful to visualize t and positioni(t) of a trace by writing down the source string x′

with the deleted bits struck through, and having two arrows pointing to x′
t and x′

positioni(t);

at the beginning of round t, the BMA algorithm tries to determine x′
t by looking at x′

positioni(t).

Intuitively, having distancei(t) = 0 means that the i-th trace was aligned properly at round t;

at the highest level, we establish Lemma 8 by showing that at least 9R/10 of the R traces

have distancei(t) = 0.

We state the following claim about how currenti(t), positioni(t) and distancei(t) compare

to their values at the beginning of round t− 1, assuming that the prefix w[0:t−1] of the output

thus far matches x′
[0:t−1].

B Claim 9. Let t be a positive integer such that w[0:t−1] = x′
[0:t−1]. For each i ∈ [R], we have

1. If x′
positioni(t−1) 6= x′

t−1, then currenti(t) = currenti(t − 1), positioni(t) = positioni(t − 1)

and distancei(t) = distancei(t− 1)− 1.

2. If x′
positioni(t−1) = x′

t−1, then currenti(t) = currenti(t− 1) + 1, positioni(t) = positioni(t−
1) + ` + 1 and distancei(t) = distancei(t− 1) + `, where ` is the nonnegative integer such

that positioni(t − 1) + 1, . . . , positioni(t − 1) + ` ∈ Di and positioni(t − 1) + ` + 1 /∈ Di

(or equivalently, ` = fi(currenti(t))− fi(currenti(t− 1))− 1).

We have the following useful corollary of Claim 9, which tells us that if w[0:t−1] = x′
[0:t−1]

then each distancei(t) ≥ 0 (in other words, no trace can have “gotten behind” where it should

be):

I Corollary 10. Let t be a positive integer such that w[0:t−1] = x′
[0:t−1]. Then distancei(t) ≥ 0

for all i ∈ [R].

We prove three preliminary lemmas before proving Lemma 8. Recall that M = 2m + 1

is the shortest possible length of a desert. Assuming w[0:t−1] = x′
[0:t−1] for some t > M ,

the first lemma shows that if distancei(t−M) = 0 and no location of x′ is deleted between

t−M + 1 and t, then distancei(t) must stay at 0. (Note that this lemma holds for general

M but we state it using M = 2m + 1 for convenience since this is how it will be used later.)

Intuitively, this says that if a length-M subword of x′ experiences no deletions, then a trace

that is correctly aligned at the start of the subword will stay correctly aligned throughout

the subword and at the end of the subword.

I Lemma 11. Suppose that w[0:t−1] = x′
[0:t−1] for some t > M . Suppose that i ∈ [R] is such

that distancei(t−M) = 0 and

Di ∩
[
positioni(t−M) + 1 : positioni(t−M) + M

]
= Di ∩

[
t−M : t

]
= ∅.

Then we have distancei(t) = 0.

6 Note that whereas positioni(·) and distancei(·) refer to quantities defined in terms of the source string x,
currenti(·) refers to a location in a trace string and not the source string.

X. Chen, A. De, C. H. Lee, R. A. Servedio, and S. Sinha 20:15

In the second lemma, we assume t is such that M < t ≤ r′ + m + 1 by the choice

of r. We further assume that w[0:t−1] = x′
[0:t−1] and 0 < distancei(t −M) ≤ C for some

i ∈ [R]. We show that under these assumptions, if the subword of length M in x′ starting at

positioni(t−M) + 1 has no deletion, then distancei(t) < distancei(t−M). Intuitively, this

says that prior to a desert, if the length-M subword of x′ experiences no deletions and the

alignment of a trace is only modestly ahead of where it should be at the start of the subword,

then the alignment will improve by the end of the subword.

I Lemma 12. Let M < t ≤ r′ + m + 1 with w[0:t−1] = x′
[0:t−1]. If 0 < distancei(t−M) ≤ C

for some i ∈ [R] and Di ∩
[
positioni(t−M) + 1 : positioni(t−M) + M

]
= ∅, then we have

distancei(t) < distancei(t−M).

