ON A SAV-MAC SCHEME FOR THE CAHN-HILLIARD-NAVIER-STOKES PHASE
FIELD MODEL AND ITS ERROR ANALYSIS FOR THE CORRESPONDING
CAHN-HILLIARD-STOKES CASE *
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Abstract. We construct a numerical scheme based on the scalar auxiliary variable (SAV) approach in time and the MAC
discretization in space for the Cahn-Hilliard-Navier-Stokes phase field model, prove its energy stability, and carry out error
analysis for the corresponding Cahn-Hilliard-Stokes model only. The scheme is linear, second-order, unconditionally energy
stable and can be implemented very efficiently. We establish second-order error estimates both in time and space for phase field
variable, chemical potential, velocity and pressure in different discrete norms for the Cahn-Hilliard-Stokes phase field model.
We also provide numerical experiments to verify our theoretical results and demonstrate the robustness and accuracy of the
our scheme.
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1. Introduction. Interfacial dynamics in the mixture of different fluids, solids or gas has been one of
the fundamental issues in many fields of science and engineering, particularly in materials science and fluid
dynamics, see for instance, [1, 2, 28, 18] and the references therein. In recent years the phase field (i.e. diffuse
interface) methods, have been successfully used to approximate a variety of interfacial dynamics. The basic
idea for the phase field methods is that the interface is represented as a thin transition layer between two
phases [23, 3].

The phase field model can be derived from an energy variational approach. Thus a crucial goal in
algorithm design is to preserve the energy law at the discrete level. A large number of numerical schemes
that have been developed for phase field models. Among them, the convex splitting approach [17, 24, 13]
and stabilized linearly implicit approach [15, 20, 26, 30] are two popular ways to constuct unconditionally
energy stable schemes. Unfortunately, the convex splitting approach usually leads to nonlinear schemes, and
the stabilized linearly implicit approach results in additional accuracy issues and may not be easy to obtain
second order unconditionally energy stable schemes. Recently, a novel numerical method of invariant energy
quadratization (IEQ), has been proposed in [4, 29, 27, 10]. This method is a generalization of the method of
Lagrange multipliers or of auxiliary variable. The TEQ approach is remarkable as it permits us to construct
linear and second-order unconditionally energy stable schemes for a large class of gradient flows. However,
it leads to coupled systems with time-dependent variable coefficients. The scalar auxiliary variable (SAV)
approach [18, 19] inherits advantages of the IEQ approach but leads to decoupled systems with constant
coefficients so it is both accurate and very efficient.

As for the Cahn-Hilliard-Navier-Stokes phase-field models, Shen and Yang [21, 22] constructed several
efficient time discretization schemes for two-phase incompressible flows with different densities and viscosities,
established discrete energy laws but no error estimates were derived. Second order in time numerical scheme
based on the convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes
equation has been constructed by Han and Wang in [12]. With regards to the numerical analysis, Feng,
He and Liu [9] proposed and analyzed some semi-discrete and fully discrete finite element schemes with the
abstract convergence by making use of the discrete energy law. Griin [11] proved an abstract convergence
result of a fully discrete scheme for a diffuse interface models for two-phase incompressible fluids. Diegel,
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Feng, and Wise [7] developed a fully discrete mixed finite element convex-splitting scheme for the Cahn-
Hilliard-Darcy-Stokes system. The time discretization used is a first-order implicit Euler. They proved
unconditional energy stability and error estimates for the phase field variable, chemical potential and velocity.
No convergence rate for pressure was demonstrated in their work.

The work presented in this paper for the Cahn-Hilliard-Navier-Stokes phase field model is unique in the
following aspects. First, we construct fully discrete linear, second-order (in space and time), unconditionally
energy stable scheme for the Cahn-Hilliard-Navier-Stokes phase field model. Furthermore, the scheme can
be very efficiently implemented. Secondly, we carry out a rigorous error analysis to derive second-order
error estimates both in time and space for phase field variable, chemical potential, velocity and pressure in
different discrete norms for the Cahn-Hilliard-Stokes phase field model. We believe that this is the first such
result for any fully discrete linear schemes for Cahn-Hilliard-Stokes or Cahn-Hilliard-Navier-Stokes models
without assuming a uniform Lipschitz condition on the nonlinear potential.

The paper is organized as follows. In Section 2 we describe the problem and present some notations. In
Section 3 we present the fully discrete SAV-MAC schemes and prove their stability. In Section 4 we carry
out error estimates for the fully discrete SAV-MAC scheme for the Cahn-Hilliard-Stokes system. In Section
5, we present some numerical experiments to verify the accuracy of the proposed numerical schemes.

2. The Problem Description and Notations. We consider the following incompressible Cahn-
Hilliard-Navier-Stokes phase field model (cf. [9, 3, 7]):

(2.1a) %:MAufu~V¢ in QxJ,

(2.1b) p=—=MA¢+ \F'(¢) in Qx J,

(2.1c) %tl +yu-Vu—vAu+Vp=puVe in Qx J,

(2.1d) V-u=0 inQxJ,
dp  Ou _

(2.1e) a—n—a—n—O,U—O on 0 x J,

1
where F(¢) = @(1 —¢*)2, M > 0 is the mobility constant, v > 0 is the fluid viscosity. A > 0 is the mixing

coefficient, 2 is a bounded domain and J = (0,7]. The unknowns are the velocity u, the pressure p, the
phase function ¢ and the chemical potential u. It models the dynamics of the mixture of two-incompressible
fluids with the same density, which is set to be pg = 1 for simplicity. ~ is an additional parameter that
we added to distinguish the Cahn-Hilliard-Navier-Stokes model (v = 1) and the Cahn-Hilliard-Stokes model
(v =0). When the viscosity v is not sufficient small, the Cahn-Hilliard-Stokes model can be used as a good
approximation to the Cahn-Hilliard-Navier-Stokes model.
Taking the inner products of (2.1a) with s, (2.1b) with 22

5> (2.1c) with u respectively, we obtain the
following energy dissipation law:

dE(é,u
22) BOW) — Mwul? - vvul?,

where E(¢,u) = [,{3[ul®> + A(5|V¢|> + F(¢))} is the total energy.
We now introduce some standard notations. Let L™(Q) be the standard Banach space with norm

1/m
ol = [ lomaa) "
Q

(F.9) = (Frg) 12 = /Q fgdo2

For simplicity, let
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denote the L?(€) inner product, [|v]joc = |||z (q). And W} () be the standard Sobolev space

WHQ) = {g: llghwe@) < oo}

1/p

(2.3) lglwey = [ 2 10912,
|| <k

Throughout the paper we use C', with or without subscript, to denote a positive constant, independent
of discretization parameters, which could have different values at different places.

3. The SAV Schemes and their stability. In this section, we first reformulate the phase-field system
into an equivalent system with an additional scalar auxiliary variable (SAV). Then, we construct semi-discrete
and fully discrete SAV schemes, and prove that they are unconditionally energy stable.

