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Abstract. We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC
discretization in space for the Cahn-Hilliard-Navier-Stokes phase field model, prove its energy stability, and carry out error
analysis for the corresponding Cahn-Hilliard-Stokes model only. The scheme is linear, second-order, unconditionally energy
stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase field
variable, chemical potential, velocity and pressure in different discrete norms for the Cahn-Hilliard-Stokes phase field model.
We also provide numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of the
our scheme.
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1. Introduction. Interfacial dynamics in the mixture of different fluids, solids or gas has been one of
the fundamental issues in many fields of science and engineering, particularly in materials science and fluid
dynamics, see for instance, [1, 2, 28, 18] and the references therein. In recent years the phase field (i.e. diffuse
interface) methods, have been successfully used to approximate a variety of interfacial dynamics. The basic
idea for the phase field methods is that the interface is represented as a thin transition layer between two
phases [23, 3].

The phase field model can be derived from an energy variational approach. Thus a crucial goal in
algorithm design is to preserve the energy law at the discrete level. A large number of numerical schemes
that have been developed for phase field models. Among them, the convex splitting approach [17, 24, 13]
and stabilized linearly implicit approach [15, 20, 26, 30] are two popular ways to constuct unconditionally
energy stable schemes. Unfortunately, the convex splitting approach usually leads to nonlinear schemes, and
the stabilized linearly implicit approach results in additional accuracy issues and may not be easy to obtain
second order unconditionally energy stable schemes. Recently, a novel numerical method of invariant energy
quadratization (IEQ), has been proposed in [4, 29, 27, 10]. This method is a generalization of the method of
Lagrange multipliers or of auxiliary variable. The IEQ approach is remarkable as it permits us to construct
linear and second-order unconditionally energy stable schemes for a large class of gradient flows. However,
it leads to coupled systems with time-dependent variable coefficients. The scalar auxiliary variable (SAV)
approach [18, 19] inherits advantages of the IEQ approach but leads to decoupled systems with constant
coefficients so it is both accurate and very efficient.

As for the Cahn-Hilliard-Navier-Stokes phase-field models, Shen and Yang [21, 22] constructed several
efficient time discretization schemes for two-phase incompressible flows with different densities and viscosities,
established discrete energy laws but no error estimates were derived. Second order in time numerical scheme
based on the convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes
equation has been constructed by Han and Wang in [12]. With regards to the numerical analysis, Feng,
He and Liu [9] proposed and analyzed some semi-discrete and fully discrete finite element schemes with the
abstract convergence by making use of the discrete energy law. Grün [11] proved an abstract convergence
result of a fully discrete scheme for a diffuse interface models for two-phase incompressible fluids. Diegel,
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Feng, and Wise [7] developed a fully discrete mixed finite element convex-splitting scheme for the Cahn-
Hilliard-Darcy-Stokes system. The time discretization used is a first-order implicit Euler. They proved
unconditional energy stability and error estimates for the phase field variable, chemical potential and velocity.
No convergence rate for pressure was demonstrated in their work.

The work presented in this paper for the Cahn-Hilliard-Navier-Stokes phase field model is unique in the
following aspects. First, we construct fully discrete linear, second-order (in space and time), unconditionally
energy stable scheme for the Cahn-Hilliard-Navier-Stokes phase field model. Furthermore, the scheme can
be very efficiently implemented. Secondly, we carry out a rigorous error analysis to derive second-order
error estimates both in time and space for phase field variable, chemical potential, velocity and pressure in
different discrete norms for the Cahn-Hilliard-Stokes phase field model. We believe that this is the first such
result for any fully discrete linear schemes for Cahn-Hilliard-Stokes or Cahn-Hilliard-Navier-Stokes models
without assuming a uniform Lipschitz condition on the nonlinear potential.

The paper is organized as follows. In Section 2 we describe the problem and present some notations. In
Section 3 we present the fully discrete SAV-MAC schemes and prove their stability. In Section 4 we carry
out error estimates for the fully discrete SAV-MAC scheme for the Cahn-Hilliard-Stokes system. In Section
5, we present some numerical experiments to verify the accuracy of the proposed numerical schemes.

2. The Problem Description and Notations. We consider the following incompressible Cahn-
Hilliard-Navier-Stokes phase field model (cf. [9, 3, 7]):

∂φ

∂t
= M∆µ− u · ∇φ in Ω× J,(2.1a)

µ = −λ∆φ+ λF ′(φ) in Ω× J,(2.1b)

∂u

∂t
+ γu · ∇u− ν∆u +∇p = µ∇φ in Ω× J,(2.1c)

∇ · u = 0 in Ω× J,(2.1d)

∂φ

∂n
=
∂µ

∂n
= 0, u = 0 on ∂Ω× J,(2.1e)

where F (φ) =
1

4ε2
(1− φ2)2, M > 0 is the mobility constant, ν > 0 is the fluid viscosity. λ > 0 is the mixing

coefficient, Ω is a bounded domain and J = (0, T ]. The unknowns are the velocity u, the pressure p, the
phase function φ and the chemical potential µ. It models the dynamics of the mixture of two-incompressible
fluids with the same density, which is set to be ρ0 = 1 for simplicity. γ is an additional parameter that
we added to distinguish the Cahn-Hilliard-Navier-Stokes model (γ = 1) and the Cahn-Hilliard-Stokes model
(γ = 0). When the viscosity ν is not sufficient small, the Cahn-Hilliard-Stokes model can be used as a good
approximation to the Cahn-Hilliard-Navier-Stokes model.

Taking the inner products of (2.1a) with µ, (2.1b) with ∂φ
∂t , (2.1c) with u respectively, we obtain the

following energy dissipation law:

(2.2)
dE(φ,u)

dt
= −M‖∇µ‖2 − ν‖∇u‖2,

where E(φ,u) =
∫

Ω
{ 1

2 |u|
2 + λ( 1

2 |∇φ|
2 + F (φ))} is the total energy.

We now introduce some standard notations. Let Lm(Ω) be the standard Banach space with norm

‖v‖Lm(Ω) =

(∫
Ω

|v|mdΩ

)1/m

.

For simplicity, let

(f, g) = (f, g)L2(Ω) =

∫
Ω

fgdΩ
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denote the L2(Ω) inner product, ‖v‖∞ = ‖v‖L∞(Ω). And W k
p (Ω) be the standard Sobolev space

W k
p (Ω) = {g : ‖g‖Wk

p (Ω) <∞},

where

(2.3) ‖g‖Wk
p (Ω) =

∑
|α|≤k

‖Dαg‖pLp(Ω)

1/p

.

Throughout the paper we use C, with or without subscript, to denote a positive constant, independent
of discretization parameters, which could have different values at different places.

3. The SAV Schemes and their stability. In this section, we first reformulate the phase-field system
into an equivalent system with an additional scalar auxiliary variable (SAV). Then, we construct semi-discrete
and fully discrete SAV schemes, and prove that they are unconditionally energy stable.

3.1. The SAV reformulation. We introduce a scalar auxiliary variable r(t) =
√
E1(φ) + δ with any

δ > 0, and reformulate the system (2.1) as:

∂φ

∂t
= M∆µ− u · ∇φ in Ω× J,(3.1a)

µ = −λ∆φ+ λ
r√

E1(φ) + δ
F ′(φ) in Ω× J,(3.1b)

rt =
1

2
√
E1(φ) + δ

∫
Ω

F ′(φ)φtdx in Ω× J,(3.1c)

∂u

∂t
+ γu · ∇u− ν∆u +∇p = µ∇φ in Ω× J,(3.1d)

∇ · u = 0 in Ω× J.(3.1e)

where E1(φ) =
∫

Ω
F (φ)dx. It is clear that with r(0) =

√
E1(φ|t=0) + δ, the above system is equivalent

to (2.1). Taking the inner products of (3.1a) with µ, (3.1b) with ∂φ
∂t , (3.1c) with 2λr and (3.1d) with u

respectively, we obtain the following energy dissipation law:

(3.2)
dẼ(φ,u, r)

dt
= −M‖∇µ‖2 − ν‖∇u‖2,

where Ẽ(φ,u, r) =
∫

Ω
1
2{|u|

2 + λ|∇φ|2}dx + λr2 is the total energy.

3.2. The semi-discrete SAV/CN scheme. Set ∆t = T/N, tn = n∆t, for n ≤ N, and define

[dtf ]n =
fn − fn−1

∆t
, fn+1/2 =

fn + fn+1

2
.

Then, a second-order SAV scheme based on Crank-Nicolson is:

φn+1 − φn

∆t
= M∆µn+1/2 − un+1/2 · ∇φ̃n+1/2,(3.3a)

µn+1/2 = −λ∆φn+1/2 + λ
rn+1/2√

E1(φ̃n+1/2) + δ
F ′(φ̃n+1/2),(3.3b)

rn+1 − rn

∆t
=

1

2
√
E1(φ̃n+1/2) + δ

∫
Ω

F ′(φ̃n+1/2)
φn+1 − φn

∆t
dx,(3.3c)
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un+1 − un

∆t
+ γũn+1/2 · ∇un+1/2 − ν∆un+1/2

+∇pn+1/2 = µn+1/2∇φ̃n+1/2,(3.3d)

∇ · un+1/2 = 0,(3.3e)

where ũn+1/2 = (3un − un−1)/2 and φ̃n+1/2 = (3φn − φn−1)/2. We also set u−1 = u0.
Theorem 3.1. The scheme (3.3) is unconditionally energy stable in the sense that

Ẽn+1(φ,u, r)− Ẽn(φ,u, r) = −M∆t‖∇µn+1/2‖2 − ν∆t‖∇un+1/2‖2,

where

Ẽn+1(φ,u, r) =

∫
Ω

1

2
{|un+1|2 + λ|∇φn+1|2}dx + λ|rn+1|2.

Proof. The proof is quite straightforward. Taking the inner products of (3.3a) with µn+ 1
2 , (3.3b) with

φn+1−φn

∆t , (3.3c) with 2λrn+1/2 and (3.3d) with un+1/2 respectively, we obtain immediately the desired result.

Remark 3.1.
• The above scheme is second-order in time and linear, but it is weakly coupled. The above stability

result indicates that this weakly coupled system is positive definite.
• If un+1/2 in (3.3a) is replaced by an explicit second-order extrapolation, (φn+1, µn+1, rn+1) can be

obtained from (3.3a)-(3.3c) efficiently by solving decoupled elliptic systems with constant coefficients
(cf. [18]). Once µn+1 is known, we can solve (un+1, pn+1) from (3.3d)-(3.3e) which is essentially a
generalized Stokes problem that can be solved efficiently with a MAC scheme (see below).
• We can use the decoupled scheme with explicit treatment of un+1/2 in (3.3a) as a preconditioner for

the weakly coupled scheme.

3.3. Spacial discretization by finite differences. To fix the idea, we consider Ω = (Llx, Lrx) ×
(Lly, Lry). Three dimensional rectangular domains can be dealt with similarly.