Finally we use the two previous lemmas to show that if t ≤ r′+m+1 and w[0:t−1] = x′
[0:t−1],

then distancei(t) must lie between 0 and C. Intuitively, this says that prior to a desert, the

alignment of a trace will be at worst modestly ahead of where it should be.

I Lemma 13. Let t ≤ r′ + m + 1 and suppose that w[0:t−1] = x′
[0:t−1]. Then distancei(t) ≤ C

for all i ∈ [R].

Proof of Lemma 8. We prove by induction that for every positive integer t ≤ r′ + m + 1:

w[0:t−1] = x′
[0:t−1] and

∑

i∈[R]

distancei(t) ≤
2R

C
. (1)

It follows that every t ≤ r′ +m+1 satisfies |{i ∈ [R] : distancei(t) = 0}| ≥ R−2R/C ≥ 9R/10

using C ≥ 20. The details are deferred to the full version. J

5.3 Traces are good with high probability

To conclude the proof of Theorem 6 it remains to prove Lemma 14, which states that with

high probability a random multiset of O(log n) traces is such that every subset of 9/10 of

the traces is good (recall Definition 7).

I Lemma 14. Let Z̃ = {z̃1, . . . , z̃N} be a multiset of N = O(log n) traces drawn independently

from Delδ(x′). Then with probability at least 1− 1/n2, every R-subset of Z̃ is good, where

R = 9N/10.

6 Finding the end of a desert: Proof of Theorem 5

In this section, we describe the algorithm FindEnd, which is used to determine the end of a

desert in x using traces from Delδ(x), and to align given traces with the end of the desert.

(These aligned traces will then be used by BMA in the main algorithm.)

Let’s recall the setting. Let x ∈ {0, 1}n be the unknown string. FindEnd is given the first

location r that is deep in some s-desert subword of x, for some string s ∈ {0, 1}k with k ≤ C.

It is also given the prefix u = x[0:r+m] of x. We will refer to the s-desert that contains r as

the current desert. (Note that s can be easily derived from u.) The goal of FindEnd is to

figure out the ending location of the current desert which we denote by end:

end is the smallest integer at least r + m such that xend+1 6= xend−k+1.

(Note that thanks to the preprocessing step Preprocess, we know that end exists and satisfies

r + m ≤ end ≤ 3n/4.)

ITCS 2021

20:16 Polynomial-Time Trace Reconstruction in the Low Deletion Rate Regime

In addition to computing end, FindEnd is also given a multiset of N = O(log n) traces

y1, . . . , yN and needs to return a location `i for each yi such that most of them are correctly

aligned to the end of the desert. Formally, we write last(y) for a trace y to denote the

location ` in y such that y` corresponds to the last bit of x[0:end] that survives in y; we set

last(y) = −1 by default if all of x[0:end] gets deleted. The second goal of FindEnd is to output

`i = last(yi) for almost all yi when they are drawn independently from Delδ(x).

We present the algorithm FindEnd in Algorithm 3, where

σ :=
⌈√

δn · log n
⌉
.

(Intuitively, σ provides a high-probability upper bound on how far a bit of x can deviate

from its expected position in a trace y ∼ Delδ(x).) FindEnd consists of the following two

main procedures:

1. We will refer to the 8σ-bit string

tail := xend−k+2 xend−k+3 · · · xend+8σ−k+1

around the end xend of the current desert as its tail string and denote it by tail ∈
{0, 1}8σ. (Note that end + 8σ − k + 1 < n given that end ≤ 3n/4.) The first procedure,

Coarse-Estimate, will provide with high probability a coarse estimate β̂ (see Lemma 15)

of the expected location (1− δ)end of the right end of the current desert in a trace of x.

This procedure is described in Section 6.1.

2. With β̂ and tail ∈ {0, 1}8σ in hand, the second procedure Align can help align a given

trace with the right end of the current desert. Informally, running on a trace y ∼ Delδ(x),

Align returns a position ` such that with high probability over the randomness of

y ∼ Delδ(x), it holds that ` = last(y). The performance guarantee of Align is given in

Lemma 16. It may sometimes (with a small probability) return nil, meaning that it fails

to align the given trace. This procedure is described in Section 6.2.

