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Abstract

We give a nearly-optimal algorithm for testing uniformity of
distributions supported on {−1, 1}n, which makes Õ(

√
n/ε2)

many queries to a subcube conditional sampling oracle
(Bhattacharyya and Chakraborty (2018)). The key technical
component is a natural notion of random restrictions for
distributions on {−1, 1}n, and a quantitative analysis of how
such a restriction affects the mean vector of the distribution.
Along the way, we consider the problem of mean testing with
independent samples and provide a nearly-optimal algorithm.

1 Introduction

The focus of this paper is high-dimensional distribution
testing. The algorithmic problem is the following: we are
granted oracle access (the type of which we will specify
shortly) to a probability distribution p on Σ = {−1, 1}n,
and must distinguish with probability at least 2/3
between the case where p is the uniform distribution,
and that where p is ε-far from uniform in total variation
distance. The classical works of distribution testing
[GGR96, GR00, BFR+00] study the above question
in the standard statistical setting, where the oracle
provides independent samples from p. In this case, the
hallmark results are an algorithm and a matching lower
bound, showing that Θ(

√
|Σ|/ε2) independent samples
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are necessary and sufficient for testing uniformity [Pan08,
VV14]. When studying distributions supported on
high-dimensional domains, unfortunately, this implies
that the complexity of sample-optimal algorithms scales
exponentially with the dimension, effectively making the
problem intractable. To circumvent this issue, recent
work has proceeded by either restricting the class of
input distributions (e.g., restricting p to be a product
distribution; see Section 1.3), or by allowing stronger
oracle access. We take the latter approach, and consider
an oracle access which is particularly well-suited to
the high-dimensional structure: the subcube conditional
query model.

Subcube conditional query access, first suggested
in [CRS15] and studied in [BC18], allows algorithms to
specify a subcube of the high-dimensional domain and
request a sample from the distribution conditioned on
the sample lying in the subcube specified — equivalently,
to request samples after fixing some of their variables.
The operation is akin to the notion of restrictions
in the analysis of Boolean functions. Specifically, we
identify the distribution by its probability mass function
p : {−1, 1}n → R+. An algorithm may then specify
a subcube by a string ρ ∈ {−1, 1, ∗}n, where ∗’s
denote free variables and non-∗’s denote the values
of restricted variables. Calling the oracle on such a
ρ results in a sample from the distribution p|ρ (now

supported on {−1, 1}stars(ρ)) given by restricting the
function p|ρ : {−1, 1}stars(ρ) → R+ and re-normalizing
it, so that it represents a distribution p|ρ.1

Our main results are two-fold: (i) We define a natu-
ral notion of random restrictions for high-dimensional
distributions and analyze the behavior of the mean vec-
tor of a distribution under such random restrictions (see
Theorem 1.2 in Section 1.1); (ii) Leveraging this anal-
ysis, we obtain a nearly-optimal algorithm for testing
uniformity over {−1, 1}n with subcube conditioning. As
stated below, subcube conditioning allows us to go from
2n/2/ε2 sample complexity to

√
n/ε2:

1When conditioning on a subcube with zero support, one

may consider models where the oracle returns a uniform sample

[CFGM16] or outputs “error” [CRS15]. We note that our algorithm
will never run into this scenario.
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Theorem 1.1. (Main Result: Uniformity Testing)
There exists an algorithm which, given subcube con-
ditional query access to a distribution p supported on
{−1, 1}n and a distance parameter ε ∈ (0, 1), makes
Õ(

√
n/ε2) queries and can distinguish with probability at

least 2/3 between the case when p is uniform, and when
p is ε-far from uniform in total variation distance.

Theorem 1.1 is tight up to poly-logarithmic factors.
Indeed, as observed in [BC18], the sample complexity
lower bound of Ω(

√
n/ε2) of [CDKS17, DDK18] for

testing uniformity of product distributions carries over to
subcube conditional sampling.2 Our result shows that,
with subcube conditional queries, testing uniformity over
arbitrary distributions is no harder than that over the
much more restricted class of product ones.

Comparison with [BC18]. Theorem 1.1 im-
proves the upper bound of Õ(n2/ε2) of [BC18] for unifor-
mity testing with subcube conditional queries, bringing
it to the sublinear regime. The algorithm of [BC18] is
based on a chain rule that, roughly speaking, bounds the
mean of an individual coordinate of a distribution after
a random restriction. In contrast, our algorithm applies
new machinery (Theorem 1.2) developed to analyze the
mean vector (its `2-norm, in particular) after a random
restriction. Along the way, we study the mean testing
problem, a natural variant of uniformity testing for high-
dimensional distributions, and obtain optimal bounds
for this question in the standard sampling model.

While our bounds for uniformity testing are quanti-
tatively stronger, we note that the algorithm of [BC18]
works for the problem of testing against any known dis-
tribution and over any product domains. Extending our
results to these settings is an interesting direction for
future work.

Comparison with [CJLW20]. In a simultaneous
submission, [CJLW20] leverages techniques developed
in the current paper for analyzing random restrictions
and mean testing to study the learning and testing of
k-junta distributions (uniformity testing can be viewed
as the case when k = 0). A set of new algorithmic prim-
itives of independent interest is developed in [CJLW20]
to deal with k-junta distributions, and a substantial com-
ponent of [CJLW20] is in (nearly-optimal) lower bounds
for learning and testing k-junta distributions. The algo-
rithmic results of [CJLW20] demonstrate the potential
of techniques developed in the current paper for attack-
ing broader learning and testing problems with subcube
conditioning.

2The reason is that, for product distributions, the coordinates

are already independent, and therefore conditioning on subcubes
does not grant any additional power.

1.1 Technical Ingredients We start by reviewing
the work of [CDKS17] for testing uniformity over product
distributions.

Product Distributions and Mean Distance.
The simplest class of distributions on {−1, 1}n is ar-
guably the class of product distributions, where all co-
ordinates are independent. This setting was studied in
[CDKS17], and is particularly nice to analyze due to the
relation between the total variation distance between
distributions and the `2 distance between their mean
vectors. Specifically, let p be a product distribution
supported on {−1, 1}n, and µ(p) ∈ [−1, 1]n be its mean
vector,

µ(p) = E
x∼p

[x] ∈ [−1, 1]n.

It is not hard to show that if p is ε-far from uniform
in total variation distance, then ‖µ(p)‖2 & ε. Hence,
for product distributions, large total variation distance
to uniformity implies large mean vector in `2 norm.
Given this fact, Canonne, Diakonikolas, Kane, and Stew-
art [CDKS17] design an algorithm based on estimating
the norm of the mean vector, and show that O(

√
n/ε2)

many samples from product distributions suffice to test
uniformity.3

However, the relationship observed between distance
to uniformity in total variation and mean distance
(i.e., the `2 norm of the mean vector) for product
distributions is not true in general. A simple example is
the uniform distribution supported on just two vectors
{x, −x}, which is very far from uniform yet has mean
vector 0. Towards relating these two notions for general
distributions, we define our notion of random restriction.

Random Restrictions. For any σ ∈ [0, 1], we
write Sσ for the distribution supported on subsets of
[n] given by letting S ∼ Sσ include each index i ∈ S

independently with probability σ. Given any distribution
p supported on {−1, 1}n, let Dσ(p) be the distribution,
supported on {−1, 1, ∗}n, of random restrictions of p.
In order to sample a random restriction ρ ∼ Dσ(p), we
sample a set S ∼ Sσ and a sample x ∼ p; then, we let
ρi be set according to:

ρi =

{
∗ if i ∈ S

xi if i /∈ S
.(1.1)

For any ρ ∈ {−1, 1, ∗}n, we denote by p|ρ the distribution

on {−1, 1}stars(ρ) given by xstars(ρ) where x is drawn
from p conditioned on every i /∈ stars(ρ) being set to ρi.
This defines the restriction of a distribution p. Another
operation on distributions we will consider is that of

3In fact, they consider the more general problem of identity

testing of product distributions, where they obtain analogous
results.
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projection; for any set S ⊂ [n], we write S = [n] \ S, and

the distribution pS supported on {−1, 1}S is given by
letting y ∼ pS be y = xS for x ∼ p.

