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ABSTRACT

We show that the smoothed complexity of the FLIP algorithm for lo-

cal Max-Cut is at most ϕnO (
√
logn), where n is the number of nodes

in the graph and ϕ is a parameter that measures the magnitude of

perturbations applied on its edge weights. This improves the pre-

viously best upper bound of ϕnO (logn) by Etscheid and RÜoglin [7].

Our result is based on an analysis of long sequences of flips, which

shows that it is very unlikely for every flip in a long sequence to

incur a positive but small improvement in the cut weight. We also

extend the same upper bound on the smoothed complexity of FLIP

to all binary Maximum Constraint Satisfaction Problems.
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1 INTRODUCTION

Local search is one of the most prominent algorithm design para-

digms for combinatorial optimization problems. A local search

algorithm begins with an initial candidate solution and then follows

a path by iteratively moving to a better neighboring solution until

a local optimum is reached. Many algorithms currently deployed

in practice are based on local search, and all the empirical evidence

suggests that they typically perform very well in practice, rarely

running into long paths before reaching a local optimum.

However, despite their wide success in practice, the performance

of many local search algorithms lacks rigorous justifications. A

recurring phenomenon is that a local search algorithm is usually

efficient in practice but analysis under the worst-case framework

indicates the opposite Ð that the algorithm has exponential running

time due to delicate pathological instances that one may never

encounter in practice. A concrete (and probably one of the simplest)

example of this phenomenon is the FLIP algorithm for the local

Max-Cut problem.

Given an undirected graph G = (V ,E) with edge weights (Xe :

e ∈ E) (wlog in [−1, 1]), the local Max-Cut problem is to find a

partition of V into two sets V1 and V2 such that the weight of the

corresponding cut (the sum of weights of edges with one node in

V1 and the other in V2) cannot be improved by moving one of the

nodes to the other set. To find a local max-cut, the FLIP algorithm

starts with an initial partition and keeps moving nodes to the other

side, one by one, as long as the move increases the weight of the

cut, until no local improvement can be made. Note that the FLIP

algorithm, similar to the simplex algorithm, is really a family of

algorithms since one can apply different rules, deterministic or

randomized, to pick the next node when more than one nodes

can improve the cut. The local Max-Cut problem is known to be

PLS-complete [12], where PLS is a complexity class introduced

by [10] to characterize local search problems. A consequence of

the proof of the completeness result is that FLIP takes exponential

time to solve local Max-Cut in the worst case, regardless of the

pivoting rule used [12]. The local Max-Cut problem can be viewed

equivalently as the problem of finding a pure Nash equilibrium

in a party affiliation game [8]. In this case, the FLIP algorithm

corresponds to the better response dynamics for the game. The local

Max-Cut problem is also closely related to the problem of finding

a stable configuration in a neural network in the Hopfield model
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[9] (see Section 5 for the definition). In this case the FLIP algorithm

corresponds to the natural asynchronous dynamics where in each

step an unstable node flips its state, and the process repeats until

the network converges to a stable configuration.

Max-Cut is an example of a Maximum Binary Constraint Sat-

isfaction Problem (Max-2CSP). In a general Max-2CSP, the input

consists of a set of Boolean variables and a set of constraints with

weights over some pairs of variables. The problem is then to find

an assignment to the variables that maximizes the sum of weights

of satisfied constraints. So Max-Cut is the special case when all

constraints are XOR of the two variables. Other well-studied spe-

cial cases include Max-2SAT (Maximum Satisfiability when every

clause has at most two literals), and Max-Directed Cut (the max-

cut problem for weighted directed graphs); see Section 5 for their

definitions. We can consider more generally the Binary Function Op-

timization Problem (or BFOP in short), where instead of constraints

we have functions over some pairs of variables and the objective

function is a weighted sum of these functions (again see Section 5

for the formal definition). The FLIP algorithm can be used to find

local optima for general Max-2CSP and BFOP, where flipping the

assignment of any single variable cannot improve the objective

function.

In this paper we study the smoothed complexity of the FLIP al-

gorithm for local Max-Cut, Max-2CSP and BFOP. The smoothed

analysis framework was introduced by Spielman and Teng [14]

to provide rigorous justifications for the observed good practical

performance of the simplex algorithm (the standard local search

algorithm for Linear Programming), even though the simplex algo-

rithm is known to take exponential-time in the worst case for most

common pivoting rules (e.g. [11]). Since then, smoothed analysis

has been applied in a range of areas; see [13]. Specialized to the

local Max-Cut problem, the edge weights of the given undirected

graph G = (V ,E) are assumed to be drawn independently from a

vector X = (Xe : e ∈ E) of probability distributions, one for each

edge. Each Xe is a distribution supported on [−1, 1] and its den-

sity function is bounded from above by a parameter ϕ > 0. Notice

that as ϕ → 1/2, the model approaches the average-case analysis

framework for uniform edge weights. A related alternative model

for smoothed analysis is to allow an adversary to pick arbitrary

weights we , which are then perturbed by adding a small random

perturbation Ze , i.e. the edge weights are Xe = we +Ze . In this

case, ϕ corresponds to the maximum value of the pdf ofZe .

The question is to give an upper bound T (n,ϕ) such that for

any G and X, the FLIP algorithm terminates within T (n,ϕ) steps
with high probability (say 1 − on (1)) over the draw of edge weights

X ∼ X (where we use X ∼ X to denote independent draws of

Xe ∼ Xe ).
The best result forT (n,ϕ) before our work is the quasipolynomial

upper bound ϕnO (logn) by Etscheid and RÜoglin [7], based on a

rank-based approach which we review in Section 1.2. Before their

work, polynomial upper bounds were obtained by ElsÜasser and
Tscheuschner [5] and by Etscheid and RÜoglin [6] for special cases

either when G has O(logn) degree or when G is a complete graph

with edge weights given by Euclidean distances. After the work of

[7], Angel et. al [1] obtained a polynomial upper bound for T (n,ϕ)

when G is a complete graph. Their polynomial bound was further

improved by Bibak et. al [2], again for complete graphs.

1.1 Our Results

We prove a ϕnO (
√
logn) upper bound for the smoothed complexity

of FLIP for local Max-Cut:

Theorem 1.1. Let G = (V ,E) be an undirected graph over n ver-

tices, and let X = (Xe : e ∈ E) be a sequence of probability distribu-

tions such that every Xe is supported on [−1, 1] and has its density
function bounded from above by a parameter ϕ > 0. Then with prob-

ability at least 1 − on (1) over the draw of edge weights X ∼ X, any

implementation of the FLIP algorithm running on G and X takes at

most ϕnO (
√
logn) many steps to terminate.

Our proof of Theorem 1.1 can be strengthened to get the same

bound for the expected number of steps needed to terminate:

Corollary 1.2. Under the same setting of Theorem 1.1, any im-

plementation of the FLIP algorithm takes at most ϕnO (
√
logn) many

steps to terminate on expectation.

Given G and edge weights X , we define the (directed) configura-

tion graph they form as follows: vertices of the graph correspond

to configurations (or partitions) γ : V → {−1, 1}; there is an edge

from γ to γ ′ if γ ′ can be obtained from γ by moving one node and

the weight of γ ′ is strictly larger than that of γ under X , i.e., each

edge is a move that strictly improves the cut weight. Theorem 1.1

is established by showing that, with probability at least 1 − on (1)
over the draw of X ∼ X, there is no directed path longer than

ϕnO (
√
logn) in the configuration graph formed by G and X .

We also extend Theorem 1.1 to obtain the same upper bound

for the smoothed complexity of the FLIP algorithm running on

Max-2CSP and BFOP.

Theorem 1.3. Let I be an arbitrary instance of a Max-2CSP (or

BFOP) problem with n variables andm constraints (or functions) with

independent random weights in [−1, 1] with density at most ϕ. Then

with probability at least 1 − on (1) over the draw of weights, any

implementation of the FLIP algorithm running on I takes at most

ϕmnO (
√
logn) many steps to terminate.

1.2 The Rank-based Approach

We briefly review the ranked-based approach of [7] and then discuss

the main technical barrier to obtaining an upper bound that is

asymptotically better than nO (logn).
Since the maximum possible weight of a cut in the weighted

graph is at mostO(n2), if an execution of the FLIP algorithm is very

long, then almost all the steps must have a very small gain, less than

some small amount ϵ . Therefore, the execution must contain many

long substrings (consecutive subsequences) of moves, all of which

yield very small gain, in (0, ϵ]. Let B = (σ1, . . . ,σk ) be a sequence
of moves, where the σi ’s are the nodes flipped in each step, and

let γ : V → {−1, 1} be the configuration (partition) of the nodes

at the beginning. The increase of the cut weight made by the i-th

move is a linear combination of the weights of the edges incident

to the node σi that is flipped in the i-th step with coefficients either

−1 or 1; thus, the increase can be written as the inner product of

1053



Smoothed Complexity of Local Max-Cut and Binary Max-CSP STOC ’20, June 22ś26, 2020, Chicago, IL, USA

a {−1, 0, 1}-vector indexed by e ∈ E and the edge weight vector

X . We refer to the former as the improvement vector of the i-th

move. From our assumption about the probability distributions of

edge weights, it is easy to see that for any step, the probability that

the increase lies in (0, ϵ] is at most ϕϵ . If these events for different

steps were independent, then the probability that all the steps of the

sequence have this property would be at most (ϕϵ)k , i.e., it would go
down rapidly to 0 with the length k of the sequence. Unfortunately

these events may be quite correlated. However, a lemma of [7]

(restated as Lemma 2.1 in Section 2) shows that if the improvement

vectors in some steps are linearly independent then they behave

like independent events in the sense that the probability that they

all yield a gain in (0, ϵ] is at most (ϕϵ)r , where r is the number of

linearly independent steps. This suggests that a useful parameter

for obtaining a bound is the rank of the set of improvement vectors

for the steps of the sequence.

