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ABSTRACT

We show that the smoothed complexity of the FLIP algorithm for lo-
cal Max-Cut is at most g{)no( logn) wwhere n is the number of nodes
in the graph and ¢ is a parameter that measures the magnitude of
perturbations applied on its edge weights. This improves the pre-
viously best upper bound of ¢n?1°8 ™) by Etscheid and Réglin [7].
Our result is based on an analysis of long sequences of flips, which
shows that it is very unlikely for every flip in a long sequence to
incur a positive but small improvement in the cut weight. We also
extend the same upper bound on the smoothed complexity of FLIP
to all binary Maximum Constraint Satisfaction Problems.
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1 INTRODUCTION

Local search is one of the most prominent algorithm design para-
digms for combinatorial optimization problems. A local search
algorithm begins with an initial candidate solution and then follows
a path by iteratively moving to a better neighboring solution until
a local optimum is reached. Many algorithms currently deployed
in practice are based on local search, and all the empirical evidence
suggests that they typically perform very well in practice, rarely
running into long paths before reaching a local optimum.

However, despite their wide success in practice, the performance
of many local search algorithms lacks rigorous justifications. A
recurring phenomenon is that a local search algorithm is usually
efficient in practice but analysis under the worst-case framework
indicates the opposite — that the algorithm has exponential running
time due to delicate pathological instances that one may never
encounter in practice. A concrete (and probably one of the simplest)
example of this phenomenon is the FLIP algorithm for the local
Max-Cut problem.

Given an undirected graph G = (V, E) with edge weights (X :
e € E) (wlog in [—1, 1]), the local Max-Cut problem is to find a
partition of V into two sets V; and V; such that the weight of the
corresponding cut (the sum of weights of edges with one node in
V1 and the other in V) cannot be improved by moving one of the
nodes to the other set. To find a local max-cut, the FLIP algorithm
starts with an initial partition and keeps moving nodes to the other
side, one by one, as long as the move increases the weight of the
cut, until no local improvement can be made. Note that the FLIP
algorithm, similar to the simplex algorithm, is really a family of
algorithms since one can apply different rules, deterministic or
randomized, to pick the next node when more than one nodes
can improve the cut. The local Max-Cut problem is known to be
PLS-complete [12], where PLS is a complexity class introduced
by [10] to characterize local search problems. A consequence of
the proof of the completeness result is that FLIP takes exponential
time to solve local Max-Cut in the worst case, regardless of the
pivoting rule used [12]. The local Max-Cut problem can be viewed
equivalently as the problem of finding a pure Nash equilibrium
in a party affiliation game [8]. In this case, the FLIP algorithm
corresponds to the better response dynamics for the game. The local
Max-Cut problem is also closely related to the problem of finding
a stable configuration in a neural network in the Hopfield model
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[9] (see Section 5 for the definition). In this case the FLIP algorithm
corresponds to the natural asynchronous dynamics where in each
step an unstable node flips its state, and the process repeats until
the network converges to a stable configuration.

Max-Cut is an example of a Maximum Binary Constraint Sat-
isfaction Problem (Max-2CSP). In a general Max-2CSP, the input
consists of a set of Boolean variables and a set of constraints with
weights over some pairs of variables. The problem is then to find
an assignment to the variables that maximizes the sum of weights
of satisfied constraints. So Max-Cut is the special case when all
constraints are XOR of the two variables. Other well-studied spe-
cial cases include Max-2SAT (Maximum Satisfiability when every
clause has at most two literals), and Max-Directed Cut (the max-
cut problem for weighted directed graphs); see Section 5 for their
definitions. We can consider more generally the Binary Function Op-
timization Problem (or BFOP in short), where instead of constraints
we have functions over some pairs of variables and the objective
function is a weighted sum of these functions (again see Section 5
for the formal definition). The FLIP algorithm can be used to find
local optima for general Max-2CSP and BFOP, where flipping the
assignment of any single variable cannot improve the objective
function.

In this paper we study the smoothed complexity of the FLIP al-
gorithm for local Max-Cut, Max-2CSP and BFOP. The smoothed
analysis framework was introduced by Spielman and Teng [14]
to provide rigorous justifications for the observed good practical
performance of the simplex algorithm (the standard local search
algorithm for Linear Programming), even though the simplex algo-
rithm is known to take exponential-time in the worst case for most
common pivoting rules (e.g. [11]). Since then, smoothed analysis
has been applied in a range of areas; see [13]. Specialized to the
local Max-Cut problem, the edge weights of the given undirected
graph G = (V, E) are assumed to be drawn independently from a
vector X = (X, : e € E) of probability distributions, one for each
edge. Each X, is a distribution supported on [-1, 1] and its den-
sity function is bounded from above by a parameter ¢ > 0. Notice
that as ¢ — 1/2, the model approaches the average-case analysis
framework for uniform edge weights. A related alternative model
for smoothed analysis is to allow an adversary to pick arbitrary
weights we, which are then perturbed by adding a small random
perturbation Z,, i.e. the edge weights are X, = we + Z,. In this
case, ¢ corresponds to the maximum value of the pdf of Z,.

The question is to give an upper bound T(n, ¢) such that for
any G and X, the FLIP algorithm terminates within T(n, §) steps
with high probability (say 1 — 0,(1)) over the draw of edge weights
X ~ X (where we use X ~ X to denote independent draws of
Xe ~ Xe).

The best result for T(n, ) before our work is the quasipolynomial
upper bound ¢n®1°€™ by Etscheid and Réglin [7], based on a
rank-based approach which we review in Section 1.2. Before their
work, polynomial upper bounds were obtained by Elsdsser and
Tscheuschner [5] and by Etscheid and Roglin [6] for special cases
either when G has O(log n) degree or when G is a complete graph
with edge weights given by Euclidean distances. After the work of
[7], Angel et. al [1] obtained a polynomial upper bound for T(n, ¢)
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when G is a complete graph. Their polynomial bound was further
improved by Bibak et. al [2], again for complete graphs.

1.1 Our Results

We prove a ¢n© (V108 ypper bound for the smoothed complexity
of FLIP for local Max-Cut:

THEOREM 1.1. Let G = (V, E) be an undirected graph over n ver-
tices, and let X = (Xe : e € E) be a sequence of probability distribu-
tions such that every X, is supported on [—1,1] and has its density
function bounded from above by a parameter ¢ > 0. Then with prob-
ability at least 1 — 0,(1) over the draw of edge weights X ~ X, any
implementation of the FLIP algorithm running on G and X takes at

most gnO VI8 many steps to terminate.

Our proof of Theorem 1.1 can be strengthened to get the same
bound for the expected number of steps needed to terminate:

COROLLARY 1.2. Under the same setting of Theorem 1.1, any im-

plementation of the FLIP algorithm takes at most ¢nOWlogn) many
steps to terminate on expectation.

Given G and edge weights X, we define the (directed) configura-
tion graph they form as follows: vertices of the graph correspond
to configurations (or partitions) y : V.— {-1, 1}; there is an edge
from y to y’ if y” can be obtained from y by moving one node and
the weight of y’ is strictly larger than that of y under X, i.e., each
edge is a move that strictly improves the cut weight. Theorem 1.1
is established by showing that, with probability at least 1 — 0,(1)
over the draw of X ~ X, there is no directed path longer than

¢no(‘/@) in the configuration graph formed by G and X.

We also extend Theorem 1.1 to obtain the same upper bound
for the smoothed complexity of the FLIP algorithm running on
Max-2CSP and BFOP.

THEOREM 1.3. Let I be an arbitrary instance of a Max-2CSP (or
BFOP) problem with n variables and m constraints (or functions) with
independent random weights in [—1, 1] with density at most ¢. Then
with probability at least 1 — 0,(1) over the draw of weights, any
implementation of the FLIP algorithm running on I takes at most

¢dmnOWI8 ") many steps to terminate.

1.2 The Rank-based Approach

We briefly review the ranked-based approach of [7] and then discuss
the main technical barrier to obtaining an upper bound that is
asymptotically better than n©10gm),

Since the maximum possible weight of a cut in the weighted
graph is at most O(n?), if an execution of the FLIP algorithm is very
long, then almost all the steps must have a very small gain, less than
some small amount e. Therefore, the execution must contain many
long substrings (consecutive subsequences) of moves, all of which
yield very small gain, in (0, €]. Let B = (o1, . . ., 0% ) be a sequence
of moves, where the o;’s are the nodes flipped in each step, and
lety : V. — {-1,1} be the configuration (partition) of the nodes
at the beginning. The increase of the cut weight made by the i-th
move is a linear combination of the weights of the edges incident
to the node o; that is flipped in the i-th step with coefficients either
—1 or 1; thus, the increase can be written as the inner product of
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a {—1,0, 1}-vector indexed by e € E and the edge weight vector
X. We refer to the former as the improvement vector of the i-th
move. From our assumption about the probability distributions of
edge weights, it is easy to see that for any step, the probability that
the increase lies in (0, €] is at most ¢e. If these events for different
steps were independent, then the probability that all the steps of the
sequence have this property would be at most (¢¢€)¥, ie., it would go
down rapidly to 0 with the length k of the sequence. Unfortunately
these events may be quite correlated. However, a lemma of [7]
(restated as Lemma 2.1 in Section 2) shows that if the improvement
vectors in some steps are linearly independent then they behave
like independent events in the sense that the probability that they
all yield a gain in (0, €] is at most (¢p€)”, where r is the number of
linearly independent steps. This suggests that a useful parameter
for obtaining a bound is the rank of the set of improvement vectors
for the steps of the sequence.