Let dTV(p, U) denote the total variation distance
between p and the uniform distribution of the same
dimension. At a high level, our main technical result
shows that the mean distance of random restrictions is
implied by total variation distance of random projections.

Theorem 1.2. (Informal version; see Theorem 1.4) Let
p be any distribution over {−1, 1}n. Then,

E
ρ∼Dσ(p)

[
‖µ(p|ρ)‖

2

]
≥ σ · E

S∼Sσ

[
dTV(p

S
, U)
]
.(1.2)

Although the above differs from Theorem 1.4 in certain
respects (the inequality in Theorem 1.4 incurs additional
poly-logarithmic factors as well as a small additive
error), (1.2) captures the key relationship between the
total variation distance and the mean distance that we
leverage, and will provide intuition for the introduction.

Mean Testing. The above discussion naturally
leads to the following problem, which we refer to as
mean testing. Given sample access to a distribution
p supported on {−1, 1}n, we seek to distinguish with
probability at least 2/3 between the case where p is
uniform and that where p has a large mean vector,
i.e., ‖µ(p)‖2 ≥ ε

√
n. When p is assumed to be a

product distribution, [CDKS17, DDK18] showed that
for ε ≤ 1/

√
n the sample complexity of the problem

is Θ(1/(ε2
√

n)).4 The idea is that the empirical mean
of a product distribution will have norm concentrated
around its true value, and thus it suffices to look at
this empirical estimate. In our case, however, additional
care is needed, as there can be arbitrary correlations
between coordinates of a sample and this concentration
does not hold in general. Nevertheless, we present an
algorithm for mean testing which is optimal up to a
triply-logarithmic small loss in the sample complexity.

Theorem 1.3. (Mean Testing) There exists an algo-
rithm which given

O

(
max

{
1

ε2
√

n
,

1

ε

})

i.i.d. samples from an arbitrary distribution p on
{−1, 1}n and a parameter ε ∈ (0, 1] can distinguish with
probability at least 2/3 between (i) p is the uniform dis-
tribution, and (ii) ‖µ(p)‖2 ≥ ε

√
n.

4This is implicit in [CDKS17, Theorem 4.1]. As stated, their

result is suited for distinguishing between the mean vector having

norm 0 or at least ε
′, where ε

′ ∈ (0, 1]: we re-parameterize with
ε

′ = ε
√

n.

Moreover, as detailed in Section 4.1, the above immedi-
ately implies a similar sample complexity for Gaussian
mean testing, where one is given i.i.d. samples from a
multivariate normal distribution p = G(µ, Σ) and must
distinguish between p = G(0, I) and ‖µ‖2 ≥ ε

√
n.

Uniformity Testing with Subcube Condition-
ing. In view of the above discussion, we aim to use
random restrictions and Theorem 1.3 to test uniformity
with subcube conditional queries. The final technical
ingredient is the following inequality, very similar to the
“chain rule” of Bhattacharyya and Chakraborty [BC18]
suited for uniformity testing on {−1, 1}n.

Lemma 1.1. Let p be a distribution supported on
{−1, 1}n. Then, for any σ ∈ [0, 1],

dTV(p, U) ≤ E
S∼Sσ

[
dTV(p

S
, U)
]

+ E
ρ∼Dσ(p)

[
dTV(p|ρ, U)

]
.

This lemma naturally leads to a recursive approach for
uniformity testing. Given a distribution p which is ε-
far from uniform, either the total variation of random
projections is large, or the total variation of random
restrictions is large. In the former case, we apply (1.2),
which allows us to reduce the problem to that of mean
testing, and invoke Theorem 1.3. In the latter case, we
take a random restriction and recurse (but on far fewer
variables).

1.2 Proof Overview We now formally state and
explain the intuition behind our main theorem, relating
the distance to uniformity of random projections to the
mean distance after random restrictions.

Theorem 1.4. Let p be any distribution over {−1, 1}n

and σ ∈ [0, 1]. Then,

E
ρ∼Dσ(p)

[
‖µ(p|ρ)‖

2

]
≥ σ

poly(log n)
·

Ω̃

(
E

S∼Sσ

[dTV(p
S
, U)] − 2e− min(σ,1−σ)n/10

)
.

We encourage the reader to think of applying
Theorem 1.4 to a distribution p which is ε-far from
uniform, and to think of the case when the parameter σ is
a small constant (or inverse of a poly-logarithmic factor),
and ES∼Sσ

[dTV(p
S
, U)] = Θ(ε). Specifically, consider a

parameter setting where e− min(σ,1−σ)n/10 = o(ε) so that
the right-hand side of the expression in Theorem 1.4
becomes εσ/poly(log n, log(1/ε)).

The proof of Theorem 1.4 proceeds by proving a
lemma (Lemma 3.1) which captures the behavior of
random restrictions with t stars versus those with t + 1
stars. We prove a robust version of Pisier’s inequality
[Pis86], an inequality which was first studied in the
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geometry of Banach spaces. When the projections pS
are far from uniform in total variation, the robust version
of Pisier’s inequality will help us lower bound certain
quantities of a collection of directed graphs defined using
pS on the subcube {−1, 1}S . The coordinate values of
the mean vector of p|ρ will depend on whether random
vertices and directions induced from ρ are directed
edges of one of the graphs in the collection. Hence,
the lower bound on expected norm of the mean vector
will follow from studying structures of directed graphs
in the collection.

We first introduce the robust version of Pisier’s
inequality. As a warm-up and in order to show the
usefulness of this inequality, we give an algorithm making
Õ(n/ε2) queries which we refer to as an edge tester.
The reason for this name is that the algorithm samples
a random restriction ρ with exactly one star, so that
the distribution p|ρ is supported on an edge of the
hypercube. Then, the algorithm tests whether p|ρ

is uniform. Lastly, we provide a proof sketch for a
weaker version of Theorem 1.4 which lower bounds the
expectation of ‖µ(p|ρ)‖2

2, rather than ‖µ(p|ρ)‖2. The
weaker inequality is insufficient for our purposes, but
the proof is conceptually much simpler (since ‖ · ‖2

2 is
additive over coordinates and thus, we may use linearity
of expectation). To prove Theorem 1.4, attempting to
lower bound ‖µ(p|ρ)‖

2
reveals further challenges which

necessitate additional care.

1.2.1 A Robust Pisier’s Inequality We let H
denote the set of undirected edges of the hypercube
{−1, 1}n. For a function f : {−1, 1}n → R and i ∈ [n],
we write Lif(x)

def
= (f(x) − f(x(i)))/2. The following

inequality is known as Pisier’s inequality [Pis86]. We
state it below in a way most closely to how it will be
applied in this paper; the inequality holds in much larger
generality for functions f : {−1, 1}n → X over general
Banach spaces X (see, in particular, [NS02]).

Theorem 1.5. (Pisier’s inequality) Let
f : {−1, 1}n → R be a function with Ex[f(x)] = 0.
Then,

E
x∼{−1,1}n

[
|f(x)|

]
. log n

· E
x,y∼{−1,1}n

[∣∣∣∣∣
n∑

i=1

yixiLif(x)

∣∣∣∣∣

]
.

In this paper, we will need a robust version of Pisier’s
inequality in order to derive Theorem 1.4. The notion
of robustness is equivalent to the notion considered in
[KMS18], who proved robust (and directed) versions of
Talagrand’s inequality for Boolean functions, and part
of our proof utilizes the robustness of the inequality
in a similar way. Specifically, we consider an arbitrary

orientation of the edges of the hypercube and sum the
values of Lif(x) only when the edge {x, x(i)} is oriented
from x to x(i).