One problem is that the improvement vectors generally depend

on the initial configuration γ of nodes that do not appear in the

sequence B. Their number may be much larger than the rank r , and

thus considering all their possible initial values will overwhelm

the probability (ϕϵ)r . For this reason, [7] (and we) combine con-

secutive occurrences of the same node in the sequence B of moves:

for each pair (i, j), i < j ∈ [k], such that σi and σj are two consec-

utive occurrences of the same node in B (we call such a pair an

arc), we form the improvement vector of the arc by summing the

improvement vectors of the two steps i and j. Thus, the total gain

in cut weight from the two steps is given by the inner product of

the improvement vector for the arc and X ; if every step of B has

gain at most ϵ/2 then every arc has gain at most ϵ . We call such

a sequence ϵ-improving. The improvement vectors of the arcs do

not depend on the initial configuration of inactive nodes, those

that do not appear in the sequence. The rank of the sequence B is

defined as the rank of the matrixMB,γ whose rows correspond to

edges of G and whose columns are improvement vectors of arcs

of B. The aforementioned lemma (Lemma 2.1 in Section 2) then

implies that if the rank of a sequence B is r then the probability

that B is ϵ-improving is at most (ϕϵ)r .
The main technical lemma of [7], which we will refer to as the

rank lemma, shows that

Given any sequence H of length 5n, there always exists a substring

B of H , such that the rank1 of B is at least Ω(len(B)/logn).

With this lemma, one can apply a union bound to upper bound

the probability that there exists an initial configuration γ and a

sequence B with len(B) ≤ 5n and rank Ω(len(B)/logn) such that B

is ϵ-improving with respect to γ and X ∼ X as follows:
∑

ℓ∈[5n]
2ℓ · nℓ · (ϕϵ)Ω(ℓ/logn). (1)

Here nℓ is a trivial bound for the number of sequences of length

ℓ and (ϕϵ)Ω(ℓ/logn) is the probability that a sequence with rank

Ω(ℓ/logn) is ϵ-improving. A crucial observation is that, by the

definition of ranks (based on arcs instead of individual moves), we

1Note that the rank is defined earlier using both B and the initial configuration γ . An
observation from [1] shows that the rank actually does not depend on γ but only B .

do not need to apply the union bound on the 2n configurations

over all nodes but only on configurations of nodes that appear in

the sequence. In other words, initial configurations that only differ

on non-active nodes can be treated as the same. This is why we can

use 2ℓ instead of 2n in (1) since ℓ is a trivial upper bound for the

number of active nodes. By setting ϵ = 1/(ϕnO (logn)), (1) becomes

1−on (1). It follows from the rank lemma that, with high probability,

no sequence H of length 5n can be ϵ-improving and thus, the cut

weight must go up by at least ϵ for every 5n moves. The ϕnO (logn)

upper bound of [7] then follows since the maximum possible weight

of a cut is O(n2).
A natural question for further improvements is whether the

logn-factor lost in the rank lemma of [7] is necessary. Taking a

closer look, the proof of [7] consists of two steps. First it is shown

that given any sequence H of length 5n, there is a substring B such

that the number of repeating nodes in B (i.e., those that appear at

least twice in B) is Ω(len(B)/logn). The rank lemma then follows

by showing that the rank of B is at least proportional to the number

of repeating nodes in it (which we include as Lemma 4.5 in Section

4.2). On the one hand, the first step of the proof turns out to be

tight given an example constructed in [1]. Furthermore, we give a

construction in the appendix of the full version [4] to show that,

not only the proof approach of [7] is tight, but the rank lemma itself

is indeed tight, by giving a graph G and a sequence H of length 5n

such that every substring B of H has rank at most O(len(B)/logn).
Therefore, one cannot hope to obtain a bound better than nO (logn)

based on an improved version of this rank lemma.

1.3 A New Rank Lemma

We overcome the logn-barrier to the rank-based approach of [7]

on general graphs by considering not only substrings of H but

also its subsequences. Recall that a subsequence of H is of the form

(σi1 , . . . ,σik ) with i1 < · · · < ik . We use the same arc-based rank

notion defined above. The main technical component (Lemma 3.1)

is a new rank lemma that can be stated informally as follows:

If H is a sequence of moves of length 5n, there is a subsequence

B of H , such that the rank of B is at least Ω(len(B)/
√

logn).

While the
√

logn in the statement naturally leads to the improve-

ment from logn to
√

logn in our smoothed complexity bound, one

needs to be careful when working with subsequences B of H . An

advantage of using substrings of H is that improvement vectors

of arcs are trivially preserved, which is not necessarily the case

for subsequences of H . More formally, let B = (σℓ , . . . ,σr ) be a

substring of H and α = (i, j) be an arc of H such that ℓ ≤ i < j ≤ r .

Then the corresponding arc β = (i − ℓ + 1, r − ℓ + 1) of B has the

same improvement vector as that of α in H . Therefore, B being not

ϵ-improving trivially implies that H is not ϵ-improving. However,

when B = (σi1 , . . . ,σik ) is a subsequence of H , it is not necessarily

the case that every arc β of B can be mapped back to an arc α of H

and even if this is the case, it is in general not true that α and β share

the same improvement vector and thus, B being not ϵ-improving

does not necessarily imply that H is not ϵ-improving.
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Despite this limitation, we prove a subsequence rank lemma in

Section 4 of the following form (still an informal2 version; see

Lemma 3.1):

If H is a sequence of moves of length 5n, then there exists

a subsequence B of H and a set of arcs Q of B such that the

rank of Q (i.e., the rank of the matrix where we only include

improvement vectors of arcs in Q) is Ω(len(B)/
√

logn) and
the improvement vector of every arc in Q is the same as that

of its corresponding arc in H .

Theorem 1.1 then follows quickly from the new rank lemma by a

similar union bound.

The technical challenge for proving our new rank lemma is to

balance the following trade-off. On the one hand, we would like

to keep as many arcs of H in Q as possible so that they together

give us a high rank compared to the length of B. On the other

hand, the more arcs we want to keep the less aggressively we can

delete moves from H , in order to have their improvement vectors

preserved. To achieve this for an arc α = (i, j) of H , we need to

make sure that the parity of the number of occurrences inside the

arc of any node adjacent to the node σi = σj inG remains the same

after deletions.

We now give a sketch of the proof of our Main Lemma (Lemma

3.1). Let H be a sequence of moves of length 5n. Given that it is

much longer than the number n of vertices, it is easy to show that

H has many arcs (actually at least 4n; see Lemma 4.1). We first

partition all arcs of H into logn many chunks according to their

lengths (the length of an arc (i, j) is defined to be j − i + 1): chunk

Cj contains all arcs of length between 2j and 2j+1. Then there must

be a j∗ such that |C∗
j | is at least Ω(n/logn). Focusing on arcs in Cj∗

and letting ℓ = 2j
∗
+1, one can show (Lemma 4.6 in Section 4.2) that

there is a substring H ′
= (σi , . . . ,σi+2ℓ−1) of length 2ℓ such that

the number of Cj∗ -arcs contained in H ′ is Ω(ℓ/logn) (this should
not come as a surprise because this is basically the expected number

of Cj∗ -arcs when we pick the window uniformly at random). Let C

be the set of Cj∗ -arcs in H ′. If we take B to be H ′ and Q to be arcs

that correspond to C in B, then the rank of Q can be shown to be

Ω(|Q |) (by applying Lemma 4.5 discussed earlier and using the fact

that all arcs inQ are almost as long as B up to a constant). However,

the ratio |Q |/len(B) = |C |/(2ℓ) is only Ω(1/logn), too weak for our

goal. Instead our proof uses the following new ideas.

The first idea is to group the logn chunks C1, . . . ,Clogn into
√

logn groups D1, . . . ,D√
logn

, each being the union of
√

logn

consecutive chunks. In Case 1 and Case 2 of the proof, we pick a

group Di∗ , with ℓ
′′ set to be the maximum length of arcs in Di∗ ,

and then pick a substring H ′′ of H of length 2ℓ′′ by Lemma 4.6 so

that the number of Di∗ -arcs in H ′′ is Ω(ℓ′′/
√

logn). We show that

when these Di∗ -arcs satisfy certain additional properties (see more

discussion about these properties below), then their rank is almost

full and Lemma 3.1 for these two cases follows by setting B to be

H ′′ and Q to be arcs of B that correspond to these Di∗ -arcs in H ′′.

2The lemma stated here is still not in its formal version since we ignore the involve-
ment of the initial configuration γ ; see Lemma 3.1 for details. Fortunately the initial
configuration will play a minimal role in the proof and we find it easier to gain intuition
about the proof without considering it in the picture.

The second idea is to continue using the substring H ′ and the

set C of Cj∗ -arcs in it, with the rank of C being Ω(len(H ′)/logn),
but now we try to delete as many moves from H ′ as possible to
obtain the desired subsequence B and at the same time preserve

improvement vectors of arcs in C .

Wemake two key observations about which moves can or cannot

be deleted. First let σk be a move in H ′ such that node σk only

appears once in H ′. Then we cannot delete σk if i < k < j for

some arc α = (i, j) ∈ C and (σi ,σk ) is an edge in G; otherwise the

improvement vector of α will not remain the same at the entry

indexed by edge (σi ,σk ). As a result, if there are many such moves

in H ′ then we cannot hope to preserve arcs in C and at the same

time increase the ratio |C |/len(B) up to 1/
√

logn. To handle this

situation, our first key observation is that having many such σk is

indeed a good case: it would imply that many arcs α = (i, j) in H

have a σk (referred to as awitness for α) such that i < k < j , (σi ,σk )
is an edge inG , σk only appears once inside α , and both the previous

and next occurrences of σk are pretty far away from k . We handle this

case in Case 2 of our proof. As discussed earlier, we pick a group

Di∗ and a substring H ′′ of H . Assuming that most Di∗ -arcs in H ′′

satisfy this additional property now, their witnesses can be used to

certify the linear independence of their improvement vectors; this

implies that these Di∗ -arcs in H ′′ have almost full rank.