One problem is that the improvement vectors generally depend
on the initial configuration y of nodes that do not appear in the
sequence B. Their number may be much larger than the rank r, and
thus considering all their possible initial values will overwhelm
the probability (¢e)". For this reason, [7] (and we) combine con-
secutive occurrences of the same node in the sequence B of moves:
for each pair (i, j), i < j € [k], such that o; and ¢ are two consec-
utive occurrences of the same node in B (we call such a pair an
arc), we form the improvement vector of the arc by summing the
improvement vectors of the two steps i and j. Thus, the total gain
in cut weight from the two steps is given by the inner product of
the improvement vector for the arc and X;; if every step of B has
gain at most €/2 then every arc has gain at most e. We call such
a sequence e-improving. The improvement vectors of the arcs do
not depend on the initial configuration of inactive nodes, those
that do not appear in the sequence. The rank of the sequence B is
defined as the rank of the matrix Mp , whose rows correspond to
edges of G and whose columns are improvement vectors of arcs
of B. The aforementioned lemma (Lemma 2.1 in Section 2) then
implies that if the rank of a sequence B is r then the probability
that B is e-improving is at most (¢e)".

The main technical lemma of [7], which we will refer to as the
rank lemma, shows that

Given any sequence H of length 5n, there always exists a substring
B of H, such that the rank! of B is at least Q(len(B)/log n).

With this lemma, one can apply a union bound to upper bound
the probability that there exists an initial configuration y and a
sequence B with len(B) < 51 and rank Q(len(B)/log n) such that B
is e-improving with respect to y and X ~ X as follows:

Z 2(,7 . nl’ . (¢€)Q(€/log n)' (l)
£€[5n]
Here n’ is a trivial bound for the number of sequences of length

£ and (pe)X(¢/108 1) s the probability that a sequence with rank
Q(€/logn) is e-improving. A crucial observation is that, by the
definition of ranks (based on arcs instead of individual moves), we

!Note that the rank is defined earlier using both B and the initial configuration y. An
observation from [1] shows that the rank actually does not depend on y but only B.
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do not need to apply the union bound on the 2" configurations
over all nodes but only on configurations of nodes that appear in
the sequence. In other words, initial configurations that only differ
on non-active nodes can be treated as the same. This is why we can
use 2¢ instead of 2" in (1) since ¢ is a trivial upper bound for the
number of active nodes. By setting € = 1/(¢n?1°8™) (1) becomes
1—-0p(1). It follows from the rank lemma that, with high probability,
no sequence H of length 5n can be e-improving and thus, the cut
weight must go up by at least ¢ for every 5n moves. The ¢n©108 ")
upper bound of [7] then follows since the maximum possible weight
of a cut is O(n?).

A natural question for further improvements is whether the
log n-factor lost in the rank lemma of [7] is necessary. Taking a
closer look, the proof of [7] consists of two steps. First it is shown
that given any sequence H of length 5n, there is a substring B such
that the number of repeating nodes in B (i.e., those that appear at
least twice in B) is Q(len(B)/log n). The rank lemma then follows
by showing that the rank of B is at least proportional to the number
of repeating nodes in it (which we include as Lemma 4.5 in Section
4.2). On the one hand, the first step of the proof turns out to be
tight given an example constructed in [1]. Furthermore, we give a
construction in the appendix of the full version [4] to show that,
not only the proof approach of [7] is tight, but the rank lemma itself
is indeed tight, by giving a graph G and a sequence H of length 5n
such that every substring B of H has rank at most O(len(B)/log n).
Therefore, one cannot hope to obtain a bound better than n©1°g")
based on an improved version of this rank lemma.

1.3 A New Rank Lemma

We overcome the log n-barrier to the rank-based approach of [7]
on general graphs by considering not only substrings of H but
also its subsequences. Recall that a subsequence of H is of the form
(0iy» ..., 04 ) with iy < -+ < ip. We use the same arc-based rank
notion defined above. The main technical component (Lemma 3.1)
is a new rank lemma that can be stated informally as follows:

IfH is a sequence of moves of length 5n, there is a subsequence
B of H, such that the rank of B is at least Q(len(B)/+/log n).

While the +/log n in the statement naturally leads to the improve-
ment from log n to y/log n in our smoothed complexity bound, one
needs to be careful when working with subsequences B of H. An
advantage of using substrings of H is that improvement vectors
of arcs are trivially preserved, which is not necessarily the case
for subsequences of H. More formally, let B = (o¢,...,0,) be a
substring of H and a = (i,j) be an arc of H such that { <i <j <r.
Then the corresponding arc f = (i — € + 1,r — £ + 1) of B has the
same improvement vector as that of & in H. Therefore, B being not
e-improving trivially implies that H is not e-improving. However,
when B = (0y,, ..., 04, ) is a subsequence of H, it is not necessarily
the case that every arc f§ of B can be mapped back to an arc @ of H
and even if this is the case, it is in general not true that & and f share
the same improvement vector and thus, B being not e-improving
does not necessarily imply that H is not e-improving.
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Despite this limitation, we prove a subsequence rank lemma in
Section 4 of the following form (still an informal® version; see
Lemma 3.1):

IfH is a sequence of moves of length 5n, then there exists

a subsequence B of H and a set of arcs Q of B such that the
rank of Q (i.e., the rank of the matrix where we only include
improvement vectors of arcs in Q) is Q(len(B)/+/log n) and
the improvement vector of every arc in Q is the same as that
of its corresponding arc in H.

Theorem 1.1 then follows quickly from the new rank lemma by a
similar union bound.

The technical challenge for proving our new rank lemma is to
balance the following trade-off. On the one hand, we would like
to keep as many arcs of H in Q as possible so that they together
give us a high rank compared to the length of B. On the other
hand, the more arcs we want to keep the less aggressively we can
delete moves from H, in order to have their improvement vectors
preserved. To achieve this for an arc a = (i, ) of H, we need to
make sure that the parity of the number of occurrences inside the
arc of any node adjacent to the node o; = 0} in G remains the same
after deletions.

We now give a sketch of the proof of our Main Lemma (Lemma
3.1). Let H be a sequence of moves of length 5n. Given that it is
much longer than the number n of vertices, it is easy to show that
H has many arcs (actually at least 4n; see Lemma 4.1). We first
partition all arcs of H into log n many chunks according to their
lengths (the length of an arc (i, j) is defined to be j — i + 1): chunk
Cj contains all arcs of length between 2/ and 2/1. Then there must
be a j* such that |C]’.k| is at least Q(n/log n). Focusing on arcs in Cj
and letting £ = 2/ "+1 5ne can show (Lemma 4.6 in Section 4.2) that
there is a substring H” = (0, . . ., 0j12¢—1) of length 2¢ such that
the number of Cj+-arcs contained in H” is Q(¢/log n) (this should
not come as a surprise because this is basically the expected number
of Cj+-arcs when we pick the window uniformly at random). Let C
be the set of Cj«-arcs in H'. If we take B to be H’ and Q to be arcs
that correspond to C in B, then the rank of Q can be shown to be
Q(|Q]) (by applying Lemma 4.5 discussed earlier and using the fact
that all arcs in Q are almost as long as B up to a constant). However,
the ratio |Q|/len(B) = |C|/(2¢) is only Q(1/log n), too weak for our
goal. Instead our proof uses the following new ideas.

The first idea is to group the logn chunks Cy, ... ’Clogn into
ylogn groups D1,...,D g’ each being the union of y/logn
consecutive chunks. In Case 1 and Case 2 of the proof, we pick a
group D;«, with " set to be the maximum length of arcs in D;+,
and then pick a substring H” of H of length 2£’/ by Lemma 4.6 so
that the number of Dj+-arcs in H” is Q(¢"’ /+/log n). We show that
when these D;+-arcs satisfy certain additional properties (see more
discussion about these properties below), then their rank is almost
full and Lemma 3.1 for these two cases follows by setting B to be
H"" and Q to be arcs of B that correspond to these D;«-arcs in H”.

2The lemma stated here is still not in its formal version since we ignore the involve-
ment of the initial configuration y; see Lemma 3.1 for details. Fortunately the initial
configuration will play a minimal role in the proof and we find it easier to gain intuition
about the proof without considering it in the picture.
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The second idea is to continue using the substring H” and the
set C of Cj--arcs in it, with the rank of C being Q(len(H’)/logn),
but now we try to delete as many moves from H’ as possible to
obtain the desired subsequence B and at the same time preserve
improvement vectors of arcs in C.