Theorem 1.6. (Robust version of Pisier’s inequal-
ity) Let f : {−1, 1}n → R be a function satisfying
Ex[|f(x)|] = 0. Let G = ({−1, 1}n, E) be any orien-
tation of the hypercube. Then,

E
x∼{−1,1}n

[
|f(x)|

]
. log n·

E
x,y∼{−1,1}n




∣∣∣∣∣∣∣∣∣

∑

i∈[n]

(x,x(i))∈E

yixiLif(x)

∣∣∣∣∣∣∣∣∣


 .

The proof follows the template of [NS02, Theorem 2], and
checks that the necessary changes, even after considering
directed edges, still give the desired inequality.

We note that Talagrand [Tal93] prove that the log n
factor in Pisier’s inequality (Theorem 1.5) is unnecessary
for real-valued functions, but that it is for general
Banach spaces. While one may follow Talagrand’s proof
to remove the log n factor in Theorem 1.6, it is not
immediately clear whether this approach can handle
arbitrary orientations.

1.2.2 Warmup: A Linear Query Algorithm To
see why Theorem 1.6 is helpful, we give a simple
(albeit suboptimal) Õ(n/ε2)-query algorithm for testing
uniformity. Suppose p is a distribution supported on
{−1, 1}n which is ε-far from uniform in total variation
distance. We apply Theorem 1.6 to the function
f(x)

def
= 2n · p(x) − 1, where the directed graph G =

({−1, 1}n, E) is given by letting

E =
{

(x, x(i)) : {x, x(i)} is an edge of {−1, 1}n

, and p(x) ≥ p(x(i))
}

.

Theorem 1.6 applied on f implies that5

E
x∼{−1,1}n

[
|f(x)|

]
. log n·

E
x,y∼{−1,1}n

[∣∣∣∣∣
n∑

i=1

yixi

(
f(x) − f(x(i))

)+

∣∣∣∣∣

]
.(1.3)

5Our proof of Theorem 1.4 will rely on this strengthening of
Pisier’s inequality for multiple reasons, as our approach crucially
uses the ability to pick any orientation of the edges. Even

for this simple application one can observe that, without the
strengthening, the right-hand side of (1.3) would be replaced by

the same expression but without the +. The discussion below

(1.4) and the derivation of (1.5) explains why having the + in the
expression is crucial.
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Given (1.3), we start by applying the fact that the
left-hand side of the inequality is at least 2ε. From
there, the following three (in)equalities are obtained
via Khintchine’s inequality, importance sampling, and
Jensen’s inequality, respectively. (We also use the
convention that 0/0 = 0.)

ε

log n
. E

x∼{−1,1}n



√√√√

n∑

i=1

((
f(x) − f(x(i))

)+
)2




= E
x∼p



√√√√

n∑

i=1

(
(f(x) − f(x(i)))+

1 + f(x)

)2



≤
(

E
x∼p

[
n∑

i=1

(
(p(x) − p(x(i)))+

p(x)

)2
])1/2

.

(1.4)

Notice that for every x and i, either (p(x)−p(x(i)))+ = 0
or p(x) > p(x(i)) ≥ 0. First, this makes sure that a/0
with a > 0 never occurs in (1.4). Additionally,

(1.5) 0 ≤ 1

2
· (p(x) − p(x(i)))+

p(x)
≤ |p(x) − p(x(i))|

p(x) + p(x(i))
,

and the quantity on the right-hand side is exactly the
bias on the distribution of the ith bit of a draw of p
conditioning on all i′ 6= i bits set according to x. In
particular, a standard averaging/bucketing argument
shows that there exists β ≥ ε2/(n log2 n) such that

Pr
x∼p
i∼[n]

[( |p(x) − p(x(i))|
p(x) + p(x(i))

)2

&
ε2

β · n log2 n log(n/ε)

]

≥ β.
(1.6)

The above lower bound suggests the following “edge
tester:” for all h ∈ {0, . . . , O(log(n/ε))} where 2−h &

ε2/(n log2 n), independently sample O(2h log(n/ε)) pairs
(x, i) (x from p, and i ∼ [n]). For each pair (x, i), we
consider the distribution supported on {−1, 1} given by
sampling y ∼ p conditioned on every i′ 6= i having
yi′ = xi′ , and use Õ(2−hn/ε2) queries to estimate
the bias of the conditional distribution up to error
(ε · (2h/n)1/2)/polylog(n/ε) with high probability. If
p was uniform, every conditional distribution considered
will be uniform; however, if p is ε-far from uniform in
total variation distance, (1.6) implies that some setting
of h will reveal a large bias with high probability. The
query complexity of this algorithm is

O(log(n/ε))∑

h=0

O
(

2h · log
(n

ε

))
· Õ

(
2−hn

ε2

)
= Õ

( n

ε2

)
.

1.2.3 A Weaker Version of Theorem 1.4 In order
to highlight some of the conceptual ideas involved in
proving Theorem 1.4, we sketch how one may prove
the following weaker inequality, which lower bounds the
expected squared `2 norm instead of the expected `2

norm:

E
ρ∼D(t+1,p)

[
‖µ(p|ρ)‖2

2

]

&
1

log2 n
· t + 1

n − t
· E

T⊂[n]
|T|=t

[
dTV(p

T
, U)2

]
(1.7)

where D(t + 1, p) denotes the distribution over random
restrictions where we enforce stars(ρ) = t+1 (to compare
this to Theorem 1.4, one should think of σ as t/n).
Specifically, we sample a random set S ⊂ [n] of size t + 1
and x ∼ p, then, we set ρ as in (1.1). Consider imposing
a random order π : [t + 1] → S and apply linearity of
expectation to re-write the left-hand side of (1.7) as

t+1∑

i=1

E
ρ,π

[
(µ(p|ρ)π(i))

2
]

= (t + 1) E
ρ,π

[µ(p|ρ)2
π(t+1)].(1.8)

Toward lower bounding (1.8), consider the following way
of sampling ρ and π. We first sample t random indices
π(1), . . . , π(t) uniformly from [n] without replacement
and let T = {π(1), . . . π(t)}. Then, we sample x ∼ p.
Finally, we sample π(t + 1) uniformly from the set
T = [n] \ T. We may write S = T ∪ {π(t + 1)} and
similarly have ρ be set according to (1.1). Consider the

function ` : {−1, 1}T → [−1, ∞) which is given by

`(y) = 2|T|
Pr

y∼p
T

[y = y] − 1.(1.9)

We notice that ` has mean zero (since p
T

is a probability
distribution), similarly to Section 1.2.2, we orient the
edges of the hypercube {−1, 1}T from the endpoint with
higher value of ` to lower value of `. Applying Theo-
rem 1.6 to f = ` and this orientation of the hypercube
edges, the left-hand side is exactly 2dTV(p

T
, U). Fur-

ther, we write the random variable z = x
T

, which is
distributed exactly as z ∼ p

T
, and the random variable

j = π(t + 1), which is distributed uniformly from T. We
have, similarly to (1.4) but with f = ` rather than p,

dTV(p
T

, U)

log n

.


|T| · E

z∼p
T

j∼T

[(
(`(z) − `(z(j)))+

1 + `(z)

)2
]


1/2

.(1.10)

One crucial observation is that the inner value of the
expectation in the right-hand side of (1.10) is, up to a
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factor of at most 4, µ(p|ρ)2
π(t+1), where ρ uses T ∪ {j}

as stars and non-star values are set to z−j . Plugging
this back into (1.8) gives (1.7).

1.3 Related Work The seminal works of Goldre-
ich, Goldwasser, and Ron [GGR96], Goldreich and
Ron [GR00], and Batu, Fortnow, Rubinfeld, Smith, and
White [BFR+00] initiated the study of distribution test-
ing, viewing probability distributions as a natural appli-
cation for property testing (see [Gol17] for coverage of
this much broader field). Since these works, distribution
testing has enjoyed a wealth of study, resulting in a thor-
ough understanding of the complexity of testing many
distribution properties (see, e.g., [BFF+01, BKR04,
Pan08, ADJ+11, BFRV11, Val11, ILR12, DDS+13,
CDVV14, VV17, Wag15, ADK15, BV15, DKN15, DK16,
Can16, BCG17, BC17, DKW18, DGPP18], and [Rub12,
Can15b, BW18, Kam18] for recent surveys). As a result,
sample-optimal algorithms are known for a number of
core problems.