3.1. The SAV reformulation. We introduce a scalar auxiliary variable r(t) = \/E1(¢) + § with any
d > 0, and reformulate the system (2.1) as:

(3.1a) %:MAu—u-V¢ mn QX J,
r
(3.1b) p=-AAG+\——=—=F'(¢) inQxJ,
Ei(¢) + 0
1
3.1c rzi/F' dx in QxJ,
(3.1c) ' S B0 10 Jo (9)o
(3.1d) ({;—?+'yu~VufyAu+Vp:,uV¢ in Qx J,
(3.1e) V-u=0 inQxJ

where E1(¢) = [, F(¢)dx. It is clear that with r(0) = \/E1(d|i—0) + J, the above system is equivalent
to (2.1). Taking the inner products of (3.1a) with p, (3.1b) with %, (3.1c) with 2Ar and (3.1d) with u
respectively, we obtain the following energy dissipation law:

dE o,u,r
(32 e A

where E(¢,u,7) = Jo 3{lul? + A\[V¢[*}dx + Ar? is the total energy.
3.2. The semi-discrete SAV/CN scheme. Set At =T/N, t" = nAt, for n < N, and define

fn+1/2 _ fn + fn+1.

fn _ fm—1
dfl" = 22— <
[d2f] At ’ 2
Then, a second-order SAV scheme based on Crank-Nicolson is:
¢t - g i
(3.3&) A — MAMn+1/2 a2, V¢n+1/2,
prt1/2 B
(3.3b) un+1/2 = 7)\A¢n+1/2 + A _ Z;#(¢n+1/2)7
Ey(¢nt1/2) +6
n+1 n

r -Tr

1
At 24/ By(¢m+1/2) + 6

(3.3¢)

g O = "
[
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un+1At_ w =+ ’Yﬁn+1/2 Svut/2 — pAuntt/?
(3.3d) VP2 /2 g2,
(3.3e) V.ourtl/2 =,

where @"*/2 = (3u” — u"1)/2 and ¢"T1/2 = (3¢" — ") /2. We also set u~! = u’.
THEOREM 3.1. The scheme (3.3) is unconditionally energy stable in the sense that

E" (¢, u,r) — E™(¢,u,r) = —MAH| V" T2|2 — vAL Va2,
where

~ 1
E”+1(¢, UJ') :/ 5{|un+1|2 +)\|v¢n+1|2}dw+)\‘7m+l‘2.
Q

Proof. The proof is quite straightforward. Taking the inner products of (3.3a) with ,u"*é, (3.3b) with
¢>"+A17;¢", (3.3¢) with 2A\r"*1/2 and (3.3d) with u”+/2 respectively, we obtain immediately the desired result.

REMARK 3.1.

e The above scheme is second-order in time and linear, but it is weakly coupled. The above stability
result indicates that this weakly coupled system is positive definite.

o If ut1/2 in (3.3a) is replaced by an explicit second-order extrapolation, (¢™+1, u"*+* r"+1) can be
obtained from (3.3a)-(3.3c) efficiently by solving decoupled elliptic systems with constant coefficients
(cf. [18]). Once ™! is known, we can solve (u™*,p"*1) from (3.3d)-(3.3e) which is essentially a
generalized Stokes problem that can be solved efficiently with a MAC scheme (see below).

o We can use the decoupled scheme with explicit treatment of u™+/2 in (3.3a) as a preconditioner for
the weakly coupled scheme.

3.3. Spacial discretization by finite differences. To fix the idea, we consider Q = (Lj;, L) X
(Liy, Lyy). Three dimensional rectangular domains can be dealt with similarly.
The two dimensional domain € is partitioned by Q, x £,, where

QJ::LZQC::EO<I1<"'<xNT,—1<xNz:LT‘£7
Qy:Lly:yO<y1<"'<yNy—1<yNy:L7‘y-

For simplicity we also use the following notations:

(3.4) T_1/2 = %0 = Liz, @N, 1172 = 2N, = Lra,

Y-1/2 = Yo = Lly, YN,+1/2 = YN, = Lry.

For possible integers 7,5, 0 <7 < N, 0 < j < Ny, define

Tit1/2 = %7 hi+1/2 =Xiy1 — T, h= Hl;fiX h7:+1/2,
h; = Tit1/2 — Li—1/2 = M,
Yj+1/2 = %v Kjvij2 =y — vy, k= max kjt1/2s
ki =Yjt1/2 —Yj—1/2 = —kj+1/2 —12_ kjil/Q,

Qiv1/2,541/2 = (@i Tig1) X (Y5, ¥j41)-
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It is clear that

hy/2 hn,—1/2 k12 kn,—1/2
ho=—=, hy, = ———=, ko= —1=, ky, = —2—1=.
0 2 s IUN, 2 ) 0 2 s VN, 2
For a function f(z,y), let fi., denote f(x;,ym) where I may take values i, i + 1/2 for integer ¢, and m may
take values j, j+ 1/2 for integer j. For discrete functions with values at proper nodal-points, define

fixrtm — fim Juj+3/2 = fi 412
(e fliv1/2,m = Hhia [Dy fli,j+1 = s /k: tantLy
(3.5) i+1/2 1
D.fl. ~ Jivzzzm — fit12.m d ~ frger— fug
[ :L‘f]l+l m — - ; [ .ﬂ J+1/2 — - .
hl+1 kj+1/2

For functions f and g, define some discrete {2 inner products and norms as follows.

Ny—1Ny—1
(3.6) (f79)12,M = Z Z hi+1/2kj+1/2fi+1/2,j+1/29i+1/2,j+1/27
i=0 j=0
Ny Nyfl
(3.7) (f,9er, =D Y hikjfijgii,
=0 j=1
No,—1 Ny
(3.8) (fs g)lz,Ty = hik; fi9i.5,
=1 j=0
(3.9) g = (fi Nzes €=M, To, Ty,

Further define discrete 12 inner products and norms as follows.

Ny—1Ny—1

(3.10) (fs9)erm = Z Z hikji1)2fij+1/29i,5+1/2;
=1 j=0
Ny—1Ny—1

(3.11) (fs9)izmr = Z Z hivi2kifivi/2,59i+1/2,5
=0 j=1

(3.12) 117 200 = (s Dz, Wz s = (F P

For vector-valued functions u = (ug, usg), it is clear that

N,—1Ny—1
(3.13) ldaur || pr = Z Z hit1j2kjp/2ldetiniv1y2 jo1/20%,
=0 j=0
N.—1 Ny
(3.14) Dyl 7, = > hikj|Dyus i 417,
i=1 j=0

and ||dyuz||i2.ar, || Dyuzlliz7, can be represented similarly. Finally define the discrete H'-norm and discrete
I2-norm of a vectored-valued function u,

(3.15) 1Dul* = [ldous [ ps + |1 Dy lliz 7, + | Dauallz oz, + [ldyuzllfz ay-
(3.16) Il = lluall?e zar + luzllEe pr -

For simplicity we only consider the case that for all h; 1/ = h, kji1/2 = k, i.e. uniform meshes are used
both in z and y-directions.
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Denote by {Z", W™, R*, U™, P"}N_,, the approximations to {¢", u™,r™ u”, p"}\_, respectively, with
the boundary conditions
D, ]0 g+1/2 = [DwZMLVz,jH/z =0, 0<j<Ny—1,
D, ]1+1/2,0 = [DyZ];L+1/2,Ny =0, 0<i< N, —1,
D W ]0 J4+1/2 = [Dzwm g4+1/2 = 0, 0<j<Ny,—-1,

[
[
[
[DyW1i1)20 = [DyWiiijon, =0, 0<i< Ny —1,

(3.17) |
Utojri72 = Uln, 12 =05 0<j<N, -1,
Uln’i’o = UlnvivNy = 0’ 0 S 1 S Nxv
UgL’O’j :UznvNIJ :0’ OS]SNZW
U3iv1/2,0 = Udiv1/2.n, =0, 0<i< N, —

and initial conditions
Z?+1/2,j+1/2 = ¢?+1/2,j+1/27 0<i<N,—-1,0<j<N,—1,
(3.18) U1()71'7j+1/2 = u(l),i7j+1/2; 0<i<N;,0<j<Ny,

0 _.0 ‘ .
Usiv1/2.5 = Uz2,i1/2,50 0<i<N;,0< 7 <N,

where ¢°, u® are given initial conditions respectively.
Then, the fully discrete SAV/CN scheme based on the MAC discretization is as follows:

(3.19a) [d: 2"+ = M[d, D, W + d,D,W|"tY/2 - PYPEU,D,Z + Us D, Z]" /2
Rn+1/2

(3.19b) W2 = Ad, D, + dy Dy 2] A P2y,

E{z(ZnH/z) 45
1
9 /E{L(Z"'H/Q) +6
[dU)" ! + %[Ulpz(PgUl) + PP, (U Uy) + PY(PFU,D,UY)
(3.194) +dy (PYUPEU) "2 — uD,(d,Uy)" /2 — vd, (D, Uy )" /2
+ [pr]n+1/2 —_ PﬁWn+1/2[DzZ]n+l/2,
[d:Us)™* + 2P (PLULD,Us) + do(PLUL P Us) + U2 D, (PLUS)

(3.19¢) [d;R)" ! = (F'(Z™Y2), d 2" )2

(3.19€) + PY(dy (U U))|" /2 — vDy,(d, Uz)" % — vd, (D, Uy)" /2
+ [Dyp]n+1/2 —_ P}?iwn—l—l/Q[DyZ]n-‘rl/Q,
(3.19f) [d, U2 4 [d, Up]" T2 = 0,

where P{ and P} are linear interpolation operators in the z and y directions respectively, and HH1/2 —
g™ — 10" for any sequence {H"}.