We make two key observations about which moves can or cannot
be deleted. First let o3 be a move in H’ such that node o} only
appears once in H’. Then we cannot delete o} if i < k < j for
some arc @ = (i, j) € C and (0, 0} ) is an edge in G; otherwise the
improvement vector of @ will not remain the same at the entry
indexed by edge (o, o). As a result, if there are many such moves
in H’ then we cannot hope to preserve arcs in C and at the same
time increase the ratio |C|/len(B) up to 1/+/logn. To handle this
situation, our first key observation is that having many such oy is
indeed a good case: it would imply that many arcs @ = (i, j) in H
have a oy (referred to as a witness for a) such thati < k < j, (g, o)
is an edge in G, oy only appears once inside «, and both the previous
and next occurrences of o are pretty far away from k. We handle this
case in Case 2 of our proof. As discussed earlier, we pick a group
D+ and a substring H”” of H. Assuming that most D;-arcs in H”
satisfy this additional property now, their witnesses can be used to
certify the linear independence of their improvement vectors; this
implies that these D;«-arcs in H”” have almost full rank.

The next observation is about repeating nodes in H’. Let f§ =
(k,r) be an arc that shares no endpoint with arcs in C. We say
overlaps with an arc & = (i, j) € C if (o, 0;) is an edge in G and
eitherk <i<r<jori<k < j<rIffdoes not overlap with
any arc in C then it is not difficult to show that the deletion of both
moves k and r of  will have no effect on improvement vectors of
arcs in C. Therefore, we can keep deleting until no such arc exists
in H anymore. But, what if many arcs in H’ overlap with arcs in
C? Our second observation is that this is again a good case for us.
Assuming that there are Q(£/+/logn) arcs in H’ that overlap with
arcs in C, we show that the rank of these arcs is almost full and thus,
the ratio of the rank and the length of H’ is Q(1/+/log n); this is
our Case 3.1. (Note that the discussion here is very informal. In the
actual proof, we need to impose an extra condition (see Definition
4.4) on arcs in C in order to show that the rank of arcs overlapping
with arcs in C is almost full. We handle the case when most arcs of
H violate this condition in Case 1 of the proof, by working with a
group D;+ as discussed earlier.)

Now we can assume that all moves in H’ can be deleted except
those that are endpoints of arcs in C and endpoints of arcs that
overlap with at least one arc in C (the number of which is at most
O(¢/+/log n)). Recall from the discussion at the beginning that the
rank of C is almost full. Given that the length of the subsequence B
obtained after deletions is O(+4/log n) - |C|, the rank lemma follows
(since we made sure that the deletion of moves does not affect
improvement vectors of arcs in C). This is handled as the last case,
Case 3.2, in the proof of the Main Lemma.

With the proof sketch given above, the choice of y/logn in the
statement of the Main Lemma is clearly the result of balancing
these delicate cases. At a high level, the proof of the Main Lemma
relies on a detailed classification of arcs based on a number of their
attributes that we can take advantage in the analysis of their ranks.
The proof involves an intricate analysis of sequences and their
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properties and uses very little from the structure of the graph itself
and the Max-Cut problem. As a consequence, the proof readily
extends to all other local Max-2CSP problems with the same bound
on their smooth complexity.

Organization. The structure of the rest of the paper is as follows.
Section 2 gives basic definitions and background. Section 3 states
the Main Lemma and uses it to prove Theorem 1.1. Section 4, which
is technically the heart of the paper, proves the Main Lemma. Sec-
tion 5 presents the extension to general binary Max-CSP and Func-
tion problems, and Section 6 offers concluding remarks and open
problems.

2 PRELIMINARIES

Given a positive integer n we use [n] to denote {1,...,n}. Given
two integers i < j, we write [i : j] to denote the interval of integers
{i,...,j}. Given an interval I = [i : j], we write len(I) = j— i+ 1
to denote the length of the interval I.

Let G = (V, E) be a weighted undirected graph with a weight
vector X = (X, : e € E), where X, € [—1, 1] is the weight of edge
e € E. Under the smoothed complexity model, there is a family
X = (X¢ : e € E) of probability distributions, one for each edge; the
edge weights X, are drawn independently from the corresponding
distributions X,. We assume that each X, is a distribution supported
on [—1,1] and its density function is bounded from above by a
parameter ¢ > 0. (The assumption that the edge weights are in
[-1,1] is no loss of generality, since they can be always scaled to
lie in that range.) A configuration y of a set of nodes S C V is a map
from S to {—1, 1}. A configuration y of V corresponds to a partition
of the nodes into two parts: the left part {u € V : y(u) = —1} and
the right part {u € V : y(u) = 1}. The weight of a configuration
(partition) y of V with respect to a weight vector X is the weight of
the corresponding cut, i.e., the sum of weights of edges that connect
a left node with a right node.

Formally, it is given by

bigx( =3 D Ko (1-r@r@).
(u,v)€E
The problem of finding a configuration of V that maximizes the cut
weight is the well-known Max-Cut problem. We are interested in
the Local Max-Cut problem, where the goal is to find a configuration
y of V that is a local optimum, i.e., objg x(y) = objG’X()/(”)) for all
v € V, where y(v) is the configuration obtained from y by flipping
the sign of y(v).
A simple algorithm for Local Max-Cut is the FLIP algorithm:

Start from some initial configuration y = yo of V. While there exists
a nodev €V such that flipping the sign of y(v) would increase the
cut weight, select such a node v (according to some pivoting criterion)
and execute the flip, i.e., set yi11 = yl.v and repeat.

The algorithm terminates with a configuration of V' that cannot be
improved by flipping any single node. The execution of FLIP for
a given graph G and edge weights X depends on both the initial
configuration yy and the pivoting criterion used to select a node to
flip in each iteration, when there are multiple nodes which can be
profitably moved. Each execution of FLIP generates a sequence of
nodes that are moved during the execution.
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Given G = (V, E) we denote a sequence of moves as a sequence
H = (01, ...,01) of nodes from V, where we write len(H) = k to
denote its length. We say a node v € V is active in H if it appears
in H, and is repeating if it appears at least twice in H. We write
S(H) to denote the set of active nodes in H, and use S;(H) (resp.
S2(H)) to denote the set of nodes that appear only once (resp. two
or more times) in H. As usual, a substring of H is a sequence of the
form (oj, 0i41,...,0j) forsome 1 < i < j < k, and a subsequence of
H is a sequence of the form (oj,,...,04,) forsome 1 < i; <--- <
ip < k.Given a set P C [k], we write Hp to denote the subsequence
of H obtained by restricting to indices in P. When P is an interval
[i : j] € [k], Hp is a substring of H.

Next we introduce the notion of arcs and define their improve-
ment vectors. An arc « = (i,j) of H = (o1, ...,0x) is a pair of
indices i < j € [k] such that 0; = oj and 0; # oy foralli < £ < j
(i.e., 07 and o are two consecutive occurrences of the same node
in H). We let nodeg(a) = 0; = oj € V and refer to it as the node
of a. We will sometimes omit the subscript H when it is clear from
the context. We also refer to i as the left endpoint and j as the right
endpoint of a, and write left(e) = i and right(a) = j. We write
len(a) = j — i + 1 to denote the length of a.

Given a sequence H = (oy,...,0x) of moves (nodes) and an
initial configuration y = yo before the first move of H, let y; denote
the configuration after the i-th move of H. The gain in the cut
weight from the i-th move is a linear combination of the weights
of the edges incident to node o; that is flipped, where some edges
have coefficient 1 and the rest have coefficient —1. Note that if H is
part of an execution of the FLIP algorithm, then the gain is positive
at every move.

For each arc a = (i, j) of H, we define the improvement vector of
a with respect to y and H, denoted by impvm,, g(a), as follows:
impvmy,H(a) is a vector in {~2, 0, 2}F indexed by edges e € E (just
like the weight vector X); its entry indexed by e € E is nonzero
iff e = (nodey(a),v) € E for some node v that appears an odd
number of times in ¢j+1, ..., 0j-1. When this is the case, its value
is set to be 2y;_1(nodeg(a))yi-1(v). Note that for this definition
we do not need to have the full configuration y of V but only
of the active nodes in S(H). It also follows from the definition of
improvement vectors that, if y is the initial configuration of S(H)
and we move nodes one by one according to H, then the total
gain in the cut weight obj from the i-th move and the j-th move is
given by the inner product of impvm,, p() and X. Indeed, letting
u = nodeg (), the total gain from these two moves equals

D Xao) i @ric@+ Y X v-1@yj-1(©)

v:(u,v)€EE v:(u,v)€EE

i-th move Jj-th move
Given that y;—1(u#) = —yj-1(u), only those neighbors v of u that
flipped an odd number of times in oj+1,...,0j-1, ie., yi-1(v) #
Yj-1(v), contribute in the total gain of the two moves.