The next observation is about repeating nodes in H ′. Let β =
(k, r ) be an arc that shares no endpoint with arcs in C . We say β

overlaps with an arc α = (i, j) ∈ C if (σk ,σi ) is an edge in G and

either k < i < r < j or i < k < j < r . If β does not overlap with

any arc inC then it is not difficult to show that the deletion of both

moves k and r of β will have no effect on improvement vectors of

arcs in C . Therefore, we can keep deleting until no such arc exists

in H ′ anymore. But, what if many arcs in H ′ overlap with arcs in

C? Our second observation is that this is again a good case for us.

Assuming that there are Ω(ℓ/
√

logn) arcs in H ′ that overlap with

arcs inC , we show that the rank of these arcs is almost full and thus,

the ratio of the rank and the length of H ′ is Ω(1/
√

logn); this is
our Case 3.1. (Note that the discussion here is very informal. In the

actual proof, we need to impose an extra condition (see Definition

4.4) on arcs in C in order to show that the rank of arcs overlapping

with arcs in C is almost full. We handle the case when most arcs of

H violate this condition in Case 1 of the proof, by working with a

group Di∗ as discussed earlier.)

Now we can assume that all moves in H ′ can be deleted except

those that are endpoints of arcs in C and endpoints of arcs that

overlap with at least one arc in C (the number of which is at most

O(ℓ/
√

logn)). Recall from the discussion at the beginning that the

rank ofC is almost full. Given that the length of the subsequence B

obtained after deletions is O(
√

logn) · |C |, the rank lemma follows

(since we made sure that the deletion of moves does not affect

improvement vectors of arcs in C). This is handled as the last case,

Case 3.2, in the proof of the Main Lemma.

With the proof sketch given above, the choice of
√

logn in the

statement of the Main Lemma is clearly the result of balancing

these delicate cases. At a high level, the proof of the Main Lemma

relies on a detailed classification of arcs based on a number of their

attributes that we can take advantage in the analysis of their ranks.

The proof involves an intricate analysis of sequences and their
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properties and uses very little from the structure of the graph itself

and the Max-Cut problem. As a consequence, the proof readily

extends to all other local Max-2CSP problems with the same bound

on their smooth complexity.

Organization. The structure of the rest of the paper is as follows.

Section 2 gives basic definitions and background. Section 3 states

the Main Lemma and uses it to prove Theorem 1.1. Section 4, which

is technically the heart of the paper, proves the Main Lemma. Sec-

tion 5 presents the extension to general binary Max-CSP and Func-

tion problems, and Section 6 offers concluding remarks and open

problems.

2 PRELIMINARIES

Given a positive integer n we use [n] to denote {1, . . . ,n}. Given
two integers i ≤ j , we write [i : j] to denote the interval of integers

{i, . . . , j}. Given an interval I = [i : j], we write len(I ) = j − i + 1

to denote the length of the interval I .

Let G = (V ,E) be a weighted undirected graph with a weight

vector X = (Xe : e ∈ E), where Xe ∈ [−1, 1] is the weight of edge
e ∈ E. Under the smoothed complexity model, there is a family

X = (Xe : e ∈ E) of probability distributions, one for each edge; the

edge weights Xe are drawn independently from the corresponding

distributionsXe . We assume that eachXe is a distribution supported
on [−1, 1] and its density function is bounded from above by a

parameter ϕ > 0. (The assumption that the edge weights are in

[−1, 1] is no loss of generality, since they can be always scaled to

lie in that range.) A configuration γ of a set of nodes S ⊆ V is a map

from S to {−1, 1}. A configuration γ ofV corresponds to a partition

of the nodes into two parts: the left part {u ∈ V : γ (u) = −1} and
the right part {u ∈ V : γ (u) = 1}. The weight of a configuration
(partition) γ ofV with respect to a weight vector X is the weight of

the corresponding cut, i.e., the sum of weights of edges that connect

a left node with a right node.

Formally, it is given by

objG,X (γ ) =
1

2

∑

(u,v)∈E
X(u,v) ·

(

1 − γ (u)γ (v)
)

.

The problem of finding a configuration ofV that maximizes the cut

weight is the well-known Max-Cut problem. We are interested in

the Local Max-Cut problem, where the goal is to find a configuration

γ ofV that is a local optimum, i.e., objG,X (γ ) ≥ objG,X (γ (v)) for all
v ∈ V , where γ (v) is the configuration obtained from γ by flipping

the sign of γ (v).
A simple algorithm for Local Max-Cut is the FLIP algorithm:

Start from some initial configuration γ = γ0 of V . While there exists

a node v ∈ V such that flipping the sign of γ (v) would increase the
cut weight, select such a node v (according to some pivoting criterion)

and execute the flip, i.e., set γi+1 = γ
(v)
i and repeat.

The algorithm terminates with a configuration of V that cannot be

improved by flipping any single node. The execution of FLIP for

a given graph G and edge weights X depends on both the initial

configuration γ0 and the pivoting criterion used to select a node to

flip in each iteration, when there are multiple nodes which can be

profitably moved. Each execution of FLIP generates a sequence of

nodes that are moved during the execution.

Given G = (V ,E) we denote a sequence of moves as a sequence

H = (σ1, . . . ,σk ) of nodes from V , where we write len(H ) = k to

denote its length. We say a node v ∈ V is active in H if it appears

in H , and is repeating if it appears at least twice in H . We write

S(H ) to denote the set of active nodes in H , and use S1(H ) (resp.
S2(H )) to denote the set of nodes that appear only once (resp. two

or more times) in H . As usual, a substring of H is a sequence of the

form (σi ,σi+1, . . . ,σj ) for some 1 ≤ i < j ≤ k , and a subsequence of

H is a sequence of the form (σi1 , . . . ,σiℓ ) for some 1 ≤ i1 < · · · <
iℓ ≤ k . Given a set P ⊆ [k], we write HP to denote the subsequence

of H obtained by restricting to indices in P . When P is an interval

[i : j] ⊆ [k], HP is a substring of H .

Next we introduce the notion of arcs and define their improve-

ment vectors. An arc α = (i, j) of H = (σ1, . . . ,σk ) is a pair of

indices i < j ∈ [k] such that σi = σj and σi , σℓ for all i < ℓ < j

(i.e., σi and σj are two consecutive occurrences of the same node

in H ). We let nodeH (α) = σi = σj ∈ V and refer to it as the node

of α . We will sometimes omit the subscript H when it is clear from

the context. We also refer to i as the left endpoint and j as the right

endpoint of α , and write left(α) = i and right(α) = j. We write

len(α) = j − i + 1 to denote the length of α .

Given a sequence H = (σ1, . . . ,σk ) of moves (nodes) and an

initial configuration γ = γ0 before the first move of H , let γi denote

the configuration after the i-th move of H . The gain in the cut

weight from the i-th move is a linear combination of the weights

of the edges incident to node σi that is flipped, where some edges

have coefficient 1 and the rest have coefficient −1. Note that if H is

part of an execution of the FLIP algorithm, then the gain is positive

at every move.

For each arc α = (i, j) of H , we define the improvement vector of

α with respect to γ and H , denoted by impvmγ ,H (α), as follows:
impvmγ ,H (α) is a vector in {−2, 0, 2}E indexed by edges e ∈ E (just

like the weight vector X ); its entry indexed by e ∈ E is nonzero

iff e = (nodeH (α),v) ∈ E for some node v that appears an odd

number of times in σi+1, . . . ,σj−1. When this is the case, its value

is set to be 2γi−1(nodeH (α))γi−1(v). Note that for this definition
we do not need to have the full configuration γ of V but only

of the active nodes in S(H ). It also follows from the definition of

improvement vectors that, if γ is the initial configuration of S(H )
and we move nodes one by one according to H , then the total

gain in the cut weight obj from the i-th move and the j-th move is

given by the inner product of impvmγ ,H (α) and X . Indeed, letting

u = nodeH (α), the total gain from these two moves equals

∑

v : (u,v)∈E
X(u,v) · γi−1(u)γi−1(v)

︸                                    ︷︷                                    ︸

i-th move

+

∑

v : (u,v)∈E
X(u,v) · γj−1(u)γj−1(v)

︸                                    ︷︷                                    ︸

j-th move

Given that γi−1(u) = −γj−1(u), only those neighbors v of u that

flipped an odd number of times in σi+1, . . . ,σj−1, i.e., γi−1(v) ,
γj−1(v), contribute in the total gain of the two moves.

Inspired by the definition of improvement vectors above, we

define the interior of α , denoted by interiorH (α): interiorH (α) con-
tains all k ∈ [i + 1 : j − 1] such that node σk appears an odd number

of times in σi+1, . . . ,σj−1 and σk is adjacent to σi = nodeH (α) in
the graph G.
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We say an arc α of H is improving with respect to γ and X

if the inner product of impvmγ ,H (α) and X is positive. We say

it is ϵ-improving for some parameter ϵ > 0 if the inner product

is in (0, ϵ]. Furthermore, we say a set C of arcs of H is improving

(or ϵ-improving) with respect to γ and X if every arc in C is im-

proving (or ϵ-improving). A sequence H of moves is improving (or

ϵ-improving) with respect to γ and X if every arc of H is improving

(or ϵ-improving). Note that if H is part of the sequence of moves

generated by an execution of the FLIP algorithm then H must be

improving, because every move must increase the weight of the

cut and therefore every arc is improving. On the other hand, if

some move in H increases the cut weight by more than ϵ then the

same is true for the arc that has it as an endpoint and thus, H is not

ϵ-improving.