However, the known sample complexity lower
bounds, while sublinear, typically still involve a poly-
nomial dependence on the domain size, suggesting that
new models are needed for studying distribution test-
ing on high-dimensional domains. One approach is to
assume additional structure from the input distribu-
tions. Settings were studied where the distribution is
known to be monotone [RS09], a low-degree Bayesian
Network [CDKS17, DP17, ABDK18], a Markov Random
Field [DDK18, GLP18, BBC+19], or having some “flat”
histogram structure [DKP19].

The other approach is to allow stronger oracle ac-
cess. The subcube conditional sampling model, which
is the focus of this work, is a variant of the general con-
ditional sampling model particularly apt for the study
of high-dimensional distributions. Bhattacharyya and
Chakraborty [BC18], who initiated the systematic study
of this variant, showed that for many problems of inter-
est such as uniformity, identity, and closeness testing,
subcube conditional queries enabled one to avoid the
curse of dimensionality, and established sample complex-
ity upper bounds polynomial in the dimension (albeit
superlinear). The conditional sampling model itself,
which was introduced simultaneously by Chakraborty,
Fischer, Goldhirsh, and Matsliah [CFGM13, CFGM16],
and Canonne, Ron, and Servedio [CRS14, CRS15], al-
lows more general queries: namely, the algorithm may
specify an arbitrary subset of the domain and request
a sample conditioned on it lying in the subset. In
many cases, the conditional sampling model circumvents
sample-complexity lower bounds. Since its introduction,
there has been significant study into the complexity
of testing a number of properties of distributions un-

der conditional samples, in both adaptive and nonadap-
tive settings [Can15a, FJO+15, ACK15b, FLV17, SSJ17,
BCG17, BC18, KT19]. Beyond distribution testing, this
model of conditional sampling has found applications in
group testing [ACK15a], sublinear algorithms [GTZ17],
and crowdsourcing [GTZ18]. Other ways to augment the
power of distribution testing algorithms include letting
the algorithm query the probability density function
(PDF) or cumulative distribution function (CDF) of the
distribution [BDKR05, GMV06, RS09, CR14], or giving
it probability-revealing samples [OS18].

1.4 Notation and Prelimaries We use boldface
symbols to represent random variables, and non-boldface
symbols for fixed values (potentially realizations of these
random variables) — see, e.g., ρ versus ρ. Given a
set S ⊆ [n], we let US denote the uniform distribution
over {−1, 1}S . Usually, as the support of US will be
clear from the context, we will drop the subscript and
simply write U . We write f(n) . g(n) if, for some c > 0,
f(n) ≤ c · g(n) for all n ≥ 0 (the & symbol is defined
similarly). f(n) � g(n) if f(n) . g(n) and f(n) & g(n).
We use the notation Õ(f(n)) as O(f(n)polylog(f(n))),
and Ω̃(f(n)) to denote Ω(f(n)/(1 + |polylog(f(n))|)).
The notation [k] denotes the set of integers {1, . . . , k}.

The Frobenius norm of a matrix M ∈ R
d1×d2 is

‖M‖F =


∑

i∈[d1]

∑

j∈[d2]

M2
ij




1/2

.

For a string x ∈ {−1, 1}n, we use x(i) to denote the
string that is identical to x but with coordinate i flipped,
i.e., x

(i)
j = xj for all j 6= i, and x

(i)
i = −xi.

We formally define the subcube conditional query
access, which was suggested in Canonne, Ron, Serve-
dio [CRS15] as an instance of the general conditional
sampling oracle [CRS15, CFGM16], and first explicitly
studied in Bhattacharyya and Chakraborty [BC18].

Definition 1.2. A subcube conditional sampling
(SCOND) oracle for a distribution p supported on
{−1, 1}n is an oracle which accepts a query subcube
ρ ∈ {−1, 1, ∗}n, and outputs a sample from the distri-
bution x ∼ p conditioned on every i /∈ stars(ρ) having
xi = ρi. We use the convention that if the algorithm con-
siders a restriction with zero support, the oracle outputs
a uniform sample.

2 The Algorithm

We prove our theorem for uniformity testing with
subcube conditioning, restated below:

Theorem 2.1. There exists an algorithm
SubCondUni which, given n ≥ 1, a subcube ora-
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cle to a distribution p over {−1, 1}n and a distance
parameter ε with ε ∈ (0, 1), has the following guarantees.

The algorithm makes Õ(
√

n/ε2) many calls to the oracle
and satisfies the following two conditions:

(i) If p is uniform, then the algorithm returns accept

with probability at least 2/3.

(ii) If dTV(p, U) ≥ ε, then the algorithm returns reject

with probability at least 2/3.

The rest of this section is devoted to the proof of Theo-
rem 2.1. For our convenience of working with log(1/ε)
in the proof, we assume below that ε ≤ 1/2 in the in-
put of SubCondUni. This way log(c/ε) can be treated
as O(log(1/ε)) whenever c ≥ 1 is a fixed constant. As
discussed earlier in Section 1, SubCondUni (see Algo-
rithm 1) is based on Theorem 1.4 and Lemma 1.1, which
we now prove.

Let p be a distribution over {−1, 1}n with
dTV(p, U) ≥ ε. Let

σ
def
= σ(ε) =

1

C0 · log4(16/ε)

where C0 > 0 is an absolute constant. (The value of
C0 is only used at the end of this section, where setting
C0 = 1011 is good enough.) Let us further assume that
n and ε together satisfy

(2.11) e−σn/10 ≤ ε/8.

Violation of (2.11) implies that

(2.12) n = O

(
1

σ
· log

(
1

ε

))
= O

(
log5

(
1

ε

))

and we handle this case by applying the linear-query
tester described in Section 1.2.2 with query complexity
Õ(n/ε2) = Õ(1/ε2) using (2.12).

For the general case with (2.11) satisfied, consider a
distribution p with dTV(p, U) ≥ ε. Lemma 1.1 implies
that either ES∼Sσ

[
dTV(p

S
, U)
]

≥ ε/2 or

(2.13) E
ρ∼Dσ(p)

[
dTV(p|ρ, U)

]
≥ ε/2.

Assuming the former and using (2.11), we have from
Theorem 1.4 that (using σ = 1/polylog(1/ε))

(2.14) E
ρ∼Dσ(p)

[
‖µ(p|ρ)‖

2

/√
n
]

≥ Ω̃

(
ε√
n

)
.

This naturally lends itself to a recursive approach:
for the general case when n and ε satisfy (2.11), we
use TestMean from Theorem 1.3 to test (2.14), and
recursive calls to SubCondUni to test (2.13).

Algorithm 1 SubCondUni(n, p, ε)

Require: Dimension n, oracle access to distribution p
over {−1, 1}n, and parameter ε ∈ (0, 1/2]

1: StartBaseCase . Base case: violation of (2.11)
2: if n and ε violate (2.11) then
3: Run the linear tester described in Section

1.2.2 and return the same answer
4: EndBaseCase
5: StartMainCase . General case: (2.11) satisfied
6: Let L = L(n, ε) = Õ(

√
n/ε) be as defined in

(2.15) to simplify (2.14)
7: for j = 1, 2, . . . , dlog 2Le do . Test (2.14), via

bucketing
8: Sample sj = 8L log(2L) ·2−j restrictions from

Dσ(p)
9: for every restriction ρ sampled with

|stars(ρ)| > 0 do
10: Run TestMean(|stars(ρ)|, p|ρ, 2−j) for

r = O(log(n/ε)) times
11: return reject if the majority of calls

return reject

12: for j = 1, 2, . . . , dlog(4/ε)e do . Test the second
part of (2.13), recursively

13: Sample s′
j = (32/ε) log(4/ε) · 2−j restrictions

from Dσ(p)
14: for each restriction ρ sampled satisfying

0 < |stars(ρ)| ≤ 2σn do
15: Run SubCondUni(|stars(ρ)|, p|ρ, 2−j)

for t = 100 log(16/ε) times
16: return reject if the majority of calls

return reject

17: EndMainCase
18: return accept

The description of SubCondUni is given in Algo-
rithm 1. For convenience, we let

(2.15) L
def
= L(n, ε) = Õ(

√
n/ε)

such that the right hand side of (2.14) can be replaced
by 1/L.