The two dimensional domain Ω is partitioned by Ωx × Ωy, where

Ωx : Llx = x0 < x1 < · · · < xNx−1 < xNx
= Lrx,

Ωy : Lly = y0 < y1 < · · · < yNy−1 < yNy
= Lry.

For simplicity we also use the following notations:

(3.4)

 x−1/2 = x0 = Llx, xNx+1/2 = xNx = Lrx,

y−1/2 = y0 = Lly, yNy+1/2 = yNy
= Lry.

For possible integers i, j, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, define

xi+1/2 =
xi + xi+1

2
, hi+1/2 = xi+1 − xi, h = max

i
hi+1/2,

hi = xi+1/2 − xi−1/2 =
hi+1/2 + hi−1/2

2
,

yj+1/2 =
yj + yj+1

2
, kj+1/2 = yj+1 − yj , k = max

j
kj+1/2,

kj = yj+1/2 − yj−1/2 =
kj+1/2 + kj−1/2

2
,

Ωi+1/2,j+1/2 = (xi, xi+1)× (yj , yj+1).
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It is clear that

h0 =
h1/2

2
, hNx

=
hNx−1/2

2
, k0 =

k1/2

2
, kNy

=
kNy−1/2

2
.

For a function f(x, y), let fl,m denote f(xl, ym) where l may take values i, i+ 1/2 for integer i, and m may
take values j, j + 1/2 for integer j. For discrete functions with values at proper nodal-points, define

(3.5)


[dxf ]i+1/2,m =

fi+1,m − fi,m
hi+1/2

, [Dyf ]l,j+1 =
fl,j+3/2 − fl,j+1/2

kj+1
,

[Dxf ]i+1,m =
fi+3/2,m − fi+1/2,m

hi+1
, [dyf ]l,j+1/2 =

fl,j+1 − fl,j
kj+1/2

.

For functions f and g, define some discrete l2 inner products and norms as follows.

(f, g)l2,M ≡
Nx−1∑
i=0

Ny−1∑
j=0

hi+1/2kj+1/2fi+1/2,j+1/2gi+1/2,j+1/2,(3.6)

(f, g)l2,Tx
≡

Nx∑
i=0

Ny−1∑
j=1

hikjfi,jgi,j ,(3.7)

(f, g)l2,Ty
≡
Nx−1∑
i=1

Ny∑
j=0

hikjfi,jgi,j ,(3.8)

‖f‖2l2,ξ ≡ (f, f)l2,ξ, ξ = M, Tx, Ty.(3.9)

Further define discrete l2 inner products and norms as follows.

(f, g)l2,T,M ≡
Nx−1∑
i=1

Ny−1∑
j=0

hikj+1/2fi,j+1/2gi,j+1/2,(3.10)

(f, g)l2,M,T ≡
Nx−1∑
i=0

Ny−1∑
j=1

hi+1/2kjfi+1/2,jgi+1/2,j ,(3.11)

‖f‖2l2,T,M ≡ (f, f)l2,T,M , ‖f‖2l2,M,T ≡ (f, f)l2,M,T .(3.12)

For vector-valued functions u = (u1, u2), it is clear that

‖dxu1‖2l2,M ≡
Nx−1∑
i=0

Ny−1∑
j=0

hi+1/2kj+1/2|dxu1,i+1/2,j+1/2|2,(3.13)

‖Dyu1‖2l2,Ty
≡
Nx−1∑
i=1

Ny∑
j=0

hikj |Dyu1,i,j |2,(3.14)

and ‖dyu2‖l2,M , ‖Dxu2‖l2,Tx
can be represented similarly. Finally define the discrete H1-norm and discrete

l2-norm of a vectored-valued function u,

‖Du‖2 ≡ ‖dxu1‖2l2,M + ‖Dyu1‖2l2,Ty
+ ‖Dxu2‖2l2,Tx

+ ‖dyu2‖2l2,M .(3.15)

‖u‖2l2 ≡ ‖u1‖2l2,T,M + ‖u2‖2l2,M,T .(3.16)

For simplicity we only consider the case that for all hi+1/2 = h, kj+1/2 = k, i.e. uniform meshes are used
both in x and y-directions.
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Denote by {Zn,Wn, Rn, Un, Pn}Nn=1, the approximations to {φn, µn, rn,un, pn}Nn=1 respectively, with
the boundary conditions

[DxZ]n0,j+1/2 = [DxZ]nNx,j+1/2 = 0, 0 ≤ j ≤ Ny − 1,

[DyZ]ni+1/2,0 = [DyZ]ni+1/2,Ny
= 0, 0 ≤ i ≤ Nx − 1,

[DxW ]n0,j+1/2 = [DxW ]nNx,j+1/2 = 0, 0 ≤ j ≤ Ny − 1,

[DyW ]ni+1/2,0 = [DyW ]ni+1/2,Ny
= 0, 0 ≤ i ≤ Nx − 1,

Un1,0,j+1/2 = Un1,Nx,j+1/2 = 0, 0 ≤ j ≤ Ny − 1,

Un1,i,0 = Un1,i,Ny
= 0, 0 ≤ i ≤ Nx,

Un2,0,j = Un2,Nx,j = 0, 0 ≤ j ≤ Ny,

Un2,i+1/2,0 = Un2,i+1/2,Ny
= 0, 0 ≤ i ≤ Nx − 1,

(3.17)

and initial conditions
Z0
i+1/2,j+1/2 = φ0

i+1/2,j+1/2, 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1,

U0
1,i,j+1/2 = u0

1,i,j+1/2, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny,

U0
2,i+1/2,j = u0

2,i+1/2,j , 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny,

(3.18)

where φ0, u0 are given initial conditions respectively.
Then, the fully discrete SAV/CN scheme based on the MAC discretization is as follows:

[dtZ]n+1 = M [dxDxW + dyDyW ]n+1/2 − PyhP
x
h [U1DxZ̃ + U2DyZ̃]n+1/2,(3.19a)

Wn+1/2 = −λ[dxDxZ + dyDyZ]n+1/2 + λ
Rn+1/2√

Eh1 (Z̃n+1/2) + δ
F ′(Z̃n+1/2),(3.19b)

[dtR]n+1 =
1

2
√
Eh1 (Z̃n+1/2) + δ

(F ′(Z̃n+1/2), dtZ
n+1)l2,M ,(3.19c)

[dtU1]n+1 +
γ

2
[Ũ1Dx(PxhU1) + Pxhdx(U1Ũ1) + Pyh(Pxh Ũ2DyU1)

+ dy(PyhU1Pxh Ũ2)]n+1/2 − νDx(dxU1)n+1/2 − νdy(DyU1)n+1/2(3.19d)

+ [DxP ]n+1/2 = PxhWn+1/2[DxZ̃]n+1/2,

[dtU2]n+1 +
γ

2
[Pxh (PyhŨ1DxU2) + dx(PyhŨ1PxhU2) + Ũ2Dy(PyhU2)

+ Pyh(dy(U2Ũ2))]n+1/2 − νDy(dyU2)n+1/2 − νdx(DxU2)n+1/2(3.19e)

+ [DyP ]n+1/2 = PyhW
n+1/2[DyZ̃]n+1/2,

[dxU1]n+1/2 + [dyU2]n+1/2 = 0,(3.19f)

where Pxh and Pyh are linear interpolation operators in the x and y directions respectively, and H̃n+1/2 =
3
2H

n − 1
2H

n−1 for any sequence {Hk}.
It is easy to verify that the following discrete integration-by-part formulae hold.
Lemma 3.2. [25] Let {V1,i,j+1/2}, {V2,i+1/2,j} and {q1,i+1/2,j+1/2}, {q2,i+1/2,j+1/2} be discrete functions

with V1,0,j+1/2 = V1,Nx,j+1/2 = V2,i+1/2,0 = V2,i+1/2,Ny
= 0, with proper integers i and j. Then there holds

(3.20)

 (Dxq1, V1)l2,T,M = −(q1, dxV1)l2,M ,

(Dyq2, V2)l2,M,T = −(q2, dyV2)l2,M .
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Theorem 3.3. The scheme (3.19a)-(3.19f) is unconditionally energy stable in the sense that

Ẽn+1(Z,U, R)− Ẽn(Z,U, R) = −M∆t‖DWn+1/2‖2l2 − ν∆t‖DUn+1/2‖2l2 ,

where DH = (DxH,DyH) for any discrete scalar or vector function H, and

Ẽn+1(Z,U, R) =
1

2
‖U‖2l2 + λ(

1

2
‖DZn+1‖2l2 + (Rn+1)2).

Proof. Multiplying (3.19a) by W
n+1/2
i+1/2,j+1/2hk, and making summation on i, j for 0 ≤ i ≤ Nx − 1, 0 ≤

j ≤ Ny − 1, we have

(3.21)
(dtZ

n+1,Wn+1/2)l2,M =M(dxDxW
n+1/2 + dyDyW

n+1/2,Wn+1/2)l2,M

− (PyhP
x
h [U1DxZ̃ + U2DyZ̃]n+1/2,Wn+1/2)l2,M .

Taking notice of Lemma 3.2, the first term on the right hand side of (3.21) can be transformed into the
following:

(3.22)

M(dxDxW
n+1/2 + dyDyW

n+1/2,Wn+1/2)l2,M

=−M‖DxW
n+1/2‖2l2,T,M −M‖DyW

n+1/2‖2l2,M,T

=−M‖DWn+1/2‖l2 .

Multiplying (3.19b) by dtZ
n+1
i+1/2,j+1/2hk, and making summation on i, j for 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤

Ny − 1, we have

(3.23)

(dtZ
n+1,Wn+1/2)l2,M =− λ(dxDxZ

n+1/2 + dyDyZ
n+1/2, dtZ

n+1)l2,M

+ λ
Rn+1/2√

Eh1 (Z̃n+1/2) + δ
(F ′(Z̃n+1/2), dtZ

n+1)l2,M .

Recalling Lemma 3.2, the first term on the right hand side of (3.23) can be estimated by:

(3.24)

−λ(dxDxZ
n+1/2 + dyDyZ

n+1/2, dtZ
n+1)l2,M

=λ(DxZ
n+1/2, dtDxZ

n+1)l2,T,M + λ(DyZ
n+1/2, dtDyZ

n+1)l2,M,T

=λ
‖DZn+1‖2l2 − ‖DZn‖2l2

2∆t
.

Multiplying equation (3.19c) by (Rn+1 +Rn) leads to

(3.25)
(Rn+1)2 − (Rn)2

∆t
=

Rn+1/2√
Eh1 (Z̃n+1/2) + δ

(F ′(Z̃n+1/2), dtZ
n+1)l2,M .