It is easy to verify that the following discrete integration-by-part formulae hold.

LEMMA 3.2. /25] Let {Vl,i,j-i-l/Q}a {‘/271‘_’_1/27]'} and {q17i+1/2,j+1/2}3 {Q2,i+1/2,j+1/2} be discrete functions

with V1o j1172 = ViN, j+172 = Vaiiv1/2,0 = Vajiv1/2,n, = 0, with proper integers i and j. Then there holds
(Deqi; Vi)erm = —(q1,dxVi)i2 ar,

(3.20)
(Dya2, V2)z e = —(g2,dyVa)iz a1
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THEOREM 3.3. The scheme (3.19a)-(3.19f) is unconditionally energy stable in the sense that
E"Y(Z, U,R) — E"(Z, U,R) = —MAt| DW™+/2||, — uAt|| DU /2|3,

where DH = (DyH,D,H) for any discrete scalar or vector function H, and

[n 1 1 n n
E"Y(Z,U,R) = 5| Ul + Mz IDZ IR+ (RTT?).

Proof. Multiplying (3.19a) by Wii-:%2j+1/2hk7 and making summation on ¢,j for 0 <¢i < N, —1, 0 <
j < N, — 1, we have
(dth+1, Wn+1/2)l2$M :M(demwn+l/2 + dyDyWn+1/2, Wn+1/2)l2,M

(3.21) i i
_ (’pg'p}f[Ulez 4 UgDyZ]"H/Q, Wn+1/2)l2,M-

Taking notice of Lemma 3.2, the first term on the right hand side of (3.21) can be transformed into the
following:

M(dszwn—O—l/Q + dy[)yv{/ﬂ-{-l/?7 Wn+1/2)l2,M

(3-22) = M||Dan+1/2H122,T,M - MHDyWnJrl/z”lz?,M,T
= — M|DW"+Y2|.
Multiplying (3.19b) by dtZ;fll/z’mehk’ and making summation on 4,5 for 0 < i < N, — 1, 0 < j <

Ny, — 1, we have

(de 2" WYY = — N(dy Do 22 4 dy Dy 272, d, 27 2y

Rn+1/2 ~
(3.23) L (F"(Z"2),dy 2" )2

BNZm1/2)+ 5

Recalling Lemma 3.2, the first term on the right hand side of (3.23) can be estimated by:

~Mdy D, Z" Y2 4 d, D, 272 d, 7Y 2
(324) :A(D12n+1/27 dtDwZn+1)l2,T,M + )\(DyZn+1/27 dtDyZTL+1)l2’J\/[’T
_ Dz — Dz
2At )

Multiplying equation (3.19¢) by (R"*! + R") leads to

n+1\2 _ n\2 n+1/2 5
(325) (R ) (R ) _ R (F/(Zn+1/2),dtzn+1)12)]\/[-

At Eh(Zn+1/2) 4§

Combining (3.25) with (3.21)-(3.24) gives that

VB - (R D2 — D2
(3.26) At 2At
_ MHDWn+1/2||l22 _ (PﬁPﬁ[UleZ + UQDyZ]”“/Q, Wn+1/2)l2,M-
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Multiplying (3.19d) by U{L:rjlﬁ/zhk, and making summation on ¢,j for 1 <i < N, -1, 0<j < N, — 1, we
have

@O U2 a5 (072 Do (PRUT ), U7 2) e g
+ (P (UL 2072, U1 ) s+ (PRPRTS 2Dy UL ), U7
(3:27) + (dy (PRUT PR %), U1 P g )+ wlda UL R
+v||D, Un+1/2||l2,Ty _ (Pn+1/27de{z+1/2)l2,M
=(Prwn /2D, Zn+1/2, U1n+1/2)l2,T,]\/I-

Thanks to Lemma 3.2, we have

(3.28) n+1/2 dm(ﬁlnﬂ/zUlnH/z))lz y

) k)

(W“”Dmif MRS W /AT Py
— (P}
— (P}

( n+1/2Un+1/2)7 U1n+1/2)l27T7M~

The fifth term on the left hand side of (3.27) can be estimated as follows:
(dy(PLUT P PET ), U1 )
(3.29) = — (PYUTT PP Uy 2 DU )
=~ (PRPET 2Dy UL 2), U )

Multiplying (3.19¢) by U;+j1//22]hk and making summation on 4,j for 0 <¢ < N, —1, 1 <j < N, — 1, we
can obtain

(dtUQ"H,U"Hﬂ) 2yt + 2 ((’Ph(PﬁUnHmD Un+1/2) UnH/Q)lz‘,M,T
+ (de(PLOT T PP 2) U3 e aa o + (O3 2Dy (PO, U5 e
(3.30) (P Ay (U5 205 3), U5 ) ) + vldy U2
DU P g, = (PR U ) g
:(PanH/QDyZnH/Qa U;Hm)l?,M,T-
Similar to the estimates of (3.28) and (3.29), we have

(P (PROT 2 DU %), U )

(3.31) . . .

+ (do(PYOTT PP Uy 2 US Y2 = 0,
and
532 (052D, (PRUE ), U3 )i e

+ (PR U5 PO ), U5 e e = 0.
Combining (3.27)-(3.32) and recalling (3.19f) lead to

U2 — | U")|2
(3.33) N
=(P,WnH/2D, Zn /2] U1n+1/2)l2,T,M + (PyWm /2D, Zn 12, UstY ) e ar

IREE]

+ v||DU|)?
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Taking notice of (3.26), we have

(Rm1)? — (R")? | IDZ" ) — D277
At 20t

(U™ — 072
2At

A

(3.34)

. | DUIP = —M|DW™ 2|, < 0,

which implies the desired result. O

4. Error estimates. In this section we carry out an error analysis for the full discrete scheme (3.19a)-
(3.19f) with v = 0, i.e. for the Cahn-Hilliard-Stokes system. The analysis for the case of v = 1, i.e. for the
Cahn-Hilliard-Navier-Stokes system, will be extremely technical as it requires a high order upwind method
to deal with the nonlinear convection term.

4.1. An auxiliary problem. We consider first an auxiliary problem which will be used in the sequel.
Let (¢, 1, u,p) be the solution of Cahn-Hilliard-Stokes system, and set g = uV¢ — %. For each time
step n, we rewrite (2.1¢)-(2.1d) with y =0 as
(4.1a) —vAu" +Vpt =g in QxJ,
(4.1b) V-u"=0 inQxJ,

and consider its approximation by the MAC scheme: For each n = 1,..., N, let {IA]l"in/Q}, {(7;”1/2],}
and {131."“/2 j+1/2) such that

yn+1/2 yn+1/2 ryn+1/2 yn+1/2
_ de vit1/2541/2 ~ %Uri1)a iy _ VDyUl,z',jil - DyUl,m‘/
hi ki1
(4.2) + D P =g, 1SS N, —10<j <N, —1,
“Sn4+1/2 “Sn4+1/2 n+1/2 n+1/2
DiUl,i+1/,j - DIUl,i,j/ B deU2,i+1/2,j+1/2 - dyU2,i+1/27j—1/2
hi+1/2 k;
pn+1/2 n+1/2 . .
(4.3) + Dy P =gy, 0<i< N, —1,1<j <N, —1,
Sn+1/2 Sn+1/2 o . .
(4.4) AUy T sy + AUy Ty )y =0, 0<i< N, —1,0<j <N, — 1,

where the boundary and initial approximations are same as equations (3.17) and (3.18).