We are now ready to prove Theorem 2.1.

3 Proof of Theorem 1.4

Let S(t) be the uniform distribution supported on all
subsets of [n] of size t. Given a distribution p supported
on {−1, 1}n, we let D(t, p) be the distribution supported
on restrictions {−1, 1, ∗}n given in a similar fashion to
that of Dσ(p), except we use sets of size t; we sample
S ∼ S(t) and x ∼ p, and we let ρi = ∗ if i ∈ S and
xi otherwise. The bulk of the work goes into proving
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the following lemma. After the statement, we show the
lemma implies Theorem 1.4.

Lemma 3.1. Let p be a distribution supported on
{−1, 1}n, t ∈ [n − 1], and denote

α
def
= E

T∼S(t)

[
dTV(p

T
, U)
]

≥ 0.

Then,

E
ρ∼D(t,p)

[
‖µ(p|ρ)‖

2

]
+ E

ρ∼D(t+1,p)

[
‖µ(p|ρ)‖

2

]
(3.16)

&
t

n
· α

log2 n · log(n/α) · log(1/α)
.(3.17)

3.1 Robust Pisier Inequality In this section, we
prove the robust version of Pisier’s inequality. Robust-
ness here is equivalent to that of [KMS18] where we will
consider a function f : {−1, 1}n → R, and we will lower
bound a functional on the values of the edges of the
hypercube after assigning them directions.

Formally, fix n ∈ N and let H be the undirected
graph over the hypercube {−1, 1}n that consists of
undirected edges {x, x(i)} with x ∈ {−1, 1}n and i ∈ [n].
For i ∈ [n], recall that Lif : {−1, 1}n → R is the linear
operator given by

Lif(x) =
f(x) − f(x(i))

2
.

Notice that in Theorem 1.5, every edge {x, x(i)} in
H for a fixed value of y is counted twice in the right-hand
side; once for the endpoint x and once for the endpoint
x(i). In the robust version, we may arbitrarily choose,
for each edge {x, x(i)}, whether to “charge” the edge to
x or to x(i). For this purpose, we consider an orientation
G of H (so for each {x, x(i)} in H, G contains either
(x, x(i)) or (x(i), x)), and charge an edge {x, x(i)} to x if
(x, x(i)) is in G and to x(i) otherwise. For convenience,
we will abuse the notation in the rest of the section to
use the name of a directed graph (such as G) to denote
its edge set as well, since its vertex set is usually clear
from the context. So we will write (u, v) ∈ G if (u, v) is
a directed edge in G.

We are now ready to state the robust version of
Pisier’s inequality, which generalizes Theorem 1.6.

Theorem 3.1. (Robust Pisier’s inequality) Let
f : {−1, 1}n → R be a function with

(3.18) E
x∼{−1,1}n

[
f(x)

]
= 0

and let G be an orientation of H. Then, for any

s ∈ [1, ∞) we have

(
E

x∼{−1,1}n

[∣∣∣f(x)
∣∣∣
s ])1/s

. log n·

 E

x,y∼{−1,1}n




∣∣∣∣∣∣∣∣∣

∑

i∈[n]

(x,x(i))∈G

yixiLif(x)

∣∣∣∣∣∣∣∣∣

s 





1/s

.

The proof itself follows the template of [NS02, Theo-
rem 2] and checks that the necessary changes still give the
desired inequality. Before beginning with the proof, we
recall some basic notions of Fourier analysis on the hyper-
cube, and define some elements which appear in the ar-
gument. Recall that any function f : {−1, 1}n → R has
a unique Fourier expansion f(x) =

∑
S⊂[n] f̂(S)χS(x),

where χS(x) =
∏

i∈S xi are the Fourier characters, and
f̂(S) = Ex∼{−1,1}n [f(x)χS(x)]. For ρ > 0 and x ∈
{−1, 1}n, we let Nσ(x) be the distribution supported
on {−1, 1}n given sampling y ∼ Nσ(x), where for each
i ∈ [n], we set yi = xi with probability 1 − σ, and
a uniform random bit with probability σ. We denote
Tρf(x) = Ey∼Nρ(x)[f(y)], and we have for every S ⊂ [n],

T̂ρf(S) = ρ|S|f̂(S). In a slight abuse of notation, we
consider for any x, y ∈ {−1, 1}n and t ∈ [0, 1], the
distribution Nt,1−t(x, y), supported on {−1, 1}n, to be
the distribution given by letting z ∼ Nt,1−t(x, y) have
each i ∈ [n] set to zi = xi with probability t and
zi = yi otherwise. For a function g : {−1, 1}n → R

and t ∈ [0, 1], the function g : {−1, 1}n × {−1, 1}n → R

is given by letting gt,1−t(x, y) = Ez∼Nt,1−t(x,y)[g(z)] =∑
S⊂[n] ĝ(S)

∏
i∈S(txi + (1 − t)yi). Lastly, for any

γ > 0, we let ∆γf be the linear operator given by
∆γf(x) =

∑
S⊂[n] f̂(S)|S|γχS(x).

3.2 Plan of the Proof of Lemma 3.1 Let t ∈ [n−1]
be the parameter in the statement of Lemma 3.1. For
clarity, the rest of this section will always use T to
denote a size-t subset of [n] and S to denote a size-(t+1)
subset of [n]. For each size-t subset T of [n], we write

α(T )
def
= dTV(pT , U). Then α = ET∼S(t)[α(T)]. We also

write H(T ) to denote the undirected graph over the
hypercube {−1, 1}T that consists of undirected edges

{x, x(i)} with x ∈ {−1, 1}T and i ∈ T . Again we will
abuse the notation in the rest of the section to refer to
H(T ) as its edge set as well.

The proof of Lemma 3.1 consists of two steps.
For each t-subset T , we first classify undirected edges
{x, x(i)} in H(T ) into different types according its weight

328

Copyright © 2021
Copyright for this paper is retained by authors



defined as

w
(
{x, x(i)}

) def
=

∣∣pT (x) − pT (x(i))
∣∣

max
{

pT (x), pT (x(i))
} .

For each type of edges in H(T ), we describe a method
in Section 3.3 to assign each edge a direction. This then
leads to a sequence of directed graphs over {−1, 1}T ,
one for each type of edges in H(T ), and their union is
an orientation G of H(T ) over {−1, 1}T . At the end
of Section 3.3 we apply the robust Pisier inequality
(Theorem 3.1) on a shifted and scaled version of the
probability mass function of pT with the orientation
G and s = 1. The result will be Lemma 3.5, which
says there is a type of edges in H(T ) such that its
corresponding directed graph has

(3.19) E
x∼p

T

[√
out-degree of x

]

bounded from below by a quantity that is linear in α(T );
see Lemma 3.5 for details.

In the second step, we use this family of directed
graphs promised by Lemma 3.5, one for each t-subset
T , with the desired bound on (3.19) to finish the proof
of Lemma 3.1. To this end we first apply standard
bucketing arguments in Section 3.4 to simplify the
situation, by focusing on one specific type of directed
edges that makes the most significant contribution in
the family. The final connection from these directed
graphs to the mean vectors of randomly restricted
distributions is made in Sections 3.5.There will be two
cases, depending on whether the type of edges we
consider has large or small weights.