The algorithm FindEnd starts by running Coarse-Estimate to obtain a coarse estimate

β̂ of (1− δ)end and the tail string (line 1). It then (line 2) runs Align on the given N traces

yi to obtain `i for each i ∈ [N]. The second property of FindEnd in Theorem 5 about `i’s

follows directly from the performance guarantee of Align. To obtain a sharp estimate of

end, FindEnd draws another set of Õ(n2/3−ε) traces zi (line 3). It runs Align on each of

them and uses the average of its outputs (discarding traces for which Align returns nil) to

estimate (1 − δ)end (lines 4-6). (It is clear that this average would be accurate to within

±o(1) if Align always successfully aligned its input trace with the right end of the current

desert; the actual performance guarantee of Align is weaker than this, but a careful analysis

enables us to show that it is good enough for our purposes.)

6.1 The Coarse-Estimate procedure

Recall that σ = d
√

δn · log ne. Given r, u as specified earlier and sample access to Delδ(x),

the goal of Coarse-Estimate is to obtain an integer β̂ such that |β̂−(1−δ)end| ≤ 2σ. We will

refer to such an estimate as a coarse estimate of (1− δ)end. In addition, Coarse-Estimate

returns a string t that with high probability is exactly the tail string tail ∈ {0, 1}8σ. This is

done by drawing only O(1/ε) many traces.

I Lemma 15. Let δ = n−(1/3+ε) with a fixed constant ε > 0. There is an algorithm

Coarse-Estimate which takes the same two inputs r and u as in FindEnd and sample access

to Delδ(x) for some unknown string x ∈ {0, 1}n, and returns an integer β̂ ∈ [0 : n− 1] and

a string t ∈ {0, 1}8σ. It draws O(1/ε) traces from Delδ(x), runs in time O(n) and has the

following performance guarantee. Suppose that r and u satisfy the same conditions as in

Theorem 5 with respect to x. Then with probability at least 1− 1/n3, we have that t = tail

and β̂ satisfies |β̂ − (1− δ)end| ≤ 2σ.

X. Chen, A. De, C. H. Lee, R. A. Servedio, and S. Sinha 20:17

Algorithm 3 Algorithm FindEnd.

Input: r ∈ [0 : 3n/4], u ∈ {0, 1}r+m+1, a multiset {y1, . . . , yN} of N strings from

{0, 1}≤n where N = O(log n), and sample access to Delδ(x) for some string

x ∈ {0, 1}n.

Output: An integer b ≥ r + m and an integer `i for each i ∈ [N].

1 Run Coarse-Estimate(r, u), which returns an integer β̂ and a string t ∈ {0, 1}8σ.

2 For each i ∈ [N], run Align(β̂, t, yi). If Align returns nil, set `i = −1; otherwise let

`i be the integer Align returns.

3 Draw γ = O(n2/3−ε log3 n) traces z1, . . . , zγ from Delδ(x).

4 For each i ∈ [γ], run Align(β̂, t, zi) and let hi be its output.

5 Let β be the average of hi’s that are not nil, and let b be the integer nearest to

β/(1− δ).

6 Return b, and `i for each i ∈ [N].

Proof. We start with the coarse estimate β̂. Let r̂ = d(1− δ)re and consider the following

collection of overlapping intervals of positions in a trace of x:

I :=
{[

r̂ + jσ : r̂ + (j + 4)σ
]

: j ∈ Z≥0

}
.

Note that each interval I contains 4σ + 1 positions. Coarse-Estimate draws α = O(1/ε)

traces y1, . . . , yα from Delδ(x) and finds the leftmost interval I∗ ∈ I such that at least half

of yi’s satisfy the following property: yi
I∗ contains a k-bit subword that is not a cyclic shift

of s. The algorithm then sets β̂ to be the right endpoint of I∗.

