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GLOBAL CONSTRAINTS PRESERVING SCALAR AUXILIARY
VARIABLE SCHEMES FOR GRADIENT FLOWS\ast 
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Abstract. We develop several efficient numerical schemes which preserve exactly the global
constraints for constrained gradient flows. Our schemes are based on the scalar auxiliary variable
(SAV) approach combined with the Lagrangian multiplier approach. They are as efficient as the SAV
schemes for unconstrained gradient flows, i.e., only require solving linear equations with constant
coefficients at each time step plus an additional nonlinear algebraic system which can be solved at
negligible cost, can be unconditionally energy stable, and preserves exactly the global constraints for
constrained gradient flows. Ample numerical results for phase-field vesicle membrane and optimal
partition models are presented to validate the effectiveness and accuracy of the proposed numerical
schemes.
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1. Introduction. Gradient flows are ubiquitous in science and engineering ap-
plications. In the last few decades, a large body of research has been devoted to
developing efficient numerical schemes, particularly time discretization schemes, for
gradient flows. We refer to the recent review paper [9] and the references therein, for a
detailed account on these efforts; see also [21, 22] for a presentation of the newly devel-
oped invariant energy quadratization (IEQ) method [24, 26] and the scalar auxiliary
method (SAV) method (cf. [20, 21, 7]) which have received much attention recently
due to their efficiency, flexibility, and accuracy. However, most of the research in
this area is concerned with unconstrained gradient flows. But many gradient flows in
physical, chemical, and biological sciences are constrained with one or several global
physical constraints, e.g., the norm of multicomponent wave functions is preserved in
multicomponent Bose--Einstein condensates [2], the norm of each component is pre-
served in optimal eigenvalue partition problems [4, 8, 11], the stress is constrained
to be negative in topology optimization problems [19, 15], the volume [16, 10] and
surface area are preserved in the phase field vesicle membrane model [12, 23, 7, 14],
and many others in constrained minimizations.

A highly desirable property of numerical algorithms for gradient flows with phys-
ical constraints is to be able to satisfy the energy dissipation law while preserving
the physical constraints. But how to design numerical schemes which are energy
stable while enforcing physical constraints, such as mass, norm, or surface area con-
servation, is a challenging task. A straightforward approach is to use the method
of lines. Namely, first discretize the system in space, leading to a system of differ-
ential algebraic equations (DAEs), then use a suitable existing technique for DAEs
(cf. [3, 1, 18] and the references therein) to solve it. A drawback of this approach is
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A2490 QING CHENG AND JIE SHEN

that for multi-dimensional problems, the size of the DAE system can be exceedingly
large for the solver based on DAEs to be efficient. An alternative is first to construct
a suitable discretization in time, then to use a Galerkin-type discretization in space
so that nice properties of time discretization such as energy stability and constraint
preserving can be carried over to the fully discretized schemes. In this paper, we shall
concentrate on the time discretization. Two popular approaches to enforce constraints
in a gradient system are the following:

\bullet Penalty approach: add suitable penalty terms in the free energy and consider
the unconstrained gradient flow with the new penalized free energy. Its ad-
vantage is that efficient numerical methods for unconstrained gradient flows
can be directly applied, and in principle one can approximate the constraints
to within arbitrary accuracy by choosing suitable penalty parameters. Its
disadvantage is that large penalty parameters, which are needed for more ac-
curate approximation of the constraints, may lead to very stiff systems that
are difficult to solve efficiently. This approach is used in [23, 25, 7, 17] for the
vesicle membrane model and in [27] for the multicomponent Bose--Einstein
condensates.

\bullet Lagrangian multiplier approach: introduce Lagrangian multipliers to enforce
exactly the constraints. This approach is studied mathematically in [5] and
numerically in [11] for the optimal eigenvalue partition problem. The main
advantage is that the constraints can be satisfied exactly, while its drawback
is that it will lead to difficulty in solving nonlinear systems at each time step.

The goal of this paper is to develop efficient time discretization for gradient flows
with global constraints using the Lagrangian multiplier approach. To this end, we
shall combine the SAV approach [21] with the Lagrangian multiplier approach [6],
hoping to construct schemes which enjoy all advantages of the SAV schemes but can
also preserve the constraints exactly using the Lagrangian multiplier approach with
negligible additional cost. Three different approaches will be considered: (i) The
first one is a direct combination of the SAV approach with the Lagrangian multiplier
approach. The scheme is easy to implement but we are unable to prove that it is
unconditionally energy stable. (ii) In the second approach, we replace the dynamic
equation for the SAV by another Lagrangian multiplier so that the scheme becomes
unconditionally energy stable, but leading to an additional coupled nonlinear algebraic
system for the two Lagrangian multipliers to solve at each time step, instead of a
nonlinear algebraic equation for just one Lagrangian multiplier in the first approach.
(iii) In the third approach, we combine the advantages of the first two approaches
to construct a scheme, which is unconditionally energy stable, such that the two
Lagrangian multipliers can be determined sequentially, instead of a coupled system in
the second approach. All three approaches have essentially the same computational
cost as the linear SAV scheme, presented in section 2.1, which is extremely efficient
and easy to implement but can only approximate the constraints up to the order of
the scheme. Our numerical results indicate that the first and third approaches are
generally more efficient and robust than the second approach.

The remainder of this paper is structured as follows. In section 2, we present a
general methodology for gradient flows with one global constraint and propose three
different approaches to devise efficient numerical schemes which can enforce exactly
the constraint. In sections 3 and 4, we apply the general methodology introduced
in section 2 to the phase field vesicle membrane model with two constraints and to
the optimal partition model with multiple constraints, respectively. In section 5, we
present numerical experiments to compare the performance of the three approaches
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GLOBAL CONSTRAINTS PRESERVING SCHEMES A2491

and the penalty approach and present several numerical simulations for the phase field
vesicle membrane model with two constraints and to the optimal partition model with
multiple constraints. Some concluding remarks are given in section 6.

2. General methodology to preserve global constraints for gradient
flows. We present in this section a general methodology to preserve global constraints
in gradient flows. To simplify the presentation, we consider here single-component
gradient flows with a single global constraint. The approaches developed here will
be extended to problems with multicomponents and multiglobal constraints in the
subsequent sections.

To fix the idea, let \Omega be a bounded domain in Rd, (\cdot , \cdot ) be the inner product in
L2(\Omega ), and \| \cdot \| be the associated norm in L2(\Omega ). We also denote by \| \cdot \| k the usual
Sobolev norm in Hk(\Omega ).

Let F (\phi ) be a nonlinear potential and \scrL be a self-adjoint linear nonnegative
operator in L2(\Omega ), i.e.,

(2.1) < \scrL \phi , \phi >= (\scrL 1/2\phi ,\scrL 1/2\phi ) = \| \scrL 1/2\phi \| 2.

For example, L =  - \Delta with periodic or homogeneous Neumann boundary condition.
We consider the minimization of a total free energy in the form

(2.2) E(\phi ) =

\int 
\Omega 

1

2
\scrL \phi \cdot \phi + F (\phi )d\bfitx ,

under a global constraint

(2.3)
d

dt
H(\phi ) = 0 with H(\phi ) =

\int 
\Omega 

h(\phi )d\bfitx ,

where h(\phi ) is a function of \phi .
This constrained minimization problem can be interpreted as the following gra-

dient system with constraint [4, 11]:

\phi t =  - \scrG 
\biggl( 
\scrL \phi + F \prime (\phi ) - \lambda (t)

\delta H

\delta \phi 

\biggr) 
,

d

dt
H(\phi ) = 0,

(2.4)

where \lambda (t) is a Lagrange multiplier introduced to enforce the constraint, and \scrG is a
symmetric positive operator in L2(\Omega ), i.e.,

(2.5) < \scrG \phi , \phi >= (\scrG 1/2\phi ,\scrG 1/2\phi ) = \| \scrG 1/2\phi \| 2,

describing the relaxation process of the system. For example, \scrG = I represents the
L2 gradient flow while \scrG =  - \Delta with periodic or homogeneous Neumann boundary
condition represents the H - 1 gradient flow.