Combining (3.25) with (3.21)-(3.24) gives that

(3.26)
λ

(Rn+1)2 − (Rn)2

∆t
+ λ
‖DZn+1‖2l2 − ‖DZn‖2l2

2∆t

=−M‖DWn+1/2‖2l2 − (PyhP
x
h [U1DxZ̃ + U2DyZ̃]n+1/2,Wn+1/2)l2,M .
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Multiplying (3.19d) by U
n+1/2
1,i,j+1/2hk, and making summation on i, j for 1 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1, we

have

(3.27)

(dtU
n+1
1 , U

n+1/2
1 )l2,T,M +

γ

2

(
(Ũ

n+1/2
1 Dx(PxhU

n+1/2
1 ), U

n+1/2
1 )l2,T,M

+ (Pxhdx(U
n+1/2
1 Ũ

n+1/2
1 ), U

n+1/2
1 )l2,T,M + (Pyh(Pxh Ũ

n+1/2
2 DyU

n+1/2
1 ), U

n+1/2
1 )l2,T,M

+ (dy(PyhU
n+1/2
1 Pxh Ũ

n+1/2
2 ), U

n+1/2
1 )l2,T,M

)
+ ν‖dxUn+1/2

1 ‖2l2,M

+ ν‖DyU
n+1/2
1 ‖2l2,Ty

− (Pn+1/2, dxU
n+1/2
1 )l2,M

=(PxhWn+1/2DxZ̃
n+1/2, U

n+1/2
1 )l2,T,M .

Thanks to Lemma 3.2, we have

(3.28)

(Ũ
n+1/2
1 Dx(PxhU

n+1/2
1 ), U

n+1/2
1 )l2,T,M

=− (PxhU
n+1/2
1 , dx(Ũ

n+1/2
1 U

n+1/2
1 ))l2,M

=− (Pxhdx(Ũ
n+1/2
1 U

n+1/2
1 ), U

n+1/2
1 )l2,T,M .

The fifth term on the left hand side of (3.27) can be estimated as follows:

(3.29)

(dy(PyhU
n+1/2
1 Pxh Ũ

n+1/2
2 ), U

n+1/2
1 )l2,T,M

=− (PyhU
n+1/2
1 Pxh Ũ

n+1/2
2 , DyU

n+1/2
1 )l2,M

=− (Pyh(Pxh Ũ
n+1/2
2 DyU

n+1/2
1 ), U

n+1/2
1 )l2,T,M .

Multiplying (3.19e) by U
n+1/2
2,i+1/2,jhk, and making summation on i, j for 0 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, we

can obtain

(3.30)

(dtU
n+1
2 , U

n+1/2
2 )l2,M,T +

γ

2

(
(Pxh (PyhŨ

n+1/2
1 DxU

n+1/2
2 ), U

n+1/2
2 )l2,M,T

+ (dx(PyhŨ
n+1/2
1 PxhU

n+1/2
2 ), U

n+1/2
2 )l2,M,T + (Ũ

n+1/2
2 Dy(PyhU

n+1/2
2 ), U

n+1/2
2 )l2,M,T

+(Pyh(dy(U
n+1/2
2 Ũ

n+1/2
2 )), U

n+1/2
2 )l2,M,T

)
+ ν‖dyUn+1/2

2 ‖2l2,M

+ ν‖DxU
n+1/2
2 ‖2l2,Tx

− (Pn+1/2, dyU
n+1/2
2 )l2,M

=(PyhW
n+1/2DyZ̃

n+1/2, U
n+1/2
2 )l2,M,T .

Similar to the estimates of (3.28) and (3.29), we have

(3.31)
(Pxh (PyhŨ

n+1/2
1 DxU

n+1/2
2 ), U

n+1/2
2 )l2,M,T

+ (dx(PyhŨ
n+1/2
1 PxhU

n+1/2
2 ), U

n+1/2
2 )l2,M,T = 0,

and

(3.32)
(Ũ

n+1/2
2 Dy(PyhU

n+1/2
2 ), U

n+1/2
2 )l2,M,T

+ (Pyh(dy(U
n+1/2
2 Ũ

n+1/2
2 )), U

n+1/2
2 )l2,M,T = 0.

Combining (3.27)-(3.32) and recalling (3.19f) lead to

(3.33)

‖Un+1‖2l2 − ‖U
n‖2l2

2∆t
+ ν‖DU‖2

=(PhWn+1/2DxZ̃
n+1/2, U

n+1/2
1 )l2,T,M + (PhWn+1/2DyZ̃

n+1/2, U
n+1/2
2 )l2,M,T .
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Taking notice of (3.26), we have

(3.34)
λ

(Rn+1)2 − (Rn)2

∆t
+ λ
‖DZn+1‖2l2 − ‖DZn‖2l2

2∆t

+
‖Un+1‖2l2 − ‖U

n‖2l2
2∆t

+ ν‖DU‖2 = −M‖DWn+1/2‖2l2 ≤ 0,

which implies the desired result.

4. Error estimates. In this section we carry out an error analysis for the full discrete scheme (3.19a)-
(3.19f) with γ = 0, i.e. for the Cahn-Hilliard-Stokes system. The analysis for the case of γ = 1, i.e. for the
Cahn-Hilliard-Navier-Stokes system, will be extremely technical as it requires a high order upwind method
to deal with the nonlinear convection term.

4.1. An auxiliary problem. We consider first an auxiliary problem which will be used in the sequel.
Let (φ, µ,u, p) be the solution of Cahn-Hilliard-Stokes system, and set g = µ∇φ − ∂u

∂t . For each time
step n, we rewrite (2.1c)-(2.1d) with γ = 0 as

−ν∆un +∇pn = gn in Ω× J,(4.1a)

∇ · un = 0 in Ω× J,(4.1b)

and consider its approximation by the MAC scheme: For each n = 1, . . . , N , let {Ûn1,i,j+1/2}, {Û
n
2,i+1/2,j}

and {P̂ni+1/2,j+1/2} such that

− ν
dxÛ

n+1/2
1,i+1/2,j+1/2 − dxÛ

n+1/2
1,i−1/2,j+1/2

hi
− ν

DyÛ
n+1/2
1,i,j+1 −DyÛ

n+1/2
1,i,j

kj+1/2

+DxP̂
n+1/2
i,j+1/2 = g

n+1/2
1,i,j+1/2, 1 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1,(4.2)

− ν
DxÛ

n+1/2
1,i+1,j −DxÛ

n+1/2
1,i,j

hi+1/2
− ν

dyÛ
n+1/2
2,i+1/2,j+1/2 − dyÛ

n+1/2
2,i+1/2,j−1/2

kj

+DyP̂
n+1/2
i+1/2,j = g

n+1/2
2,i+1/2,j , 0 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1,(4.3)

dxÛ
n+1/2
1,i+1/2,j+1/2 + dyÛ

n+1/2
2,i+1/2,j+1/2 = 0, 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤ Ny − 1,(4.4)

where the boundary and initial approximations are same as equations (3.17) and (3.18).
Inspired by [6], we extend the work in Rui and Li [16] to the above approximation. By following closely

the same arguments as in [16], we can prove the following:
Lemma 4.1. Assuming that u ∈W 3

∞(J ;W 4
∞(Ω))2, p ∈W 3

∞(J ;W 3
∞(Ω)), we have the following results:

(4.5) ‖dx(Ûn+1
1 − un+1

1 )‖l2,M + ‖dy(Ûn+1
2 − un+1

2 )‖l2,M ≤ O(∆t2 + h2 + k2),

(4.6) ‖dt(Ûn+1
1 − un+1

1 )‖l2,T,M + ‖dt(Ûn+1
2 − un+1

2 )‖l2,M,T ≤ O(∆t2 + h2 + k2),

(4.7) ‖Ûn+1
1 − un+1

1 ‖l2,T,M + ‖Ûn+1
2 − un+1

2 ‖l2,M,T ≤ O(∆t2 + h2 + k2),

(4.8) ‖Dy(Ûn+1
1 − un+1

1 )‖l2,Ty
≤ O(∆t2 + h2 + k3/2),
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(4.9) ‖Dx(Ûn+1
2 − un+1

2 )‖l2,Tx
≤ O(∆t2 + h3/2 + k2),

(4.10)

(
N∑
l=1

∆t‖(Ẑ − p)l−1/2‖2l2,M

)1/2

≤ O(∆t2 + h2 + k2).

4.2. discrete LBB condition. In order to carry out error analysis, we need the discrete LBB condition.
Here we use the same notation and results as Rui and Li [16, Lemma 3.3]. Let

b(v, q) = −
∫

Ω

qdivvdx, v ∈ V, q ∈W,

where

V = H1
0 (Ω)×H1

0 (Ω), W =

{
q ∈ L2(Ω) :

∫
Ω

qdx = 0

}
.

Fig. 1. Partitions: (a) Th, (b) T 1
h , (c) T 2

h

Then we construct the finite-dimensional subspaces of W and V by introducing three different partitions
Th, T 1

h , T 2
h of Ω. The original partition δx × δy is denoted by Th (see Fig 1). The partition T 1

h is generated
by connecting all the midpoints of the vertical sides of Ωi+1/2,j+1/2 and extending the resulting mesh to
the boundary Γ. Similarly, for all Ωi+1/2,j+1/2 ∈ Th we connect all the midpoints of the horizontal sides of
Ωi+1/2,j+1/2 and extend the resulting mesh to the boundary Γ, then the third partition is obtained which is
denoted by T 2

h .
Corresponding to the quadrangulation Th, define Wh, a subspace of W ,

Wh =

{
qh : qh|T = constant, ∀T ∈ Th and

∫
Ω

qdx = 0

}
.

Furthermore, let Vh be a subspace of V such that Vh=S1
h × S2

h, where

Slh =
{
g ∈ C(0)(Ω) : g|T l ∈ Q1(T l), , ∀T l ∈ T lh , and g|Γ = 0

}
, l = 1, 2,

and Q1 denotes the space of all polynomials of degree ≤ 1 with respect to each of the two variables x and y.
Then we introduce the bilinear forms

bh(vh, qh) = −
∑

Ωi+1/2,j+1/2∈Th

∫
Ωi+1/2,j+1/2

qhΠh(divvh)dx, vh ∈ Vh, qh ∈Wh,
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where

Πh : C(0)(Ωi+1/2,j+1/2)→ Q0(Ωi+1/2,j+1/2), such that

(Πhϕ)i+1/2,j+1/2 = ϕi+1/2,j+1/2, ∀ Ωi+1/2,j+1/2 ∈ Th.

Then, we have the following result:

Lemma 4.2. There is a constant β > 0, independent of h and k such that

(4.11) sup
vh∈Vh

bh(vh, qh)

‖Dvh‖
≥ β‖qh‖l2,M ∀qh ∈Wh.

4.3. A first error estimate with a L∞ bound assumption. we shall first derive an error estimate
assuming that there exists two positive constant C∗ and C∗ such that

‖Zn‖∞ ≤ C∗,(4.12a)

‖DZn‖∞ ≤ C∗.(4.12b)

Late we shall verify this assumption using an induction process.