3.3 From Total Variation to Directed Graphs
Let ` be a probability distribution over {−1, 1}m with
m = n − t. (Later we will identify ` as pT for some
t-subset T of [n], and {−1, 1}m as {−1, 1}T .) Let H
denote the undirected graph over {−1, 1}m that consists
of undirected edges {x, x(i)} for all x ∈ {−1, 1}m and
i ∈ [m]. Looking ahead, the purpose of this section is to
construct an orientation G of H for our application
of Theorem 3.1 later with s = 1 and the function
f : {−1, 1}m → [−1, ∞) given by:

f(y) = 2m · `(y) − 1.(3.20)

Note that Ey[f(y)] = 0 and the left hand side of the
robust Pisier inequality is 2dTV(`, U).

For the construction of G, we start with a classifica-
tion of undirected edges in H.

Definition 3.2. An undirected edge {x, x(i)} ∈ H is
said to be a zero edge if `(x) = `(x(i)) (they are called
zero edges because the difference `(x) − `(x(i)) = 0).

For each nonzero edge {x, x(i)} ∈ H, we define its
weight as

w({x, x(i)})
def
=

∣∣`(x) − `(x(i))
∣∣

max
{

`(x), `(x(i))
} .

Note that the weight of an undirected edge is always in
(0, 1]. We say a nonzero edge is uneven if its weight is
at least 2/3; otherwise, we call it an even edge (i.e., any
nonzero edge with weight smaller than 2/3). We say an
even edge is at scale κ for some κ ≥ 1 if

2−κ < w
(
{x, x(i)}

)
≤ 2−κ+1.

We write H[z] to denote the set of all zero edges,
H[u] to denote the set of all uneven edges, and H[κ] for
each κ ≥ 1 to denote the set of even edges at scale κ.
Hence H[z], H[u] and H[κ] with κ ≥ 1 together form a
partition of H; we also view them as undirected graphs
over {−1, 1}m.

Next we construct a sequence of directed graphs
G[z], G[u] and G[κ], κ ≥ 1, as orientations of H[z], H[u]

and H[κ], respectively. We start with G[z] and G[u]. For
each zero edge {x, x(i)} ∈ H[z], we orient it arbitrarily
in G[z]. Next for each uneven edge {x, x(i)} ∈ H[u], we
orient it from x to x(i) if `(x) > `(x(i)) (note that if
`(x) = `(x(i)) then it is a zero edge).

Orientations of even edges at scale κ in G[κ] are
more involved. For a fixed κ ≥ 1, we consider H[κ] as
an undirected graph over {−1, 1}m. We will consider
a bijection %κ : {−1, 1}m → [2m] as an ordering of
vertices in {−1, 1}m (so x is the %κ(x)-th vertex in
the ordering) such that the following property holds:
For every i ∈ [2m − 1], the degree of %−1

κ (i) has the
largest degree among all vertices in the subgraph of H[κ]

induced by {%−1
κ (j) : j ≥ i}. Such a bijection exists, e.g.,

by keeping deleting vertices one by one and each time
deleting the one with the largest degree in the remaining
graph (with tie breaking done arbitrarily). We fix such a
bijection %κ and use it to orient edges in G[κ] as follows:
For each undirected {x, x(i)} ∈ H[κ], we orient it from
x to x(i) if %κ(x) < %κ(x(i)) and orient it from x(i) to
x otherwise. As a result, every (x, x(i)) ∈ G[κ] has
%κ(x) < %κ(x(i)).

The above orientation will effectively streamline
an argument from [KMS18, Section 6]. We record the
property needed later for the orientation G[κ] of H[κ]:

Lemma 3.3. Let U be a set of vertices in {−1, 1}m and
let v ∈ {−1, 1}m \ U . If the out-degree of every vertex
u ∈ U in G[κ] is bounded from above by a positive integer
g, then the number of directed edges (u, v) from a vertex
u ∈ U to v in G[κ] is also at most g.
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Proof: Consider the vertex with the smallest %κ(·)
value in U ∪ {v}. If it is v, then every undirected {u, v}
with u ∈ U , if any, in H[κ] is oriented as (v, u) in G[κ].
So the number we care about is 0.

Otherwise, let u ∈ U be the vertex with the smallest
%κ(·) value among U ∪ {v}. Then at the time when u is
picked, all vertices U ∪ {v} remain in current undirected
subgraph of H[κ], denoted by H. At this moment, the
degree of u in H is exactly its out-degree in G[κ], which
by assumption is at most g. On the other hand, by the
choice of u, v has degree at most g in H. Since the
whole set U remains in H, the number of undirected
edges {u, v}, u ∈ U , in H[κ] is at most g. Even if all of
them are oriented towards v in G[κ], the number we care
about in the lemma is at most g.

With G[z], G[u] and G[κ] ready, we finally define G
to be the union of these graphs, which is an orientation
of H over {0, 1}m. Applying the robust Pisier inequality
on f , G and s = 1, we have

dTV(`, U)

log n
(3.21)

. E
x,y∼{−1,1}m




∣∣∣∣∣∣∣∣∣

∑

i∈[m]

(x,x(i))∈G

yixiLif(x)

∣∣∣∣∣∣∣∣∣


(3.22)

≤ E
x∼{−1,1}m




√√√√√
∑

i∈[m]

(x,x(i))∈G

(
Lif(x)

)2




.(3.23)

The second inequality is Khintchine’s, which implies that
for any vector a ∈ Rm,

E
y∼{−1,1}m



∣∣∣∣∣∣
∑

i∈[m]

yiai

∣∣∣∣∣∣


 ≤

√∑

i∈[m]

a2
i .

Letting G′ be the directed graph that contains the union
of edges in G[u] and G[κ], κ ∈ Z≥0, but not those in G[z],
we can continue the inequality above to have

E
x∼{−1,1}m




√√√√√
∑

i∈[m]

(x,x(i))∈G

(
Lif(x)

)2




= E
x∼`




√√√√√√
∑

i∈[m]

(x,x(i))∈G′

(
Lif(x)

1 + f(x)

)2




= E
x∼`




√√√√√√
∑

i∈[m]

(x,x(i))∈G′

(
Li`(x)

`(x)

)2




.

For the first equation we note that zero edges do not
contribute anything and utilize importance sampling, by
noting that `(x) = (1+f(x))/2m. Also note we never run
into a situation of 0/0 in the second expectation because
if (x, x(i)) ∈ G′ has `(x) = 0, then either `(x(i)) = 0
and it is a zero edge that should have been excluded
from G′, or `(x(i)) > 0 and {x, x(i)} is uneven. Then by
the construction of G[u] we have (x(i), x) ∈ G instead of
(x, x(i)).

The next lemma connects the sum for each x ∈
{−1, 1}m in the last expectation with its out-degrees in
the directed graphs G[u] and G[κ] constructed.

Lemma 3.4. For every x ∈ {−1, 1}m,

∑

i∈[m]

(x,x(i))∈G′

(
`(x) − `(x(i))

`(x)

)2

≤ outdeg
(
x, G[u]

)
+
∑

κ≥1

2−2κ+6 · outdeg
(
x, G[κ]

)
.

Proof: First note that each edge (x, x(i)) ∈ G′ is
nonzero and either lies in G[u] or G[κ] for some κ ≥ 1.
If (x, x(i)) is in G[u], then by the way we orient edges
in G[u], we have `(x) > `(x(i)) and this implies that the
contribution of each such edge to the sum is at most 1.

Next assume that (x, x(i)) ∈ G[κ] for some κ ≥
1. Since {x, x(i)} is even, we have `(x), `(x(i)) >
0 (otherwise it is either zero or uneven). Using
w({x, x(i)}) < 2/3 (otherwise it is uneven), we have

max{`(x), `(x(i))}
min{`(x), `(x(i))} ≤ 3.

As a result, we have

|`(x) − `(x(i))|
`(x)

≤ w({x, x(i)}) · max{`(x), `(x(i))}
min{`(x), `(x(i))}

≤ 3w({x, x(i)}) ≤ 2−κ+3.