Let us denote \mu = \scrL \phi + F \prime (\phi )  - \lambda (t) \delta H\delta \phi and take its inner product with  - \phi t on
both sides, and sum up with the inner product of the first equation in (2.4) with \mu ,
we obtain the following energy dissipation law:

(2.6)
d

dt
E(\phi ) =  - < \scrG \mu , \mu >\leq 0.

We shall first construct a linear scheme based on the SAV approach which only
approximates the global constraint, followed by three ``essentially"" linear schemes
which enforce exactly the global constraint while retaining all essential advantages of
the SAV approach.
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A2492 QING CHENG AND JIE SHEN

2.1. A linear scheme based on the SAV approach. We start by con-
structing first a linear scheme based on the SAV approach for (2.4). Assuming\int 
\Omega 
F (\phi )d\bfitx >  - C0 for some C0 > 0, we introduce a SAV r(t) =

\sqrt{} \int 
\Omega 
F (\phi )d\bfitx + C0

and rewrite (2.4) as

\partial t\phi =  - \scrG \mu ,(2.7)

\mu = \scrL \phi +
r(t)\sqrt{} \int 

\Omega 
F (\phi )d\bfitx + C0

F \prime (\phi ) - \lambda 
\delta H

\delta \phi 
,(2.8)

d

dt
H(\phi ) = 0,(2.9)

rt =
1

2
\sqrt{} \int 

\Omega 
F (\phi )d\bfitx + C0

(F \prime (\phi ), \phi t).(2.10)

Taking the inner products of the first two equations with \mu and  - \phi t, respectively,
summing up the results along with the fourth equation, and using the third equation,
we obtain the following energy dissipation law:

(2.11)
d

dt
\~E(\phi ) =  - (\scrG \mu , \mu ),

where \~E(\phi ) =
\int 
\Omega 

1
2\scrL \phi \cdot \phi d\bfitx + r2 is a modified energy. Then, a first-order SAV scheme

for the above modified system is

\phi n+1  - \phi n

\delta t
=  - \scrG \mu n+1,(2.12)

\mu n+1 = \scrL \phi n+1 +
rn+1\sqrt{} \int 

\Omega 
F (\phi n)d\bfitx + C0

F \prime (\phi n) - \lambda n+1

\biggl( 
\delta H

\delta \phi 

\biggr) n

,(2.13)

\biggl( \biggl( 
\delta H

\delta \phi 

\biggr) n

, \phi n+1  - \phi n
\biggr) 

= 0,(2.14)

rn+1  - rn

\delta t
=

1

2
\sqrt{} \int 

\Omega 
F (\phi n)d\bfitx + C0

\biggl( 
F \prime (\phi n),

\phi n+1  - \phi n

\delta t

\biggr) 
.(2.15)

As for the stability, we have the following result.

Theorem 2.1. The scheme (2.12)--(2.15) is unconditionally energy stable in the
sense that

\~E(\phi n+1) - \~E(\phi n) \leq  - \Delta t(\scrG \mu n+1, \mu n+1),

where \~E(\phi k) =
\int 
\Omega 

1
2\scrL \phi 

k \cdot \phi kd\bfitx + (rk)2.

Proof. Taking the inner products of (2.12) with \mu n+1 and of (2.13) with - \phi n+1 - \phi n

\delta t ,
summing up the results, and taking into account (2.14)--(2.15), we obtain the desired
result.

We now show that the above scheme can be efficiently implemented. Writing

(2.16) \phi n+1 = \phi n+1
1 +\lambda n+1\phi n+1

2 , \mu n+1 = \mu n+1
1 +\lambda n+1\mu n+1

2 , rn+1 = rn+1
1 +\lambda n+1rn+1

2
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GLOBAL CONSTRAINTS PRESERVING SCHEMES A2493

in the above, we find that (\phi n+1
i , \mu n+1

i , rn+1
i ) (i = 1, 2) can be determined as follows:

\phi n+1
1  - \phi n

\delta t
=  - \scrG \mu n+1

1 ,(2.17)

\mu n+1
1 = \scrL \phi n+1

1 +
rn+1
1\sqrt{} \int 

\Omega 
F (\phi n)d\bfitx + C0

F \prime (\phi n),(2.18)

rn+1
1  - rn

\delta t
=

1

2
\sqrt{} \int 

\Omega 
F (\phi n)d\bfitx + C0

\biggl( 
F \prime (\phi n),

\phi n+1
1  - \phi n

\delta t

\biggr) 
;(2.19)

and

\phi n+1
2

\delta t
=  - \scrG \mu n+1

2 ,(2.20)

\mu n+1
2 = \scrL \phi n+1

2 +
rn+1
2\sqrt{} \int 

\Omega 
F (\phi n)d\bfitx + C0

F \prime (\phi n) - 
\biggl( 
\delta H

\delta \phi 

\biggr) n

,(2.21)

rn+1
2

\delta t
=

1

2
\sqrt{} \int 

\Omega 
F (\phi n)d\bfitx + C0

\biggl( 
F \prime (\phi n),

\phi n+1
2

\delta t

\biggr) 
.(2.22)

Since rn+1
i (i = 1, 2) is just a constant which can be easily eliminated by using a

block Gaussian elimination, each of the above solutions can be obtained by solving
two linear systems with constant coefficients of the form (cf. [21] for more detail):

(2.23)

\biggl( 
1
\Delta tI \scrG 
\scrL  - I

\biggr) \biggl( 
\phi 
\mu 

\biggr) 
= \=b.

Once we determine (\phi n+1
i , \mu n+1

i , rn+1
i ) (i = 1, 2) from the above, we use (2.14) to

determine \lambda n+1 explicitly by

(2.24) \lambda n+1 =  - 
\biggl( \biggl( 

\delta H

\delta \phi 

\biggr) n

, \phi n+1
1  - \phi n

\biggr) \Big/ \biggl( \biggl( \delta H
\delta \phi 

\biggr) n

, \phi n+1
2

\biggr) 
.

Hence, the scheme is very efficient. However, the global constraint (2.9) is only ap-
proximated to first-order. While we can easily construct second-order energy stable
SAV schemes which approximate (2.9) to second-order, we cannot preserve (2.9) ex-
actly. Below, we show how to modify the scheme (2.12)--(2.15) so that we can preserve
(2.9) exactly while keeping its essential advantages.

2.2. The first approach. The first approach is simply to replace the first order
approximation of (2.14) by enforcing exactly (2.9). More precisely, a modified first-
order scheme is as follows:

\phi n+1  - \phi n

\delta t
=  - \scrG \mu n+1,(2.25)

\mu n+1 = \scrL \phi n+1 +
rn+1\sqrt{} \int 

\Omega 
F (\phi n)d\bfitx + C0

F \prime (\phi n) - \lambda n+1

\biggl( 
\delta H

\delta \phi 

\biggr) n

,(2.26)

H(\phi n+1) = H(\phi 0),(2.27)

rn+1  - rn

\delta t
=

1

2
\sqrt{} \int 

\Omega 
F (\phi n)d\bfitx + C0

\biggl( 
F \prime (\phi n),

\phi n+1  - \phi n

\delta t

\biggr) 
.(2.28)
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A2494 QING CHENG AND JIE SHEN

The above scheme can be implemented in essentially the same procedure as the scheme
(2.12)--(2.15). Indeed, still writing (\phi n+1, \mu n+1) as in (2.16), we can still determine
(\phi n+1

i , \mu n+1
i , i = 1, 2) from (2.17)--(2.19) and (2.20)--(2.22). The only difference is

that we now need to determine \lambda n+1 from (2.27) which leads to a nonlinear algebraic
equation for \lambda n+1:

(2.29) (h(\phi n+1
1 + \lambda n+1\phi n+1

2 ) - h(\phi n), 1) = 0.