Inspired by the definition of improvement vectors above, we
define the interior of a, denoted by interiorg(a): interiorg(a) con-
tains all k € [i+1 : j— 1] such that node o} appears an odd number
of times in j41, ..., 0j-1 and oy is adjacent to o; = nodeg(a) in
the graph G.



STOC 20, June 22-26, 2020, Chicago, IL, USA

We say an arc a of H is improving with respect to y and X
if the inner product of impvm,, () and X is positive. We say
it is e-improving for some parameter ¢ > 0 if the inner product
is in (0, €]. Furthermore, we say a set C of arcs of H is improving
(or e-improving) with respect to y and X if every arc in C is im-
proving (or e-improving). A sequence H of moves is improving (or
e-improving) with respect to y and X if every arc of H is improving
(or e-improving). Note that if H is part of the sequence of moves
generated by an execution of the FLIP algorithm then H must be
improving, because every move must increase the weight of the
cut and therefore every arc is improving. On the other hand, if
some move in H increases the cut weight by more than e then the
same is true for the arc that has it as an endpoint and thus, H is not
e-improving,.

Let C be a set of arcs of H. A key parameter of C that will be
used to bound the probability of C being e-improving (over the draw
of the edge weights X ~ X)) is the rank of C with respect to y and H,
denoted by ranky, g(C): this is the rank of the |E| x |C| matrix that
contains improvement vectors impvmy’ g (@) as its column vectors,
one for each arc @ € C. To give some intuition for this parameter,
one may hope that for a fixed sequence of moves H with K arcs

Prx_x [H is e—improving] = 1_[ Prx . x [a is e-improving |.
aeC

However, since there could be improving steps that are strongly
correlated (as an extreme situation there could be two arcs with
exactly the same improvement vector), one may expect the prod-
uct on the right hand side to hold only for linearly independent
impvm, g(@)’s, introducing the necessity of analysis of the rank.

An observation from [7] is that rank,, g (C) is independent of the
choice of y. Indeed, a change of a node in the initial configuration
would result in a change of sign on every row of the matrix that is
incident with this node. So from now on we write it as rankg (C). To
simplify our discussion on rankg (C) later, we use impvmg(a) to
denote impvm,, g (@) where yy is the default initial configuration
of S(H) that maps every node in S(H) to —1. Then rankg(C) is the
rank of the matrix that consists of impvmg(a), & € C. The next
tool from [7] shows that the higher the rank is, the less likely for C
to be e-improving.

LEmMA 2.1 (LEMMA A.1 FROM [7]). Let X = (X; : i € [m]) be a
sequence of probability distributions in which each X; has density
bounded from above by a parameter ¢ > 0. Letry,...,rp € Z™ bek
vectors that are linearly independent. Then for any € > 0, we have

Pryx | Vi€ [k]: (. X) € [o, e]] < (pe)k.

CoOROLLARY 2.2. Let G = (V,E) be an undirected graph and let
X = (X¢ : e € E) be a sequence of distributions such that each X,
has density bounded from above by a parameter ¢ > 0. Let H be a
sequence of moves, y be a configuration of S(H), and C be a set of
arcs of H. Then for any e > 0,

Pry. x| C is e-improving with respect toy and X | < (¢e)2n<u(C)

Finally we say a sequence H of moves is nontrivial if the interior
of every arc in H is nonempty; H is trivial if at least one of its arcs
has interiorg () = 0. It follows from definitions that H cannot be
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improving (with respect to any y and any X) if it is trivial. Since
every sequence resulting from an execution of the FLIP algorithm
is improving, it follows that it is also nontrivial. We will consider
henceforth only nontrivial sequences (see Lemma 3.1).

3 MAIN LEMMA AND THE PROOF OF
THEOREM 1.1

We prove the following main technical lemma in Section 4:
LEmMA 3.1. Let G = (V, E) be an undirected graph over n vertices.

Given any nontrivial sequence H of moves of length 5n and any

configurationy of S(H), there exist (i) a sequence B of moves of length

at most 5n, (ii) a configuration t of S(B), and (iii) a set of arcs Q of B

such that

(1) The rank of Q in B satisfies

> Q !
ylogn

(2) For every arc a € Q, there exists an arc a’ of H such that

rank(Q)
len(B)

) (High-rank property); 2)

impvm_ g(a) = impva’H(a'). (Vector-Preservation property).

As discussed earlier in Section 1.3, the new sequence B in Lemma
3.1 is either a substring or a subsequence of H. When we pick B to
be a substring of H, say a substring that starts with the i-th move of
H, the natural choice of Q is the set of all arcs in B (since we would
like rankg(Q) to be as large as possible in (2)) and that of 7 is the
configuration y;—1 of S(B) derived from y after making the first i —1
moves of H. With these choices, the second condition of Lemma
3.1 is trivially satisfied and the main goal is to lowerbound the
rank of arcs in B. This is indeed the proof strategy followed in all
previous works [1, 2, 7]. The key new idea of the paper is the use of
subsequences of H as B instead of substrings of H. While this gives
us more flexibility in the choice of B to overcome the (log n)-barrier
of [7] as sketched earlier in Section 1.3, one needs to be very careful
when deleting moves and picking arcs to be included in Q in order
to satisfy the second condition.

We delay the proof of Lemma 3.1 to Section 4. Instead, below we
use it to prove Theorem 1.1 and Theorem 1.2.

PRrOOF OF THEOREM 1.1 ASSUMING LEMMA 3.1. Let ¢c; > 0 be a
constant to be specified later and let

1

B ¢ - ne1Vlogn '

We write F to denote the following event on the draw of the weight
vector X ~ X:

€

Event F: For every sequence B of length at most 5n,
every configuration 7 of S(B), and every set Q of arcs
of B satisfying (where a > 0 is the constant in

Lemma 3.1)
rankp(Q) . _4a )
len(B) — \/@’

Q is not e-improving with respect to 7 and X.



Smoothed Complexity of Local Max-Cut and Binary Max-CSP

We break the proof into two steps. First we prove that F occurs with
probability at least 1 — 0,(1) over the draw of the weight vector
X ~ X. Next we show that when F occurs, any implementation
of the FLIP algorithm must terminate within ¢ - nOWlogn) many
steps.

For the first step, we fix an ¢ € [5n], a sequence B of length £, a
configuration 7 of S(B) and a set Q of arcs of B that satisfies (3) (so
the rank is at least af/+/log n). It follows from Corollary 2.2 that the
probability of Q being e-improving with respect to 7 and X ~ X is
at most (¢e)?¢/VIog"  Applying a union bound (on ¢, B, 7 and Q),
F does not occur with probability at most

at
Z nl .ol . gt-1. (qﬁe)\/@
C€[5n]

2,

el5n)

Pr[-F] <

Vlogn

((nxn)T ge

IN

al
)\/@ = On(l),

where the factor n2¢ is an upper bound for the number of choices

for B of length ¢ and the initial configuration 7 of S(B), and the
factor 2¢7! is because there can be no more than £ — 1 arcs in a
sequence of length £. The last equation follows by setting c; in the
choice of e sufficiently large.

For the second step, first notice that when F occurs, it follows
from Lemma 3.1 that there exists no sequence H of length 5n to-
gether with a configuration y of S(H) so that H is e-improving
with respect to y and X. Taking any implementation of the FLIP
algorithm running on G with weights X, this implies that the cut
weight obj must go up by at least € for every 5n consecutive moves.
As the weight of any cut lies in [-n?, n?], the number of steps it
takes to terminate is at most

2
sn. 2 g pOWlogn),
€

This finishes the proof of Theorem 1.1. O

PRrOOF OF THEOREM 1.2 ASSUMING LEMMA 3.1. We let F¢ denote
the event F in the proof of Theorem 1.1 with a specified € > 0. Let

1

B ¢ . ncn/logn ’

where ¢; > 0 is a constant to be fixed shortly.
For € < ¢y, we have

€0

al

e 3.l 5[
€€[5n] 0
al “
< Z %(i){\/@ < i,
(&fn O\ neo

where c; is large enough so that the second inequality holds.

From the previous proof, we know that Fe implies the number of
steps (denote as L) is at most 10n> /€. By combining the inequality
above, one can bound the tail probability of L. Let

3
Lo = 20" _ 4. n0Wiogn),
€0
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Then the probability that L is larger than cLg for any ¢ > 1 is

1
PI‘[L > CL()] < Pl‘[" eg/c] < —.
n

Note that L is always trivially bounded by the total number of
configurations, 2". Therefore, we have

2n 2n
E[L] < Lo + Z Pr[L >s] < Lo+ Z L _ O(Ly).
ns
s=[Lo] s=[Lo]

This finishes the proof of Theorem 1.2.