So the contribution of each such edge is at most 2−2κ+6

and we thus obtain the desired bound.
We are now ready to prove the main lemma of this

subsection:

Lemma 3.5. Letting β = dTV(`, U), one of the following
two conditions must hold:
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• Either the directed graph G[u] of uneven edges
satisfies:

E
x∼`

[√
outdeg(x, G[u])

]
&

β

log n

• Or, there exists a κ ∈ [O(log(n/β))] such that the
directed graph G(κ) satisfies:

E
x∼`

[√
outdeg(x, G(κ))

]
&

2κ · β

log n · log(n/β)
.

3.4 Bucketing We now start the proof of Lemma 3.1.
For each t-subset T of [n], let α(T ) = dTV(pT , U) and
thus, α = ET∼S(t)[α(T )]. For each T , we partition
undirected edges in H(T ) into H[z](T ) (zero edges),
H[u](T ) (uneven edges), and H[κ](T ) (even edges at
scale κ ≥ 1). We orient these edges to obtain directed
graphs G[u](T ) and G[κ](T ). We apply Lemma 3.5
on pT to conclude that one of the two conditions
holds for either G[u](T ) or one of the graphs G[κ](T ),
κ ∈ [O(log(n/α(T )))].

Since α(T ) ∈ [0, 1], there exists a ζ > 0 such that
with probability at least ζ over T ∼ S(t),

α(T) &
α

ζ log(1/α)
.

Therefore, via another bucketing argument and
Lemma 3.5, there exist two cases:

• Case 1: With probability at least ζ/2 over the
draw of T ∼ S(t), we have that the directed graph
G[u](T) of uneven edges of p

T
over {−1, 1}T

satisfies

E
x∼p

T

[√
outdeg

(
x, G[u](T)

)]
&

α

ζ log n log(1/α)
.

Since the out-degree is always between 0 and n,
there exist two parameters d ∈ [n] and ξ > 0 such
that with probability ζ/(2 log n) over the draw of
T ∼ S(t), we have

Pr
x∼p

T

[
d ≤ outdeg(x, G[u](T)) ≤ 2d

]
≥ ξ

and ξ satisfies

√
d · ξ &

α

ζ log2 n log(1/α)
.(3.24)

• Case 2: There exists a parameter
κ ∈ [O(log(n/α))] (using ζ ≤ 1) such that with
probability at least ζ/(2 · O(log(n/α))) over the

draw of T ∼ S(t), the directed graph G[κ](T) of
even edges at scale κ of p

T
over {−1, 1}T satisfies

E
x∼p

T

[√
outdeg(x, G[κ](T))

]
&

α · 2κ

ζ log n log(n/α) log(1/α)
.

By a bucketing argument again, there exist
parameters d ∈ [n] and ξ > 0 such that with
probability at least ζ/(2 · log n · O(log(n/α))) over
the draw of T ∼ S(t), we have

Pr
x∼p

T

[
d ≤ outdeg(x, G[u](T)) ≤ 2d

]
≥ ξ

and ξ satisfies

√
d · ξ &

α · 2κ

ζ log2 n log(n/α) log(1/α)
.(3.25)

3.5 From Directed Graphs to Mean Vectors In
this section, we will show the crucial connection between
analyzing the family of graphs defined in Section 3.3 and
3.4 and mean vectors of restrictions of the distribution.
Consider a fixed distribution p supported on {−1, 1}n

and let t ∈ [n − 1]. We consider the family of directed
graphs G[u](T ) and G[κ](T ), κ ≥ 1, for each t-subset T
of [n].

It will be convenient to represent directed edges

of these directed graphs as (y, i) ∈ {−1, 1}T × T : we
say (y, i) is in a graph if it is the case for (y, y(i)). Let
π = (π(1), . . . , π(t + 1)) be an (ordered) sequence of
t + 1 distinct indices from [n]. We use S(π) to denote
the corresponding (t + 1)-subset {π(1), . . . , π(t + 1)}.
Given π and y ∈ {−1, 1}n, we define a restriction
ρ(π, y) ∈ {−1, 1, ∗}n as

ρ(π, y)i =

{ ∗ i = π(j) for some j ∈ [t + 1]

yi otherwise
.

We will also consider sequences τ = (τ(1), . . . , τ(t)) of
t distinct indices from [n]; its corresponding set S(τ)
and the restriction ρ(τ, y) given y ∈ {−1, 1}n are defined
similarly.

We consider a slightly different but equivalent way
of drawing ρ from D(t + 1, p) and ρ′ from D(t, p) which
we will use to analyze Case 1 and Case 2 as specified
in Section 3.4. We consider sampling ρ ∼ D(t + 1, p)
according to the following procedure:

1. First, sample a sequence of t + 1 random indices
π = (π(1), . . . , π(t + 1)) uniformly from [n]
without replacements (so the set S(π) can be
viewed equivalently as drawn from S(t + 1)).
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2. Then, sample y ∼ p.

3. Finally, set ρ = ρ(π, y).

Similarly we consider sampling ρ′ ∼ D(t, p) according
to the following procedure:

1. First, sample a sequence of t random indices
τ = (τ (1), . . . , τ (t)) uniformly from [n] without
replacements (so the set S(τ ) can be viewed
equivalently as drawn from S(t)).

2. Then, sample y ∼ p.

3. Finally, set ρ′ = ρ(τ , y).

A useful observation is that for each i ∈ [t + 1], the
distribution of (π−i, y) is the same as that of (τ , y),
where π−i denotes the t-sequence obtained from π

after removing its ith entry. As a result, ρ(π−i, y) is
distributed according to D(t, p).

Next we state the lemma that gives the connection
between graphs and mean vectors.

Lemma 3.6. Let π be a (t + 1)-sequence of distinct
elements in [n] and y ∈ {−1, 1}n. Then for every
i ∈ [t + 1], we have

∣∣∣µ
(
p|ρ(π,y)

)
π(i)

∣∣∣
(3.26)

≥ 1

3
· 1

{(
y

S(π−i)
, π(i)

)
∈ G[u](S(π−i))

}

+
∑

k≥1

2−κ−1 · 1

{(
y

S(π−i)
, π(i)

)
∈ G[κ](S(π−i))

}
.

(3.27)

Proof: First recall that G[u](S(π−i)) and G[κ](S(π−i))
are orientations of disjoint undirected edges. So the
right-hand side of (3.27) is non-zero for at most one
value.

Let ` = p|ρ(π,y), T = S(π−i), z = yT and z′ = z(π(i)).
Writing

a = Pr
x∼p

[
xT = z

]
and a′ = Pr

x∼p

[
xT = z′

]
,

we have |µ(`)π(i)| = |a − a′|/(a + a′). The weight
w({z, z′}), defined as |a − a′|/ max{a, a′}, is at most
2 · |µ(`)π(i)|. If (z, π(i)) ∈ G[u](T ) is uneven, then the
weight is at least 2/3 and thus, |µ(`)π(i)| ≥ 1/3. If
(z, π(i)) ∈ G[κ](T ) for some κ, then the weight is at least
2−κ and |µ(`)π(i)| ≥ 2−κ−1.

4 Mean Testing

For any m ∈ N and any distribution p supported
on {−1, 1}m, we consider X = (x(1), . . . , x(q)), Y =

(y(1), . . . , y(q)), a set of 2q i.i.d. samples from p, and let

X̄
def
=

1

q

q∑

i=1

x(i) , Ȳ
def
=

1

q

q∑

i=1

y(i)

be the empirical means inRm. Our core test statistic will
take 2q i.i.d. samples from p, and compute the expression

(4.28) Z
def
=
〈
X̄, Ȳ

〉
.

We will write µ(p) = Ex∼p[x] ∈ [−1, 1]m as the mean
vector and Σ(p) ∈ Rm×m as the symmetric matrix with
Σ(p)ij = Ex∼p[xixj ] for all i, j ∈ [m].6

Lemma 4.1. The random variable Z obtained from two
tuples of q samples from p satisfies

E[Z] =
〈
E[X̄], E[Ȳ]

〉
= 〈µ(p), µ(p)〉 = ‖µ(p)‖2

2 ,

(4.29)

Var[Z] ≤ 1

q2
‖Σ(p)‖2

F +
4

q
‖µ(p)‖2

2‖Σ(p)‖F .