Remark 2.1. The complexity of this nonlinear algebraic equation depends on
h(\phi ). For example, if h(\phi ) = \phi 2 as in some applications, it will be a quadratic
equation so it can be solved directly and exactly using the quadratic formula. For
more complicated h(\phi ), the nonlinear algebraic equation (2.29) here, and in other
schemes to be presented, can be solved by a standard Newton iteration. It is well-
known that the convergence of the Newton iteration depends on a good initial guess.
We can use the linear scheme (2.12)--(2.15) to produce a good and reliable initial guess
so that the Newton iteration will converge very quickly with negligible cost. Hence,
the system (2.25)--(2.28) is ``essentially"" linear as it involves a linear system plus a
nonlinear algebraic equation and can be efficiently solved.

Next, we examine the stability of scheme (2.25)--(2.28).

Proposition 2.1. Let \{ \phi k, \mu k, \lambda k, rk\} be a solution of the scheme (2.25)--(2.28).
Then, the following energy law is satisfied unconditionally for all n:

(2.30) \~En+1  - \~En +
\lambda n+1

2
(h\prime \prime (\xi n)(\phi n+1  - \phi n), \phi n+1  - \phi n) \leq  - \delta t(\scrG \mu n+1, \mu n+1),

where
\~En =

1

2
(\scrL \phi n, \phi n) + (rn)2.

Proof. Taking the inner products of (2.25) with \mu n+1, of (2.26) with  - \phi n+1 - \phi n

\delta t ,
and of (2.27) with 2rn+1, summing up the results, we obtain

1

2\delta t

\bigl\{ 
(\scrL \phi n+1, \phi n+1) - (\scrL \phi n, \phi n) + (\scrL (\phi n+1  - \phi n), \phi n+1  - \phi n)

\bigr\} 
+

1

\delta t
\{ (rn+1)2  - (rn)2 + (rn+1  - rn)2\} 

=  - (\scrG \mu n+1, \mu n+1) + \lambda n+1

\biggl( \biggl( 
\delta H

\delta \phi 

\biggr) n

,
\phi n+1  - \phi n

\delta t

\biggr) 
.

(2.31)

By Taylor expansion, we have
(2.32)

(h(\phi n+1), 1) - (h(\phi n), 1)=

\biggl( \biggl( 
\delta H

\delta \phi 

\biggr) n

, \phi n+1  - \phi n
\biggr) 
+
1

2
(h\prime \prime (\xi n)(\phi n+1  - \phi n), \phi n+1  - \phi n).

We can then conclude from the above two relations.

Remark 2.2. Assuming h\prime \prime (\phi ) \geq 0 for all \phi , then if \lambda n+1 \geq 0 for all n, the above
result indicates that the scheme (2.25)--(2.28) is unconditionally energy dissipative.
Note that for some applications, we have h\prime \prime (\phi ) \geq 0 and one can show that \lambda (t) > 0
(cf. [5]). But we are unable to show in general \lambda n+1 \geq 0 for all n. However, our
numerical results indicate that this is true at least for the examples we consider in
this paper.
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2.3. The second approach. The main drawback of the first approach is that
we cannot rigorously prove that the scheme is energy dissipative. We present below
an approach which is as efficient as the first approach but is energy stable. The key
idea is to introduce another Lagrange multiplier \eta (t) to enforce the energy dissipation.
More precisely, we rewrite (2.7)--(2.10) as follows:

\partial t\phi =  - \scrG \mu ,(2.33)

\mu = \scrL \phi + \eta (t)F \prime (\phi ) - \lambda (t)
\delta H

\delta \phi 
,(2.34)

d

dt

\int 
\Omega 

h(\phi )d\bfitx = 0,(2.35)

d

dt

\int 
\Omega 

F (\phi )d\bfitx = \eta (t)(F \prime (\phi ), \phi t) - \lambda (t)

\biggl( 
\delta H

\delta \phi 
, \phi t

\biggr) 
.(2.36)

Note that the last term in (2.36) is zero thanks to (2.35). We added this zero term
here for the sake of constructing energy stable schemes below.

Taking the inner products of the first two equations with \mu and  - \phi t, respectively,
summing up the results along with the fourth equation, and using the third equation,
we obtain the following energy dissipation law:

(2.37)
d

dt
E(\phi ) =  - (\scrG \mu , \mu ),

where E(\phi ) is the original energy defined in (2.2).
For example, a second-order scheme based on Crank--Nicolson can be constructed

as follows:

\phi n+1  - \phi n

\delta t
=  - \scrG \mu n+1/2,(2.38)

\mu n+1/2 = \scrL \phi n+1/2 + \eta n+1/2F \prime (\phi \ast ,n+1/2) - \lambda n+1/2

\biggl( 
\delta H

\delta \phi 

\biggr) \ast ,n+1/2

,(2.39)

H(\phi n+1) = H(\phi 0),(2.40) \int 
\Omega 

F (\phi n+1) - F (\phi n)d\bfitx = \eta n+1/2(F \prime (\phi \ast ,n+1/2), \phi n+1  - \phi n)(2.41)

 - \lambda n+1/2

\Biggl( \biggl( 
\delta H

\delta \phi 

\biggr) \ast ,n+1/2

, \phi n+1  - \phi n

\Biggr) 
,

where fn+1/2 = 1
2 (f

n+1 + fn) and f\ast ,n+1/2 = 1
2 (3f

n  - fn - 1) for any sequence \{ fn\} .
Note that unlike in the continuous case, the last term in (2.41) is no longer zero; it is
a second-order approximation to zero. This term is necessary for the unconditional
stability stated below.

Theorem 2.2. Let \{ \phi k, \mu k, \lambda k, \eta k\} be a solution of the scheme (2.38)--(2.41).
Then, the following energy law is satisfied unconditionally for all n:

E(\phi n+1) - E(\phi n) =  - \delta t(\scrG \mu n+1/2, \mu n+1/2),

where E(\phi ) is the original energy defined in (2.2).

Proof. Taking the inner products of (2.38) with \mu n+1/2 and of (2.39) with

 - \phi n+1 - \phi n

\delta t , summing up the results along with (2.41), we immediately derive the
desired results.
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A2496 QING CHENG AND JIE SHEN

The above scheme can be efficiently implemented as the previous two schemes.
Indeed, writing
(2.42)
\phi n+1 = \phi n+1

1 + \eta n+1/2\phi n+1
2 + \lambda n+1/2\phi n+1

3 , \mu n+1 = \mu n+1
1 + \eta n+1/2\mu n+1

2 + \lambda n+1/2\mu n+1
3

in the scheme (2.38)--(2.41), we find that (\phi n+1
i , \mu n+1

i ) (i = 1, 2, 3) can be determined
as follows:

\phi n+1
1  - \phi n

\delta t
=  - \scrG \mu n+1/2

1 ,(2.43)

\mu 
n+1/2
1 = \scrL \phi n+1/2

1 ;(2.44)

\phi n+1
2

\delta t
=  - \scrG \mu n+1/2

2 ,(2.45)

\mu 
n+1/2
2 = \scrL \phi n+1/2

2 + F \prime (\phi \ast ,n+1/2);(2.46)

and

\phi n+1
3

\delta t
=  - \scrG \mu n+1/2

3 ,(2.47)

\mu 
n+1/2
3 = \scrL \phi n+1/2

3  - 
\biggl( 
\delta H

\delta \phi 

\biggr) \ast ,n+1/2

.(2.48)

The above three linear systems with constant coefficients can be easily solved. Once
we determine (\phi n+1

i , \mu n+1
i ) (i = 1, 2, 3) from the above, it remains to solve for

(\eta n+1/2, \lambda n+1/2). To this end, we plug (2.42) into (2.40) and (2.41), leading to a
coupled nonlinear algebraic system for (\eta n+1/2, \lambda n+1/2). The complexity of this non-
linear algebraic equation depends on F (\phi ) and h(\phi ).