4 PROOF OF THE MAIN LEMMA

We proceed now to the proof of Lemma 3.1. The plan of the section
is as follows. Given a nontrivial sequence H = (o1,...,0m) of
moves of length m = 5n, we classify in Section 4.1 its arcs into
good ones and bad ones and introduce the notion of the radius of
an arc. In Section 4.2 we prove a few basic lemmas that will be
used in the proof of Lemma 3.1. Next we partition the set of all
arcs of H into chunks according to their lengths in Section 4.3 and
present an overview of cases of the proof of Lemma 3.1. There will
be three cases and they will be covered in Section 4.4, 4.5 and 4.6,
respectively. For each case we choose B to be either a substring or
a subsequence of H. Among all cases, there is only one occasion
where we choose B to be a subsequence of H. As discussed earlier
in Section 3, the second condition of Lemma 3.1 is trivially satisfied
when B is a substring of H (since we don’t change the interior of
any arc). Therefore, there is no need to specify the configuration 7
in cases when B is chosen to be a substring of H.

4.1 Classification of Arcs

We start with a quick proof that there are many arcs in a long
sequence of moves.

LEmMMA 4.1. For any sequence B of moves, the number of arcs in B
is at least len(B) — n.

Proor. Denote by y, the number of occurrences of node v in B.
Then the number of arcs in Bis )} ,ev(Yo — 1) = Dpev Yo — N =
len(B) — n . o

COROLLARY 4.2. IfH is a sequence of moves of length 5n, then it
contains at least 4n arcs.

Next we give the definition of good and bad arcs in a sequence.
We start with some notation. Let H = (o1, . . ., o) be a sequence
of moves of length m = 5n. We use A to denote the set of all arcs
in H; by Corollary 4.2 we have |A| > 4n.

For each k € [m], we define the predecessor predy (k) of the
k-th move to be the largest index i < k such that o; = o} and set
predg(k) to be —co if no such index i exists (i.e., predg (k) is the
index of the previous occurrence of the same node oy ). Similarly
we define the successor succg(k) of the k-th move in H to be the
smallest index j > k such that 0; = o} and set succy (k) to be +oo
if no such j exists. Next we define the radius of a move and an arc:

Definition 4.3 (Radius). For each k € [m] we define the radius of
the k-th move in H as

radiusg (k) = max {L—radiusH(k), R—radiusH(k)},
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where

L-radiusg (k) = k — predg(k) + 1,
R-radiusg(k) = succy (k) — k + 1.

and

Given an arc a = (i, j) € A of H, we define its radius as>

radiusg () = max {radiusH(k) ‘ ke interiorH(a)}.

It follows from the definition that if radiusg (k) is not +oco then
both pred (k) and succg (k) are defined and then both (pred g (k), k)
and (k, succy(k)) are arcs of H. As an example of the radius of an
arc o = (i, ), if there isa k € [i + 1 : j — 1] such that node o}, is
adjacent to nodeg(«) in G and o} does not appear anywhere else
in H (i.e., o € S1(H)) then radiusg(a) = +oo. Another example is
shown in Figure 1. Here radiusg(ar) = radiusg(k) = 5 assuming
that (oy, 07) is in G.

Finally we define good arcs and bad arcs.

Definition 4.4 (Good and bad arcs). We say an arc a = (i, j) of H
is good if it satisfies
len(a)
Otherwise we say that « is bad. Given a set of arcs C € A we

write good 7 (C) to denote the set of good arcs in C and bady(C) to
denote the set of bad arcs in C.

min {L—radiusH(i), R—radiusH(j)} >

Given a nonempty set of arcs C C A, we write

len(C) = I
maxlen(C) I;léig{ en(a)}
and use endpoints(C) to denote

{k € [m] : k = left(a) or k = right(a) for « € c}.

4.2 Basic Lemmas

We start with a lemma that will be used to bound the rank of a set
of arcs in a sequence. It is essentially the same as Lemma 3.2 in
[7], which connects the rank of a set C of arcs with the number of
distinct nodes that appear as endpoints of arcs in C. The proof can
be found in the full version [4].

LEmMMA 4.5. Let C be a set of arcs of a nontrivial sequence H such
that the nodes of arcs in C are all distinct. Then rankg(C) > |C|/2.

We need some notation for the next lemma. We say anarca € A
is contained in an interval I C [m] if both left(«) and right(«) lie
in I. For a set of arcs C C A of H, we write C|; to denote the set
of a € C contained in I. Intuitively C| is the set of arcs in C that
can be inherited by the substring Hy of H. The next lemma follows
from (essentially) an averaging argument; the proof can be found
in the appendix of [4].

LEMMA 4.6. Let H be a sequence of moves of length m, P C [m] be
a nonempty set of indices and C C A be a nonempty set of arcs of H
such that len(a) < € for alla € C for some positive integer parameter

3Note that this is well defined because when H is nontrivial, the interior g (a) of every
arc « is nonempty.
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¢ < m/2. Then there exists an interval I = [i : i + 2 — 1] C [m] of
length 2¢ such that

Cll J el 26 20T “
IC] lem’ 4|P|
Thus, it holds that
ICl1l ICl ICl1] IC|
o d ol
len) = “\iencny] ™ o =P ©)

4.3 Overview of Cases
We now begin to prove Lemma 3.1. Let G = (V, E) be a graph over
n vertices, H = (o1, . . ., o) be a nontrivial sequence of moves of
length m = 5n, and y be a configuration of S(H). Let A be the set
of all arcs of H (with |A| > 4n by Corollary 2.2).

We first partition A into s = [logm] = ©(log n) chunksCy, . .., Cs
according to lengths:

Ci={aeA:len(a) e 27" +1:2/]}.

Letting w = [+/logn] and ¢ = [s/w] so both w and t are ©(+/log n),

next we assign these chunks to ¢ groups Dy, ..., D;:
Di = Cli—yw+1 Y -+ U Ci,

where the last group D; may contain less than w chunks. From the
definition of chunks and groups we have the following fact:

Fact 4.1. If P is a set of arcs from the same chunk C;, then for
any arc a € P, it holds that

len(a) < maxlen(P) < 2 - len(a)
If Q is a set of arcs from the same group D;, then for any arc f € Q,
len(f) < maxlen(Q) < 2% - len(f).

For each chunk C; in D;, we further partition it into two sets
Cj = L; U S;j based on the radius (when D; = 0, £; and S; are
trivially empty even though maxlen(9D;) below is not defined):

Lj= {a € Cj : radiusg(a) > 2 maxlen(Di)} and
Sj = {oc € Cj : radiusy(a) < 2- maxlen(Z)i)}.

Here L; (the long-radius arcs in Cj) contains all arcs a € Cj
such that there exists a k € interiorg(a) (where o is adjacent
to nodey () in G and oy occurs an odd number of times inside
@) such that radiusg(k) is larger* than 2 - maxlen(D;). The set
S; (the short-radius arcs in Cj) contains all arcs @ € C; such
that every k € interiorg(a) has predecessor and successor within
2 - maxlen(D;). See Figure 2 for an example

Recall that our goal is to find a sequence B, a set Q of arcs of B,
and a configuration 7 of S(B) that satisfy both conditions of Lemma
3.1. The first case we handle in Section 4.4 is when

Case 1: |bady(A)| > 0.01 - |Al. (6)
>

Otherwise, |goodg(A)| > 0.99 - |A| and we pick a group D;=

according to the following lemma; see the proof in [4].

“Remember that this could be the case when for example either pred (k) = —c0 or
succy (k) = +oo.
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radiusg (o)
= radiusg(a)

—
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Figure 1: An example of the radius of an arc «

2maxlen(D;)

- -
-
- S~ o - ~
- > <
<
P ~ o2 e

2maxlen(D;)

Figure 2: An example of long-radius (left) and short-radius (right) arcs with only one node in their interior.

LEMMA 4.7. Assume that |goodg(A)| = 0.99 - |A|. Then there
exists a group Di+, for some i* € [t], that satisfies the following two
conditions (below we assume Dy = D41 = O by default):

|good (D) 1

|good (D) . 1
D1 UDp UDypeyq| — 7

|A| 2t

and

Fixing a group D« that satisfies Lemma 4.7 and letting
L= chgDi*Lj and S = UCjQDi*Sf’

we next split into two cases, depending on whether the majority of
good arcs in D;+ are long-radius or short-radius arcs. We handle
the second case in Section 4.5 when

Case 2: |goodH(.£)| >0.5- |goodH(Z),~*) @
and we handle the third case in Section 4.6 when
Case 3: |goodH(S)| >0.5- |goodH(1)i*) . (8)

4.4 Case 1: Many Arcs in A Are Bad

We say an arc a = (i, j) of H is dual-bad if either pred; (i) exists and
L-radiusg (i) > len(a) - 2%, or succy(j) exists and R-radiusg(j) >
len(a) - 2% where we recall that w = [y/logn]. Figure 3 gives an
example of this definition. Given C C A, we write dual-badg(C)
to denote the set of dual-bad arcs in C.

We prove the following lemma in the full version [4] which
implies Lemma 3.1 for Case 1, by setting B to be Hy and Q to be
the set of arcs of B induced by C, with C and I from the below
statement.