Inspired by [6], we extend the work in Rui and Li [16] to the above approximation. By following closely
the same arguments as in [16], we can prove the following:

LEMMA 4.1. Assuming that w € W3 (J; WL (Q))2, p € W2 (J; W2 (), we have the following results:

(4.5) Ido (T = w2 s + Ny (T3 = ub ) 2 < O(AE + 12 + &),
(4.6) I de(UP Y = w2 2 poas + e (UZHY = ul Y |2 ar e < O(AE + b2 + k2),
(4.7) 1O — w2 s + 087 = ud ™Yo arr < O(AE + 2 + k),
(4.8) 1Dy O+ = ul )iz m, < O(AE + 1 4+ K32),



10 XTAOLI LI AND JIE SHEN

(4.9) 1D (U5 = ub ™) [lie 7, < O(AE + h*2 + k2,
N 1/2

(4.10) (Z At|(Z - p)l_1/21227M> < O(A#? + h? + k?).
=1

4.2. discrete LBB condition. In order to carry out error analysis, we need the discrete LBB condition.
Here we use the same notation and results as Rui and Li [16, Lemma 3.3]. Let

b(v,q) = 7/ qdivvdx, vV, ge W,
Q
where

V = H}(Q) x H}(Q), Wz{qeLQ(Q):/qux:O}.

Fic. 1. Partitions: (a) Tr, (b) Tk, (c) T2

Then we construct the finite-dimensional subspaces of W and V by introducing three different partitions
Th, Tit, T;2 of Q. The original partition &, x &, is denoted by 7, (see Fig 1). The partition 7! is generated
by connecting all the midpoints of the vertical sides of ;11,2 j11/2 and extending the resulting mesh to
the boundary I'. Similarly, for all €;,1/2 j4+1/2 € Tr We connect all the midpoints of the horizontal sides of
Qi41/2,j+1/2 and extend the resulting mesh to the boundary I', then the third partition is obtained which is
denoted by T,2.

Corresponding to the quadrangulation 7, define Wy, a subspace of W,

Wi, = {qh : qu|T = constant, VT € Ty, and/ qdr = 0} .
Q
Furthermore, let V), be a subspace of V such that V,=S} x S,QL, where
Sh={9€COQ): gl € QuT), VT € T, and glr =0}, 1=1,2,

and 1 denotes the space of all polynomials of degree < 1 with respect to each of the two variables x and y.
Then we introduce the bilinear forms

br(Vhs qn) = — > ann(divvy)dz, vi, € Vi, qn € Wh,

Qiya1/2,j+1/2€Th Qit1/2,5+41/2
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where

I, : C(O)(§i+1/2,j+1/2) — Qo(Qiy1/2,j4+1/2), such that
(Tr@)it1/2.541/2 = Cit1/2,5+1/2> Y Qit1/2.5+1/2 € Th-

Then, we have the following result:
LEMMA 4.2. There is a constant > 0, independent of h and k such that

b (v, qr
(4.11) sup g > Bllanlliz,p Yan € Wh,.
onevy, |[Dunl

4.3. A first error estimate with a L°° bound assumption. we shall first derive an error estimate

assuming that there exists two positive constant C, and C* such that

(4.12a) 12"l < Ch,
(4.12b) IDZ"||o < C*.

Late we shall verify this assumption using an induction process.
We define the operator I, : 'V — V},, such that

(4.13) (V- -Ipv,w) = (V- v,w) Yw € Wy,
with approximation properties [6]

(4.14) IV = Tnv]| <ClIvliwz @h,
(4.15) [V (v—TIyv) SC||V'VHW21(Q)E7
where h = max{h, k}.
Besides, by the definition of I,v and the midpoint rule of integration, the L° norm of the projection is
obtained by
(4.16) IV =Thvo < ClIVIlwz @)h-

Furthermore from Durdn [8], we have the following estimates which is necessary for the derivative and
analysis of our numerical scheme:

(4.17) v — Ipv];2 < Ch2.

For simplicity, we set

n __ mn n n __ n n n __ pn n
ep=2"—¢", e, =W"—pu", el =R" —r",
n __ n n __ -n ~n
ea=U"-U +U —u"=¢€, +ey,

n _ pn _ pn pn n __ on ~n

e, =P P*"+ P —p e, + ey

LEMMA 4.3. Suppose that the hypotheses (4.12) hold, and ¢ € W3, (J;WL(Q)),n € L>®(J; WL (Q)),
u e W3 (J;WL(Q)2, p € W2 (J;W2,(Q)), then the approzimate errors of discrete phase function and



12 XTAOLI LI AND JIE SHEN

chemical potential satisfy

M m
leg M7 ar + 5 > Atllep™ | + Aet)?
n=0

)\ m M < n
+ 5 Deg 2 4 T Z At|| Dej 213,

(4.18) w 1/2)12
<C Y At|Deyl|% + CZ Atlfert1/?)2,
n=0 n=0
m+1 m—+1
+ O At|en]fa +C > At(el)?
n=0 n=0

+CO(A** +h* +EY), m <N,

where the positive constant C' is independent of h, k and At.
Proof. Denote

0 0
5.(6) = Dat = 52, 3,(0) = Dy — 51

7 0
() = Dapt = 50, 8y(1) = Dypu = 5.

Subtracting (3.1a) from (3.19a), we obtain

n+1/2
[dteqﬁ]H.l/z j+1/2 = M[dI(Dweu + 595(#)) + dy(Dyeu + 52/(/‘))]1:1/273'4.1/2

S1n+1/2 n+1/2 n+1/2
(4.19) - 7’27’;1 [UleZ + U2DyZ]i+1/2,j+1/2 + Wit1/2541/2° v¢i+1/2,j+1/2

+1/2 +1/2
+ ﬁi+1/2,j+1/2 + ;i+1/2,j+1/2’
where
Tn+1/2 n+1/2 n+1
(4.20) Li+1/2,541/2 — |z+1/2,y+1/2 2fd’}z‘+1/2,j+1/2
§C||¢||W30(J;Lw(9))At2,

n+1/2 3# o n+1/2 n+1/2

(421) T2 ,i+1/2,5+1/2 M[d ox + dy ay]z+1/2,]+1/2 MA z+1/2,]+1/2

< CM(B* + ) ||pll oo (g:wa (9))-

Subtracting (3.1b) from (3.19b) leads to

n+1/2 n+1/2
eu,1+/1/2,j+1/2 )‘[dx(Dw€¢ + 6x(¢)) + dy(Dye¢ + 5y(¢>)]i+1//2,j+1/2

Rn+1/2 ”n+1/2
A e F/<Zi+1/2,j+1/2)
(4.22) EY(Zn+1/2) +6
pntl/2 F/(¢”+1/2 )
E1(¢n+1/2) T i+1/2,j+1/2
+ )\Tn+l/2

3,i+1/2,5+1/2°
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where

n+1/2 o A¢n+1/2 [d 8¢

T _ a¢]n+l/2
(423) 3,i4+1/2,54+1/2 — i+1/2,5+1/2

+d i+1/2,j+1/2

< O + K¢l L (raws ()

Subtracting equation (3.1c) from equation (3.19¢) gives that

dt6n+1 = !

T h(7n+1/2
(4.24) 22/ EXZ )+ 46
2\/ E1 ¢n+1/2 /Q

(F/(Zn+1/2), dth+1)l2,M

n+1/2 n+1/2 n+1/2
(¢ dx + T}

where
(4.25) T2 = P2 g < Clrllws () A

n+1/2

;L,i+1/2,j+1/2hk’ and making summation on ¢,j for 0 <i < N, -1, 0<j <

Multiplying equation (4.19) by e
Ny, — 1, we have

n+1 +1/2
(dt€¢ ,ez / )ZZ,M

=M (dx(Dareu + 5x(#))n+1/2 +dy(Dyey + 52/(#))”“/27 €Z+1/2)zz M

_ (7)5775[[]1sz + UszZ]n+1/2 . un+1/2 . V¢n+1/2, €Z+1/2)l2,M
n+1/2 n
+ (T2 entt?)