Finally, Coarse-Estimate recovers the tail string as follows. Let J ′ be the interval

[β̂ − 3σ : β̂ + 3σ]. It draws another sequence of α = O(1/ε) fresh traces y1, . . . , yα from

Delδ(x). For each yi it looks for the leftmost non-cyclic shift of s in yi
J′ . When such a

non-cyclic shift exists, say yi
τ · · ·yi

τ+k−1, yi votes for the 8σ-bit string yi
τ · · ·yi

τ+8σ−1 as its

candidate for the tail string. It then returns the 8σ-bit string with the most votes.

Clearly, the running time of Coarse-Estimate is O(n) as the procedure consists of a

linear scan over O(1/ε) traces. The proof of correctness is deferred to the full version. J

6.2 The Align procedure

We start with the performance guarantee of Align:

I Lemma 16. Let δ = n−(1/3+ε) for some fixed constant ε > 0. There is an algorithm Align

running in time O(n) with the following input and output:

Input: a number β̂ ∈ [0 : n− 1], and strings t ∈ {0, 1}8σ, y ∈ {0, 1}≤n.

Output: an integer ` ∈ [0 : n− 1], or nil.

It has the following performance guarantee. Suppose x, u, r and end satisfy the hypothesis in

Theorem 5, β̂ and t satisfy the conclusion of Lemma 15, and y = y ∼ Delδ(x) is a random

trace. Then

1. Whenever Align returns an integer `, we have |`− (1− δ)end | ≤ O(σ).

2. With probability at least 1− Õ(n−3ε/2), Align returns exactly last(y); and

3. Conditioned on Align not returning nil, the expectation of what Align returns is (1−
δ)end± o(1).

ITCS 2021

20:18 Polynomial-Time Trace Reconstruction in the Low Deletion Rate Regime

6.2.1 Setup for the proof of Lemma 16

For the special case when k = |s| = 1 (so the desert subword is of the form 0a or 1a for some

a ≥M = 2n1/3 + 1), the description of Align is relatively simple.

Description of Align for k = 1: Let J := [β̂ − 3σ : β̂ + 3σ]. Align outputs nil if the

string yJ contains no occurrence of b; if yJ does contain at least one occurrence of b then

Align outputs the location in J of the first occurrence of b.

The proof of correctness is deferred to the full version. Now consider the general case

when k ≥ 2. Let Cycs be the set of all k-bit strings that can be obtained as cyclic shifts of s.

The key notion behind Align is the idea of the “signature.” This is a subword of x of length

at most 8σ that starts at the same location xend−k+2 as tail (so it is contained in tail; we

remind the reader that the first k-bits of tail is a string not in Cycs). The signature ends at

location d where d is the smallest integer d ∈ [end + k + 1 : end + 8σ − k + 1] such that the

k-bit subword that ends at d is not in Cycs; if no such d exists, the signature is taken to

have length 8σ and is the same as tail. (Alternatively, the signature is the shortest prefix of

tail that contains a k-bit subword not in Cycs that does not use the first k bits; and it is set

to tail if every k-bit subword of tail after removing the first k bits lies in Cycs.)

We will write sig to denote the signature string. We observe that 2k ≤ |sig| ≤ 8σ, and

that given the string tail it is algorithmically straightforward to obtain sig. Given sig, we say

that a string z of length at most 15σ + 1 is in the right form if it can be written as

z = w ◦ sig (2)

where the leftmost k-bit subword in z that is not in Cycs is the first k bits of sig. The main

motivation behind the definition of the signature is the following crucial lemma:

I Lemma 17. Let s ∈ {0, 1}k for some 2 ≤ k ≤ C, and let z be a string of length at most

15σ + 1 that is in the right form. For y ∼ Delδ(z), the probability that |y| < |z| (so at least

one deletion occurs) and y is the prefix of a string in the right form is at most O(δ).

The high-level idea is that a deletion is likely to create an additional disjoint k-bit subword

in y that is not in Cycs, unless a deletion occurs in some O(k) specific places in z or two

deletions are O(k) close to each other. This additional subword will help us argue that y

does not have the right form. The detailed proof is deferred to the full version.