We define the operator Ih : V→ Vh, such that

(4.13) (∇ · Ihv, w) = (∇ · v, w) ∀w ∈Wh,

with approximation properties [6]

‖v− Ihv‖ ≤C‖v‖W 1
2 (Ω)ĥ,(4.14)

‖∇ · (v− Ihv)‖ ≤C‖∇ · v‖W 1
2 (Ω)ĥ,(4.15)

where ĥ = max{h, k}.
Besides, by the definition of Ihv and the midpoint rule of integration, the L∞ norm of the projection is

obtained by

(4.16) ‖v− Ihv‖∞ ≤ C‖v‖W 2
∞(Ω)ĥ.

Furthermore from Durán [8], we have the following estimates which is necessary for the derivative and
analysis of our numerical scheme:

(4.17) ‖v− Ihv‖l2 ≤ Cĥ2.

For simplicity, we set

enφ = Zn − φn, enµ = Wn − µn, enr = Rn − rn,

enu = Un − Û
n

+ Û
n
− un = ênu + ẽnu,

enp = Pn − P̂n + P̂n − pn = ênp + ẽnp .

Lemma 4.3. Suppose that the hypotheses (4.12) hold, and φ ∈ W 3
∞(J ;W 4

∞(Ω)), µ ∈ L∞(J ;W 4
∞(Ω)),

u ∈ W 3
∞(J ;W 4

∞(Ω))2, p ∈ W 3
∞(J ;W 3

∞(Ω)), then the approximate errors of discrete phase function and
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chemical potential satisfy

(4.18)

‖em+1
φ ‖2l2,M +

M

2

m∑
n=0

∆t‖en+1/2
µ ‖2l2,M + λ(em+1

r )2

+
λ

2
‖Dem+1

φ ‖2l2 +
M

4

m∑
n=0

∆t‖Den+1/2
µ ‖2l2

≤C
m+1∑
n=0

∆t‖Denφ‖2l2 + C
m∑
n=0

∆t‖ên+1/2
u ‖2l2

+ C
m+1∑
n=0

∆t‖enφ‖2l2,M + C
m+1∑
n=0

∆t(enr )2

+ C(∆t4 + h4 + k4), m ≤ N,

where the positive constant C is independent of h, k and ∆t.
Proof. Denote

δx(φ) = Dxφ−
∂φ

∂x
, δy(φ) = Dyφ−

∂φ

∂y
,

δx(µ) = Dxµ−
∂µ

∂x
, δy(µ) = Dyµ−

∂µ

∂y
.

Subtracting (3.1a) from (3.19a), we obtain

(4.19)

[dteφ]n+1
i+1/2,j+1/2 = M [dx(Dxeµ + δx(µ)) + dy(Dyeµ + δy(µ))]

n+1/2
i+1/2,j+1/2

− PyhP
x
h [U1DxZ̃ + U2DyZ̃]

n+1/2
i+1/2,j+1/2 + u

n+1/2
i+1/2,j+1/2 · ∇φ

n+1/2
i+1/2,j+1/2

+ T
n+1/2
1,i+1/2,j+1/2 + T

n+1/2
2,i+1/2,j+1/2,

where

(4.20)
T
n+1/2
1,i+1/2,j+1/2 =

∂φ

∂t

∣∣n+1/2

i+1/2,j+1/2
− [dtφ]n+1

i+1/2,j+1/2

≤C‖φ‖W 3
∞(J;L∞(Ω))∆t

2,

(4.21)
T
n+1/2
2,i+1/2,j+1/2 = M [dx

∂µ

∂x
+ dy

∂µ

∂y
]
n+1/2
i+1/2,j+1/2 −M∆µ

n+1/2
i+1/2,j+1/2

≤ CM(h2 + k2)‖µ‖L∞(J;W 4
∞(Ω)).

Subtracting (3.1b) from (3.19b) leads to

(4.22)

e
n+1/2
µ,i+1/2,j+1/2 =− λ[dx(Dxeφ + δx(φ)) + dy(Dyeφ + δy(φ))]

n+1/2
i+1/2,j+1/2

+ λ
Rn+1/2√

Eh1 (Z̃n+1/2) + δ
F ′(Z̃

n+1/2
i+1/2,j+1/2)

− λ rn+1/2√
E1(φn+1/2) + δ

F ′(φ
n+1/2
i+1/2,j+1/2)

+ λT
n+1/2
3,i+1/2,j+1/2,



SAV-MAC scheme for CHNS phase-field model 13

where

(4.23)
T
n+1/2
3,i+1/2,j+1/2 = ∆φ

n+1/2
i+1/2,j+1/2 − [dx

∂φ

∂x
+ dy

∂φ

∂y
]
n+1/2
i+1/2,j+1/2

≤ C(h2 + k2)‖φ‖L∞(J;W 4
∞(Ω)).

Subtracting equation (3.1c) from equation (3.19c) gives that

(4.24)

dte
n+1
r =

1

2
√
Eh1 (Z̃n+1/2) + δ

(F ′(Z̃n+1/2), dtZ
n+1)l2,M

− 1

2
√
E1(φn+1/2) + δ

∫
Ω

F ′(φn+1/2)φ
n+1/2
t dx + T

n+1/2
4 ,

where

(4.25) T
n+1/2
4 = r

n+1/2
t − dtrn+1 ≤ C‖r‖W 3

∞(J)∆t
2.

Multiplying equation (4.19) by e
n+1/2
µ,i+1/2,j+1/2hk, and making summation on i, j for 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤

Ny − 1, we have

(4.26)

(dte
n+1
φ , en+1/2

µ )l2,M

=M
(
dx(Dxeµ + δx(µ))n+1/2 + dy(Dyeµ + δy(µ))n+1/2, en+1/2

µ

)
l2,M

− (PyhP
x
h [U1DxZ̃ + U2DyZ̃]n+1/2 − un+1/2 · ∇φn+1/2, en+1/2

µ )l2,M

+ (T
n+1/2
1 , en+1/2

µ )l2,M + (T
n+1/2
2 , en+1/2

µ )l2,M .

Recalling Lemma 3.2, the first term on the right hand side of (4.26) can be estimated as follows:

(4.27)

M
(
dx(Dxeµ + δx(µ))n+1/2 + dy(Dyeµ + δy(µ))n+1/2, en+1/2

µ

)
l2,M

=−M
(

(Dxeµ + δx(µ))n+1/2, Dxe
n+1/2
µ

)
l2,T,M

−M
(

(Dyeµ + δy(µ))n+1/2, Dye
n+1/2
µ

)
l2,M,T

=−M‖Den+1/2
µ ‖2l2 −M(δx(µ)n+1/2, Dxe

n+1/2
µ )l2,T,M

−M(δy(µ)n+1/2, Dye
n+1/2
µ )l2,M,T .

With the aid of Cauchy-Schwarz inequality, the last two terms on the right hand side of (4.27) can be
transformed into:

(4.28)
−M(δx(µ)n+1/2, Dxe

n+1/2
µ )l2,M,T −M(δy(µ)n+1/2, Dye

n+1/2
µ )l2,T,M

≤M
6
‖Den+1/2

µ ‖2l2 + C‖µ‖2L∞(J;W 3
∞(Ω))(h

4 + k4).

The second term on the right hand side of (4.26) can be transformed into

(4.29)

− (PyhP
x
h [U1DxZ̃ + U2DyZ̃]n+1/2 − un+1/2 · ∇φn+1/2, en+1/2

µ )l2,M

=− (PyhP
x
h [U1DxZ̃ + U2DyZ̃]n+1/2 − PyhP

x
h [Û1DxZ̃ + Û2DyZ̃]n+1/2, en+1/2

µ )l2,M

− (PyhP
x
h [Û1DxZ̃ + Û2DyZ̃]n+1/2 − PyhP

x
h [u1DxZ̃ + u2DyZ̃]n+1/2, en+1/2

µ )l2,M

− (PyhP
x
h [u1DxZ̃ + u2DyZ̃]n+1/2 − un+1/2 · ∇φn+1/2, en+1/2

µ )l2,M .
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Then taking notice of the definition of interpolations Pxh and Pyh , the first term on the right hand side of
(4.29) can be bounded by

(4.30)
− (PyhP

x
h [U1DxZ̃ + U2DyZ̃]n+1/2 − PyhP

x
h [Û1DxZ̃ + Û2DyZ̃]n+1/2, en+1/2

µ )l2,M

≤C‖DZ̃‖2∞‖ên+1/2
u ‖2l2 + C‖en+1/2

µ ‖2l2,M .

Similarly noting Lemma 4.1, the second term on the right hand side of (4.29) can be estimated by

(4.31)

− (PyhP
x
h [Û1DxZ̃ + Û2DyZ̃]n+1/2 − PyhP

x
h [u1DxZ̃ + u2DyZ̃]n+1/2, en+1/2

µ )l2,M

≤C‖DZ̃‖2∞‖ẽn+1/2
u ‖2l2 + C‖en+1/2

µ ‖2l2,M
≤C‖en+1/2

µ ‖2l2,M + C(∆t4 + h4 + k4).

Supposing that φ ∈W 2,∞(J ;L∞(Ω)), the last term on the right hand side of (4.29) can be estimated by

(4.32)

− (PyhP
x
h [u1DxZ̃ + u2DyZ̃]n+1/2 − un+1/2 · ∇φn+1/2, en+1/2

µ )l2,M

≤C‖en+1/2
µ ‖2l2,M + C‖Denφ‖2l2,M + C‖Den−1

φ ‖2l2,M
+ C‖φ‖2W 2

∞(J;L∞(Ω))∆t
4.

Multiplying equation (4.22) by dte
n+1
φ,i+1/2,j+1/2hk, and making summation on i, j for 0 ≤ i ≤ Nx − 1, 0 ≤

j ≤ Ny − 1, we have

(4.33)

(en+1/2
µ , dte

n+1
φ )l2,M

=− λ(dx(Dxeφ + δx(φ))n+1/2 + dy(Dyeφ + δy(φ))n+1/2, dte
n+1
φ )l2,M

+ λ(
Rn+1/2√

Eh1 (Z̃n+1/2) + δ
F ′(Z̃n+1/2)− rn+1/2√

E1(φn+1/2) + δ
F ′(φn+1/2), dte

n+1
φ )l2,M

+ λ(T
n+1/2
3 , dte

n+1
φ )l2,M .