Let C be a set of arcs of H . A key parameter of C that will be

used to bound the probability ofC being ϵ-improving (over the draw

of the edge weightsX ∼ X) is the rank ofC with respect to γ andH ,

denoted by rankγ ,H (C): this is the rank of the |E | × |C | matrix that

contains improvement vectors impvmγ ,H (α) as its column vectors,

one for each arc α ∈ C . To give some intuition for this parameter,

one may hope that for a fixed sequence of moves H with K arcs

PrX∼X
[

H is ϵ-improving
]

=

∏

α ∈C
PrX∼X

[

α is ϵ-improving
]

.

However, since there could be improving steps that are strongly

correlated (as an extreme situation there could be two arcs with

exactly the same improvement vector), one may expect the prod-

uct on the right hand side to hold only for linearly independent

impvmγ ,H (α)’s, introducing the necessity of analysis of the rank.

An observation from [7] is that rankγ ,H (C) is independent of the
choice of γ . Indeed, a change of a node in the initial configuration

would result in a change of sign on every row of the matrix that is

incident with this node. So from now on we write it as rankH (C). To
simplify our discussion on rankH (C) later, we use impvmH (α) to
denote impvmγ0,H

(α) where γ0 is the default initial configuration
of S(H ) that maps every node in S(H ) to −1. Then rankH (C) is the
rank of the matrix that consists of impvmH (α), α ∈ C . The next

tool from [7] shows that the higher the rank is, the less likely forC

to be ϵ-improving.

Lemma 2.1 (Lemma A.1 from [7]). Let X = (Xi : i ∈ [m]) be a
sequence of probability distributions in which each Xi has density
bounded from above by a parameter ϕ > 0. Let r1, . . . , rk ∈ Zm be k

vectors that are linearly independent. Then for any ϵ > 0, we have

PrX∼X
[

∀ i ∈ [k] : ⟨ri ,X ⟩ ∈ [0, ϵ]
]

≤ (ϕϵ)k .

Corollary 2.2. Let G = (V ,E) be an undirected graph and let

X = (Xe : e ∈ E) be a sequence of distributions such that each Xe
has density bounded from above by a parameter ϕ > 0. Let H be a

sequence of moves, γ be a configuration of S(H ), and C be a set of

arcs of H . Then for any ϵ > 0,

PrX∼X
[

C is ϵ-improving with respect to γ and X
]

≤ (ϕϵ)rankH (C)
.

Finally we say a sequence H of moves is nontrivial if the interior

of every arc in H is nonempty; H is trivial if at least one of its arcs

has interiorH (α) = ∅. It follows from definitions that H cannot be

improving (with respect to any γ and any X ) if it is trivial. Since

every sequence resulting from an execution of the FLIP algorithm

is improving, it follows that it is also nontrivial. We will consider

henceforth only nontrivial sequences (see Lemma 3.1).

3 MAIN LEMMA AND THE PROOF OF
THEOREM 1.1

We prove the following main technical lemma in Section 4:

Lemma 3.1. LetG = (V ,E) be an undirected graph over n vertices.

Given any nontrivial sequence H of moves of length 5n and any

configuration γ of S(H ), there exist (i) a sequence B of moves of length

at most 5n, (ii) a configuration τ of S(B), and (iii) a set of arcs Q of B

such that

(1) The rank of Q in B satisfies

rankB (Q)
len(B) ≥ Ω

(

1
√

logn

)

(High-rank property); (2)

(2) For every arc α ∈ Q , there exists an arc α ′ of H such that

impvmτ ,B (α) = impvmγ ,H (α ′). (Vector-Preservation property).

As discussed earlier in Section 1.3, the new sequence B in Lemma

3.1 is either a substring or a subsequence of H . When we pick B to

be a substring ofH , say a substring that starts with the i-th move of

H , the natural choice ofQ is the set of all arcs in B (since we would

like rankB (Q) to be as large as possible in (2)) and that of τ is the

configuration γi−1 of S(B) derived from γ after making the first i−1

moves of H . With these choices, the second condition of Lemma

3.1 is trivially satisfied and the main goal is to lowerbound the

rank of arcs in B. This is indeed the proof strategy followed in all

previous works [1, 2, 7]. The key new idea of the paper is the use of

subsequences of H as B instead of substrings of H . While this gives

us more flexibility in the choice of B to overcome the (logn)-barrier
of [7] as sketched earlier in Section 1.3, one needs to be very careful

when deleting moves and picking arcs to be included in Q in order

to satisfy the second condition.

We delay the proof of Lemma 3.1 to Section 4. Instead, below we

use it to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1 assuming Lemma 3.1. Let c1 > 0 be a

constant to be specified later and let

ϵ =
1

ϕ · nc1
√
logn
.

We write F to denote the following event on the draw of the weight

vector X ∼ X:

Event F : For every sequence B of length at most 5n,

every configuration τ of S(B), and every set Q of arcs

of B satisfying (where a > 0 is the constant in

Lemma 3.1)

rankB (Q)
len(B) ≥ a

√

logn
, (3)

Q is not ϵ-improving with respect to τ and X .
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We break the proof into two steps. First we prove that F occurs with

probability at least 1 − on (1) over the draw of the weight vector

X ∼ X. Next we show that when F occurs, any implementation

of the FLIP algorithm must terminate within ϕ · nO (
√
logn) many

steps.

For the first step, we fix an ℓ ∈ [5n], a sequence B of length ℓ, a

configuration τ of S(B) and a set Q of arcs of B that satisfies (3) (so

the rank is at least aℓ/
√

logn). It follows from Corollary 2.2 that the

probability of Q being ϵ-improving with respect to τ and X ∼ X is

at most (ϕϵ)aℓ/
√
logn . Applying a union bound (on ℓ, B, τ and Q),

F does not occur with probability at most

Pr[¬F ] ≤
∑

ℓ∈[5n]
nℓ · 2ℓ · 2ℓ−1 ·

(

ϕϵ
)

aℓ√
logn

≤
∑

ℓ∈[5n]

(

(4n)
√
logn

a · ϕϵ
) aℓ√

logn

= on (1),

where the factor nℓ2ℓ is an upper bound for the number of choices

for B of length ℓ and the initial configuration τ of S(B), and the

factor 2ℓ−1 is because there can be no more than ℓ − 1 arcs in a

sequence of length ℓ. The last equation follows by setting c1 in the

choice of ϵ sufficiently large.

For the second step, first notice that when F occurs, it follows

from Lemma 3.1 that there exists no sequence H of length 5n to-

gether with a configuration γ of S(H ) so that H is ϵ-improving

with respect to γ and X . Taking any implementation of the FLIP

algorithm running on G with weights X , this implies that the cut

weight obj must go up by at least ϵ for every 5n consecutive moves.

As the weight of any cut lies in [−n2,n2], the number of steps it

takes to terminate is at most

5n · 2n
2

ϵ
= ϕ · nO (

√
logn)

.

This finishes the proof of Theorem 1.1. □

Proof of Theorem 1.2 assuming Lemma 3.1. We let Fϵ denote

the event F in the proof of Theorem 1.1 with a specified ϵ > 0. Let

ϵ0 =
1

ϕ · nc1
√
logn
,

where c1 > 0 is a constant to be fixed shortly.

For ϵ ≤ ϵ0, we have

Pr[¬Fϵ ] ≤
∑

ℓ∈[5n]
nℓ · 2ℓ · 2ℓ−1 ·

(

ϕϵ0
)

⌈

aℓ√
logn

⌉

·
(

ϵ

ϵ0

)

⌈

aℓ√
logn

⌉

≤
∑

ℓ∈[5n]

1

5n2
·
(

ϵ

ϵ0

)

⌈

aℓ√
logn

⌉

≤ ϵ

nϵ0
,

where c1 is large enough so that the second inequality holds.

From the previous proof, we know that Fϵ implies the number of

steps (denote as L) is at most 10n3/ϵ . By combining the inequality

above, one can bound the tail probability of L. Let

L0 =
10n3

ϵ0
= ϕ · nO (

√
logn)

.

Then the probability that L is larger than cL0 for any c ≥ 1 is

Pr[L > cL0] ≤ Pr[¬Fϵ0/c ] ≤
1

nc
.

Note that L is always trivially bounded by the total number of

configurations, 2n . Therefore, we have

E[L] ≤ L0 +

2n∑

s= ⌈L0 ⌉
Pr[L ≥ s] ≤ L0 +

2n∑

s= ⌈L0 ⌉

L0

ns
= O(L0).

This finishes the proof of Theorem 1.2. □

4 PROOF OF THE MAIN LEMMA

We proceed now to the proof of Lemma 3.1. The plan of the section

is as follows. Given a nontrivial sequence H = (σ1, . . . ,σm ) of
moves of length m = 5n, we classify in Section 4.1 its arcs into

good ones and bad ones and introduce the notion of the radius of

an arc. In Section 4.2 we prove a few basic lemmas that will be

used in the proof of Lemma 3.1. Next we partition the set of all

arcs of H into chunks according to their lengths in Section 4.3 and

present an overview of cases of the proof of Lemma 3.1. There will

be three cases and they will be covered in Section 4.4, 4.5 and 4.6,

respectively. For each case we choose B to be either a substring or

a subsequence of H . Among all cases, there is only one occasion

where we choose B to be a subsequence of H . As discussed earlier

in Section 3, the second condition of Lemma 3.1 is trivially satisfied

when B is a substring of H (since we don’t change the interior of

any arc). Therefore, there is no need to specify the configuration τ

in cases when B is chosen to be a substring of H .

4.1 Classification of Arcs

We start with a quick proof that there are many arcs in a long

sequence of moves.