6.2.2 Proof sketch of Lemma 16 when k ≥ 2

Description of Align for k ≥ 2: Given a coarse estimate β̂ (such that |β̂− (1−δ)end| ≤
2σ), sig ∈ {0, 1}≤8σ, and a trace y, Align checks if the restriction of y to the interval

J :=
[
β̂ − 3σ : β̂ + 12σ

]
has a prefix in the right form (see Equation (2)), i.e.,

yJ = w ◦ sig ◦ v (3)

so that the first k bits of sig is the leftmost k-bit subword of yJ not in Cycs. If yJ is not

of this form Align returns nil. If yJ is of this form and sig ends at location L ∈ [0 : 15σ]

in yJ , Align returns the index of the (k − 1)-th bit of sig (i.e., sigk−2 which intuitively

should correspond to xend) in y with probability

pL := (1− δ)15σ−L, (4)

and with the remaining probability returns nil. Note that

(1− δ)15σ−L = 1−O(δσ) = 1− Õ(n3ε/2), for all L ∈ [0 : 15σ],

so Align only returns nil with probability o(1) when yJ is of the form Equation (3).

X. Chen, A. De, C. H. Lee, R. A. Servedio, and S. Sinha 20:19

Discussion. The main subtlety in the definition of Align is the “discounting probability”

given by Equation (4), which plays an important role in ensuring that the location returned

by Align (conditioned on Align not returning nil) is sufficiently close in expectation to the

correct location. The proof of correctness of Align is deferred to the full version.

6.3 Proof of Theorem 5

Proof of Theorem 5. The proof follows from the guarantees in Lemma 15 and Lemma 16,

using standard concentration bounds. First, we have from Lemma 15 that the output (β̂, t)

of Coarse-Estimate satisfies |β̂− (1− δ)end| ≤ 2σ and t = tail with probability 1−O(1)/n3.

Assume that this holds for the rest of the proof.

By Lemma 16, with probability at least 1−Õ(n−3ε/2) Align returns an integer `i (and not

nil), and `i = last(yi), for each i ∈ [N]. Now, the Chernoff bound (additive form) implies that

`i = last(yi) for at least 0.9 fraction of i ∈ [N] with probability 1− exp(−Ω(N)) ≥ 1− 1/n3,

where we choose the hidden constant in N = O(log n) to be sufficiently large.

It remains to show that b = end with probability at least 1− 1/n3. Recalling step 4 of

FindEnd, let G ⊂ [γ] be the set of indices i for which hi = Align(β̂, t, zi) 6= nil. Using the

same argument as above, we have that |G| ≥ 0.9γ with probability 1− exp(−Ω(γ)) = 1−
exp(−Ω̃(n2/3−ε)). The guarantees in Lemma 16 imply that |E[hi |hi 6= nil]−(1−δ)end| ≤ o(1)

and that the random variable hi (conditioned on its not being nil) always lies in an interval

of width O(σ) for all i ∈ [G]. Moreover, {hi}i∈G are independent random variables.

Let β = (1/|G|) ∑
i∈G hi be the average of hi over i ∈ G. By Hoeffding’s inequality and

our choice of γ = O(n2/3−ε log3 n) = O(σ2 log n) (with a sufficiently large hidden constant),

Pr[|β −E[hi |hi 6= nil]| ≥ 0.1] ≤ exp
(
−Ω

(γ

σ2

))
≤ exp(−Ω(log n)) ≤ 1/n3.

By triangle inequality, |β−(1−δ)end| ≤ 0.1, and so |β/(1−δ)−end| ≤ 0.2, with probability at

least 1−1/n3. Hence, the integer b closest to β/(1− δ) is end, which implies FindEnd returns

end with probability at least 1− 1/n2 (by union bound over all the failure probabilities).