(4.26)

+ (T ety

)

12,M-

Recalling Lemma 3.2, the first term on the right hand side of (4.26) can be estimated as follows:

M (dx(Daceu + 5w(ﬂ))n+1/2 + dy(Dyeﬂ + 59(’“))n+1/2’ EZ+1/2>12 M

— n+1/2 n+1/2
== M ((Dyey + 8, ()" /2, Dyet/ )lmM
4.27 n n
(4.27) -M ((Dyeu + 8y ()" 2, Dyeu+1/2)l2 T
= — M| Dep ™ 2|f = M (6, ()", Doelt ™)z s

= M6y ()" 2, Dyep )

With the aid of Cauchy-Schwarz inequality, the last two terms on the right hand side of (4.27) can be
transformed into:

— M (8a ()2, Dyl ™) g = M8y ()", Dy ™) 1 g
(4.28) M n+1/2)2 2 4 4
SFHD% 12 + Cllull Lo (ryws ) (R +E7).

The second term on the right hand side of (4.26) can be transformed into

— (PYPRULDL Z + Us D Z)" /2 — a2 w12 entl/2),

(420) — (PYPE[UL DI? + LAngy?Wl/? - P}{P,f[flez? + UQDZ,?]”H/?, et
— (PYPEIUIDLZ + Us Dy Z)" % — PYPE[uy Dy Z + us Dy Z)" 12 e 1/2) 12 o
( P}L [ulD Z + UQD Z]n+1/2 n+1/2 3 v¢n+1/2762+1/2)12,M~
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Then taking notice of the definition of interpolations P and P} , the first term on the right hand side of
(4.29) can be bounded by

— (PYPEULDLZ + Uy Dy Z)" V2 — PYPEIUL D, Z + Uy Dy Z)" /2, ent/2) e o
<CIDZ|Z|Ext 2% + Cllen™ (1% -

"

(4.30)

Similarly noting Lemma 4.1, the second term on the right hand side of (4.29) can be estimated by

— (PYPE[UIDLZ + Us Dy Z)" V% — PYPE[uy Dy Z + us Dy Z]" V2, ent1/2) 0
(4.31) <CIDZ|Z e + Cllep™ (17 a
<Cllept 2% 0y + C(AE + h* + k).

Supposing that ¢ € W2°(J; L>()), the last term on the right hand side of (4.29) can be estimated by

— (PYPEu1DeZ + up Dy Z]" T2 — 12 gt/ entl/2y,
(4.32) §C||€Z+1/2H122,M + O||D€$Hz22,M + C'||D€Z_1||122,M
+ Ol vz (1;no () At

n+1

¢7i+1/2_’j+1/2hk, and making summation on ¢,j for 0 <: < N, —1, 0 <

Multiplying equation (4.22) by d:e
j < Ny —1, we have

(€Z+1/2vdteg+1)12,M
= = A(do(Dyes + 6.(9))"/% + dy(Dyes + 8,(0))" /%, dvel ™ )2 ua
n+1/2 n+1/2

EMZn+1/2) 4§ VB (¢nt1/2) +§

+ )\(T?:l+1/2, dt€g+1)l2,M'

F/(¢n+1/2), dt6g+1)l2,M

Similar to the estimate of equation (3.24), the first term on the right hand side of equation (4.33) can be
transformed into the following:

- )‘(dm(Dme¢ + 5w(¢)>n+1/2 + dy(Dye¢ + 6y(¢))n+1/27 dtez+1)l2,M
=\(D,e" 2 4, D, et + A(Dye" Y2 d,Dyent!
z€y )y At Lz €y 12,7,M y€e y Qi Ly €y )12,M,T
+ A0:(8)" 2, dy Dyl ™) s + A0y (0)" Y2, di Dyl ) arir
L Deg IR — [IDegl7

= 2At + A02(6)" 2, d Dy ) g

+ A8y ()2, de Dyl )2

(4.34)
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The second term on the right hand side of equation (4.33) can be rewritten as follows:

Rn+1/2 - rn+1/2
A( F/(Zm17) - F/(¢"12), die ™) i
~ ¢ ’
EMNZr+12) 4 6 Eagnii2) +9
1(7n+1/2 (pnt1/2
=)\r"+1/2( F (~Z ) — r (ié ) 7dt€g+1)l2‘,M
s \/E?(Zn+1/2) +6 \/E{l((bn-l-l/Q) +46
. Jad Tn+1/2 F! n+1/2
+ Arm L2 (ib ) - o T1/2 ) ’dtezH)V’M
F/(Zn+1/2)

+ )\ef+1/2(

= 7dt€g+1)l27M~
E{’(Z"'H/?) +46

Taking notice of (4.19), the first term on the right hand side of (4.35) can be transformed into the following:

)\T.n+1/2( F/(Zn+1/2) B F/(¢n+1/2) ’dtngrl)lz N
VENZm2) 45 \JEpGm12) 46
2 Zn+1/2 F Tn+1/2
a2 FETT) PO Den 6 (1)) e
VENZ 2 b5 (Bl G2 4
E’ Zn+1/2 )i In+1/2
iy 20 ) Dyt 00
(4.36) \/E" Zn+1/2) + \/Eh ri/2) +
F’ Zn+1/2 F’ Tn+1/2 N -
— A2 (N ) (fb ) ,PrlU1D,Z + Uy D, Z]"1/2
VENZ 12 16 B2 46
?:11//223+1/2 v¢n+1/2)l2,M
' Zn+l/2 Jad Tn+1/2 " n
+ )\,rn+1/2( ( ) (¢ ) 1’!1 +1/2 + T2 +1/2)l2,M'
\/Eh Zn+1/2) 4 \/Eh Gn+1/2) 4

Similar to the estimates in [14], and using the Cauchy-Schwartz inequality, we can deduce that

1(7n+1/2 /(an+1/2
M}\TnJrl/?( F(~Z ) N F(ib ) ,dz(Dmeu+5x(ﬂ))n+1/2)l27M
E{L(Zn+l/2)+5 E{l(¢”+1/2)+5
r(7n+1/2 1(in+1/2
—errp( D2 DT g ) e
(437 VENZm2) 45 ([N G2 4

M n n n—

< I1Pse F20E poar 4 Clirll oo oy (Bl + el 17, 0r)
+ Cl|rl| 2o oy (1 Dzl ar + 1Dl 1o ar)
+ C||MHL°¢(J;W§Q(Q))(h4 + kY.
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Similarly we can obtain
F/(Zn+1/2) F/(qgn+1/2)
VENZm )45 ([N 40

M/\Tn+1/2( ,dy(Dye, +5y(’u))n+1/2)l271\/[

M n n n—
(4.38) < NDyer ™ 21 arr + Clirll o oy leB 17 ar + g™ 1 a0)

+ Ol 2o oy (IDyeg 7o arr + 1 Dye ™ e arr)
+ CHM||%°°(J;WO30(Q))(h4 + k).

Then equation (4.36) can be estimated by:

F’ Zn+1/2 F Tn+1/2
)\Tn+1/2( (~ ) _ (iﬁ ) adteg—i_l)l?,M
VENZ ) 18 \JBN )+
M n n n—
(4.39) SFHD%H/QHlZz + Cllrll oy leg e ar + leg ™ iz m2)

+ Cllrll e () (IDeg Iz + [Dey~[172) + CIDZ |12 [lent /217
+ C||/1'H%°C(J;W§C(Q))(h4 + R+ C||¢||%V;(J;LW(Q))A#'

Similar to the estimates of (4.36), the second term on the right hand side of (4.35) can be controlled by:

)\Tn+1/2( F/(q;n-l-l/Q) B F/(¢n+1/2) dt€n+1)l2 M
JEr VEgrm g0
B v VE
M
(4.40) SFHDeﬁH/QHﬁ +C|Deg i, + ClIDel ™ I o

+CIDZ|2 et 21 + Cllelivs (ow nAt*
+ Ol rawa y) + 10117 (w2 () (R + EY).