Lemma 4.1. For any sequence B of moves, the number of arcs in B

is at least len(B) − n.

Proof. Denote by χv the number of occurrences of node v in B.

Then the number of arcs in B is
∑

v ∈V (χv − 1) ≥ ∑

v ∈V χv − n =

len(B) − n . □

Corollary 4.2. If H is a sequence of moves of length 5n, then it

contains at least 4n arcs.

Next we give the definition of good and bad arcs in a sequence.

We start with some notation. Let H = (σ1, . . . ,σm ) be a sequence
of moves of lengthm = 5n. We use A to denote the set of all arcs

in H ; by Corollary 4.2 we have |A| ≥ 4n.

For each k ∈ [m], we define the predecessor predH (k) of the
k-th move to be the largest index i < k such that σi = σk and set

predH (k) to be −∞ if no such index i exists (i.e., predH (k) is the
index of the previous occurrence of the same node σk ). Similarly

we define the successor succH (k) of the k-th move in H to be the

smallest index j > k such that σj = σk and set succH (k) to be +∞
if no such j exists. Next we define the radius of a move and an arc:

Definition 4.3 (Radius). For each k ∈ [m] we define the radius of
the k-th move in H as

radiusH (k) = max
{

L-radiusH (k),R-radiusH (k)
}

,
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where

L-radiusH (k) = k − predH (k) + 1, and

R-radiusH (k) = succH (k) − k + 1.

Given an arc α = (i, j) ∈ A of H , we define its radius as3

radiusH (α) = max
{

radiusH (k)
�
�
� k ∈ interiorH (α)

}

.

It follows from the definition that if radiusH (k) is not +∞ then

both predH (k) and succH (k) are defined and then both (predH (k),k)
and (k, succH (k)) are arcs of H . As an example of the radius of an

arc α = (i, j), if there is a k ∈ [i + 1 : j − 1] such that node σk is

adjacent to nodeH (α) in G and σk does not appear anywhere else

in H (i.e., σk ∈ S1(H )) then radiusH (α) = +∞. Another example is

shown in Figure 1. Here radiusH (α) = radiusH (k) = 5 assuming

that (σk ,σi ) is in G.
Finally we define good arcs and bad arcs.

Definition 4.4 (Good and bad arcs). We say an arc α = (i, j) of H
is good if it satisfies

min
{

L-radiusH (i), R-radiusH (j)
}

≥ len(α)
2 ⌈
√
logn ⌉

.

Otherwise we say that α is bad. Given a set of arcs C ⊆ A we

write goodH (C) to denote the set of good arcs inC and badH (C) to
denote the set of bad arcs in C .

Given a nonempty set of arcs C ⊆ A, we write

maxlen(C) = max
α ∈C

{

len(α)
}

and use endpoints(C) to denote
{

k ∈ [m] : k = left(α) or k = right(α) for α ∈ C
}

.

4.2 Basic Lemmas

We start with a lemma that will be used to bound the rank of a set

of arcs in a sequence. It is essentially the same as Lemma 3.2 in

[7], which connects the rank of a set C of arcs with the number of

distinct nodes that appear as endpoints of arcs in C . The proof can

be found in the full version [4].

Lemma 4.5. Let C be a set of arcs of a nontrivial sequence H such

that the nodes of arcs in C are all distinct. Then rankH (C) ≥ |C |/2.

We need some notation for the next lemma. We say an arc α ∈ A
is contained in an interval I ⊆ [m] if both left(α) and right(α) lie
in I . For a set of arcs C ⊆ A of H , we write C⇂I to denote the set

of α ∈ C contained in I . Intuitively C⇂I is the set of arcs in C that

can be inherited by the substring HI of H . The next lemma follows

from (essentially) an averaging argument; the proof can be found

in the appendix of [4].

Lemma 4.6. Let H be a sequence of moves of lengthm, P ⊆ [m] be
a nonempty set of indices and C ⊆ A be a nonempty set of arcs of H

such that len(α) ≤ ℓ for all α ∈ C for some positive integer parameter

3Note that this is well defined because whenH is nontrivial, the interiorH (α ) of every
arc α is nonempty.

ℓ ≤ m/2. Then there exists an interval I = [i : i + 2ℓ − 1] ⊆ [m] of
length 2ℓ such that

|C⇂I |
|C | ≥ max

{

2ℓ

16m
,
|P ∩ I |
4|P |

}

. (4)

Thus, it holds that

|C⇂I |
len(I ) ≥ Ω

(

|C |
len(H )

)

and
|C⇂I |
|P ∩ I | ≥ Ω

(

|C |
|P |

)

. (5)

4.3 Overview of Cases

We now begin to prove Lemma 3.1. Let G = (V ,E) be a graph over

n vertices, H = (σ1, . . . ,σm ) be a nontrivial sequence of moves of

lengthm = 5n, and γ be a configuration of S(H ). Let A be the set

of all arcs of H (with |A| ≥ 4n by Corollary 2.2).

We first partitionA into s = ⌈logm⌉ = Θ(logn) chunks C1, . . . ,Cs
according to lengths:

Ci =
{

α ∈ A : len(α) ∈ [2i−1 + 1 : 2i ]
}

.

Lettingw = ⌈
√

logn⌉ and t = ⌈s/w⌉ so bothw and t are Θ(
√

logn),
next we assign these chunks to t groups D1, . . . ,Dt :

Di = C(i−1)w+1 ∪ · · · ∪ Ciw ,

where the last group Dt may contain less thanw chunks. From the

definition of chunks and groups we have the following fact:

Fact 4.1. If P is a set of arcs from the same chunk Cj , then for

any arc α ∈ P , it holds that

len(α) ≤ maxlen(P) ≤ 2 · len(α)

If Q is a set of arcs from the same group Di , then for any arc β ∈ Q ,

len(β) ≤ maxlen(Q) ≤ 2w · len(β).

For each chunk Cj in Di , we further partition it into two sets

Cj = Lj ∪ Sj based on the radius (when Di = ∅, Lj and Sj are

trivially empty even though maxlen(Di ) below is not defined):

Lj =
{

α ∈ Cj : radiusH (α) > 2 ·maxlen(Di )
}

and

Sj =
{

α ∈ Cj : radiusH (α) ≤ 2 ·maxlen(Di )
}

.

Here Lj (the long-radius arcs in Cj ) contains all arcs α ∈ Cj
such that there exists a k ∈ interiorH (α) (where σk is adjacent

to nodeH (α) in G and σk occurs an odd number of times inside

α ) such that radiusH (k) is larger4 than 2 · maxlen(Di ). The set

Sj (the short-radius arcs in Cj ) contains all arcs α ∈ Cj such
that every k ∈ interiorH (α) has predecessor and successor within

2 ·maxlen(Di ). See Figure 2 for an example

Recall that our goal is to find a sequence B, a set Q of arcs of B,

and a configuration τ of S(B) that satisfy both conditions of Lemma

3.1. The first case we handle in Section 4.4 is when

Case 1:
�
�badH (A)

�
� ≥ 0.01 · |A|. (6)

Otherwise, |goodH (A)| ≥ 0.99 · |A| and we pick a group Di∗

according to the following lemma; see the proof in [4].

4Remember that this could be the case when for example either predH (k ) = −∞ or

succH (k ) = +∞.
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α

σkradiusH (σk )
= radiusH (α)

Figure 1: An example of the radius of an arc α

2maxlen(Di ) 2maxlen(Di )

Figure 2: An example of long-radius (left) and short-radius (right) arcs with only one node in their interior.

Lemma 4.7. Assume that |goodH (A)| ≥ 0.99 · |A|. Then there

exists a group Di∗ , for some i∗ ∈ [t], that satisfies the following two
conditions (below we assume D0 = Dt+1 = ∅ by default):

|goodH (Di∗ )|
|A| ≥ 1

2t
and

|goodH (Di∗ )|
|Di∗−1 ∪ Di∗ ∪ Di∗+1 |

≥ 1

7
.

Fixing a group Di∗ that satisfies Lemma 4.7 and letting

L = ∪Cj ⊆Di∗Lj and S = ∪Cj ⊆Di∗Sj ,

we next split into two cases, depending on whether the majority of

good arcs in Di∗ are long-radius or short-radius arcs. We handle

the second case in Section 4.5 when

Case 2:
�
�goodH (L)

�
� ≥ 0.5 ·

�
�goodH (Di∗ )

�
� (7)

and we handle the third case in Section 4.6 when

Case 3:
�
�goodH (S)

�
� ≥ 0.5 ·

�
�goodH (Di∗ )

�
�. (8)

4.4 Case 1: Many Arcs in A Are Bad

We say an arc α = (i, j) ofH is dual-bad if either predH (i) exists and
L-radiusH (i) > len(α) · 2w , or succH (j) exists and R-radiusH (j) >
len(α) · 2w where we recall that w = ⌈

√

logn⌉. Figure 3 gives an
example of this definition. Given C ⊆ A, we write dual-badH (C)
to denote the set of dual-bad arcs in C .

We prove the following lemma in the full version [4] which

implies Lemma 3.1 for Case 1, by setting B to be HI and Q to be

the set of arcs of B induced by C , with C and I from the below

statement.

Lemma 4.8 (Lemma 3.1 for Case 1). Assume that |badH (A)
�
� ≥

0.01 · |A|. Then there exists an interval I ⊆ [m] and a setC of arcs of

H contained in I such that

rankH (C)
len(I ) ≥ Ω

(

1
√

logn

)

.

4.5 Case 2: Most Arcs in goodH (Di∗) Are
Long-radius

We start with some intuition for the second case.