(4.30)

We define the blowup distribution �(p) as the

distribution on {−1, 1}m2

such that, ordering [m] × [m]
in the lexicographic way, �(p) is the distribution of the
vector

(xixj)(i,j)∈[m]×[m] =

(x1x1, x1x2, . . . , x1xm, x2x1, x2xm, . . . , xmxm)
(4.31)

when x ∼ p. For k ∈ N, we let �(k)(p) denote the

distribution over {−1, 1}m2k

obtained by iterating this
process k times, so that in particular �(0)(p) = p. Note
that, for any k ≥ 0, a sample from �(k)(p) can be

obtained from a sample from p in time O(m2k

).

Fact 4.1. For any distribution p over {−1, 1}m and

k ∈ N, we have ‖µ(�(k+1)(p))‖2

2 = ‖Σ(�(k)(p))‖2
F .

Consider the following threshold test:

Algorithm 2 ThresholdZTest(τ, S)

Require: A threshold τ > 0 and a (multi)set S =
{x1, . . . , xq, y1, . . . , yq}.

1: Compute Z from the samples in S according to
(4.28).

2: if Z > τ then return reject

3: return accept

6In particular, note that due to the diagonal terms we have
‖Σ(p)‖F ≥ √

m for all p.
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Hereafter, for ε ∈ (0, 1], we consider the sequence
(τk)k∈Z≥0 of real numbers, defined recursively as

(4.32) τk
def
=

{
ε2n

2 if k = 0
1

5000 · q2τ2
k−1 if k ≥ 1

In particular, writing a
def
= 1/5000, we have

τk =
1

aq2
·
(

aq2ε2n

2

)2k

(4.33)

for k ≥ 0. We are now ready to state the main testing
algorithm. The algorithm takes as input a distribution
p which is supported on {−1, 1}n, and is written with
two unspecified parameters, k0 and q. The parameter k0

denotes the number of rounds and q denotes the sample
complexity.

Algorithm 3 MeanTester(p, ε)

Require: A distribution p supported on {−1, 1}n.
1: Draw a set S of 2q i.i.d. random samples from p.
2: for all 0 ≤ k ≤ k0 do
3: Set τk as in (4.32).
4: Convert the 2q samples from S to a (multi)set

S
(k) of samples from �(k)(p) as in (4.31).

5: if ThresholdZTest(τk, S
(k)) returns reject

then return reject

6: return accept . All k0 + 1 tests were successful

Theorem 4.1. Fix any k0 ∈ N. There exists an
algorithm (Algorithm 3) which, given sample access to
an arbitrary distribution p on {−1, 1}n and a parameter
ε ∈ (0, 1], has the following behavior:

• If p is the uniform distribution, the algorithm
outputs accept with probability at least 2/3;

• If p satisfies ‖µ(p)‖2 ≥ ε
√

n, the algorithm outputs
reject with probability at least 2/3.

These guarantees hold as long as

q & max





1

ε2
√

n
,

(
1

ε2

) 2k0+1

2k0+2−2



 .

The algorithm runs in time O
(

q · n2k0
)

.

In particular, by setting k0 = log log n, we obtain
an algorithm for distinguishing the uniform distribution
from a distribution p on {−1, 1}n with ‖µ(p)‖2 ≥ ε

√
n

which runs in time nΘ(log n) and has sample complexity

O

(
max

{
1

ε2
√

n
,

1

ε

})
.

Remark. As stated the algorithm is not computa-
tionally efficient, as for k0 = log log n it runs in super-
polynomial time nO(log log n). This follows from using the
obvious but naive approach to computing the statistic
Z in (4.28) for the various blowup distributions �(k)(p);
however, this can be greatly improved by computing
this statistic in a more careful way, rephrasing it as a
sum of inner products of tensor products of the original
samples and relying on the mixed-product property of
tensor products. Doing so results in a running time
polynomial in both q and n; we refer the reader to the
proof of [CJLW20, Theorem 6] for details.
Proof of Theorem 4.1: The proof will proceed as
follows: we first show that, when p is the uniform
distribution U (the completeness case), then all k0 + 1
tests, when run on Line 5 of Algorithm 3, return accept

with high probability. To do so, notice that Equation 5
of Algorithm 3 considers samples from �(k)(U). Hence,
we analyze the mean and variance of the statistic for each
�(k)(U), and apply Chebyshev’s inequality to show that,
for any given k, each call to Equation 5 then returns
accept with probability at least 1 − 2−k/6. By a union
bound over all k, we get that overall all calls will return
accept with probability at least 1 −∑∞

k=0 2−k/6 = 2/3.

Lemma 4.2. For the uniform distribution U over
{−1, 1}n and k ∈ N, we have

‖Σ(�(k)(U))‖2
F ≤ (n2k)2k

.

Combining Fact 4.1 and Lemma 4.2, this implies

‖µ(�(k)(U))‖2

2 ≤ (n2k−1)2k−1

=
√

(n2k/2)2k .(4.34)

Lemma 4.3. (Completeness) There exists a large
enough universal constant C > 0, such that for any
k ∈ N where 2k ≤ log2 n. If q ≥ C/ε2

√
n, then letting

S = {x1, . . . , xq, y1, . . . , yq} be 2q i.i.d. samples from

�(k)(U). Then,

Pr
S

[ThresholdZTest(τk, S) outputs reject] ≤ 2−k

6
.

(4.35)

By a union bound over all k, we thus get that the
algorithm, when run on the uniform distribution U ,

outputs reject with probability at most
∑∞

k=0
2−k

6 = 1/3.
For the soundness case, the following lemma will be
useful.

Lemma 4.4. Let p be a distribution supported on
{−1, 1}m, satisfying

1. ‖µ(p)‖2
2 > 2τ , and
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2. When S = {x1, . . . , xq, y1, . . . , yq} is set to 2q i.i.d.
samples from p,

Pr
S

[ThresholdZTest(τ, S) outputs accept] ≥ 1

3
.

Then ‖µ(�(p))‖2
2 ≥ 1

482 · τ2q2.

Lemma 4.5. (Soundness) There exists a large enough
C > 0 such that setting

q ≥
(

C

ε2

) 2k0+1

2k0+2−2

,

the following holds. For any distribution p on {−1, 1}n

with ‖µ(p)‖2 > ε
√

n, there is some k ∈ {0, . . . , k0}
such that letting S = {x1, . . . , xq, y1, . . . , yq} be 2q i.i.d.

samples from �(k)(p),

Pr
S

[ThresholdZTest(τk, S) outputs reject] ≥ 2

3
.

As per the foregoing discussion and Lemma 4.5,
there exists a parameter 0 ≤ k ≤ k0 such that
ThresholdZTest(τk, S) returns reject with probability
at least 2/3 when S is drawn from �(k)(p). For this
setting of k, the algorithm will return reject in Equation 5
with probability at least 2/3. Finally, from the above
analysis, the sample complexity q is set high enough to
satisfy the constraints of Lemma 4.3 and Lemma 4.5.

4.1 Application to Gaussian Mean Testing

Theorem 4.2. There exists an algorithm which, given
q i.i.d. samples from an arbitrary Gaussian distribution
p on Rn and a distance parameter ε ∈ (0, 1], has the
following behavior:

• If p is the standard Gaussian G(0n, In), then it
outputs accept with probability at least 2/3;

• If p is some G(µ, Σ) with ‖µ‖2 > ε (and any Σ),
then it outputs reject with probability at least 2/3.

These guarantees hold as long as

q ≥ C ·
√

n

ε2
,

where C > 0 is an absolute constant, and the algorithm
runs in time poly(q, nlog n). Moreover, any algorithm for
this task must have sample complexity Ω

(
n1/2/ε2

)
.
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