Finally, the runtime of FindEnd is dominated by the final procedure to compute b. Since

each run of Align on a trace takes O(n) and Align is run on γ ≤ n2/3 traces, FindEnd runs

in time O(n5/3). This concludes the proof of Theorem 5. J

References

1 Alexandr Andoni, Constantinos Daskalakis, Avinatan Hassidim, and Sebastien Roch. Global

alignment of molecular sequences via ancestral state reconstruction. Stochastic Processes and

their Applications, 122(12):3852–3874, 2012.

2 T. Batu, S. Kannan, S. Khanna, and A. McGregor. Reconstructing strings from random traces.

In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2004, pages 910–918, 2004.

3 Z. Chase. New lower bounds for trace reconstruction. CoRR, abs/1905.03031, 2019. arXiv:

1905.03031.

4 Anindya De, Ryan O’Donnell, and Rocco A. Servedio. Optimal mean-based algorithms for

trace reconstruction. In Proceedings of the 49th ACM Symposium on Theory of Computing

(STOC), pages 1047–1056, 2017.

5 N. Holden and R. Lyons. Lower bounds for trace reconstruction. CoRR, abs/1808.02336, 2018.

arXiv:1808.02336.

6 Nina Holden, Robin Pemantle, and Yuval Peres. Subpolynomial trace reconstruction for random

strings and arbitrary deletion probability. CoRR, abs/1801.04783, 2018. arXiv:1801.04783.

ITCS 2021

20:20 Polynomial-Time Trace Reconstruction in the Low Deletion Rate Regime

7 Nina Holden, Robin Pemantle, Yuval Peres, and Alex Zhai. Subpolynomial trace reconstruction

for random strings and arbitrary deletion probability. CoRR, abs/1801.04783, 2020. arXiv:

1801.04783.

8 T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder. Trace reconstruction with

constant deletion probability and related results. In Proceedings of the Nineteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2008, pages 389–398, 2008.

9 V. V. Kalashnik. Reconstruction of a word from its fragments. Computational Mathematics

and Computer Science (Vychislitel’naya matematika i vychislitel’naya tekhnika), Kharkov,

4:56–57, 1973.

10 Vladimir Levenshtein. Efficient reconstruction of sequences. IEEE Transactions on Information

Theory, 47(1):2–22, 2001.

11 Vladimir Levenshtein. Efficient reconstruction of sequences from their subsequences or

supersequences. Journal of Combinatorial Theory Series A, 93(2):310–332, 2001.

12 Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace reconstruction revisited. In

Proceedings of the 22nd Annual European Symposium on Algorithms, pages 689–700, 2014.

13 Michael Mitzenmacher. A survey of results for deletion channels and related synchronization

channels. Probability Surveys, 6:1–33, 2009.

14 Fedor Nazarov and Yuval Peres. Trace reconstruction with exp(o(n1/3)) samples. In Proceedings

of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages

1042–1046, 2017.

15 Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph Lopez, Sergey Yekhanin,

Konstantin Makarychev, Miklos Z Racz, Govinda Kamath, Parikshit Gopalan, Bichlien

Nguyen, et al. Random access in large-scale dna data storage. Nature biotechnology, 36(3):242,

2018.

16 S.M. Hossein Tabatabaei Yazdi, Ryan Gabrys, and Olgica Milenkovic. Portable and error-free

DNA-based data storage. Scientific Reports, 7(1):5011, 2017.

	Introduction
	This work: An improved algorithm for the low deletion rate regime

	Overview of our approach
	Overview of BMA
	Overview of FindEnd
	The overall algorithm

	Preliminaries
	The main algorithm
	The preprocessing step
	The high level idea of the Reconstruct algorithm
	Correctness of Reconstruct

	Improved analysis of the Bitwise Majority Algorithm: Proof of Theorem 6
	Notation for traces
	BMA is robust on good sets of traces
	Traces are good with high probability

	Finding the end of a desert: Proof of Theorem 5
	The Coarse-Estimate procedure
	The Align procedure
	Setup for the proof of Lemma 16
	Proof sketch of Lemma 16 when k > = 2

	Proof of Theorem 5