LeEMMA 4.8 (LEMMA 3.1 FOR CASE 1). Assume that |badH(ﬂ)| >
0.01 - |A|. Then there exists an interval I C [m] and a set C of arcs of
H contained in I such that

rankg (C) >0 1
len() —  \\logn)

4.5 Case 2: Most Arcs in good(D;-) Are
Long-radius

We start with some intuition for the second case.
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In this case we work with a group D;+ that has many long-
radius® arcs. Recall that £ is the set of long-radius arcs in D;+. Let
¢ = maxlen(£). It follows from Lemma 4.7 that there is an interval
I of length 2¢ such that L|; is large. Furthermore, given that arcs
in L | are long-radius, one can show that every « € L | has a
k € interiorg(er) such that predg (k) or succy (k) is outside of I.

Now if it is the oversimplified scenario that both predg (k) and
succy (k) are outside of I, then one can conclude that £|; has full
rank since only the improvement vector of @ has a nonzero entry
indexed by (nodeg(a), o). To see this is the case, note that there
is no arc with node oy contained in I and no other arc with node
the same as «a can have oy in its interior. Our goal is to show for
the general scenario that £|; has almost full rank.

The following lemma implies Lemma 3.1 for the second case, by
setting the subsequence B to be Hy and the set Q to be arcs of B
induced by C, using I and C of the below statement.

LEMMA 4.9 (LEMMA 3.1 FOR CASE 2). Assume that there exists
a group D« that satisfies Lemma 4.7 and (7). Then there exists an
interval I C [m] and a set C of arcs of H contained in I such that

rankg (C) >0 1
len(I) — @.

ProoF. Recall that we are in the case where we have a group
D;+ that satisfies Lemma 4.7 and (7). Given that £ = Uc,co; Lj,
|A]

they together imply that
ylogn ) '

Let ¢ = maxlen(L). If £ < m/2 then, by Lemma 4.6, there is an
interval I C [m] of length 2¢ such that

=Q

| L] > |goodH(£)| >0.5- |goodH(Di*)

L] (1L _ o[ 1
[en(I)_Q(m) Q(y/logn)‘

If ¢ > m/2, then D;+ is the last group (i* = t). In this case, let
I =[m], and L];= L satisfies the same property. In either case, let

SNotice that the assumption of Case 2 is actually stronger, that there are many arcs
in D; that are both good and long-radius. It turns out that we will only use their
long-radius property in the proof of this case.
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ay (bad)

I N N

Opred(i) O oj

Osucc(j)

Figure 3: The arc « is dual-bad if either the adjacent len(a_) or len(a.) is longer than len(«) - 2. We can also interpret it as either

a_ or a, exists and is a bad arc.

C = L]1. We finish our proof by showing that rankg(C) > |C|/2,

and the rest of the proof can be found in the full version [4]. O
4.6 Case 3: Most Arcs in good(D;-) Are
Short-radius
Combining Lemma 4.7 and (8), we are left with the case that
dy (S
lgood (Sl o [_1 and )
|Al \logn
lBoody ) o

[Dir—1 U Djr U Djreyq| —

In Section 4.6.1, we handle the easy case when i* = t is the last
group and its last two chunks contain the majority of good arcs:

|good ;(Ss—1 U Ss)| > 0.5 - |good ;(S)|. (10)

4.6.1 Case 3.0:i* =t and (10) holds.
We prove the following lemma in [4]:

LEMMA 4.10 (LEMMA 3.1 FOR CASE 3.0). Assume that D = Dy
and |goodH(Ss_1 U SS)| >0.5- |goodH(S)|. Then there exists an
interval I C [m] and a set C of arcs of H contained in I such that

rankg (C) o 1
len(I) — \/@ '

Ruling out Case 3.0, we have from (9) that there is a Cj« in D;«
with j* < s — 2 such that

dy(Sj+
—|goo 1S5l >Q —1 and
|A| logn
|good; (Sj+)| 1

>Q .

|Dix 41U D= U D=1 (yllogn)

Let C* = good(Sj+), £ = maxlen(C*) < m/2 since j* < s —2and
P = endpoints(Dj—1 U Dj U Dy11) C [m]

(so |P| = O(|Dj+—1 U Dj+ U Dj41])). Using Lemma 4.6 there is an
interval I of length 2¢ such that

ICr ] _ (1 e | 1
'e“(”_Q(logn) |PmII_Q(x/@)' "

For convenience we write C = C*| in the rest of the proof. Every
arc a € C lies in Sj«, has length between £/2 and ¢, is good and
short-radius, and is contained in I (which has length 2¢).

We need the following definition of two arcs overlapping with
each other:
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Definition 4.11. We say that two arcs @ = (i, j) and f = (k,{) of
H overlap if node(a) # node(f) are adjacent in the graph and the
endpoints of the arcs satisfy i <k < j<fork <i<{<j.

Given C, we say an arc f = (i, ) is endpoint-disjoint from C if
i,j ¢ endpoints(C), i.e. § shares no endpoint with any arc @ € C.
We write Overlap to denote the set of arcs § = (i, j) € A that are
contained in I, are endpoint-disjoint from C, and overlap with at
least one arc in C. On the other hand, we write NonOverlap to
denote the set of arcs € ‘A that are contained in I, endpoint-
disjoint from C, and do not overlap with any arc in C.

We distinguish two cases depending on the size of the set Overlap.
Section 4.6.2 handles Case 3.1 when Overlap is "large", specifically,

|Overlap| S |(Di*+1 UD; U Z)i*—l)LI| + 1 .12
len(I) len(I) Jlogn

and Section 4.6.3 handles the opposite Case 3.2, when Overlap is
"small".

4.6.2 Case 3.1: Overlap is large.

LEMMA 4.12 (LEMMA 3.1 FOR CASE 3.1). Assume that condition
(12) holds, i.e Overlap is large. Then for the interval I C [m] of
Equation (11) there exists a set F of arcs of H contained in I such that

rankg (F) 50 1
len(I) — \/@'

Proor. Let F = Overlap\((Dj*+1 U Dj+ U Dj+_1) |1). In this

case we have

|F| 1

len) ~ Jlogn'

For every a € F we pick arbitrarily an arc § € C such that « and
B overlap; we call § a witness arc for a. (Figure 4 gives an example
of Overlap and witness.) Assume without loss of generality that
for the majority of a € F, its witness arc f € C is on the left
of @, meaning that left(f) < left(a); the argument is symmetric
otherwise. We write F’ to denote the subset of such arcs in F; we
have |F’| > |F|/2.

Next we partition the interval I into five quantiles so that each
one is of length | len(I)/5] or [len(I)/5]. We also assume that len(I)
is sufficiently large so that [len(I)/5] < len(I)/4; otherwise it is
bounded by a constant and our goal is trivially met. (Note that C
is nonempty. So I is an interval of constant length and contains at
least one arc. We can thus prove Lemma 3.1 directly just by taking
B = Hj and one single arc in it; the ratio in (2) is Q(1).) Let § be the
witness arc of an & € F’. Given that § € C C Cj+, we have

_len(l) S Fen([)}

(13)

maxlen(Cj~)

len(pB) > 5 > g

T4 5
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______

a2 a1

Figure 4: An example of Overlap and witness. Here node(f;) and node(f;) are adjacent to node(a;) = node(az) in G. The dashed
arcs are in C, the solid arcs are in Overlap, and the dotted arc is in NonOverlap. $; is the witness of a; € F’ (i.e. i is on the left
of a1), and f3; is the witness of a; € F\F’.

Since f is contained in I, right(f) cannot lie in the first quantile The main step of the proof is to construct a subset R C I that
of I. Partitioning F’ into Fl' fori = 2,3,4,5 so that Fl' contains all satisfies R N endpoints(C) = 0. We remove the moves in R to ob-
arcs a € F’ such that right(f) of its witness arc f lies in the i-th tain the desired subsequence B of H: B = Hp\g, and let 7 be the
quantile of I and letting F,; denote the largest set, we have restriction of configuration y’ on S(B). For each i € I \ R, we use
p(i) € [|B|] to denote its corresponding index in B. Then each arc
F| > |F’| . @ _0 len(I) a = (i,j) € C corresponds to an arc p(a) = (p(i), p(j)) in B (since
9= "4 =g \/@ ’ R N endpoints(C) = 0, both i and j survive), and we write Q to

denote the set of |C| arcs of B that consists of p(a), @ € C.

We finish the proof by showing that rankp (Fy) is full. The proof The key property we need from the set R is that the removal of
that rankg(Fy) is full is similar to the proof of Case 2. We order moves in R does not change the improvement vector of any arc
arcs ay, ..., a|F:1| in Fé by the right endpoints of their witness arcs: a € C.More formally, we prove in Lemma 4.14 that impva’H(a) =
Bi is the witness arc of «; and they satisfy impvm . g(p(a)) for all « € C. It follows that (1) B, Q and 7 satisfy

the second condition of Lemma 3.1, and (2) rankg(Q) = rankg(C) =

right(fr) < -+ < ”ght(mFé )- Q(|C]). To finish the proof of Lemma 3.1, we prove in Lemma 4.13

Note that we used < instead of < because some of the witness arcs that the length of B is small: |B| = |I'\ R| < O(ylogn) - |C|.
might be the same. We now construct R. To help the analysis in Lemma 4.14 we will
We prove below that for each i € [|F6,1|]’ consider R as being composed of three parts, R = Ry U Ry U R3.
Given the plan above we would like to add as many indices i €
(1) the entry of impvmp(a;) indexed by edge (node(«;), I'\ endpoints(C) to R as possible since the smaller I \ R is, the
node(f;)) is nonzero, and larger the ratio |C|/|I \ R| becomes. At the same time we need to

maintain the key property that the removal of R does not change
the improvement vector of any arc a € C.