In this case we work with a group Di∗ that has many long-

radius5 arcs. Recall that L is the set of long-radius arcs in Di∗ . Let

ℓ = maxlen(L). It follows from Lemma 4.7 that there is an interval

I of length 2ℓ such that L⇂I is large. Furthermore, given that arcs

in L⇂I are long-radius, one can show that every α ∈ L⇂I has a

k ∈ interiorH (α) such that predH (k) or succH (k) is outside of I .
Now if it is the oversimplified scenario that both predH (k) and

succH (k) are outside of I , then one can conclude that L⇂I has full

rank since only the improvement vector of α has a nonzero entry

indexed by (nodeH (α),σk ). To see this is the case, note that there

is no arc with node σk contained in I and no other arc with node

the same as α can have σk in its interior. Our goal is to show for

the general scenario that L⇂I has almost full rank.

The following lemma implies Lemma 3.1 for the second case, by

setting the subsequence B to be HI and the set Q to be arcs of B

induced by C , using I and C of the below statement.

Lemma 4.9 (Lemma 3.1 for Case 2). Assume that there exists

a group Di∗ that satisfies Lemma 4.7 and (7). Then there exists an

interval I ⊆ [m] and a set C of arcs of H contained in I such that

rankH (C)
len(I ) ≥ Ω

(

1
√

logn

)

.

Proof. Recall that we are in the case where we have a group

Di∗ that satisfies Lemma 4.7 and (7). Given that L = ∪Cj ⊆Di∗Lj ,

they together imply that

|L| ≥
�
�goodH (L)

�
� ≥ 0.5 ·

�
�goodH (Di∗ )

�
�
= Ω

(

|A|
√

logn

)

.

Let ℓ = maxlen(L). If ℓ ≤ m/2 then, by Lemma 4.6, there is an

interval I ⊆ [m] of length 2ℓ such that

|L⇂I |
len(I ) = Ω

(

|L|
m

)

= Ω

(

1
√

logn

)

.

If ℓ > m/2, then Di∗ is the last group (i∗ = t ). In this case, let

I = [m], and L⇂I= L satisfies the same property. In either case, let

5Notice that the assumption of Case 2 is actually stronger, that there are many arcs
in Di∗ that are both good and long-radius. It turns out that we will only use their
long-radius property in the proof of this case.
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α− α (dual-bad) α+ (bad)

σi σjσpred(i) σsucc(j)

Figure 3: The arc α is dual-bad if either the adjacent len(α−) or len(α+) is longer than len(α) ·2w . We can also interpret it as either

α− or α+ exists and is a bad arc.

C = L⇂I . We finish our proof by showing that rankH (C) ≥ |C |/2,
and the rest of the proof can be found in the full version [4]. □

4.6 Case 3: Most Arcs in goodH (Di∗) Are
Short-radius

Combining Lemma 4.7 and (8), we are left with the case that

|goodH (S)|
|A| ≥ Ω

(

1
√

logn

)

and (9)

|goodH (S)|
|Di∗−1 ∪ Di∗ ∪ Di∗+1 |

≥ Ω(1).

In Section 4.6.1, we handle the easy case when i∗ = t is the last

group and its last two chunks contain the majority of good arcs:

�
�goodH (Ss−1 ∪ Ss )

�
� ≥ 0.5 ·

�
�goodH (S)

�
�. (10)

4.6.1 Case 3.0: i∗ = t and (10) holds.

We prove the following lemma in [4]:

Lemma 4.10 (Lemma 3.1 for Case 3.0). Assume that Di∗ = Dt

and
�
�goodH (Ss−1 ∪ Ss )

�
� ≥ 0.5 ·

�
�goodH (S)

�
�. Then there exists an

interval I ⊆ [m] and a set C of arcs of H contained in I such that

rankH (C)
len(I ) ≥ Ω

(

1
√

logn

)

.

Ruling out Case 3.0, we have from (9) that there is a Cj∗ in Di∗

with j∗ ≤ s − 2 such that

|goodH (Sj∗ )|
|A| ≥ Ω

(

1

logn

)

and

|goodH (Sj∗ )|
|Di∗+1 ∪ Di∗ ∪ Di∗−1 |

≥ Ω

(

1
√

logn

)

.

Let C∗
= goodH (Sj∗ ), ℓ = maxlen(C∗) ≤ m/2 since j∗ ≤ s − 2 and

P = endpoints
(

Di∗−1 ∪ Di∗ ∪ Di∗+1
)

⊆ [m]

(so |P | = Θ(|Di∗−1 ∪ Di∗ ∪ Di∗+1 |)). Using Lemma 4.6 there is an

interval I of length 2ℓ such that

|C∗⇂I |
len(I ) = Ω

(

1

logn

)

and
|C∗⇂I |
|P ∩ I | = Ω

(

1
√

logn

)

. (11)

For convenience we write C = C∗⇂I in the rest of the proof. Every

arc α ∈ C lies in Sj∗ , has length between ℓ/2 and ℓ, is good and

short-radius, and is contained in I (which has length 2ℓ).

We need the following definition of two arcs overlapping with

each other:

Definition 4.11. We say that two arcs α = (i, j) and β = (k, ℓ) of
H overlap if node(α) , node(β) are adjacent in the graph and the

endpoints of the arcs satisfy i < k < j < ℓ or k < i < ℓ < j.

Given C , we say an arc β = (i, j) is endpoint-disjoint from C if

i, j < endpoints(C), i.e. β shares no endpoint with any arc α ∈ C .

We write Overlap to denote the set of arcs β = (i, j) ∈ A that are

contained in I , are endpoint-disjoint from C , and overlap with at

least one arc in C . On the other hand, we write NonOverlap to

denote the set of arcs β ∈ A that are contained in I , endpoint-

disjoint from C , and do not overlap with any arc in C .

We distinguish two cases depending on the size of the setOverlap.

Section 4.6.2 handles Case 3.1 when Overlap is "large", specifically,

|Overlap|
len(I ) ≥

�
�(Di∗+1 ∪ Di∗ ∪ Di∗−1)⇂I

�
�

len(I ) +

1
√

logn
, (12)

and Section 4.6.3 handles the opposite Case 3.2, when Overlap is

"small".

4.6.2 Case 3.1: Overlap is large.

Lemma 4.12 (Lemma 3.1 for Case 3.1). Assume that condition

(12) holds, i.e Overlap is large. Then for the interval I ⊆ [m] of
Equation (11) there exists a set F of arcs of H contained in I such that

rankH (F )
len(I ) ≥ Ω

(

1
√

logn

)

.

Proof. Let F = Overlap\((Di∗+1 ∪ Di∗ ∪ Di∗−1) ⇂I ). In this

case we have
|F |

len(I ) ≥ 1
√

logn
. (13)

For every α ∈ F we pick arbitrarily an arc β ∈ C such that α and

β overlap; we call β a witness arc for α . (Figure 4 gives an example

of Overlap and witness.) Assume without loss of generality that

for the majority of α ∈ F , its witness arc β ∈ C is on the left

of α , meaning that left(β) < left(α); the argument is symmetric

otherwise. We write F ′ to denote the subset of such arcs in F ; we

have |F ′ | ≥ |F |/2.
Next we partition the interval I into five quantiles so that each

one is of length ⌊len(I )/5⌋ or ⌈len(I )/5⌉. We also assume that len(I )
is sufficiently large so that ⌈len(I )/5⌉ < len(I )/4; otherwise it is
bounded by a constant and our goal is trivially met. (Note that C

is nonempty. So I is an interval of constant length and contains at

least one arc. We can thus prove Lemma 3.1 directly just by taking

B = HI and one single arc in it; the ratio in (2) is Ω(1).) Let β be the

witness arc of an α ∈ F ′. Given that β ∈ C ⊆ Cj∗ , we have

len(β) >
maxlen(Cj∗ )

2
≥ ℓ

2
=

len(I )
4
>

⌈

len(I )
5

⌉

.
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I := [ ]

β1 β2

α2 α1

Figure 4: An example of Overlap and witness. Here node(β1) and node(β2) are adjacent to node(α1) = node(α2) in G. The dashed

arcs are in C, the solid arcs are in Overlap, and the dotted arc is in NonOverlap. β1 is the witness of α1 ∈ F ′ (i.e. β1 is on the left

of α1), and β2 is the witness of α2 ∈ F\F ′.

Since β is contained in I , right(β) cannot lie in the first quantile

of I . Partitioning F ′ into F ′i for i = 2, 3, 4, 5 so that F ′i contains all
arcs α ∈ F ′ such that right(β) of its witness arc β lies in the i-th

quantile of I and letting F ′q denote the largest set, we have

|F ′q | ≥
|F ′ |
4

≥ |F |
8
= Ω

(

len(I )
√

logn

)

.

We finish the proof by showing that rankH (F ′q ) is full. The proof
that rankH (F ′q ) is full is similar to the proof of Case 2. We order

arcs α1, . . . ,α |F ′
q | in F ′q by the right endpoints of their witness arcs:

βi is the witness arc of αi and they satisfy

right(β1) ≤ · · · ≤ right(β |F ′
q |).

Note that we used ≤ instead of < because some of the witness arcs

might be the same.

We prove below that for each i ∈ [|F ′q |],

(1) the entry of impvmH (αi ) indexed by edge (node(αi ),
node(βi )) is nonzero, and

(2) the entry of impvmH (α j ) indexed by the same edge

is 0 for every j < i .

It follows from this triangular structure in thematrix that rankH (F ′q )
is full. The proof of (1) and (2) can be found in [4]. □

Lemma 3.1 follows by taking B = HI and Q to be the set of arcs

of B induced by the quantile F ′q of F .

4.6.3 Case 3.2: Overlap is small. We are in the last case when

|Overlap|
len(I ) <

�
�(Di∗+1 ∪ Di∗ ∪ Di∗−1)⇂I

�
�

len(I ) +

1
√

logn
.