Remark 2.3. The coupled nonlinear algebraic system for (\eta n+1/2, \lambda n+1/2) can be
solved by Newton iteration. Since the exact solution for \eta (t) is \eta (t) \equiv 1, we can
use 1 as the initial guess for \eta n+1/2, and still use the linear scheme (2.12)--(2.15),
or its second-order version based on Crank--Nicolson, to produce an initial guess for
\lambda n+1/2. With this set of initial guesses, the Newton iteration for the coupled nonlinear
algebraic system would converge quickly if \Delta t is not too large.

2.4. The third approach. In the second approach, one needs to solve a coupled
nonlinear algebraic system for (\lambda n+1/2, \eta n+1/2). The Newton's iteration may fail to
converge if \delta t is not sufficiently small. We propose below a modified version in which
one can solve \lambda n+1/2 first as in the first approach and then determine \eta n+1/2 from a
nonlinear algebraic equation:

\phi n+1  - \phi n

\delta t
=  - \scrG \mu n+1/2,(2.49)

\mu n+1/2 = \scrL \phi n+1/2 + \eta n+1/2F \prime (\phi \ast ,n+1/2) - \lambda n+1/2

\biggl( 
\delta H

\delta \phi 

\biggr) \ast ,n+1/2

,(2.50)

H(\=\phi n+1) = H(\=\phi 0),(2.51) \int 
\Omega 

F (\phi n+1) - F (\phi n)d\bfitx = \eta n+1/2(F \prime (\phi \ast ,n+1/2), \phi n+1  - \phi n)(2.52)

 - \lambda n+1/2

\Biggl( \biggl( 
\delta H

\delta \phi 

\biggr) \ast ,n+1/2

, \phi n+1  - \phi n

\Biggr) 
,
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where fn+1/2 = 1
2 (f

n+1 + fn) and f\ast ,n+1/2 = 1
2 (3f

n  - fn - 1) for any sequence \{ gn\} ,
and \=\phi n+1 is defined as follows: Writing (\phi n+1, \mu n+1) as in (2.42) and plugging in
(2.49)--(2.50), we can determine (\phi n+1

i , i = 1, 2, 3) (2.43)--(2.44), (2.45)--(2.46), and
(2.47)--(2.48) respectively. Then, we set \=\phi n+1 = \phi n+1

1 + \phi n+1
2 + \lambda n+1/2\phi n+1

3 .

Remark 2.4. The only difference between the above scheme and the scheme
(2.38)--(2.41) is that \phi n+1 in (2.40) is replaced by \=\phi n+1 in (2.51) which is independent
of \eta n+1/2. This is reasonable since \eta n+1/2 is an approximation of 1. As a consequence,
\lambda n+1/2 and \eta n+1/2 can be decoupled as shown below.

The scheme (2.49)--(2.52) can be efficiently implemented as follows:
\bullet Solve (\phi n+1

i , \mu n+1
i , i = 1, 2, 3) from (2.43)--(2.44), (2.45)--(2.46), and (2.47)--

(2.48).
\bullet Determine \lambda n+1/2 from (2.51). This is a nonlinear algebraic equation for
\lambda n+1/2, so it can be solved with Newton iteration by using the linear scheme
(2.12)--(2.15), or its second-order version based on Crank--Nicolson, to pro-
duce an initial guess for \lambda n+1/2.

\bullet With \lambda n+1/2 known, plugging \phi n+1 = \phi n+1
1 + \eta n+1/2\phi n+1

2 + \lambda n+1/2\phi n+1
3 into

(2.52) leads to a nonlinear algebraic equation for \eta n+1/2 which can be solved
by a Newton iteration with \eta n+1/2 = 1 as the initial condition.

\bullet Finally we obtain (\phi n+1, \mu n+1) through (2.42).
As for the scheme (2.38)--(2.41), we can easily establish the following result.

Theorem 2.3. Let \{ \phi k, \mu k, \lambda k, \eta k\} be a solution of the scheme (2.49)--(2.52).
Then, the following energy law is satisfied unconditionally for all n:

E(\phi n+1) - E(\phi n) =  - \delta t(\scrG \mu n+1/2, \mu n+1/2),

where E(\phi ) is the original energy defined in (2.2).

Proof. Taking the inner products of (2.49) with \mu n+1/2 and of (2.50) with

 - \phi n+1 - \phi n

\delta t , summing up the results along with (2.52), we immediately derive the
desired results.

2.5. Stabilization and adaptive time stepping. For problems with stiff non-
linear terms, one may have to use very small time steps to obtain accurate results
with any of the three approaches above. In order to allow larger time steps while
achieving desired accuracy, we may add suitable stabilization and use adaptive time
stepping.

2.5.1. Stabilization. Instead of solving (2.4), we consider a perturbed system
with two additional stabilization terms,

\phi t =  - \scrG \mu ,

\mu = \scrL \phi + \epsilon 1\phi tt + \epsilon 2\scrL \phi tt + F \prime (\phi ) - \lambda 
\delta H

\delta \phi 
,

d

dt
H(\phi ) = 0,

(2.53)

where \epsilon i, i = 1, 2, are two small stabilization constants whose choices will depend on
how stiff the nonlinear terms are. It is easy to see that the above system is a gradient
flow with a perturbed free energy E\epsilon (\phi ) = E(\phi )+ \epsilon 1

2 (\phi t, \phi t)+
\epsilon 2
2 (\scrL \phi t, \phi t) and satisfies

the following energy law:

(2.54)
d

dt
E\epsilon (\phi ) =  - (\scrG \mu , \mu ).
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A2498 QING CHENG AND JIE SHEN

The schemes presented before for (2.4) can all be easily extended for (2.53) while
keeping the same simplicity. For example, a second-order scheme based on the second
approach is

\phi n+1  - \phi n

\delta t
=  - \scrG \mu n+1/2,(2.55)

\mu n+1/2 = \scrL \phi n+1/2 +
\epsilon 1

(\delta t)2
(\phi n+1  - 2\phi n + \phi n - 1)(2.56)

+
\epsilon 2

(\delta t)2
\scrL (\phi n+1  - 2\phi n + \phi n - 1)(2.57)

+ \eta n+1/2F \prime (\phi \ast ,n+1/2) - \lambda n+1/2

\biggl( 
\delta H

\delta \phi 

\biggr) \ast ,n+1/2

,

H(\phi n+1) = H(\phi 0),(2.58) \int 
\Omega 

F (\phi n+1) - F (\phi n)d\bfitx = \eta n+1/2(F \prime (\phi \ast ,n+1/2), \phi n+1  - \phi n)(2.59)

 - \lambda n+1/2

\Biggl( \biggl( 
\delta H

\delta \phi 

\biggr) \ast ,n+1/2

, \phi n+1  - \phi n

\Biggr) 
,

wherefn+1/2 = 1
2 (f

n+1 + fn) and f\ast ,n+1/2 = 1
2 (3f

n  - fn - 1) for any sequence \{ fn\} .
Theorem 2.4. Let \{ \phi k, \mu k, \lambda k, \eta k\} be a solution of the scheme (2.55)--(2.59).