For each node u € S(Hj), we consider the following cases: (a)
It follows from this triangular structure in the matrix that rank H(Fé) u € S1(Hj), i.e the node u appears exactly once in the interval,
is full. The proof of (1) and (2) can be found in [4]. O (b) u € Sy(Hy) and u appears an even number of times and (c)
u € Sy(Hy) and u appears an odd number of times.

(2) the entry of impvmp;(a;) indexed by the same edge
is 0 for every j < i.

Lemma 3.1 follows by taking B = Hy and Q to be the set of arcs
of B induced by the quantile F(’I of F. Case a: u € S1(Hy). Let k € I with o} = u be the unique
occurrence of u in I. If the radius of k is long-radius:
radiusg (k) > 2 - maxlen(D;+), we add k to R;; we leave k
|Overlap| |(Di*+1 U Dy U -'Di*—l)m . }n I\R gtherwise. The idea here is that if thé radius oflf is
+ . ong-radius, then given that every arc a € C is short-radius,
len(l) len(l) ylogn we have k ¢ interiorg(a) and thus, the removal of k does
not affect the improvement vector of a. On the other hand,
if the radius of k is small, then it is an endpoint of two arcs
llen(D)| (predg(k), k) and (k, succy(k)) and both have length at
|Overlap| < |[PNI|+ —= =0 (\/logn . |C|) . (14) most 2 - maxlen(D;+). At the same time, given that u only
Viogn appears once in I and that I has length 2, at least one of
them has length at least £ > 2/ "~1 4 1. As a result, we have
k € P when k is not added to R;.

4.6.3 Case 3.2: Overlap is small. We are in the last case when

Given that [(Dj41 U Dj= U Dj=_1)|1| < |P N I|, we have from (11)

Let y be the configuration of S(H) in the statement of Lemma
3.1, and y’ be the configuration of S(H) before the first move of I.

We start with a sketch of the proof for this case. First we note that Case b: u € Sy(Hy) and u appears an even number of times
we can apply Lemma 4.5 to conclude that rankg (C) = Q(|C|). This in Hy. Let k1 < k2 < --- < kag be the occurrences of u in I
is again because the length of I is 2¢, all arcs in C are contained in for some q > 1. Then for each i € [q], we add both kg;—1

I, and have length at least £/2. Hence we can pick a subset C” of and ky; to Ry if (kgj—1, k2;) € NonOverlap, and keep both in
C of size |C’| > |C|/4 such that the arcs of C’ have distinct nodes. I'\ R otherwise. Note that if (k2;_1, k2;) ¢ NonOverlap, then
Lemma 4.5 then implies that rankg(C) > ranky(C”) = Q(|C)). either (k2i—1, k2;) € Overlap or at least one of the two
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endpoints is in endpoints(C). As a result, we can conclude
that the number of these 2q indices that do not get added to
Ry can be bounded from above by

O(number of B € Overlap U C with nodeg(f) = u)

See Figure 5 for an illustration of case a and case b.

Case c: u € S(Hr) and u appears an odd number of times
in Hy. Let k1 < - -+ < kag+1 be the occurrences of u in I for
some q > 0. See Figure 6 for an illustration of case c.

Case c;: If the number of § € Overlap U C with

nodeg(f) = u is at least 1, then we can handle this case
similarly as Case 2: For each i € [q] we add k2;—1 and ky; to
Ry if the arc (kgj—1, k2;) is in NonOverlap, and we always
keep kzg+1 in I\ R. In this case, the number of these 2g + 1
indices that do not get added to R3 is

1+ O(number of § € Overlap U C with nodey(f) = u)

which remains an O(-) of the same quantity given that the
latter is at least 1.

Case cy: Consider the case when there is no

B € Overlap U C with nodeg () = u. We start with the
easier situation when there is no k € I such that o3 = u and
k € interiorg(a) for some « € C. In this case we add all

k € I with o = u to Rs. Note that the (nodep (), u)-th
entry of the improvement vector of every a € C is 0. So
removing all occurrences of u has no effect.

Case c3: We are left with the case when there is no

B € Overlap U C with noder(f) = u and at the same time,
there is an arc a € C such that k; € interiorg(a) for some i.
Combining these two assumptions we must have that

ki € interiorg(a) for all i € [2g + 1]. Given that « is a
short-radius arc, we have that the radius of both k; and
kag+1 is at most 2 - maxlen(D;+). On the other hand, given
that len(I) = 2¢ and len(a) < ¢, the radius of either k; or
kog+1 is at least £/2 > 2/"=2 If this holds for k1, we add
ka,...,kag+1 to Rz and keep kg in I'\ R; otherwise we add
ki1,...,kaq to Rz and keep kog+1 in [ \ R. In both cases the
index left in I \ R lies in P.

Summarizing Case b and Case c, we have that Ry consists of
endpoints of a collection of endpoint-disjoint arcs in NonOverlap.
Moreover, the number of indices left in I \ R can be bounded by

[P N I| + O(|Overlap U C)). (15)
This gives us the following bound on |\ R|:
Lemma 4.13. |I\ R| < O(y/logn) - [C].
Proor. This follows by combining (15), (11) and (14). O

Finally we show in the full version [4] that there is no change in
the improvement vectors of @ € C after removing R.

LEMMA 4.14. For every arc a € C of H, its corresponding arc

B = p(a) € Q of B satisfies

impvm_ g(B) = impvm),,H(a).

1063

Xi Chen, Chenghao Guo, Emmanouil V. Vlatakis-Gkaragkounis, Mihalis Yannakakis, and Xinzhi Zhang

LEMMA 4.15 (LEMMA 3.1 FOR CASE 3.2). Assume that condition
(14) holds, i.e., Overlap is small. Then there exist (i) a sequence B of
moves of length at most 5n, (ii) a configuration t of S(B), and (iii) a
set of arcs Q of B such that

(1) The rank of Q in B satisfies

rankg(Q) 1 )
e e

(2) For every arc a € Q, there exists an arc a’ of H such that

impvm,_ g(a) = impvmy’H(a’) (B).

Proor. Indeed using the interval I € [m] of Equation (11), we set
B = Hp\p and 7 be the restriction of configuration y’ on S(B). We
set also Q to the arcs of B which are induced by collection C = C*|;
of (11). Lemma 4.14 shows that (B)—Vector-Preservation— property
holds for B, Q, r. Finally the aforementioned analysis shows that
(i) rank(C) is almost full or equivalently that rankg(Q) > Q(|Q|)
and (ii) using Lemma 4.13, len(B) = len(Hpr) < O(ylogn) - |Q|
implying that (A)—High-rank property— holds too. O

5 BINARY MAX-CSP AND FUNCTION
PROBLEMS

Definition 5.1. An instance of Max-CSP (Constraint Satisfaction
Problem) consists of a set V = {x1,...,x,} of variables that can
take values over a domain D, and a set C = {c1,...,cm} of con-
straints with given respective weights wy, ..., wp. A constraint
cj is a pair (R, t;) consisting of a relation R; over D of some arity
ri (le. R; € D"), and an rj-tuple of variables (i.e.,, t; € V'i). An
assignment 7 : V — D satisfies the constraint ¢; if z(#;) € R;. The
MAX CSP problem is: given an instance, find an assignment that
maximizes the sum of the weights of the satisfied constraints.

We will focus here on the case of binary domains D, which wlog
we can take to be {0, 1}, and binary relations (r; = 2); we refer to this
as Binary Max-CSP, or Max-2CSP. Several problems can be viewed
as special cases of Binary Max-CSP where the relations of the
constraints are restricted to belong to a fixed family R of relations;
this restricted version is denoted Max-CSP(R). For example, the
Max Cut problem in graphs is equivalent to Max-CSP(R) where R
contains only the “not-equal” (binary) relation # (i.e., the relation
{(0,1),(1,0)}). Other examples include:

o Directed Max Cut. Given a directed graph with weights on
its edges, partition the set of nodes into two sets Vp, V; to
maximize the weight of the edges that are directed from Vp
to V1. This problem is equivalent to Max-CSP(R) where R
consists of the relation {(0, 1)}.