Similar to the estimate of equation (3.24), the first term on the right hand side of equation (4.33) can be
transformed into the following:

(4.34)

− λ(dx(Dxeφ + δx(φ))n+1/2 + dy(Dyeφ + δy(φ))n+1/2, dte
n+1
φ )l2,M

=λ(Dxe
n+1/2
φ , dtDxe

n+1
φ )l2,T,M + λ(Dye

n+1/2
φ , dtDye

n+1
φ )l2,M,T

+ λ(δx(φ)n+1/2, dtDxe
n+1/2
φ )l2,T,M + λ(δy(φ)n+1/2, dtDye

n+1/2
φ )l2,M,T

=λ
‖Den+1

φ ‖2l2 − ‖Denφ‖2l2
2∆t

+ λ(δx(φ)n+1/2, dtDxe
n+1/2
φ )l2,T,M

+ λ(δy(φ)n+1/2, dtDye
n+1/2
φ )l2,M,T .
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The second term on the right hand side of equation (4.33) can be rewritten as follows:

(4.35)

λ(
Rn+1/2√

Eh1 (Z̃n+1/2) + δ
F ′(Z̃n+1/2)− rn+1/2√

E1(φn+1/2) + δ
F ′(φn+1/2), dte

n+1
φ )l2,M

=λrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2) + δ

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2) + δ

, dte
n+1
φ )l2,M

+ λrn+1/2(
F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2) + δ

− F ′(φn+1/2)√
E1(φn+1/2) + δ

, dte
n+1
φ )l2,M

+ λen+1/2
r (

F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2) + δ

, dte
n+1
φ )l2,M .

Taking notice of (4.19), the first term on the right hand side of (4.35) can be transformed into the following:

(4.36)

λrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2) + δ

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2) + δ

, dte
n+1
φ )l2,M

=Mλrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2) + δ

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2) + δ

, dx(Dxeµ + δx(µ))n+1/2)l2,M

+Mλrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2) + δ

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2) + δ

, dy(Dyeµ + δy(µ))n+1/2)l2,M

− λrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2) + δ

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2) + δ

,Ph[U1DxZ̃ + U2DyZ̃]n+1/2

− u
n+1/2
i+1/2,j+1/2 · ∇φ

n+1/2)l2,M

+ λrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2) + δ

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2) + δ

, T
n+1/2
1 + T

n+1/2
2 )l2,M .

Similar to the estimates in [14], and using the Cauchy-Schwartz inequality, we can deduce that

(4.37)

Mλrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2) + δ

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2) + δ

, dx(Dxeµ + δx(µ))n+1/2)l2,M

=−Mλrn+1/2(
DxF

′(Z̃n+1/2)√
Eh1 (Z̃n+1/2) + δ

− DxF
′(φ̃n+1/2)√

Eh1 (φ̃n+1/2) + δ
, (Dxeµ + δx(µ))n+1/2)l2,M

≤M
6
‖Dxe

n+1/2
µ ‖2l2,T,M + C‖r‖2L∞(J)(‖e

n
φ‖2m + ‖en−1

φ ‖2l2,M )

+ C‖r‖2L∞(J)(‖Dxe
n
φ‖2l2,T,M + ‖Dxe

n−1
φ ‖2l2,T,M )

+ C‖µ‖2L∞(J;W 3
∞(Ω))(h

4 + k4).
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Similarly we can obtain

(4.38)

Mλrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2) + δ

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2) + δ

, dy(Dyeµ + δy(µ))n+1/2)l2,M

≤M
6
‖Dye

n+1/2
µ ‖2l2,M,T + C‖r‖2L∞(J)(‖e

n
φ‖2l2,M + ‖en−1

φ ‖2l2,M )

+ C‖r‖2L∞(J)(‖Dye
n
φ‖2l2,M,T + ‖Dye

n−1
φ ‖2l2,M,T )

+ C‖µ‖2L∞(J;W 3
∞(Ω))(h

4 + k4).

Then equation (4.36) can be estimated by:

(4.39)

λrn+1/2(
F ′(Z̃n+1/2)√
Eh1 (Z̃n+1/2) + δ

− F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2) + δ

, dte
n+1
φ )l2,M

≤M
6
‖Den+1/2

µ ‖2l2 + C‖r‖L∞(J)(‖enφ‖2l2,M + ‖en−1
φ ‖l2,M2)

+ C‖r‖L∞(J)(‖Denφ‖2l2 + ‖Den−1
φ ‖2l2) + C‖DZ̃‖2∞‖ên+1/2

u ‖2l2
+ C‖µ‖2L∞(J;W 4

∞(Ω))(h
4 + k4) + C‖φ‖2W 3

∞(J;L∞(Ω))∆t
4.

Similar to the estimates of (4.36), the second term on the right hand side of (4.35) can be controlled by:

(4.40)

λrn+1/2(
F ′(φ̃n+1/2)√
Eh1 (φ̃n+1/2) + δ

− F ′(φn+1/2)√
E1(φn+1/2) + δ

, dte
n+1
φ )l2,M

≤M
6
‖Den+1/2

µ ‖2l2 + C‖Denφ‖2l2,M + C‖Den−1
φ ‖2l2,M

+ C‖DZ̃‖2∞‖ên+1/2
u ‖2l2 + C‖φ‖2W 3

∞(J;W 1
∞(Ω))∆t

4

+ C(‖µ‖2L∞(J;W 4
∞(Ω)) + ‖φ‖2L∞(J;W 2

∞(Ω)))(h
4 + k4).

Multiplying equation (4.24) by λ(en+1
r + enr ) leads to

(4.41)

λ
(en+1
r )2 − (enr )2

∆t
=λ

e
n+1/2
r√

Eh1 (Z̃n+1/2) + δ
(F ′(Z̃n+1/2), dtZ

n+1)l2,M

− λ e
n+1/2
r√

E1(φn+1/2) + δ

∫
Ω

F ′(φn+1/2)φ
n+1/2
t dx

+ λT
n+1/2
4 · (en+1

r + enr ).

Then similar to the estimates in [14], we have

(4.42)

λ
(en+1
r )2 − (enr )2

∆t

≤λ e
n+1/2
r√

Eh1 (Z̃n+1/2) + δ
(F ′(Z̃n+1/2), dte

n+1
φ )l2,M + λT

n+1/2
4 · (en+1

r + enr )

+ C(en+1/2
r )2 + C‖φ‖2W 1

∞(J;L∞(Ω))(‖e
n
φ‖2l2,M + ‖en−1

φ ‖2l2,M )

+ C‖φ‖2W 1
∞(J;W 2

∞(Ω))(h
4 + k4).
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Combining the above equations and using Cauchy-Schwarz inequality lead to

(4.43)

λ
(en+1
r )2 − (enr )2

∆t
+ λ
‖Den+1

φ ‖2l2 − ‖Denφ‖2l2
2∆t

+M‖Den+1/2
µ ‖2l2

≤M
2
‖Den+1/2

µ ‖2l2 + C‖en+1/2
µ ‖2l2,M + C‖r‖2L∞(J)(‖e

n
φ‖2l2,M + ‖en−1

φ ‖2l2,M )

+ C‖DZ̃‖2∞‖ên+1/2
u ‖2l2 + C‖r‖2L∞(J)(‖De

n
φ‖2l2 + ‖Den−1

φ ‖2l2)

− λ(δx(φ)n+1/2, dtDxe
n+1/2
φ )l2,T,M − λ(δy(φ)n+1/2, dtDye

n+1/2
φ )l2,M,T

+ λ(T
n+1/2
3 , dte

n+1
φ )l2,M + λT

n+1/2
4 · (en+1

r + enr )

+ C(en+1/2
r )2 + C‖φ‖2W 1

∞(J;L∞(Ω))(‖e
n
φ‖2l2,M + ‖en−1

φ ‖2l2,M )

+ C(‖φ‖2W 1
∞(J;W 2

∞(Ω)) + ‖µ‖2L∞(J;W 4
∞(Ω)))(h

4 + k4)

+ C‖φ‖2W 3
∞(J;W 1

∞(Ω))∆t
4.

Taking notice of that

(4.44)

k∑
n=0

∆t(fn, dtg
n+1) = −

k∑
n=1

∆t(dtf
n, gn)

+ (fk, gk+1) + (f0, g0).

Using the above equation and multiplying equation (4.43) by ∆t, summing over n from 1 to m result in

(4.45)

λ(em+1
r )2 +

λ

2
‖Dem+1

φ ‖2l2 +
M

2

m∑
n=0

∆t‖Den+1/2
µ ‖2l2

≤C
m+1∑
n=0

∆t‖Denφ‖2l2 +
M

2

k+1∑
n=0

∆t‖en+1/2
µ ‖2l2,M

+ C
m+1∑
n=0

∆t‖ên+1/2
u ‖2l2 + C

m+1∑
n=0

∆t‖enφ‖2l2,M

+ C
m+1∑
n=0

∆t(enr )2 + C‖φ‖2W 3
∞(J;W 1,∞(Ω))∆t

4

+ C(‖φ‖2W 1
∞(J;W 4

∞(Ω)) + ‖µ‖2L∞(J;W 4
∞(Ω)))(h

4 + k4).

To proceed to the following the error estimate, we should consider the second term on the right hand

side of (4.45). Multiplying (4.19) by e
n+1/2
φ,i+1/2,j+1/2hk, and making summation on i, j for 0 ≤ i ≤ Nx−1, 0 ≤

j ≤ Ny − 1, we have

(4.46)

(dte
n+1
φ , e

n+1/2
φ )l2,M

=M
(
dx(Dxeµ + δx(µ))n+1/2 + dy(Dyeµ + δy(µ))n+1/2, e

n+1/2
φ

)
l2,M

− (Ph[U1DxZ̃ + U2DyZ̃]n+1/2 − un+1/2 · ∇φn+1/2, e
n+1/2
φ )l2,M

+ (T
n+1/2
1 , e

n+1/2
φ )l2,M + (T

n+1/2
2 , e

n+1/2
φ )l2,M .



18 XIAOLI LI AND JIE SHEN

The first term on the right hand side of (4.46) can be bounded by

(4.47)

M
(
dx(Dxeµ + δx(µ))n+1/2 + dy(Dyeµ + δy(µ))n+1/2, e

n+1/2
φ

)
l2,M

=−M
(

(Dxeµ + δx(µ))n+1/2, Dxe
n+1/2
φ

)
l2,T,M

−M
(

(Dyeµ + δy(µ))n+1/2, Dye
n+1/2
φ

)
l2,M,T

≤M
(
en+1/2
µ , dx(Dxeφ + δx(φ))n+1/2 + dy(Dyeφ + δy(φ))n+1/2

)
l2,M

+
M

4
‖Den+1/2

µ ‖2l2 + C‖Den+1/2
φ ‖2l2

+ C(‖µ‖2L∞(J;W 3
∞(Ω)) + ‖φ‖2L∞(J;W 3

∞(Ω)))(h
4 + k4)

≤− M

2
‖en+1/2
µ ‖2l2,M + C(en+1

r + enr )2 + C(‖enφ‖2l2,M + ‖en−1
φ ‖2l2,M )

+
M

4
‖Den+1/2

µ ‖2l2 + C‖Den+1/2
φ ‖2l2 + C‖φ‖2L∞(J;W 4

∞(Ω))(h
4 + k4)

+ C(‖µ‖2L∞(J;W 3
∞(Ω)) + ‖φ‖2L∞(J;W 3

∞(Ω)))(h
4 + k4).