Given that |(Di∗+1 ∪ Di∗ ∪ Di∗−1)⇂I | ≤ |P ∩ I |, we have from (11)

|Overlap| < |P ∩ I | + |len(I )|
√

logn
= O

(√

logn · |C |
)

. (14)

Let γ be the configuration of S(H ) in the statement of Lemma

3.1, and γ ′ be the configuration of S(H ) before the first move of I .

We start with a sketch of the proof for this case. First we note that

we can apply Lemma 4.5 to conclude that rankH (C) = Ω(|C |). This
is again because the length of I is 2ℓ, all arcs in C are contained in

I , and have length at least ℓ/2. Hence we can pick a subset C ′ of
C of size |C ′ | ≥ |C |/4 such that the arcs of C ′ have distinct nodes.
Lemma 4.5 then implies that rankH (C) ≥ rankH (C ′) = Ω(|C |).

The main step of the proof is to construct a subset R ⊂ I that

satisfies R ∩ endpoints(C) = ∅. We remove the moves in R to ob-

tain the desired subsequence B of H : B = HI\R , and let τ be the

restriction of configuration γ ′ on S(B). For each i ∈ I \ R, we use
ρ(i) ∈ [|B |] to denote its corresponding index in B. Then each arc

α = (i, j) ∈ C corresponds to an arc ρ(α) = (ρ(i), ρ(j)) in B (since

R ∩ endpoints(C) = ∅, both i and j survive), and we write Q to

denote the set of |C | arcs of B that consists of ρ(α), α ∈ C .

The key property we need from the set R is that the removal of

moves in R does not change the improvement vector of any arc

α ∈ C . More formally, we prove in Lemma 4.14 that impvmγ ,H (α) =
impvmτ ,B (ρ(α)) for all α ∈ C . It follows that (1) B,Q and τ satisfy

the second condition of Lemma 3.1, and (2) rankB (Q) = rankH (C) =
Ω(|C |). To finish the proof of Lemma 3.1, we prove in Lemma 4.13

that the length of B is small: |B | = |I \ R | ≤ O(
√

logn) · |C |.
We now construct R. To help the analysis in Lemma 4.14 we will

consider R as being composed of three parts, R = R1 ∪ R2 ∪ R3.

Given the plan above we would like to add as many indices i ∈
I \ endpoints(C) to R as possible since the smaller I \ R is, the

larger the ratio |C |/|I \ R | becomes. At the same time we need to

maintain the key property that the removal of R does not change

the improvement vector of any arc α ∈ C .

For each node u ∈ S(HI ), we consider the following cases: (a)

u ∈ S1(HI ), i.e the node u appears exactly once in the interval,

(b) u ∈ S2(HI ) and u appears an even number of times and (c)

u ∈ S2(HI ) and u appears an odd number of times.

Case a: u ∈ S1(HI ). Let k ∈ I with σk = u be the unique

occurrence of u in I . If the radius of k is long-radius:

radiusH (k) > 2 ·maxlen(Di∗ ), we add k to R1; we leave k

in I \ R otherwise. The idea here is that if the radius of k is

long-radius, then given that every arc α ∈ C is short-radius,

we have k < interiorH (α) and thus, the removal of k does

not affect the improvement vector of α . On the other hand,

if the radius of k is small, then it is an endpoint of two arcs

(predH (k),k) and (k, succH (k)) and both have length at

most 2 ·maxlen(Di∗ ). At the same time, given that u only

appears once in I and that I has length 2ℓ, at least one of

them has length at least ℓ ≥ 2j
∗−1
+ 1. As a result, we have

k ∈ P when k is not added to R1.

Case b: u ∈ S2(HI ) and u appears an even number of times

in HI . Let k1 < k2 < · · · < k2q be the occurrences of u in I

for some q ≥ 1. Then for each i ∈ [q], we add both k2i−1
and k2i to R2 if (k2i−1,k2i ) ∈ NonOverlap, and keep both in

I \ R otherwise. Note that if (k2i−1,k2i ) < NonOverlap, then

either (k2i−1,k2i ) ∈ Overlap or at least one of the two
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endpoints is in endpoints(C). As a result, we can conclude

that the number of these 2q indices that do not get added to

R2 can be bounded from above by

O
(

number of β ∈ Overlap ∪C with nodeH (β) = u
)

.

See Figure 5 for an illustration of case a and case b.

Case c: u ∈ S2(HI ) and u appears an odd number of times

in HI . Let k1 < · · · < k2q+1 be the occurrences of u in I for

some q ≥ 0. See Figure 6 for an illustration of case c.

Case c1: If the number of β ∈ Overlap ∪C with

nodeH (β) = u is at least 1, then we can handle this case

similarly as Case 2: For each i ∈ [q] we add k2i−1 and k2i to
R2 if the arc (k2i−1,k2i ) is in NonOverlap, and we always

keep k2q+1 in I \ R. In this case, the number of these 2q + 1

indices that do not get added to R3 is

1 +O
(

number of β ∈ Overlap ∪C with nodeH (β) = u
)

which remains an O(·) of the same quantity given that the

latter is at least 1.

Case c2: Consider the case when there is no

β ∈ Overlap ∪C with nodeH (β) = u. We start with the

easier situation when there is no k ∈ I such that σk = u and

k ∈ interiorH (α) for some α ∈ C . In this case we add all

k ∈ I with σk = u to R3. Note that the (nodeH (α),u)-th
entry of the improvement vector of every α ∈ C is 0. So

removing all occurrences of u has no effect.

Case c3: We are left with the case when there is no

β ∈ Overlap ∪C with nodeH (β) = u and at the same time,

there is an arc α ∈ C such that ki ∈ interiorH (α) for some i .

Combining these two assumptions we must have that

ki ∈ interiorH (α) for all i ∈ [2q + 1]. Given that α is a

short-radius arc, we have that the radius of both k1 and

k2q+1 is at most 2 ·maxlen(Di∗ ). On the other hand, given

that len(I ) = 2ℓ and len(α) ≤ ℓ, the radius of either k1 or
k2q+1 is at least ℓ/2 ≥ 2j

∗−2. If this holds for k1, we add
k2, . . . ,k2q+1 to R2 and keep k1 in I \ R; otherwise we add
k1, . . . ,k2q to R2 and keep k2q+1 in I \ R. In both cases the

index left in I \ R lies in P .

Summarizing Case b and Case c, we have that R2 consists of

endpoints of a collection of endpoint-disjoint arcs in NonOverlap.

Moreover, the number of indices left in I \ R can be bounded by

|P ∩ I | +O(|Overlap ∪C |). (15)

This gives us the following bound on |I \ R |:

Lemma 4.13. |I \ R | ≤ O(
√

logn) · |C |.

Proof. This follows by combining (15), (11) and (14). □

Finally we show in the full version [4] that there is no change in

the improvement vectors of α ∈ C after removing R.

Lemma 4.14. For every arc α ∈ C of H , its corresponding arc

β = ρ(α) ∈ Q of B satisfies

impvmτ ,B (β) = impvmγ ,H (α).

Lemma 4.15 (Lemma 3.1 for Case 3.2). Assume that condition

(14) holds, i.e., Overlap is small. Then there exist (i) a sequence B of

moves of length at most 5n, (ii) a configuration τ of S(B), and (iii) a
set of arcs Q of B such that

(1) The rank of Q in B satisfies

rankB (Q)
len(B) ≥ Ω

(

1
√

logn

)

(A);

(2) For every arc α ∈ Q , there exists an arc α ′ of H such that

impvmτ ,B (α) = impvmγ ,H (α ′) (B).

Proof. Indeed using the interval I ⊆ [m] of Equation (11), we set
B = HI\R and τ be the restriction of configuration γ ′ on S(B). We

set alsoQ to the arcs of B which are induced by collectionC = C∗⇂I
of (11). Lemma 4.14 shows that (B)ÐVector-PreservationÐ property

holds for B,Q,τ . Finally the aforementioned analysis shows that

(i) rank(C) is almost full or equivalently that rankB (Q) ≥ Ω(|Q |)
and (ii) using Lemma 4.13, len(B) = len(HI\R ) ≤ O(

√

logn) · |Q |
implying that (A)ÐHigh-rank propertyÐ holds too. □

5 BINARY MAX-CSP AND FUNCTION
PROBLEMS

Definition 5.1. An instance of Max-CSP (Constraint Satisfaction

Problem) consists of a set V = {x1, . . . ,xn } of variables that can
take values over a domain D, and a set C = {c1, . . . , cm } of con-
straints with given respective weights w1, . . . ,wm . A constraint

ci is a pair (Ri , ti ) consisting of a relation Ri over D of some arity

ri (i.e. Ri ⊆ Dri ), and an ri -tuple of variables (i.e., ti ∈ V ri ). An

assignment τ : V → D satisfies the constraint ci if τ (ti ) ∈ Ri . The

MAX CSP problem is: given an instance, find an assignment that

maximizes the sum of the weights of the satisfied constraints.

We will focus here on the case of binary domains D, which wlog

we can take to be {0, 1}, and binary relations (ri = 2); we refer to this

as Binary Max-CSP, or Max-2CSP. Several problems can be viewed

as special cases of Binary Max-CSP where the relations of the

constraints are restricted to belong to a fixed family R of relations;

this restricted version is denoted Max-CSP(R). For example, the

Max Cut problem in graphs is equivalent to Max-CSP(R) where R
contains only the łnot-equalž (binary) relation , (i.e., the relation

{(0, 1), (1, 0)}). Other examples include:

• Directed Max Cut. Given a directed graph with weights on

its edges, partition the set of nodes into two sets V0,V1 to

maximize the weight of the edges that are directed from V0
to V1. This problem is equivalent to Max-CSP(R) where R
consists of the relation {(0, 1)}.