Max 2SAT. Given a weighted set of clauses with two literals
in each clause, find a truth assignment that maximizes the
weight of the satisfied clauses. This is equivalent to Max-
CSP(R), where R contains 4 relations, one for each of the
4 possible clauses with two literals a vV b,a Vv b,a v b,av b;
the relation for a clause contains the three assignments that
satisfy the clause. If we allow unary clauses in the 2SAT
instance, then we include in R also the two unary constraints
for a and —a.
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Figure 5: Illustration of Case a and Case b. Here The dashed arcs are in C, the solid arc is in Overlap, and the dotted arcs are in

NonOverlap. The circle is in Bj, and the orange nodes are in B;.

B o P2
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Figure 6: Illustration of Case c. Here node(f;) and node(f;) are adjacent to node(;) in G. The dashed arcs are in C, the dotted
arc is in Overlap, and the solid arcs are in NonOverlap. The green nodes are in B3, and the orange nodes are in B;.

o Stable Neural Network. A neural network in the Hopfield
model [9] is an undirected graph G = (V, E) (the nodes cor-
respond to the neurons, the edges to the synapses) with a
given weight we for each edge e € E and a given threshold t,,
for each node u € V; the weights and thresholds are not re-
stricted in sign. A configuration y is an assignment of a value
(its ‘state’) —1 or 1 to each node. A node u is stable in a config-
uration y if y(u) = 1 and ty, + Xo:(y, 0)eE W(w,v)Yo < 0, 0r
y(w) = land ty + Yo (u,0)eE W(u,0)Yo = 0. A configuration
is stable if all the nodes are stable in it. Hopfield showed that
every neural network has one or more stable configurations,
using a potential function argument: a node u is unstable in a
configuration y iff flipping its state increases the value of the
potential function P(}’) =2uev tu- Y(u) + Z(u,v)eE W(u,v)
y(w)y(v). Hence, y is stable iff p(y) cannot be increased by
flipping the state of any node. Thus, the problem of finding
a stable configuration is the same as the local Max-CSP(R)
problem when R contains the unary constraint a and the
binary constraint a = b. The natural greedy algorithm, in
which unstable nodes asynchronously (one-at-a-time) flip
their state (in any order) monotonically increases the po-
tential function and converges to a stable configuration®.
Our results apply to the smoothed analysis of this natural
dynamics for neural networks.

o Network coordination game with 2 strategies per player. We
are given a graph G = (V, E) where each node corresponds to
a player with 2 strategies, and each edge (u, v) corresponds
to a game I}, , between players u,v with a given payoff
matrix (both players get the same payoff in all cases). The
total payoff of each player for any strategy profile is the sum
of the payoffs from all the edges of the player. The problem
is to find a pure equilibrium (there always exists one as these
are potential games). This problem can be viewed as a special
case of local Max-CSP(R) where R contains the 4 singleton
relations {(0,0)}, {(0, 1)}, {(1,0)},{(1, 1)}, and we want to

®Note that if unstable nodes flip their state simultaneously then the algorithm may
oscillate and not converge to a stable configuration.

find a locally optimal assignment that cannot be improved by
flipping any single variable. The FLIP algorithm in this case
is the better response dynamics of the game. Boodaghians
et. al. [3] studied the smoothed complexity of the better
response algorithm for network coordination games, where
each entry of every payoff matrix is independently drawn
from a probability distribution supported on [-1, 1] with
density at most ¢. They showed that for general graphs
and k strategies per player the complexity is at most ¢ -
(nk)o(k log(nk) with probability 1 — o(1), and in the case of
complete graphs it is polynomial.

A constraint can be viewed as a function that maps each assign-
ment for the variables of the constraint to a value 1 or 0, depending
on whether the assignment satisfies the constraint or not. We can
consider more generally the Binary function optimization prob-
lem (BFOP), where instead of constraints we have functions (of
two arguments) with more general range than {0, 1}, for exam-
ple {0,1,...,k}, for some k fixed (or even polynomially bounded):
Given a set V = {x1,...,xp} of variables with domain D = {0, 1},
aset F = {fi,..., fm} of functions, where each f; is a function
of a pair t; of variables, and given respective weights wy, ..., wp,
find an assignment 7 : V. — D to the variables that maximizes
X, wi - fi(z(t;)). In the local search version, we want to find an
assignment that cannot be improved by flipping the value of any
variable. For smoothed analysis, the weights w; are drawn inde-
pendently from given bounded distributions as in Max Cut. We
will show that the bounds for Max Cut extend to the general Bi-
nary Max-CSP and Function optimization problems with arbitrary
(binary) constraints and functions.

Consider an instance of BFOP. Even though a function (or a
constraint in Max-2CSP) has two arguments, its value may depend
on only one of them, i.e. it may be essentially a unary function (or
constraint). More generally, it may be the case that the function
depends on both variables but the two variables can be decoupled
and the function can be separated into two unary functions. We
say that a binary function f(x,y) is separable if there are unary
functions f’, f”’ such that f(x,y) = f’(x) + f’(y) for all values
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of x, y; otherwise f is nonseparable. For binary domains there is a
simple easy criterion; see the proof in [4].

LEMMA 5.2. A binary function f of two arguments with domain
{0, 1} is separable iff £(0,0) + f(1,1) = £(0,1) + f(1,0).

If our given instance of BFOP has some separable functions, then
we can replace them with the equivalent unary functions. After
this, we have a set of unary and binary functions, where all the
binary functions are nonseparable.

Consider a sequence H of variable flips starting from an initial
assignment (configuration) y € {0,1}". When we flip a variable x;
in some step, the change in the value of the objective function can
be expressed as (, X), where the coordinates of the vectors §, X
correspond to the functions of the given instance, the vector § gives
the changes in the function values and X is the vector of random
weights of the functions. Define the matrix Mgy, , which has a row
corresponding to each nonseparable function f; and a column for
each pair of closest flips of the same variable in the sequence H,
where the column is the sum of the vectors 1, 8, for the two flips,
restricted to the nonseparable functions. Note that for separable
functions, the corresponding coordinate of §; + 2 = 0. Thus, the
sum of the changes in the value of the objective function in the two
closest flips of the same variable is equal to the inner product of the
column § with the vector of random weights of the nonseparable
functions. The proof of the following lemma can be found in [4].

LEmmA 5.3. The entry of the matrix My, at the row for the
(nonseparable) function f; and the column corresponding to an arc a
of a variable x; is nonzero iff x; is one of the variables of the function
fi and the other variable xi. of f; appears an odd number of times in
the interior of a.

Thus, the zero-nonzero structure of the matrix My, , is the same
as that of the matrix for the Max Cut problem on the graph G
which has the variables as nodes and has edges corresponding to
the nonseparable functions with respect to the same initial configu-
ration y and sequence of flips H. The arguments in the proof for the
Max Cut problem that choose a subsequence and bound the rank
of the corresponding submatrix depend only on the zero-nonzero
structure of the matrix and not on the precise values: In every case,
we identify a diagonal submatrix or a triangular submatrix of the
appropriate size. Therefore, we can apply the same analysis for
the general Max-2CSP and BFOP problems with arbitrary binary
constraints or functions, proving Theorem 1.3.

6 CONCLUSIONS

We analyzed the smoothed complexity of the FLIP algorithm for
local Max-Cut, and more generally, for binary maximum constraint
satisfaction problems (like Max-2SAT, Max-Directed Cut, Stable
Neural Network etc.). We showed that with high probability, ev-
ery execution of the FLIP algorithm for these problems, under any

pivoting rule, takes at most ¢no(\/@) steps to terminate. The
proof techniques involve a sophisticated analysis of the execution
sequences of flips that are potentially generated by the FLIP algo-
rithm, with the goal of identifying suitable subsequences (including
non-contiguous subsequences) that contain many steps with lin-
early independent improvement vectors, which are preserved from
the full execution sequence. We do not know at this point whether
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the /log n in the exponent, which is due to the ratio between the
length and the rank of the subsequence, can be improved or is best
possible for this approach, i.e. whether our new rank lemma for
subsequences is tight.

There are several other interesting open questions raised by
this work. One question concerns the extension to non-binary
constraints. For example, does a similar result hold for Max-3SAT?
Does it hold generally for all Max-CSP with binary domains? There
are several new challenges in addressing these questions.

Another question concerns the extension to domains of higher
cardinality k. Simple examples of Max-2CSP with larger domain
include Max-k-Cut, where the nodes are partitioned into k parts
instead of 2 as in the usual Max-Cut, and the Network Coordination
Game with k strategies per player. Bibak et. al. studied Max-k-Cut
and showed that the FLIP algorithm converges with high probabil-
ity in qﬁno(k’g n) steps for general graphs for fixed k (and polynomial
time for complete graphs if k = 3) [2]. Boodaghians et. al. stud-
ied the network coordination game and showed a similar bound
¢nOlogn) for general graphs for fixed k (and in the case of complete
graphs, polynomial time for all fixed k) [3]. Can the logn in the
exponent be improved to +/log n for these problems using a com-
bination of the techniques in these papers and the present paper,
and more generally does it hold for all Max-2CSP problems with
non-binary domains?

Ultimately, is the true smoothed complexity of Local Max-CSP
problems polynomial or are there bad examples of instances and
distributions that force super-polynomial behavior?
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