Then, the following energy law is satisfied unconditionally for all n:

En+1
\epsilon  - En

\epsilon \leq  - \delta t(\scrG \mu n+1/2, \mu n+1/2),

where Ek
\epsilon = E(\phi k) + \epsilon 1

2 (
\phi k - \phi k - 1

\delta t , \phi 
k - \phi k - 1

\delta t ) + \epsilon 2
2 (\scrL 

\phi k - \phi k - 1

\delta t , \phi 
k - \phi k - 1

\delta t ) with E(\phi ) being
the original free energy defined in (2.2).

Proof. Taking the inner products of (2.55) with \mu n+1/2 and of (2.57) with

 - \phi n+1 - \phi n

\delta t , summing up the results along with (2.59), and dropping some unnecessary
terms, we immediately derive the desired results.

It is clear that the above scheme can be efficiently implemented as the scheme
(2.38)--(2.41).

2.6. Adaptive time stepping. A main advantage of unconditionally stable
schemes, such as the schemes using the second and third approaches, is that one
can choose time steps solely based on the accuracy requirement. Hence, a suitable
adaptive time stepping can greatly improve the efficiency. There are many different
strategies for adaptive time stepping; we refer to [21] for some simple strategies which
have proven to be effective for the SAV related approaches.

3. A single-component system with multiple constraints. The three ap-
proaches presented in the last section can be easily extended to gradient flows with
multicomponents and/or multiglobal constraints. We consider in this section a single-
component system with two global constraints.

3.1. The model. Vesicle membranes are formed by lipid bilayers which play an
essential role in biological functions and its equilibrium shapes often characterized by
bending energy and two physical constraints as described below.

As in [13, 12, 7], we consider the bending energy

(3.1) Eb(\phi ) =
\epsilon 

2

\int 
\Omega 

\Bigl( 
 - \Delta \phi +

1

\epsilon 2
G(\phi )

\Bigr) 2
d\bfitx =

\epsilon 

2

\int 
\Omega 

w2d\bfitx ,
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where

w :=  - \Delta \phi +
1

\epsilon 2
G(\phi ), G(\phi ) := F \prime (\phi ), F (\phi ) =

1

4
(\phi 2  - 1)2.

In the above, the level set \{ \phi (\bfitx , t) = 0\} denotes the vesicle membrane surface, while
\{ \phi (\bfitx , t) > 0\} and \{ \phi (\bfitx , t) < 0\} represent the inside and outside of the membrane
surface, respectively, and \epsilon is width of transition layer.

During the evolution, the membranes also preserve total volume and surface area
represented by

(3.2) A(\phi ) =

\int 
\Omega 

\phi d\bfitx and H(\phi ) =

\int 
\Omega 

h(\phi )d\bfitx with h(\phi ) =
\epsilon 

2
| \nabla \phi | 2 + 1

\epsilon 
F (\phi ).

We now introduce two Lagrange multipliers, \gamma (t) and \lambda (t), to enforce the volume
and surface area conservations. The corresponding gradient flow reads

\phi t =  - M\mu ,(3.3)

\mu =  - \epsilon \Delta w +
1

\epsilon 
G\prime (\phi )w + \gamma (t) + \lambda (t)

\delta H

\delta \phi 
,(3.4)

w =  - \Delta \phi +
1

\epsilon 2
G(\phi ),(3.5)

d

dt
A(\phi ) = 0,(3.6)

d

dt
H(\phi ) = 0,(3.7)

where M is the mobility constant. The boundary conditions can be either one of the
following two types:

(i) periodic; or (ii) \partial \bfn \phi | \partial \Omega = \partial \bfn w| \partial \Omega = 0,(3.8)

where n is the unit outward normal on the boundary \partial \Omega .

Lemma 3.1. The system (3.3)--(3.7) with (3.8) admits the following energy dissi-
pative law:

d

dt
Eb(\phi ) =  - M(\mu , \mu ).(3.9)

Proof. Taking the L2 inner products of (3.3) with \mu , and of (3.4) with \phi t and
of (3.5) with w, integrating by parts, and summing up the results, noticing that
(1, \phi t) = d

dtA(\phi ) = 0 and ( \delta H\delta \phi , \phi t) = d
dtH(\phi ) = 0, we obtain the energy dissipative

law.

To simplify the presentation, we shall only construct a scheme using the third
approach in the last section, since it is simpler than the second approach while main-
taining unconditional energy stability. Obviously, schemes based on other approaches
can be constructed similarly. We rewrite the blending energy as

Eb(\phi ) =
\epsilon 

2

\int 
\Omega 

| \Delta \phi | 2d\bfitx +
\epsilon 

2

\int 
\Omega 

6

\epsilon 2
\phi 2| \nabla \phi | 2 + 1

\epsilon 4
(G(\phi ))2  - 2

\epsilon 2
| \nabla \phi | 2d\bfitx 

=
\epsilon 

2

\int 
\Omega 

| \Delta \phi | 2d\bfitx +

\int 
\Omega 

Q(\phi )d\bfitx ,

(3.10)D
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where Q(\phi ) = \epsilon 
2\{ 

6
\epsilon 2\phi 

2| \nabla \phi | 2 + 1
\epsilon 4 (G(\phi ))

2  - 2
\epsilon 2 | \nabla \phi | 

2\} . The key in the second and third
approaches is to introduce a Lagrange multiplier \eta (t) to deal with the nonlinear part
of the energy Q(\phi ) and reformulate (3.3)--(3.7) as

\phi t =  - M\mu ,(3.11)

\mu = \epsilon \Delta 2\phi + \eta (t)
\delta Q

\delta \phi 
+ \gamma (t) + \lambda (t)

\delta H

\delta \phi 
,(3.12)

d

dt

\int 
\Omega 

Q(\phi )d\bfitx = \eta (t)

\biggl( 
\delta Q

\delta \phi 
, \phi t

\biggr) 
+ \lambda (t)

\biggl( 
\delta H

\delta \phi 
, \phi t

\biggr) 
,(3.13)

d

dt
A(\phi ) = 0,(3.14)

d

dt
H(\phi ) = 0.(3.15)

Note that the last term in (3.13) is zero. We added this term which is essential in
constructing efficient energy stable schemes.

3.2. A second-order scheme based on the third approach. As an example,
we construct below a second-order (BDF2) scheme for system (3.11)--(3.15) based on
the third approach:

3\phi n+1  - 4\phi n + \phi n - 1

2\delta t
=  - M\mu n+1,(3.16)

\mu n+1 = \epsilon \Delta 2\phi n+1 + \eta n+1

\biggl( 
\delta Q

\delta \phi 

\biggr) \ast ,n+1

+ \gamma n+1 + \lambda n+1

\biggl( 
\delta H

\delta \phi 

\biggr) \ast ,n+1

,(3.17) \int 
\Omega 

3Q(\phi n+1) - 4Q(\phi n) +Q(\phi n - 1)d\bfitx (3.18)

= \eta n+1

\Biggl( \biggl( 
\delta Q

\delta \phi 

\biggr) \ast ,n+1

, 3\phi n+1  - 4\phi n + \phi n - 1

\Biggr) 
(3.19)

+ \lambda n+1

\Biggl( \biggl( 
\delta H

\delta \phi 

\biggr) \ast ,n+1

, 3\phi n+1  - 4\phi n + \phi n - 1

\Biggr) 
,\int 

\Omega 

\=\phi n+1d\bfitx =

\int 
\Omega 

\phi 0d\bfitx ,(3.20)

H(\=\phi n+1) = H(\phi 0),(3.21)

where g\ast ,n+1 = 2gn - gn - 1 for any sequence \{ gn\} , and \=\phi n+1 is defined in (3.24) below
during the solution procedure.