Multiplying equation (4.24) by A(e”! + ) leads to

n+1\2 _ (n)2 n+1/2 ~
)\(er )At (er) -\ er (FI(Zn+1/2)7dth+1)127M
E{l(Zn+1/2) + K}
(4.41) e

F(pnt1/2 n+1/2dX

+ )\Tfﬂ/z S(enth e,
Then similar to the estimates in [14], we have

(e7+)? = (e1)?

A T
At
<\ e;H_l/Q E’ ZnJrl/Z n+1 n+1/2 n+1 n
= ~ (F( )y deeg™ )iz + ATy (e 4 ey)
(4.42) G 10

+C(ef ™22 + CllYlv (5,1 () (Bl ar + el ™ 17 ar)
+ Cllolls (g o (B + EY).
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Combining the above equations and using Cauchy-Schwarz inequality lead to

(et = (e)? D™l — IDegi
At 2At
S%HDGZH/Z% + Cller ™ 2R v + Cllr oo oy (el ar + el ™ 172 a0)

+ CIDZ|% |2 (17 + CllrlF o .y (DG 7 + [IDel " [172)

(4.43) = AGa(@)" 2, di D) s = NGy (@), di Dyl P s
F AT dpe Y 0 + AT (0 )
+ C (e 22 + Cl16lyn (e sy (€l nr + Nl 17 ar)
+ C8l15s (w2 ) + 1l Fe (v ) (B + &)
+ Cll8l3vs (g o At

A + M||Del /213,

Taking notice of that

k

k
(4.44) Z At(f",dig"t) = - Z At(def™, ")
’ n=0

Using the above equation and multiplying equation (4.43) by At, summing over n from 1 to m result in

e 12 + SIDep [ + 2 3 AtDep /2

n=0
m—+1 M k+1
<C ) ADeg|E + 5 Y Atlle 217
n=0 n=0
(445) m+1 m+1 .
+O Y Atlleg PR+ C Y Atlleg i
n=0 n=0
m—+1

+C Y AU + Clldlls (g (ay At
n=0

+ Cll el crwa o + il rwa o) (B + K.

To proceed to the following the error estimate, we should consider the second term on the right hand
side of (4.45). Multiplying (4.19) by egﬁ_/fﬂ j+1/2/k; and making summation on 4, j for 0 <i < N, —1, 0 <
j < Ny — 1, we have

(deey ™ ep ™ )i

=M (da( Doy + 80(1)" /2 4 dy (Dye + 8, ()12, e 72)

(4.46) 1M

— (PalUnDoZ + UpD, 22 — w12 w12 e %) s

1/2 1/2 1/2 1/2
+(T1n+ / ,€Z+ / )12,M+(T2n+ / ,6n+ / )l2,M~
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The first term on the right hand side of (4.46) can be bounded by

M (d:c(Dgceu + 595(.“4))"+1/2 + dy(Dyeu + 5y(#))n+1/2762+1/2>l2 y

o n+1/2 n+1/2
M ((Dxeu +64(n)) s Daey )lz,T,M

—M(D 5, ()2 D ”*1/2)
(Dyey + 0y (1)) y€¢ 2T

M (12, (Dacy + 8,62+ dy Dy +8,(0)12)
(4.47) M n 1/2
+ 7 1D 2 + OlDey 2
+ Ol oo gows () + 1017 (rws ) (h* + &)
M n n n n n—
< = S llep 20 0+ O™ + ) + Cllleglliz ar + lleg ™ 12 a0)
M n n+1/2
+ ZHD%H/QH?’Z + OHD%JF / 72 + O||¢||%°°(J;W§O(Q))(h4 + k)
+ O(HHH%‘X’(J;W;(Q)) + H¢||2Loo(J;WgO(Q)))(h4 + k).
The second term on the right hand side of (4.46) can be estimated by
— (PAUND2Z + UpD, 2] /% = at1/2 . v /2 et
(4.48) <CIDZ|% e %% + CIDeg 7 0 + ClIDeg ™" 17 s
+ Ol 2 oy + O(AL + R+ kY.
Combining (4.46) with (4.47) and (4.48), multiplying by 2A¢, and summing over n from 1 to m give that
e H I o + MY Atllep ™2 R gy

n=0

<CY A2+ C Y Al R+ C Y Atflentt2

n=0 n=0 n=0

k k
M n
+ S ADE 23 + 0> AtDe AR

n=0 n=0

(4.49)

+ CllF e rwe )y + 18T (riwa ) (B + )
+ Cllollis (g1 @At
Combining (4.45) with the above equation leads to
M m
e I e + = D Atllen ™2 ay + AleH)?

n=0

A M &
+ §||Deg’+1||122 + > AtDep 2,

n=0
4.50 o %
(4.50) <Y AfDen|z + ¢ Y Atfent2
n=0 n=0
m—+1 m+1
+C Y Atlellf p +C Y At(er)?
n=0 n=0

+ C(At* + h* + k).
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LEMMA 4.4. Suppose that the hypotheses (4.12) hold, and ¢ € W3 (J; WL(Q)),pn € L>®(J; Wi (Q)),
ue W3 (J;WL(0)2, pe W3 (J;W2(R)), then for the case of Stokes equation, the approzimate errors of
discrete velocity and pressure satisfy

lew 7 + 1 De? + Z Ate 2R
n=0

m m
<C Y Atlept 2 +C Y Atllepif
n=0 n=0

+C(At* +hr + Y, m<N,

(4.51)

where the positive constant C' is independent of h, k and At.
Proof. Subtracting (4.2) from (3.19d) for the case of Stokes equation with v = 0, we can obtain

4. t/? _ 4t/
d, et TTa,1,i4+1/2,5+1/2 T7u,1,i—1/2,j+1/2

tCul,ij+1/2 Y B
7

~n+1/2 ~n+1/2
_ VDyeu,l,i,jH — Pyly 1, 4 D,e ~n+1/2

(452) kj+1/2 pl]+1/2

P, W2 (D, n+1/2 Dot/

i,5+1/2 i,j+1/2 #1v]+1/2%11]+1/2
0u1 ny1/2
"ot hi+1/2 [dtUl]z GH1/2°

For a discrete function {vf, ]+1/2} such that vy, j+1/2\39 0, multiplying (4.52) by times vy, ., ,hk and
make summation for 4, j with ¢ = 1,--- N, — 1, j=0,---,N, — 1, and recalling Lemma 3.2 lead to

~n+1  n ~n+1/2 n
(dteu,1 V1 )iz + V(daceu,l y V1 )iz 0

~n+1/2 n ~n+1/2 n
+ V(Dy €u,1 s Dyvy )12,Ty - (ep / , Az U] )l2,M

453 S " t1/2
( ) :(PhW"“/Q[DgCZ] +1/2 Mn+1/2¢771}?)12’T’M
ou/? ~
+ (17 — UM o) o

Similarly in the y direction, we have

1/2
(dteuQ y g )iz v+ v(dy 332 s dyvy )iz v

1/2
+ I/(D:E/e\:;:; / ;Dmvg )l27Tm - (/e\;lJr /2, dy'UQ )l2,M

4.54 . . 02
(4.54) —(PaWH2[D, 212 +1/2¢Ty’v2)l2,M7T
6un+1/2
+ (22— _dtU2 , Uy )12 M-

ot
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Adding (4.53) and (4.54) results in

+1/2
(et o)z mar + (@it )i ar + v(datt ', duv})ie ar

+ V(DY 2, Do), + v(dyEuh!, dyvs e
+I/(D +1/2 .D 1}2 )12 T, — (~n+1/2 d ”Ul +d ’02 )12 M

a¢n+1/2

:(PhWnJrl/Q[DxZ]nJrl/Q _ MnJrl/QT, U?)P,T,M

(4.55) ) D172
+ (PhW”H/Q[DyZ]”H/Z - “n+1/2Ty’ Ug)l2,M,T
8 n+1/2 N
+(——— 8t — UM o) e
6un+1/2 - .
+ (Qait — d U3 vl )iz, M, 7-

Recalling the definition of the interpolation operator Pj, and assuming that (4.12b) holds, the first term on
the right hand side of (4.55) can be transformed into the following:

nt1/2(m Sinil2  at1200" TR
(PrnW (D Z] — U 7,01 )lZ,T,M

:((PhWn+1/2 o Ph‘LLn+1/2)[DmZ]n+1/2, v?)l%T,M
+ (Ppp™ 2 — YD 22 00 )2

(4.56) a¢n+1/2
0

+ (W (DL 2 )01 )i2.rm

<Clleg I ar + Cllegllar + Clleg™ 7 ar

1
+ 10T e s + AL+ 1+ 1),
Similarly the second term on the right hand side of (4.55) can be estimated by

n+1/2 Z71n+1/2 n+1/2 a¢n+1/2 n
(PnW (D, Z] —H 783/ aUQ)P,M,T

(4.57) SCHBZH/QHl%,M + C’||eg||l227M + CH@Z‘l H122,M
1
+ I3 11 arr + C(ALE + BT 4 K.