• Max 2SAT. Given a weighted set of clauses with two literals

in each clause, find a truth assignment that maximizes the

weight of the satisfied clauses. This is equivalent to Max-

CSP(R), where R contains 4 relations, one for each of the

4 possible clauses with two literals a ∨ b, ā ∨ b,a ∨ b̄, ā ∨ b̄;

the relation for a clause contains the three assignments that

satisfy the clause. If we allow unary clauses in the 2SAT

instance, then we include inR also the two unary constraints

for a and ¬a.
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β1 β2

α1
σk1 σk2 σk3 σk4 σk5 σk6

Figure 5: Illustration of Case a and Case b. Here The dashed arcs are in C, the solid arc is in Overlap, and the dotted arcs are in

NonOverlap. The circle is in B1, and the orange nodes are in B2.

[ ]I =

β1 β2

α1
σk1 σk2 σk3 σk ′1

σk ′2
σk ′3

σk ′′1
σk ′′2

σk ′′3

Figure 6: Illustration of Case c. Here node(β1) and node(β2) are adjacent to node(α1) in G. The dashed arcs are in C, the dotted

arc is in Overlap, and the solid arcs are in NonOverlap. The green nodes are in B3, and the orange nodes are in B2.

• Stable Neural Network. A neural network in the Hopfield

model [9] is an undirected graph G = (V ,E) (the nodes cor-
respond to the neurons, the edges to the synapses) with a

given weightwe for each edge e ∈ E and a given threshold tu
for each node u ∈ V ; the weights and thresholds are not re-

stricted in sign. A configurationγ is an assignment of a value

(its ‘state’) −1 or 1 to each node. A nodeu is stable in a config-

uration γ if γ (u) = −1 and tu +
∑

v :(u,v)∈E w(u,v)γv ≤ 0, or

γ (u) = 1 and tu +
∑

v :(u,v)∈E w(u,v)γv ≥ 0. A configuration

is stable if all the nodes are stable in it. Hopfield showed that

every neural network has one or more stable configurations,

using a potential function argument: a nodeu is unstable in a

configuration γ iff flipping its state increases the value of the

potential function p(γ ) = ∑

u ∈V tu ·γ (u)+∑

(u,v)∈E w(u,v) ·
γ (u)γ (v). Hence, γ is stable iff p(γ ) cannot be increased by

flipping the state of any node. Thus, the problem of finding

a stable configuration is the same as the local Max-CSP(R)
problem when R contains the unary constraint a and the

binary constraint a = b. The natural greedy algorithm, in

which unstable nodes asynchronously (one-at-a-time) flip

their state (in any order) monotonically increases the po-

tential function and converges to a stable configuration6.

Our results apply to the smoothed analysis of this natural

dynamics for neural networks.

• Network coordination game with 2 strategies per player. We

are given a graphG = (V ,E)where each node corresponds to
a player with 2 strategies, and each edge (u,v) corresponds
to a game Γu,v between players u,v with a given payoff

matrix (both players get the same payoff in all cases). The

total payoff of each player for any strategy profile is the sum

of the payoffs from all the edges of the player. The problem

is to find a pure equilibrium (there always exists one as these

are potential games). This problem can be viewed as a special

case of local Max-CSP(R) where R contains the 4 singleton

relations {(0, 0)}, {(0, 1)}, {(1, 0)}, {(1, 1)}, and we want to

6Note that if unstable nodes flip their state simultaneously then the algorithm may
oscillate and not converge to a stable configuration.

find a locally optimal assignment that cannot be improved by

flipping any single variable. The FLIP algorithm in this case

is the better response dynamics of the game. Boodaghians

et. al. [3] studied the smoothed complexity of the better

response algorithm for network coordination games, where

each entry of every payoff matrix is independently drawn

from a probability distribution supported on [−1, 1] with
density at most ϕ. They showed that for general graphs

and k strategies per player the complexity is at most ϕ ·
(nk)O (k log(nk ) with probability 1 − o(1), and in the case of

complete graphs it is polynomial.

A constraint can be viewed as a function that maps each assign-

ment for the variables of the constraint to a value 1 or 0, depending

on whether the assignment satisfies the constraint or not. We can

consider more generally the Binary function optimization prob-

lem (BFOP), where instead of constraints we have functions (of

two arguments) with more general range than {0, 1}, for exam-

ple {0, 1, . . . ,k}, for some k fixed (or even polynomially bounded):

Given a set V = {x1, . . . ,xn } of variables with domain D = {0, 1},
a set F = { f1, . . . , fm } of functions, where each fi is a function

of a pair ti of variables, and given respective weightsw1, . . . ,wm ,

find an assignment τ : V → D to the variables that maximizes
∑m
i=1wi · fi (τ (ti )). In the local search version, we want to find an

assignment that cannot be improved by flipping the value of any

variable. For smoothed analysis, the weights wi are drawn inde-

pendently from given bounded distributions as in Max Cut. We

will show that the bounds for Max Cut extend to the general Bi-

nary Max-CSP and Function optimization problems with arbitrary

(binary) constraints and functions.

Consider an instance of BFOP. Even though a function (or a

constraint in Max-2CSP) has two arguments, its value may depend

on only one of them, i.e. it may be essentially a unary function (or

constraint). More generally, it may be the case that the function

depends on both variables but the two variables can be decoupled

and the function can be separated into two unary functions. We

say that a binary function f (x ,y) is separable if there are unary
functions f ′, f ′′ such that f (x ,y) = f ′(x) + f ′′(y) for all values
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of x ,y; otherwise f is nonseparable. For binary domains there is a

simple easy criterion; see the proof in [4].

Lemma 5.2. A binary function f of two arguments with domain

{0, 1} is separable iff f (0, 0) + f (1, 1) = f (0, 1) + f (1, 0).
If our given instance of BFOP has some separable functions, then

we can replace them with the equivalent unary functions. After

this, we have a set of unary and binary functions, where all the

binary functions are nonseparable.

Consider a sequence H of variable flips starting from an initial

assignment (configuration) γ ∈ {0, 1}n . When we flip a variable x j
in some step, the change in the value of the objective function can

be expressed as ⟨δ ,X ⟩, where the coordinates of the vectors δ ,X
correspond to the functions of the given instance, the vector δ gives

the changes in the function values and X is the vector of random

weights of the functions. Define the matrixMH,γ which has a row

corresponding to each nonseparable function fi and a column for

each pair of closest flips of the same variable in the sequence H ,

where the column is the sum of the vectors δ1,δ2 for the two flips,

restricted to the nonseparable functions. Note that for separable

functions, the corresponding coordinate of δ1 + δ2 = 0. Thus, the

sum of the changes in the value of the objective function in the two

closest flips of the same variable is equal to the inner product of the

column δ with the vector of random weights of the nonseparable

functions. The proof of the following lemma can be found in [4].

Lemma 5.3. The entry of the matrix MH,γ at the row for the

(nonseparable) function fi and the column corresponding to an arc α

of a variable x j is nonzero iff x j is one of the variables of the function

fi and the other variable xk of fi appears an odd number of times in

the interior of α .

Thus, the zero-nonzero structure of the matrixMH,γ is the same

as that of the matrix for the Max Cut problem on the graph G

which has the variables as nodes and has edges corresponding to

the nonseparable functions with respect to the same initial configu-

ration γ and sequence of flipsH . The arguments in the proof for the

Max Cut problem that choose a subsequence and bound the rank

of the corresponding submatrix depend only on the zero-nonzero

structure of the matrix and not on the precise values: In every case,

we identify a diagonal submatrix or a triangular submatrix of the

appropriate size. Therefore, we can apply the same analysis for

the general Max-2CSP and BFOP problems with arbitrary binary

constraints or functions, proving Theorem 1.3.

6 CONCLUSIONS

We analyzed the smoothed complexity of the FLIP algorithm for

local Max-Cut, and more generally, for binary maximum constraint

satisfaction problems (like Max-2SAT, Max-Directed Cut, Stable

Neural Network etc.). We showed that with high probability, ev-

ery execution of the FLIP algorithm for these problems, under any

pivoting rule, takes at most ϕnO (
√
logn) steps to terminate. The

proof techniques involve a sophisticated analysis of the execution

sequences of flips that are potentially generated by the FLIP algo-

rithm, with the goal of identifying suitable subsequences (including

non-contiguous subsequences) that contain many steps with lin-

early independent improvement vectors, which are preserved from

the full execution sequence. We do not know at this point whether

the
√

logn in the exponent, which is due to the ratio between the

length and the rank of the subsequence, can be improved or is best

possible for this approach, i.e. whether our new rank lemma for

subsequences is tight.

There are several other interesting open questions raised by

this work. One question concerns the extension to non-binary

constraints. For example, does a similar result hold for Max-3SAT?

Does it hold generally for all Max-CSP with binary domains? There

are several new challenges in addressing these questions.

Another question concerns the extension to domains of higher

cardinality k . Simple examples of Max-2CSP with larger domain

include Max-k-Cut, where the nodes are partitioned into k parts

instead of 2 as in the usual Max-Cut, and the Network Coordination

Game with k strategies per player. Bibak et. al. studied Max-k-Cut

and showed that the FLIP algorithm converges with high probabil-

ity inϕnO (logn) steps for general graphs for fixed k (and polynomial

time for complete graphs if k = 3) [2]. Boodaghians et. al. stud-

ied the network coordination game and showed a similar bound

ϕnO (logn) for general graphs for fixed k (and in the case of complete

graphs, polynomial time for all fixed k) [3]. Can the logn in the

exponent be improved to
√

logn for these problems using a com-

bination of the techniques in these papers and the present paper,

and more generally does it hold for all Max-2CSP problems with

non-binary domains?

Ultimately, is the true smoothed complexity of Local Max-CSP

problems polynomial or are there bad examples of instances and

distributions that force super-polynomial behavior?
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