The second term on the right hand side of (4.46) can be estimated by

(4.48)

− (Ph[U1DxZ̃ + U2DyZ̃]n+1/2 − un+1/2 · ∇φn+1/2, e
n+1/2
φ )l2,M

≤C‖DZ̃‖2∞‖ên+1/2
u ‖2l2 + C‖Denφ‖2l2,M + C‖Den−1

φ ‖2l2,M
+ C‖en+1/2

φ ‖2l2,M + C(∆t4 + h4 + k4).

Combining (4.46) with (4.47) and (4.48), multiplying by 2∆t, and summing over n from 1 to m give that

(4.49)

‖em+1
φ ‖2l2,M +M

m∑
n=0

∆t‖en+1/2
µ ‖2l2,M

≤C
m∑
n=0

∆t(en+1
r )2 + C

m∑
n=0

∆t‖en+1
φ ‖2l2,M + C

m∑
n=0

∆t‖ên+1/2
u ‖2l2

+
M

4

k∑
n=0

∆t‖Den+1/2
µ ‖2l2 + C

k∑
n=0

∆t‖Den+1/2
φ ‖2l2

+ C(‖µ‖2L∞(J;W 4
∞(Ω)) + ‖φ‖2L∞(J;W 4

∞(Ω)))(h
4 + k4)

+ C‖φ‖2W 3
∞(J;L∞(Ω))∆t

4.

Combining (4.45) with the above equation leads to

(4.50)

‖em+1
φ ‖2l2,M +

M

2

m∑
n=0

∆t‖en+1/2
µ ‖2l2,M + λ(em+1

r )2

+
λ

2
‖Dem+1

φ ‖2l2 +
M

4

m∑
n=0

∆t‖Den+1/2
µ ‖2l2

≤C
m+1∑
n=0

∆t‖Denφ‖2l2 + C
m∑
n=0

∆t‖ên+1/2
u ‖2l2

+ C
m+1∑
n=0

∆t‖enφ‖2l2,M + C
m+1∑
n=0

∆t(enr )2

+ C(∆t4 + h4 + k4).
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Lemma 4.4. Suppose that the hypotheses (4.12) hold, and φ ∈ W 3
∞(J ;W 4

∞(Ω)), µ ∈ L∞(J ;W 4
∞(Ω)),

u ∈ W 3
∞(J ;W 4

∞(Ω))2, p ∈ W 3
∞(J ;W 3

∞(Ω)), then for the case of Stokes equation, the approximate errors of
discrete velocity and pressure satisfy

(4.51)

‖êm+1
u ‖2l2 + ‖Dêm+1

u ‖2 +
m∑
n=0

∆t‖ên+1/2
p ‖2l2,M

≤C
m∑
n=0

∆t‖en+1/2
µ ‖2l2,M + C

m∑
n=0

∆t‖enφ‖2l2,M

+ C(∆t4 + h4 + k4), m ≤ N,

where the positive constant C is independent of h, k and ∆t.

Proof. Subtracting (4.2) from (3.19d) for the case of Stokes equation with γ = 0, we can obtain

(4.52)

dtê
n+1
u,1,i,j+1/2 − ν

dxê
n+1/2
u,1,i+1/2,j+1/2 − dxê

n+1/2
u,1,i−1/2,j+1/2

hi

− ν
Dy ê

n+1/2
u,1,i,j+1 −Dy ê

n+1/2
u,1,i,j

kj+1/2
+Dxê

n+1/2
p,i,j+1/2

=PhWn+1/2
i,j+1/2[DxZ̃]

n+1/2
i,j+1/2 − µ

n+1/2
i,j+1/2

∂φ

∂x

n+1/2

i,j+1/2

+
∂u1

∂t
|n+1/2
i,j+1/2 − [dtÛ1]n+1

i,j+1/2.

For a discrete function {vn1,i,j+1/2} such that vn1,i,j+1/2|∂Ω = 0, multiplying (4.52) by times vn1,i,j+1/2hk and
make summation for i, j with i = 1, · · · , Nx − 1, j = 0, · · · , Ny − 1, and recalling Lemma 3.2 lead to

(4.53)

(dtê
n+1
u,1 , v

n
1 )l2,T,M + ν(dxê

n+1/2
u,1 , dxv

n
1 )l2,M

+ ν(Dy ê
n+1/2
u,1 , Dyv

n
1 )l2,Ty

− (ên+1/2
p , dxv

n
1 )l2,M

=(PhWn+1/2[DxZ̃]n+1/2 − µn+1/2 ∂φ
n+1/2

∂x
, vn1 )l2,T,M

+ (
∂u

n+1/2
1

∂t
− dtÛn+1

1 , vn1 )l2,T,M .

Similarly in the y direction, we have

(4.54)

(dtê
n+1
u,2 , v

n
2 )l2,M,T + ν(dy ê

n+1/2
u,2 , dyv

n
2 )l2,M

+ ν(Dxê
n+1/2
u,2 , Dxv

n
2 )l2,Tx

− (ên+1/2
p , dyv

n
2 )l2,M

=(PhWn+1/2[DyZ̃]n+1/2 − µn+1/2 ∂φ
n+1/2

∂y
, vn2 )l2,M,T

+ (
∂u

n+1/2
2

∂t
− dtÛn+1

2 , vn2 )l2,M,T .
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Adding (4.53) and (4.54) results in

(4.55)

(dtê
n+1
u,1 , v

n
1 )l2,T,M + (dtê

n+1
u,2 , v

n
2 )l2,M,T + ν(dxê

n+1/2
u,1 , dxv

n
1 )l2,M

+ ν(Dy ê
n+1/2
u,1 , Dyv

n
1 )l2,Ty

+ ν(dy ê
n+1/2
u,2 , dyv

n
2 )l2,M

+ ν(Dxê
n+1/2
u,2 , Dxv

n
2 )l2,Tx

− (ên+1/2
p , dxv

n
1 + dyv

n
2 )l2,M

=(PhWn+1/2[DxZ̃]n+1/2 − µn+1/2 ∂φ
n+1/2

∂x
, vn1 )l2,T,M

+ (PhWn+1/2[DyZ̃]n+1/2 − µn+1/2 ∂φ
n+1/2

∂y
, vn2 )l2,M,T

+ (
∂u

n+1/2
1

∂t
− dtÛn+1

1 , vn1 )l2,T,M

+ (
∂u

n+1/2
2

∂t
− dtÛn+1

2 , vn2 )l2,M,T .

Recalling the definition of the interpolation operator Ph and assuming that (4.12b) holds, the first term on
the right hand side of (4.55) can be transformed into the following:

(4.56)

(PhWn+1/2[DxZ̃]n+1/2 − µn+1/2 ∂φ
n+1/2

∂x
, vn1 )l2,T,M

=((PhWn+1/2 − Phµn+1/2)[DxZ̃]n+1/2, vn1 )l2,T,M

+ ((Phµn+1/2 − µn+1/2)[DxZ̃]n+1/2, vn1 )l2,T,M

+ (µn+1/2([DxZ̃]n+1/2 − ∂φn+1/2

∂x
), vn1 )l2,T,M

≤C‖en+1/2
µ ‖2l2,M + C‖enφ‖2l2,M + C‖en−1

φ ‖2l2,M

+
1

4
‖vn1 ‖2l2,T,M + C(∆t4 + h4 + k4).

Similarly the second term on the right hand side of (4.55) can be estimated by

(4.57)

(PhWn+1/2[DyZ̃]n+1/2 − µn+1/2 ∂φ
n+1/2

∂y
, vn2 )l2,M,T

≤C‖en+1/2
µ ‖2l2,M + C‖enφ‖2l2,M + C‖en−1

φ ‖2l2,M

+
1

4
‖vn2 ‖2l2,M,T + C(∆t4 + h4 + k4).

Taking notice of Lemma 4.1 and using Cauchy-Schwarz inequality, the last two terms on the right hand side
of (4.55) can be controlled by

(4.58)
(
∂u

n+1/2
1

∂t
− dtÛn+1

1 , vn1 )l2,T,M + (
∂u

n+1/2
2

∂t
− dtÛn+1

2 , vn2 )l2,M,T

≤1

4
‖vn‖2l2 + C(∆t4 + h4 + k4).



SAV-MAC scheme for CHNS phase-field model 21

Using Lemma 4.2 and the discrete Poincaré inequality, we can obtain

(4.59)

β‖ên+1/2
p ‖l2,M ≤ sup

v∈Vh

(ê
n+1/2
p , dxv

n
1 + dyv

n
2 )l2,M

‖Dv‖

≤C(‖dtênu,1‖l2,T,M + ‖dtênu,2‖l2,M,T + ‖dxên+1/2
u,1 ‖l2,M

+ ‖Dy ê
n+1/2
u,1 ‖l2,Ty

+ ‖dy ên+1/2
u,2 ‖l2,M + ‖Dxê

n+1/2
u,2 ‖l2,Tx

)

+ C‖en+1/2
µ ‖l2,M + C‖enφ‖l2,M + C‖en−1

φ ‖l2,M
+O(∆t2 + h2 + k2).

Setting vn1,i,j+1/2 = dtê
n+1
u,1,i,j+1/2, vn2,i+1/2,j = dtê

n+1
u,2,i+1/2,j in (4.55) leads to

(4.60)

‖dtên+1
u,1 ‖2l2,T,M + ‖dtên+1

u,2 ‖2l2,M,T + ν
‖Dên+1

u ‖2 − ‖Dênu‖2

2∆t

=(PhWn+1/2[DxZ̃]n+1/2 − µn+1/2 ∂φ
n+1/2

∂x
, dtê

n+1
u,1 )l2,T,M

+ (PhWn+1/2[DyZ̃]n+1/2 − µn+1/2 ∂φ
n+1/2

∂y
, dtê

n+1
u,2 )l2,M,T

+ (
∂u

n+1/2
1

∂t
− dtÛn+1

1 , dtê
n+1
u,1 )l2,T,M

+ (
∂u

n+1/2
2

∂t
− dtÛn+1

2 , dtê
n+1
u,2 )l2,M,T .

Noting (4.56)-(4.58), we have

(4.61)

‖dtên+1
u,1 ‖2l2,T,M + ‖dtên+1

u,2 ‖2l2,M,T + ν
‖Dên+1

u ‖2 − ‖Dênu‖2

2∆t

≤C‖en+1/2
µ ‖2l2,M + C‖enφ‖2l2,M + C‖en−1

φ ‖2l2,M

+
1

2
‖dtên+1

u,1 ‖2l2,T,M +
1

2
‖dtên+1

u,2 ‖2l2,M,T

+ C(∆t4 + h4 + k4).

Multiplying (4.61) by 2∆t, and summing over n from 1 to m result in

(4.62)

m∑
n=0

∆t(‖dtên+1
u,1 ‖2l2,T,M + ‖dtên+1

u,2 ‖2l2,M,T )

+ ν‖Dêm+1
u ‖2 − ν‖Dê0

u‖2

≤C
m∑
n=0

∆t‖en+1/2
µ ‖2l2,M + C

m∑
n=0

∆t‖enφ‖2l2,M

+ C(∆t4 + h4 + k4).