Setting

(3.22) \phi n+1 = \phi n+1
1 + \eta n+1\phi n+1

2 + \gamma n+1\phi n+1
3 + \lambda n+1\phi n+1

4

in (3.16)--(3.17) and eliminating \mu n+1, we find that \{ \phi n+1
i \} can be determined by

(3.23)

\biggl( 
1

2\delta t
+M\epsilon \Delta 2

\biggr) 
\phi n+1
i = gi, i = 1, 2, 3, 4,

with gi to be known functions from previous steps. Once \{ \phi n+1
i , i = 1, 2, 3, 4\} are

known, we define

\=\phi n+1 = \phi n+1
1 + \phi n+1

2 + \gamma n+1\phi n+1
3 + \lambda n+1\phi n+1

4 .(3.24)
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Note that \=\phi n+1 is still as good an approximation to \phi | tn+1 as \phi n+1 since \eta n+1 is a
second-order approximation to 1.

We can then determine the three Lagrange multipliers as follows:
\bullet Plugging (3.24) into (3.20), we obtain a linear relation between \gamma n+1 and
\lambda n+1.

\bullet Plugging (3.24) into (3.21) and using the linear relation between \gamma n+1 and
\lambda n+1, we obtain a nonlinear algebraic equation for \lambda n+1 which can be solved
a Newton iteration using an initial guess obtained by a linear scheme as in
section 2.1.

\bullet With \gamma n+1 and \lambda n+1 known, determine \eta n+1 by plugging (3.22) into (3.19)
and solve the resulting nonlinear algebraic equation with the initial guess 1.

Hence, the above scheme can be implemented very efficiently. As for the stability, we
have the following result.

Theorem 3.1. Let \{ \phi k, \mu k, \lambda k, \eta k, \gamma k\} be a solution of the scheme (3.16)--(3.20).
Then, the following energy law is satisfied unconditionally for all n:

En+1
b  - En

b \leq  - \delta tM\| \mu n+1\| 2,

where

(3.25) En+1
b =

\epsilon 

4
(\| \Delta \phi n+1\| 2 + \| \Delta (2\phi n+1  - \phi n)\| 2) + 1

2

\int 
\Omega 

3Q(\phi n+1) - Q(\phi n) d\bfitx ,

which is a second-order approximation to the original free energy Eb(\phi ) at t
n+1.

Proof. Taking the inner product of (3.16) with 2\delta t\mu n+1, we derive

(3.26) (3\phi n+1  - 4\phi n + \phi n - 1, \mu n+1) =  - 2\delta tM\| \mu n+1\| 2.

Due to (3.20), we have

(3.27) (1, 3\phi n+1  - 4\phi n + \phi n - 1) = 0.

Taking the inner product of (3.17) with 3\phi n+1 - 4\phi n+\phi n - 1 and using equality (3.27)
and (3.19), we derive

(3\phi n+1  - 4\phi n + \phi n - 1, \mu n+1) = (\epsilon \Delta 2\phi n+1, 3\phi n+1  - 4\phi n + \phi n - 1)

+

\int 
\Omega 

3Q(\phi n+1) - 4Q(\phi n) +Q(\phi n - 1)d\bfitx .
(3.28)

Using the identity

2(an+1, 3an+1  - 4an + an - 1) = \| an+1\| 2  - \| an\| 2 + \| an+1  - 2an + an - 1\| 2

+ \| 2an+1  - an\| 2  - \| 2an  - an - 1\| 2,
(3.29)

we have

(\epsilon \Delta 2\phi n+1, 3\phi n+1  - 4\phi n + \phi n - 1) =
\epsilon 

2
(\| \Delta \phi n+1\| 2  - \| \Delta \phi n\| 2 + \| \Delta (2\phi n+1  - \phi n)\| 2

 - \| \Delta (2\phi n  - \phi n - 1)\| 2 + \| \Delta (\phi n+1  - 2\phi n +\phi n - 1)\| 2).

Combining the above equalities and dropping some unnecessary terms, we arrive at
the desired result.
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4. A multicomponent system with multiple constraints. We consider in
this section a norm-preserving model for optimal partition written in the form of
gradient flow. It is a multicomponent system with multiple constraints.

4.1. The model. The optimal partition problem can be described by a norm-
preserving gradient dynamics [11]. Given a positive integer m and a small parameter
\epsilon , the total free energy is given by

(4.1) E(\bfitphi ) =

\int 
\Omega 

\biggl( 
1

2
| \nabla \bfitphi | 2 + \bfitF (\bfitphi )

\biggr) 
d\bfitx ,

where \bfitphi \in Xm (X \subset H1(\Omega ) with suitable boundary conditions) is a vector valued
function satisfying the norm constraint

(4.2) Hj(\phi ) :=

\int 
\Omega 

| \phi j | 2d\bfitx = 1, j = 1, 2, . . . ,m,

\bfitF represents interaction potential of each partition

(4.3) \bfitF (\bfitphi ) =
1

\epsilon 2

m\sum 
i=1

\sum 
j<i

\phi 2i\phi 
2
j .

We shall enforce the normalization conditions (4.2) by introducing j Lagrange
multipliers. The corresponding gradient flow reads

\partial t\phi j =  - \mu j ,(4.4)

\mu j =  - \Delta \phi j  - \lambda j(t)\phi j +
\delta \bfitF 

\delta \phi j
,(4.5)

d

dt

\int 
\Omega 

| \phi j(x, t)| 2d\bfitx = 0, j = 1, 2, . . . ,m,(4.6)

with initial condition satisfying
\int 
\Omega 
| \phi j(x, 0)| 2d\bfitx = 1 and boundary conditions being

either (i) periodic or (ii) \bfitphi | \partial \Omega = 0.(4.7)

Lemma 4.1. The system (4.4)--(4.6) with (4.7) admits the following energy dissi-
pative law:

d

dt
E(\bfitphi ) =  - M

\int 
\Omega 

m\sum 
j=1

\mu 2
jd\bfitx .(4.8)

Proof. Taking the inner products of (4.4) with \mu j and of (4.5) with \partial t\phi j , j =
1, 2, . . . ,m, noticing the equality (4.6), integrating by parts, and summing up all the
relations, we obtain the desired result.

Again the key for the second and third approaches is to introduce a Lagrange
multiplier to deal with the nonlinear term and rewrite the system (4.4)--(4.6) as

\partial t\phi j =  - \mu j ,(4.9)

\mu j =  - \Delta \phi j  - \lambda j(t)\phi j + \eta (t)
\delta \bfitF 

\delta \phi j
,(4.10)
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d

dt

\int 
\Omega 

\bfitF (\bfitphi )d\bfitx =
m\sum 
j=1

\eta (t)

\biggl( 
\delta \bfitF 

\delta \phi j
, \partial t\phi j

\biggr) 
+

m\sum 
j=1

\lambda j(t)(\phi j , \partial t\phi j),(4.11)

d

dt

\int 
\Omega 

| \phi j(x, t)| 2d\bfitx = 0, j = 1, . . .m.(4.12)

Note that we added the last term in (4.11) which is zero but is essential in constructing
energy stable schemes below.

4.2. A second-order scheme based on the third approach. As an example,
we construct below a second-order (BDF2) scheme for the system (4.4)--(4.6) based
on the third approach.