Taking notice of Lemma 4.1 and using Cauchy-Schwarz inequality, the last two terms on the right hand side
of (4.55) can be controlled by

o n+1/2 R Pt R
(4.58) (T deUT o) o + (%725 — Uyt o)z

1
< IV + C(ALt 4+t + k).
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Using Lemma 4.2 and the discrete Poincaré inequality, we can obtain

+1/2
2.0 < sup (@7 dovf +dyvf)e

VeV, 1DV

6”An+l/2

1/2
<C(l|dieynlliz, a0 + |di€y alliz 00,7 + ||dae NH lli2,m1

1/2 1/2 1/2
+ 1Dy 2 e, + ldy e e ae + ||Df:i*; Pliar,)
+ CHBZH/QHP,M + C”%”P,M + Clleg™ Yz
+ O(A# + h? + k).

(4.59)

: n _ qg.ontl n _ g.ontl :
Setting v'; ;10 = ey ;1100 Vo ipya; = €y s ii1/e; N (4.55) leads to

[Deg? — [Deg)?
20t

||Clv:NnJr1||z2 .M T ”dtgﬁ—;l”l?,M,T +v

_ nr1/20 Fndr/z 1208
—(PhW [DacZ] - “or dteu 1 )l?,T,M

5 o n+1/2
(1.60) PR D, 22— 2 g
aun+1/2 .
+ (1872f d U +1 dteu 1 )ZQ,T,M
aun+l/2 N .
+ (287t — d U5, dieynh Ye -

Noting (4.56)-(4.58), we have

e — [Deg |
24t

Hdt%ﬁl 17 700 + 1€y 5 e + v
(4.61) <C||€n+1/2Hl22,]VI + C||€Z||122,M + CH@Z’I ||l22,M
*||dtm+1||l2 ™t ||dt€3J51||l2,M,T
- C(At4 + ht + k).

Multiplying (4.61) by 2At, and summing over n from 1 to m result in

ZAt |dtﬂn+1||z2 M T ||dt€ﬁ§1||l2,M,T)

+ VHD“’”“||2 — v||Dey?

m
gcz Atlen 22+ O Atlled ]2

n=0 n=0
+ C(At* + h* + k).

(4.62)

P ~ P . . .
Since € €u1,0,41/2 = Cud,Nyj+1/2 and €u,2,i+1/2,0 = Cu2,i+1/2,N,> then we can obtain the following discrete
Poincaré inequality.

IIA"”“sz < C|Deg |2

(4.63) SCZAtHeZ“/QH?zM + O At|eplB
n=0 n=0

+ C(At* + h* + k).
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Recalling (4.59), we have

m m m
D AUz <C Y At R Ry +C Y Atlleglli

n=0 n=0 n=0

+ C(At* + h* + k),

(4.64)

which leads to the desired result (4.51). O
4.4. Verification of the hypotheses (4.12) and the main results. In this section, we derive the

final results.
LEMMA 4.5. Suppose that ¢ € WL(J; WL (Q) N W3 (J;WL(Q)),n € L®(J;WL(Q)), and u €
W2 (T, WL ()2, pe W3 (J;W2,(Q)) and At < C(h + k), then the hypotheses (4.12) holds.
Proof. The proof of (4.12a) is essentially identical with the estimates in [14]. Thus we only provide a
detail proof for (4.12b) below.
Step 1 (Definition of C*): Using the scheme (3.19a)-(3.19f) for n = 0, Lemma 4.3 and 4.4, and the
inverse assumption, we can get the approximation DZ! and the following property:
IDZY|| =[DZ" = [, D¢'||oc + [1:D¢" — D¢l + D¢ ||
<Ch™'[DZ' —L,D¢'(|i2 + [[TD¢" — Do |loc + [ D"
<Ch'(IDeb i + [1D6! — D& 12) + [1,D6" — Do loc + 1D
<Ch YA + h?) + D¢ ||o < C.
where h and At are selected such that h=1A#? is sufficiently small.
Thus define the positive constant C* independent of h and At such that

C* = max{[DZ" |0, 2| D(t)]| o }-

Step 2 (Induction): By the definition of C*, it is trivial that hypothesis (4.12b) holds true for I = 1.
Supposing that |[DZ'~!|» < C* holds true for an integer [ = 1,--- ,N — 1, by Lemmas 4.3 and 4.4 with
m = [, we have that

IDeL iz < C(R* + At?).
Next we prove that |[DZ!||., < C* holds true. Since
IDZ'|oc =[DZ" = 1,D¢! o + [1,D¢' — D' oc + D'

(4.65) <Ch~!(|Déel|li2 + [[1nD¢’ — D' [l12) + [1,D¢' — D[ + || D' ||
<C1h™ AL + h?) + | D¢ | oo

Let At < Cyh and a positive constant hi be small enough to satisfy

C*
2.

Cr(L+CHh <

Then for h € (0, hy], equation (4.65) can be bounded by

IDZ![loc <CLRTH (AL 4 1%) + D¢ o
(4.66) .
<Cy(1+ C3)hy + 5 < c*.

Then the proof of induction hypothesis (4.12b) ends. O
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Recalling (4.63), we can transform (4.18) into the following:

M m
e I e + 5 D Atllen ™2 0+ Ale)?

n=0

A M &
+ S IDeg I + 5 D At[Dep 2

n=0
4.67 iy i
(4.67) <C Y AtDell +C Y At|DEx2)?
n=0 n=0
m+1 m—+1
+C Y Atllegli g +C Y Ab(er)?
n=0 n=0

+C(At** + h* + kY, m <N,

Multiplying (4.67) and (4.51) by 4C and M respectively and using Gronwall’s inequality, we can deduce that

m
e H 1 ar + > Atllep 211k 5y + (e )

n=0

m
+[Deg 7 + Y AtDep 2R + [len 1R

n=0

(4.68)

m
IDE 4 3 At
n=0

<C(At* +h* + kY, m<N.
Thus we have

127 = ™ iz ag + D2 = D™ 2 o [RTHT — g™

m 1/2
+ (Z At”DWnJrl/Z _ Dlun+1/2||l22>

n=0

n=0

(4.69) m 1/2
+ (Z AtfwrHt/? - M"+1/2||1227M>

<C|gllwy (wa @) + 1l Lo rwa ) (B> + &)
+Cldllws (s:w @) AL

Recalling Lemma 4.1, we can obtain that

(4.70) Ide (UT" = ui" iz nr + Iy (U3" = w5 12,00 < O(AE® + h% + k),

m 1/2
107" = ui [l pna+ 10U — g2, a0 + <Z At|(P — p)l_1/2|?2,M>

(4.71) £

<O(A# + h* + k?),

(4.72) 1Dy (U = w21, < O(AE + B2 + K*?),
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(4.73) ID2(U3" = ug) iz 1, < O(AE + %% + k).