Since ênu,1,0,j+1/2 = ênu,1,Nx,j+1/2 and ênu,2,i+1/2,0 = ênu,2,i+1/2,Ny
, then we can obtain the following discrete

Poincaré inequality.

(4.63)

‖êm+1
u ‖2l2 ≤ C‖Dêm+1

u ‖2

≤C
m∑
n=0

∆t‖en+1/2
µ ‖2l2,M + C

m∑
n=0

∆t‖enφ‖2l2,M

+ C(∆t4 + h4 + k4).
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Recalling (4.59), we have

(4.64)

m∑
n=0

∆t‖ên+1/2
p ‖l2,M ≤C

m∑
n=0

∆t‖en+1/2
µ ‖2l2,M + C

m∑
n=0

∆t‖enφ‖2l2,M

+ C(∆t4 + h4 + k4),

which leads to the desired result (4.51).

4.4. Verification of the hypotheses (4.12) and the main results. In this section, we derive the
final results.

Lemma 4.5. Suppose that φ ∈ W 1
∞(J ;W 4

∞(Ω)) ∩ W 3
∞(J ;W 1

∞(Ω)), µ ∈ L∞(J ;W 4
∞(Ω)), and u ∈

W 3
∞(J ;W 4

∞(Ω))2, p ∈W 3
∞(J ;W 3

∞(Ω)) and ∆t ≤ C(h+ k), then the hypotheses (4.12) holds.
Proof. The proof of (4.12a) is essentially identical with the estimates in [14]. Thus we only provide a

detail proof for (4.12b) below.
Step 1 (Definition of C∗): Using the scheme (3.19a)-(3.19f) for n = 0, Lemma 4.3 and 4.4, and the

inverse assumption, we can get the approximation DZ1 and the following property:

‖DZ1‖∞ =‖DZ1 − IhDφ
1‖∞ + ‖IhDφ1 −Dφ1‖∞ + ‖Dφ1‖∞

≤Cĥ−1‖DZ1 − IhDφ
1‖l2 + ‖IhDφ1 −Dφ1‖∞ + ‖Dφ1‖∞

≤Cĥ−1(‖De1
φ‖l2 + ‖IhDφ1 −Dφ1‖l2) + ‖IhDφ1 −Dφ1‖∞ + ‖Dφ1‖∞

≤Cĥ−1(∆t2 + ĥ2) + ‖Dφ1‖∞ ≤ C.

where ĥ and ∆t are selected such that ĥ−1∆t2 is sufficiently small.
Thus define the positive constant C∗ independent of ĥ and ∆t such that

C∗ ≥ max{‖DZ1‖∞, 2‖Dφ(t)‖∞}.

Step 2 (Induction): By the definition of C∗, it is trivial that hypothesis (4.12b) holds true for l = 1.
Supposing that ‖DZl−1‖∞ ≤ C∗ holds true for an integer l = 1, · · · , N − 1, by Lemmas 4.3 and 4.4 with
m = l, we have that

‖Delφ‖l2 ≤ C(ĥ2 + ∆t2).

Next we prove that ‖DZl‖∞ ≤ C∗ holds true. Since

(4.65)

‖DZl‖∞ =‖DZl − IhDφ
l‖∞ + ‖IhDφl −Dφl‖∞ + ‖Dφl‖∞

≤Cĥ−1(‖Delφ‖l2 + ‖IhDφl −Dφl‖l2) + ‖IhDφl −Dφl‖∞ + ‖Dφl‖∞
≤C1ĥ

−1(∆t2 + ĥ2) + ‖Dφl‖∞.

Let ∆t ≤ C2ĥ and a positive constant ĥ1 be small enough to satisfy

C1(1 + C2
2 )ĥ1 ≤

C∗

2
.

Then for ĥ ∈ (0, ĥ1], equation (4.65) can be bounded by

(4.66)
‖DZl‖∞ ≤C1ĥ

−1(∆t2 + ĥ2) + ‖Dφl‖∞

≤C1(1 + C2
2 )ĥ1 +

C∗

2
≤ C∗.

Then the proof of induction hypothesis (4.12b) ends.
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Recalling (4.63), we can transform (4.18) into the following:

(4.67)

‖em+1
φ ‖2l2,M +

M

2

m∑
n=0

∆t‖en+1/2
µ ‖2l2,M + λ(em+1

r )2

+
λ

2
‖Dem+1

φ ‖2l2 +
M

4

m∑
n=0

∆t‖Den+1/2
µ ‖2l2

≤C
m+1∑
n=0

∆t‖Denφ‖2l2 + C
m∑
n=0

∆t‖Dên+1/2
u ‖2

+ C
m+1∑
n=0

∆t‖enφ‖2l2,M + C
m+1∑
n=0

∆t(enr )2

+ C(∆t4 + h4 + k4), m ≤ N,

Multiplying (4.67) and (4.51) by 4C and M respectively and using Gronwall’s inequality, we can deduce that

(4.68)

‖em+1
φ ‖2l2,M +

m∑
n=0

∆t‖en+1/2
µ ‖2l2,M + (em+1

r )2

+ ‖Dem+1
φ ‖2l2 +

m∑
n=0

∆t‖Den+1/2
µ ‖2l2 + ‖êm+1

u ‖2l2

+ ‖Dêm+1
u ‖2 +

m∑
n=0

∆t‖ên+1/2
p ‖2l2,M

≤C(∆t4 + h4 + k4), m ≤ N.

Thus we have

(4.69)

‖Zm+1 − φm+1‖l2,M + ‖DZm+1 −Dφm+1‖l2 + |Rm+1 − rm+1|

+

(
m∑
n=0

∆t‖DWn+1/2 −Dµn+1/2‖2l2

)1/2

+

(
m∑
n=0

∆t‖Wn+1/2 − µn+1/2‖2l2,M

)1/2

≤C(‖φ‖W 1
∞(J;W 4

∞(Ω)) + ‖µ‖L∞(J;W 4
∞(Ω)))(h

2 + k2)

+ C‖φ‖W 3
∞(J;W 1

∞(Ω))∆t
2.

Recalling Lemma 4.1, we can obtain that

(4.70) ‖dx(Um1 − um1 )‖l2,M + ‖dy(Um2 − um2 )‖l2,M ≤ O(∆t2 + h2 + k2),

(4.71)
‖Um1 − um1 ‖l2,T,M+‖Um2 − um2 ‖l2,M,T +

(
m∑
l=1

∆t‖(P − p)l−1/2‖2l2,M

)1/2

≤O(∆t2 + h2 + k2),

(4.72) ‖Dy(Um1 − um1 )‖l2,Ty
≤ O(∆t2 + h2 + k3/2),
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(4.73) ‖Dx(Um2 − um2 )‖l2,Tx
≤ O(∆t2 + h3/2 + k2).

Combing the above results together, we finally obtain our main results:
Theorem 4.6. Suppose that φ ∈ W 1

∞(J ;W 4
∞(Ω)) ∩ W 3

∞(J ;W 1
∞(Ω)), µ ∈ L∞(J ;W 4

∞(Ω)), and u ∈
W 3
∞(J ;W 4

∞(Ω))2, p ∈ W 3
∞(J ;W 3

∞(Ω)) and ∆t ≤ C(h+ k), then for the Cahn-Hilliard-Stokes system, there
exists a positive constant C independent of h, k and ∆t such that

(4.74)

‖Zm+1 − φm+1‖l2,M + ‖DZm+1 −Dφm+1‖l2 + |Rm+1 − rm+1|

+

(
m∑
n=0

∆t‖DWn+1/2 −Dµn+1/2‖2l2

)1/2

+

(
m∑
n=0

∆t‖Wn+1/2 − µn+1/2‖2l2,M

)1/2

≤C(‖φ‖W 1
∞(J;W 4

∞(Ω)) + ‖µ‖L∞(J;W 4
∞(Ω)))(h

2 + k2)

+ C‖φ‖W 3
∞(J;W 1

∞(Ω))∆t
2, m ≤ N,

(4.75) ‖dx(Um1 − um1 )‖l2,M + ‖dy(Um2 − um2 )‖l2,M ≤ O(∆t2 + h2 + k2), m ≤ N,

(4.76) ‖Um − um‖l2 +

(
m∑
l=1

∆t‖(P − p)l−1/2‖2l2,M

)1/2

≤O(∆t2 + h2 + k2), m ≤ N,

(4.77) ‖Dy(Um1 − um1 )‖l2,Ty
≤ O(∆t2 + h2 + k3/2), m ≤ N,

(4.78) ‖Dx(Um2 − um2 )‖l2,Tx
≤ O(∆t2 + h3/2 + k2), m ≤ N.

5. Numerical experiments. In this section we provide some 2-D numerical experiments to gauge the
SAV/CN-FD method developed in the previous sections.

We transform (2.2) as

(5.1) E(φ) =

∫
Ω

{1

2
|u|2 + λ(

1

2
|∇φ|2 +

β

2ε2
φ2 +

1

4ε2
(φ2 − 1− β)2 − β2 + 2β

4ε2
)}dx,

where β is a positive number to be chosen. To apply our scheme (3.19a)-(3.19f) to the system (2.1), we drop

the constant in the free energy and specify E1(φ) =
1

4ε2

∫
Ω

(φ2 − 1− β)2dx, and modify (3.19b) into

(5.2)

W
n+1/2
i+1/2,j+1/2 =− λ[dxDxZ + dyDyZ]

n+1/2
i+1/2,j+1/2 +

λβ

ε2
Z
n+1/2
i+1/2,j+1/2

+ λ
Rn+1/2√
Eh1 (Z̃n+1/2)

F ′(Z̃
n+1/2
i,j ).
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Then we can obtain

(5.3) F ′(φ) =
δE1

δφ
=

1

ε2
φ(φ2 − 1− β).

For simplicity, we define 
‖f − g‖∞,2 = max

0≤n≤m
{‖fn+q − gn+q‖X} ,

‖f − g‖2,2 =

(
m∑
n=0

∆t ‖fn+q − gn+q‖2X

)1/2

,

‖R− r‖∞ = max
0≤n≤m

{Rn+1 − rn+1},

where q = 1
2 , 1 and X is the corresponding discrete L2 norm. In the following simulations, we choose

Ω = (0, 1)× (0, 1), β = 5 and γ = 1.

5.1. Convergence rates of the SAV-MAC scheme for the Cahn-Hilliard-Navier-Stokes phase
field model. In this example 1, we take T = 0.1, ∆t = 1E − 4, λ = 0.1, ν = 0.1, ε2 = 0.1, M = 0.001, and
the initial solution φ0 = cos(πx) cos(πy), u1(x, y) = −x2(x−1)2(y−1)(2y−1)y/128 and u2(x, y) = −u1(y, x).
We measure Cauchy error to get around the fact that we do not have possession of exact solution. Specifically,
the error between two different grid spacings h and h

2 is calculated by ‖eζ‖ = ‖ζh − ζh/2‖.
The numerical results are listed in Tables 1-3 and give solid supporting evidence for the expected second-

order convergence of the SAV/CN-FD scheme for the Cahn-Hilliard-Navier-Stokes phase field model, which
are consistent with the error estimates in Theorem 4.6. Here we only present the results for u1 since the
results for u2 are similar to u1.