We can construct a second-order scheme based on system (4.9)--(4.11).
For j = 1, 2, . . . ,m,

3\phi n+1
j  - 4\phi nj + \phi n - 1

j

2\delta t
=  - \mu n+1

j ,(4.13)

\mu n+1
j =  - \Delta \phi n+1

j  - \lambda n+1
j \phi  \star ,n+1

j + \eta n+1f(\phi  \star ,n+1
j ),(4.14) \int 

\Omega 

3\bfitF (\bfitphi n+1) - 4\bfitF (\bfitphi n) + \bfitF (\bfitphi n - 1)d\bfitx (4.15)

=

m\sum 
j=1

\Biggl\{ \Biggl( 
\eta n+1

\biggl( 
\delta \bfitF 

\delta \phi j

\biggr)  \star ,n+1

, 3\phi n+1
j  - 4\phi nj + \phi n - 1

j

\Biggr) 
(4.16)

+ (\lambda n+1
j \phi  \star ,n+1

j , 3\phi n+1
j  - 4\phi nj + \phi n - 1

j )

\Biggr\} 
,\int 

\Omega 

| \=\phi n+1
j | 2d\bfitx =

\int 
\Omega 

| \phi 0j | 2d\bfitx ,(4.17)

where g \star ,n+1 = 2gn - gn - 1 for any sequence \{ gn\} , and \=\phi n+1
j is defined in (4.20) below

during the solution procedure.
Setting

(4.18) \phi n+1
j = \psi n+1

0,j + \lambda n+1
j \psi n+1

1,j + \eta n+1\psi n+1
2,j , j = 1, 2, . . . ,m,

and plugging the above into (4.13)--(4.14), we can determine \psi n+1
0,j , \psi n+1

1,j , and \psi n+1
2,j

by solving decoupled linear equations

(4.19)

\biggl( 
3

2\delta t
 - \Delta 

\biggr) 
\psi n+1
k,j = gk,j , k = 0, 1, 2, j = 1, 2, . . . ,m,

where \{ gk,j\} are known functions from the previous steps. Then we define

(4.20) \=\phi n+1
j = \psi n+1

0,j + \lambda n+1
j \psi n+1

1,j + \psi n+1
2,j , j = 1, 2, . . . ,m.

Note that \=\phi n+1
j is still as good an approximation to \phi j | tn+1 as \phi n+1

j since \eta n+1 is a
second-order approximation to 1.

Finally, we determine \{ \lambda n+1
j \} and \eta n+1 as follows:

\bullet Plug (4.20) into (4.17), we obtain, for each j, a quadratic algebraic equation
for \lambda n+1

j which can be directly solved.

\bullet With \{ \lambda n+1
j \} known, we plug (4.18) into (4.16) to obtain a nonlinear algebraic

equation for \eta n+1, and we solve the nonlinear algebraic equation by a Newton
iteration with 1 as initial condition.
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A2504 QING CHENG AND JIE SHEN

Hence, the above scheme can be efficiently implemented. As for the stability, we have
the following result.

Theorem 4.1. Let \{ \phi k, \mu k, \eta k, \lambda kj (1 \leq j \leq m)\} be a solution of the scheme
(4.13)--(4.17). Then, the following energy law is satisfied unconditionally for all n:

En+1  - En \leq  - \delta t
m\sum 
j=1

\| \mu n+1
j \| 2,

where

(4.21) En+1 =
1

4
(\| \nabla \bfitphi n+1\| 2 + \| \nabla (2\bfitphi n+1  - \bfitphi n)\| 2) + 1

2

\int 
\Omega 

3\bfitF (\bfitphi n+1) - \bfitF (\bfitphi n)d\bfitx ,

which is a second-order approximation to the original free energy E(\bfitphi ) at tn+1.

Proof. Taking the inner product of (4.13) with 2\delta t\mu n+1
j , we derive

(4.22) (3\phi n+1
j  - 4\phi nj + \phi n - 1

j , \mu n+1
j ) =  - 2\delta t\| \mu n+1

j \| 2.

Taking the inner product of (4.14) with 3\phi n+1
j  - 4\phi nj + \phi n - 1

j , and summing up all
these equations from j = 1, 2, . . . ,m, we obtain

m\sum 
j=1

(3\phi n+1
j  - 4\phi nj + \phi n - 1

j , \mu n+1
j ) =

m\sum 
j=1

(\nabla \phi n+1
j ,\nabla (3\phi n+1

j  - 4\phi nj + \phi n - 1
j ))

+

\int 
\Omega 

3\bfitF (\bfitphi n+1) - 4\bfitF (\bfitphi n) + \bfitF (\bfitphi n - 1)d\bfitx .

(4.23)

Combining all relations obtained above and using the identity (3.29), we obtain the
desired result.

5. Numerical results. We present in this section some numerical experiments
to compare the performance of different approaches and to validate their stability and
convergence rates. In all numerical examples below, we assume periodic boundary
conditions and use a Fourier spectral method in space. The computational domain is
[ - \pi , \pi )d with d = 2, 3.

5.1. Validation and comparison. We consider the phase field vesicle mem-
brane model (3.3)--(3.7) with \epsilon = 6\pi 

128 , M = 1, and use 128 modes in each direction
in our Fourier spectral method so that the spatial discretization errors are negligible
compared with time discretization error.

5.1.1. Comparison of the three approaches. We first investigate the perfor-
mance of the three approaches proposed in section 2. We consider the two-dimensional
(2D) phase field vesicle membrane model (3.3)--(3.7) and choose as initial condition
two close-by circles given by

(5.1) \phi (x, y, 0) =

2\sum 
i=1

tanh

\Biggl( 
ri  - 

\sqrt{} 
(x - xi)2 + (y  - yi)2\surd 

2\epsilon 

\Biggr) 
+ 1.

We define (r1, r2) = (0.28\pi , 0.28\pi ), (x1, x2) = (0, 0) and (y1, y2) = (0.35\pi , - 0.35\pi ).
In the left of Figure 1, we plot the evolution of Lagrange multiplier \lambda with respect to
time by using BDF2 scheme of three numerical approaches. We observe that the three

D
ow

nl
oa

de
d 

09
/0

2/
20

 to
 1

28
.2

10
.1

07
.2

5.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

GLOBAL CONSTRAINTS PRESERVING SCHEMES A2505

Fig. 1. Left: Evolution of \lambda by using three approaches with \delta t = 10 - 4 for the first and third
approaches while \delta t = 10 - 5 for the second approach. Right: Evolution of the surface area.

approaches lead to indistinguishable \lambda . However, we have to use a very small time
step, \delta t = 10 - 5, in the second approach for the Newton iteration to converge, while
larger time steps can be used for the first and third approaches. On the other hand,
we plot in the right of Figure 1 the evolution of the surface area by using the three
approaches. We observe that the first and second approaches preserve exactly the
surface area, while very small differences on B(\phi ) are observed by the third approach
at several initial time steps, since the third approach only preserves B(\=\phi ) instead of
B(\phi ).

The above results indicate that the first and third approaches are preferable over
the second approach, since they allow larger time steps. Therefore, we shall only use
the first and third approaches in the remaining simulations.

5.1.2. Convergence rate. We test the convergence rate of BDF2 schemes using
first and third approaches for 2D phase field vesicle membrane model (3.3)--(3.7) with
the initial condition

(5.2) \phi (x, y, 0) =

\biggl( 
sin(2x) cos(2y)

4
+ 0.48

\biggr) \biggl( 
1 - sin2(t)

2

\biggr) 
.

The reference solutions are obtained with a small time step \delta t = 10 - 5 using the BDF2
schemes. In Figure 2, we plot the L\infty errors of \phi between numerical solution and
reference solution with different time steps. We observe that second-order convergence
rates are achieved by both approaches.