Combing the above results together, we finally obtain our main results:

THEOREM 4.6. Suppose that ¢ € WL (J; WL (Q) N W2 (J;WL(Q)),u € L>®(J;WL(Q)), and u €
W2 (T, WL ()%, pe W2 (J; W2 () and At < C(h + k), then for the Cahn-Hilliard-Stokes system, there
exists a positive constant C' independent of h, k and At such that

HZm+1 _ ¢m+1”l2,M + ||DZm+1 _ D¢m+1Hl2 + |Rm+1 _ Tm+1‘

m 1/2
+ (Z At”DWnJrl/Q _ Dun+1/2|l22>

n=0

(474) m 1/2
+ (Z AW W”Z‘n?z,M)

n=0
<C(llpllwz rswa @) + Il Lo (rwa @) (h* + k)
+ Clgllwz (rwr @)At*,  m < N,

(4.75) lde (U = w2 ar + [y (US" = w5") |2 as < O(AE + 1% +£2),  m <N,
m 1/2

(4.76) U™ — ™= + <Z Atl|(P —p>“/2?2,M> <OA# +h°+4), m<N,
=1

(4.77) 1Dy (U = uf)lli2 7, < O(AE + B>+ k%), m <N,

(4.78) ID2(Us" = u5') iz 7, < O(AE +h*2 +k?),  m < N.

5. Numerical experiments. In this section we provide some 2-D numerical experiments to gauge the
SAV/CN-FD method developed in the previous sections.
We transform (2.2) as

1 1 B 1 B%+23

5.1 E(o) = —|ul® + A= 24 4 (P —1-p)% - d

(51) (0) = [ (I + AGIVOP + 32567 + 156 — 1= ) = T2,

where (3 is a positive number to be chosen. To apply our scheme (3.19a)-(3.19f) to the system (2.1), we drop
1

the constant in the free energy and specify F1(¢) = ] / (¢? — 1 — B)2dx, and modify (3.19b) into
& Ja

TSRRTE: NdD-7 4+ d.D. 72 /\ﬁznﬂ/z
ir1/2 44172 =~ AdeDaZ +dyDy Z], 1 1o iy 0 + @ Zit1/2,j+1/2
5.2 n-+1/2 ~
2 + AR—F'(Z;jjl/Q).

B{(Zm1?)
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Then we can obtain
OF
(53) F() =5t = 50 ~1-5).

For simplicity, we define

If = glloo.z = max {|[f"+4—g"H9||x},

0<n<m
m , 1/2
I = glea = (£ aclres— gl )
e
|R—7]|oc = max {R"FL —pnti}
0<n<m

where ¢ = %, 1 and X is the corresponding discrete L? norm. In the following simulations, we choose
0=(0,1) x (0,1), f=5and y=1.

5.1. Convergence rates of the SAV-MAC scheme for the Cahn-Hilliard-Navier-Stokes phase
field model. In this example 1, we take T = 0.1, At =1F —4, A=0.1, v = 0.1, €2 = 0.1, M = 0.001, and
the initial solution ¢¢ = cos(mz) cos(my), u1(z,y) = —2?(x—1)%(y—1)(2y—1)y/128 and uz(z,y) = —u1 (y, ).
We measure Cauchy error to get around the fact that we do not have possession of exact solution. Specifically,
the error between two different grid spacings h and % is calculated by [lec|| = [[¢h — Chyall-

The numerical results are listed in Tables 1-3 and give solid supporting evidence for the expected second-
order convergence of the SAV/CN-FD scheme for the Cahn-Hilliard-Navier-Stokes phase field model, which
are consistent with the error estimates in Theorem 4.6. Here we only present the results for u; since the
results for ug are similar to uj.

TABLE 1
Errors and convergence rates of the phase function and auziliary scalar function for example 1.

h llez]|oo,2 Rate |leDz]|oo,2 Rate |ler||oo Rate

1/10 3.09E-3 — 1.37E-2 — 2.69E-5 —

1/20 7.74E-4 2.00 3.43E-3 1.99  6.76E-6 1.99

1/40 1.93E-4 2.00 8.60E-4 2.00 1.69E-6 2.00

1/80 4.84E-5 2.00 2.15E-4 2.00 4.23E-7 2.00
TABLE 2

Errors and convergence rates of the chemical potential and velocity for example 1.

h llew||2,2 Rate |lepw||2,2 Rate |leul|oo,2 Rate
1/10 1.59E-3 — 1.57E-2 — 1.67E-4 —

1/20 4.01E-4 1.98  4.09E-3 1.94  3.67E-5 2.19
1/40 1.01E-4 2.00 1.03E-3 1.99 8.88E-6 2.05
1/80 2.51E-5 2.00 2.59E-4 2.00 2.20E-6 2.01

5.2. The dynamics of a square shape fluid. In this example 2, the evolution of a square shaped
fluid bubble is simulated by using the following parameters:

€=001, v=1, A\=0.01, M =0.002, h =1/100, At = 1E — 3.

The initial velocity and pressure are set to zero. The initial phase function is chosen to be a rectangular
bubble, i.e., ¢ = 1 inside the bubble and ¢ = —1 outside the bubble. Snapshots of the phase evolution at
time t = 0,5, 6,8, 10, respectively are presented in Fig. 2. As we can see, the rectangular bubble deforms
into a circular bubble due to the surface tension.
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TABLE 3
Errors and convergence rates of the velocity and pressure for example 1.

h lled, vy |loo,2 Rate |lep,u; ||oo,2 Rate |lep||2,2 Rate
1/10  9.14E-4 — 1.54E-3 — 1.06E-3 —
1/20 2.05E-4 2.16 4.28E-4 1.85 2.63E-4 2.01
1/40  4.99E-5 2.04 1.36E-4 1.66 6.56E-5 2.00
1/80 1.24E-5 2.01 4.56E-5 1.57 1.64E-5 2.00

Fic. 2. Snapshots of the phase function in example 2 at t = 0,5,6,8, 10, respectively.

5.3. Buoyancy-driven flow. In this example 3, as the test of buoyancy-driven flow, we consider the
case of a single bubble rising in a rectangular box. Similar to [5], we modify the Navier-Stokes equation
(2.1c) as follows:

0
(5.4) a—l;—i—u~Vu—uAu+Vp=uV¢+b,

where b is a buoyancy term that depends on the mass density p. We assume that the mass density depends
on ¢, and the following Boussinesq type approximation is applied:

(5.5) b = (0,-b(9))", b(¢) = x(¢ — o),

where ¢q is a constant (usually the average value of ¢), and x is a constant. In this example, the numerical
and physical parameters are given as follows:

h=1/100, At =5E —4, M = 0.01,
=001, v=1, A=0.001,
$o = —0.05, y = 40.

The initial condition for the phase function is chosen to be a circular bubble that centered at (%, i), and the
initial data for the velocity is taken as u® = 0. Snapshots of the phase evolution at time t = 0.5,1,4,4.1,4.2,5
respectively are presented in Fig. 3. It starts as a circular bubble near the bottom of the domain. The
density of the bubble is lighter than the density of the surrounding fluid. As expected, the bubble rises,
reaching an elliptical shape, and then deforms as it approaches the upper boundary.

6. Conclusion. We developed a second-order fully discrete SAV-MAC scheme for the Cahn-Hilliard-
Navier-Stokes phase field model, and proved that it is unconditionally energy stable. We also carried out a
rigorous error analysis for the Cahn-Hilliard-Stokes system and derived second-order error estimates both in
time and space for phase field variable, chemical potential, velocity and pressure in different discrete norms.

The SAV-MAC scheme, with an explicit treatment of the convective term in the phase equation, is
extremely efficient as it leads to, at each time step, a sequence of Poisson type equations that can be solved
by using fast Fourier transforms. We provided several numerical results to demonstrate the robustness and
accuracy of the SAV-MAC scheme for the Cahn-Hilliard-Navier-Stokes phase field model.

We only carried out an error analysis for the Cahn-Hilliard-Stokes system. To derive corresponding error
estimates for the Cahn-Hilliard-Navier-Stokes system, one needs to use new discretizing techniques such as
a high order upwind method to deal with the nonlinear term. This will be a subject of future research.
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F1G. 3. Snapshots of the phase function in example 8 at t = 0.5,1,4,4.1,4.2,5 respectively.
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