Table 1
Errors and convergence rates of the phase function and auxiliary scalar function for example 1.

h ‖eZ‖∞,2 Rate ‖eDZ‖∞,2 Rate ‖eR‖∞ Rate

1/10 3.09E-3 — 1.37E-2 — 2.69E-5 —

1/20 7.74E-4 2.00 3.43E-3 1.99 6.76E-6 1.99

1/40 1.93E-4 2.00 8.60E-4 2.00 1.69E-6 2.00

1/80 4.84E-5 2.00 2.15E-4 2.00 4.23E-7 2.00

Table 2
Errors and convergence rates of the chemical potential and velocity for example 1.

h ‖eW ‖2,2 Rate ‖eDW ‖2,2 Rate ‖eU‖∞,2 Rate

1/10 1.59E-3 — 1.57E-2 — 1.67E-4 —

1/20 4.01E-4 1.98 4.09E-3 1.94 3.67E-5 2.19

1/40 1.01E-4 2.00 1.03E-3 1.99 8.88E-6 2.05

1/80 2.51E-5 2.00 2.59E-4 2.00 2.20E-6 2.01

5.2. The dynamics of a square shape fluid. In this example 2, the evolution of a square shaped
fluid bubble is simulated by using the following parameters:

ε = 0.01, ν = 1, λ = 0.01, M = 0.002, ĥ = 1/100, ∆t = 1E − 3.

The initial velocity and pressure are set to zero. The initial phase function is chosen to be a rectangular
bubble, i.e., φ = 1 inside the bubble and φ = −1 outside the bubble. Snapshots of the phase evolution at
time t = 0, 5, 6, 8, 10, respectively are presented in Fig. 2. As we can see, the rectangular bubble deforms
into a circular bubble due to the surface tension.
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Table 3
Errors and convergence rates of the velocity and pressure for example 1.

h ‖edxU1‖∞,2 Rate ‖eDyU1‖∞,2 Rate ‖eP ‖2,2 Rate

1/10 9.14E-4 — 1.54E-3 — 1.06E-3 —

1/20 2.05E-4 2.16 4.28E-4 1.85 2.63E-4 2.01

1/40 4.99E-5 2.04 1.36E-4 1.66 6.56E-5 2.00

1/80 1.24E-5 2.01 4.56E-5 1.57 1.64E-5 2.00

Fig. 2. Snapshots of the phase function in example 2 at t = 0, 5, 6, 8, 10, respectively.

5.3. Buoyancy-driven flow. In this example 3, as the test of buoyancy-driven flow, we consider the
case of a single bubble rising in a rectangular box. Similar to [5], we modify the Navier-Stokes equation
(2.1c) as follows:

(5.4)
∂u

∂t
+ u · ∇u− ν∆u +∇p = µ∇φ+ b,

where b is a buoyancy term that depends on the mass density ρ. We assume that the mass density depends
on φ, and the following Boussinesq type approximation is applied:

(5.5) b = (0,−b(φ))t, b(φ) = χ(φ− φ0),

where φ0 is a constant (usually the average value of φ), and χ is a constant. In this example, the numerical
and physical parameters are given as follows:

ĥ = 1/100, ∆t = 5E − 4, M = 0.01,

ε = 0.01, ν = 1, λ = 0.001,

φ0 = −0.05, χ = 40.

The initial condition for the phase function is chosen to be a circular bubble that centered at ( 1
2 ,

1
4 ), and the

initial data for the velocity is taken as u0 = 0. Snapshots of the phase evolution at time t = 0.5, 1, 4, 4.1, 4.2, 5
respectively are presented in Fig. 3. It starts as a circular bubble near the bottom of the domain. The
density of the bubble is lighter than the density of the surrounding fluid. As expected, the bubble rises,
reaching an elliptical shape, and then deforms as it approaches the upper boundary.

6. Conclusion. We developed a second-order fully discrete SAV-MAC scheme for the Cahn-Hilliard-
Navier-Stokes phase field model, and proved that it is unconditionally energy stable. We also carried out a
rigorous error analysis for the Cahn-Hilliard-Stokes system and derived second-order error estimates both in
time and space for phase field variable, chemical potential, velocity and pressure in different discrete norms.

The SAV-MAC scheme, with an explicit treatment of the convective term in the phase equation, is
extremely efficient as it leads to, at each time step, a sequence of Poisson type equations that can be solved
by using fast Fourier transforms. We provided several numerical results to demonstrate the robustness and
accuracy of the SAV-MAC scheme for the Cahn-Hilliard-Navier-Stokes phase field model.

We only carried out an error analysis for the Cahn-Hilliard-Stokes system. To derive corresponding error
estimates for the Cahn-Hilliard-Navier-Stokes system, one needs to use new discretizing techniques such as
a high order upwind method to deal with the nonlinear term. This will be a subject of future research.
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Fig. 3. Snapshots of the phase function in example 3 at t = 0.5, 1, 4, 4.1, 4.2, 5 respectively.

REFERENCES

[1] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, The Journal of chemical
physics, 28 (1958), pp. 258–267.

[2] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. III. nucleation in a two-component incompressible
fluid, The Journal of chemical physics, 31 (1959), pp. 688–699.

[3] Y. Chen and J. Shen, Efficient, adaptive energy stable schemes for the incompressible Cahn-Hilliard Navier-Stokes
phase-field models, Journal of Computational Physics, 308 (2016), pp. 40–56.

[4] Q. Cheng, X. Yang, and J. Shen, Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field
diblock copolymer model, Journal of Computational Physics, 341 (2017), pp. 44–60.

[5] C. Collins, J. Shen, and S. M. Wise, An efficient, energy stable scheme for the Cahn-Hilliard-Brinkman system,
Communications in Computational Physics, 13 (2013), pp. 929–957.

[6] C. N. Dawson, M. F. Wheeler, and C. S. Woodward, A two-grid finite difference scheme for nonlinear parabolic
equations, SIAM Journal on Numerical Analysis, 35 (1998), pp. 435–452.

[7] A. E. Diegel, X. H. Feng, and S. M. Wise, Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes
system, SIAM Journal on Numerical Analysis, 53 (2015), pp. 127–152.

[8] R. Durán, Superconvergence for rectangular mixed finite elements, Numerische Mathematik, 58 (1990), pp. 287–298.
[9] X. Feng, Y. He, and C. Liu, Analysis of finite element approximations of a phase field model for two-phase fluids,

Mathematics of Computation, 76 (2007), pp. 539–571.
[10] Y. Gong, J. Zhao, and Q. Wang, Second order fully discrete energy stable methods on staggered grids for Hydrodynamic

phase field models of binary viscous fluids, SIAM Journal on Scientific Computing, 40 (2018), pp. B528–B553.
[11] G. Grün, On convergent schemes for diffuse interface models for two-phase flow of incompressible fluids with general

mass densities, SIAM Journal on Numerical Analysis, 51 (2013), pp. 3036–3061.
[12] D. Han and X. Wang, A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-

Hilliard-Navier-Stokes equation, Journal of Computational Physics, 290 (2015), pp. 139–156.
[13] Z. Hu, S. M. Wise, C. Wang, and J. S. Lowengrub, Stable and efficient finite-difference nonlinear-multigrid schemes

for the phase field crystal equation, Journal of Computational Physics, 228 (2009), pp. 5323–5339.
[14] X. Li, J. Shen, and H. Rui, Energy stability and convergence of SAV block-centered finite difference method for gradient

flows, Mathematics of Computation, 88 (2019), pp. 2047–2068.
[15] C. Liu, J. Shen, and X. Yang, Dynamics of defect motion in nematic liquid crystal flow: modeling and numerical

simulation, Commun. Comput. Phys, 2 (2007), pp. 1184–1198.
[16] H. Rui and X. Li, Stability and superconvergence of MAC scheme for stokes equations on nonuniform grids, SIAM

Journal on Numerical Analysis, 55 (2017), pp. 1135–1158.
[17] J. Shen, C. Wang, X. Wang, and S. M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-

Schwoebel type energy: application to thin film epitaxy, SIAM Journal on Numerical Analysis, 50 (2012), pp. 105–125.
[18] J. Shen, J. Xu, and J. Yang, The scalar auxiliary variable (SAV) approach for gradient flows, Journal of Computational

Physics, 353 (2018), pp. 407–416.
[19] J. Shen, J. Xu, and J. Yang, A new class of efficient and robust energy stable schemes for gradient flows, SIAM Review,

61 (2019), pp. 474–506.
[20] J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations, Discrete Contin. Dyn.



28 XIAOLI LI AND JIE SHEN

Syst, 28 (2010), pp. 1669–1691.
[21] J. Shen and X. Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with

different densities and viscosities, SIAM Journal on Scientific Computing, 32 (2010), pp. 1159–1179.
[22] J. Shen and X. Yang, Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows, SIAM

Journal on Numerical Analysis, 53 (2015), pp. 279–296.
[23] J. D. van der Waals, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density,

Journal of Statistical Physics, 20 (1979), pp. 200–244.
[24] C. Wang and S. M. Wise, An energy stable and convergent finite-difference scheme for the modified phase field crystal

equation, SIAM Journal on Numerical Analysis, 49 (2011), pp. 945–969.
[25] A. Weiser and M. F. Wheeler, On convergence of block-centered finite differences for elliptic problems, SIAM Journal

on Numerical Analysis, 25 (1988), pp. 351–375.
[26] C. Xu and T. Tang, Stability analysis of large time-stepping methods for epitaxial growth models, SIAM Journal on

Numerical Analysis, 44 (2006), pp. 1759–1779.
[27] X. Yang and G. Zhang, Numerical approximations of the Cahn-Hilliard and Allen-Cahn equations with general nonlinear

potential using the Invariant Energy Quadratization approach, J. Sci. Comp., 82 (2020), p. 55.
[28] P. Yue, J. J. Feng, C. Liu, and J. Shen, A diffuse-interface method for simulating two-phase flows of complex fluids,

Journal of Fluid Mechanics, 515 (2004), pp. 293–317.
[29] J. Zhao, X. Yang, Y. Gong, and Q. Wang, A novel linear second order unconditionally energy stable scheme for a

hydrodynamic-tensor model of liquid crystals, Computer Methods in Applied Mechanics and Engineering, 318 (2017),
pp. 803–825.

[30] J. Zhao, X. Yang, J. Li, and Q. Wang, Energy stable numerical schemes for a hydrodynamic model of nematic liquid
crystals, SIAM Journal on Scientific Computing, 38 (2016), pp. A3264–A3290.