5.1.3. Comparison between the new approaches and the penalty
approach in [7]. We now compare our Lagrange multiplier approach with the pen-
alty approach developed in [7]. In the penalty approach, we introduce two penalty
parameters \gamma and \eta and consider the total free energy

(5.3) Etotal(\phi ) = Eb(\phi ) +
1

2\gamma 
(A(\phi ) - A(\phi | t=0))

2 +
1

2\eta 
(H(\phi ) - H(\phi | t=0))

2,

where Eb(\phi ), A(\phi ), and H(\phi ) are defined in (3.1) and (3.2). We observe that the pen-
alty approach can only approximately preserve the constraints on A(\phi ) and H(\phi ), and
very small penalty parameters have to be used if we want to preserve the constraints
to a high accuracy. However, small penalty parameters will lead to stiff systems such
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Fig. 2. Convergence rate of BDF2 schemes by using the first and third approaches for 2D phase
field vesicle membrane model (3.3)--(3.7).

Table 1
Largest time step allowed for MSAV scheme with various Penalty parameters \gamma and \eta .

\delta t allowed \gamma \eta 

2\times 10 - 4 10 - 5 10 - 5

2\times 10 - 4 10 - 6 10 - 6

1\times 10 - 4 10 - 7 10 - 7

5\times 10 - 5 10 - 8 10 - 8

2\times 10 - 5 10 - 9 10 - 9

1\times 10 - 5 10 - 10 10 - 10

2\times 10 - 6 10 - 11 10 - 11

1\times 10 - 6 10 - 12 10 - 12

that the MSAV approach proposed in [7] requires very small time steps to get accu-
rate solutions. More precisely, we list the maximum allowable time step in Table 1
for the MSAV scheme for the 2D phase field vesicle membrane model by using the
penalty approach. We observe that the maximum allowable time step behaves like
min(

\surd 
\gamma ,

\surd 
\eta ). On the other hand, the new Lagrangian multiplier approach is more

efficient than the MSAV approach at each time step and allows much larger time
steps.

Next, we simulate the 3D phase field vesicle membrane model with the first ap-
proach proposed in this paper and the MSAV approach in [7]. We take the initial
condition as

(5.4) \phi (x, y, z, 0) =
4\sum 

i=1

tanh

\Biggl( 
ri  - 

\sqrt{} 
(x - xi)2 + (y  - yi)2 + (z  - zi)2\surd 

2\epsilon 

\Biggr) 
+ 3,

where ri =
\pi 
6 , xi = 0, (y1, y2, y3, y4) = (\pi 4 , - 

\pi 
4 ,

3\pi 
4 , - 

3\pi 
4 ), and zi = 0 for i = 1, 2, 3, 4.

In Figure 3, we plot the evolution of the volume difference and surface area
difference by the MSAV scheme in [7] with penalty parameter \gamma = \eta = 10 - 3 and by
the BDF2 scheme of first approach using \delta t = 2 \times 10 - 4. We observe that both the
volume and surface area are preserved exactly by the BDF2 scheme of first approach
while only approximately for the MSAV scheme using the penalty approach.
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Fig. 3. Evolution of the volume and surface area differences by the MSAV scheme \gamma = \eta = 10 - 3

and the BDF2 scheme of first approach with \delta t = 2\times 10 - 4.

Fig. 4. Collision of four 3D close-by spherical vesicles by using the BDF2 of first approach
with the time step size \delta t = 2\times 10 - 4. Snapshots of isosurface of \phi at t = 0.01, 0.02, 0.04, 0.2, 1, 2.

In Figure 4, we present snapshots of isosurface of \{ \phi = 0\} at different times
by using the BDF2 scheme of first approach. It is observed that the final steady
state is the same as that reported in [7] using the penalty approach. We also plot
in Figure 5 energy curves of different approaches which are indistinguishable in all
cases.

5.2. Additional simulations of 3D vesicle membrane model. In order to
further demonstrate the accuracy and robustness of our new Lagrangian multiplier
approach, we perform some additional simulations of the 3D vesicle membrane model.
As the first example, we set four close-by spheres as the initial profile which is formu-
lated as

(5.5) \phi (x, y, z, 0) =
4\sum 

i=1

tanh

\Biggl( 
ri  - 

\sqrt{} 
(x - xi)2 + (y  - yi)2 + (z  - zi)2\surd 

2\epsilon 

\Biggr) 
+ 3,

where ri =
\pi 
6 , xi = 0, (y1, y2, y3, y4) = (\pi 4 , - 

\pi 
4 ,

3\pi 
4 , - 

3\pi 
4 ), and zi = 0 for i = 1, 2, 3, 4.

In Figure 6, we plot several snapshots of the isosurface \{ \phi = 0\} by using the BDF2
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Fig. 5. Energy evolutions with different approaches using the initial condition (5.4).

Fig. 6. Collision of four close-by spherical vesicles by using the third approach with time step
size \delta t = 1\times 10 - 4. Snapshots of isosurface of \{ \phi = 0\} at t = 0, 0.02, 1.

scheme of the third approach with \delta t = 10 - 4. It is observed that initially separated
four spheres connect with each other at t = 0.02 and gradually merge into a cylinder
shape at t = 1. This is consistent with results in [13].

As the second example, we start with a more complicated initial condition given
by

(5.6) \phi (x, y, z, 0) =
6\sum 

i=1

tanh

\Biggl( 
ri  - 

\sqrt{} 
(x - xi)2 + (y  - yi)2 + (z  - zi)2\surd 

2\epsilon 

\Biggr) 
+ 5,

where ri =
\pi 
6 , zi = 0 for i = 1, 2, . . . , 6 (x1, x2, x3, x4, x5, x6) = ( - \pi 

4 ,
\pi 
4 , 0,

\pi 
2 , - 

\pi 
2 , 0),

and (y1, y2, y3, y4, y5, y6) = ( - \pi 
4 , - 

\pi 
4 ,

\pi 
4 ,

\pi 
4 ,

\pi 
4 , - 

3\pi 
4 ).

In Figure 7, we plot snapshots of isosurface \{ \phi = 0\} at t = 0, 0.01, 0.02, 0.2, 0.5, 2
by using the BDF2 scheme of the first approach. We observe from this figure that
the initially separated spheres connect with each other in a short time and eventu-
ally merge into a big vesicle. The shape of the final steady state is consistent with
simulations in [13].

We also plot, in Figure 8, the evolution of Lagrange multiplier \lambda for these two
examples. We observe that the Lagrange multiplier \lambda will change rapidly at the
begining and gradually settle down to a steady state value. We also observe that \lambda 
can become negative.

5.3. Optimal partition model. We present below numerical experiments for
the optimal partition problem (4.4)--(4.6). In [11], simulations are performed with
Dirichlet boundary conditions. While the algorithms presented in the previous section
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Fig. 7. Collision of six close-by spherical vesicles by using the first approach with time step
size \delta t = 1\times 10 - 4. Snapshots of isosurface of \{ \phi = 0\} at t = 0, 0.01, 0.02, 0.2, 0.5, 2.

Fig. 8. Evolution of Lagrange multiplier \lambda for the examples in Figures 6 and 7.

apply to both periodic and Dirichlet boundary conditions, for the sake of simplicity
and comparison, we shall consider the periodic boundary condition with the Fourier
spectral method is adopted to discretize the space variables in the computational
domain \Omega = [ - \pi , \pi )2. In all computations, we use 1282 Fourier modes with interfacial
width parameter \epsilon = 0.01. To better visualize the subdomain evolution, we assign
an integer valued marker function \chi i which equals to i in the region i, and \chi i = 0 in
other regions. The initial condition for \phi i is set to be the marker function \chi i. The
BDF2 scheme of the first approach with time step \delta t = 10 - 5 is used for all examples
below.

For the first example, we take m = 4 with four connected quadrilaterals as the
initial configuration. In Figure 9, the evolutions of the phase configuration at various
times are depicted. We observe that patterns in the partition gradually evolve into
hexagonal patterns as the final steady state.D
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(a) t=0 (b) t=0.05 (c) t=0.5

(d) t=1 (e) t=5 (f) t=10

Fig. 9. A 4-subdomain partition: initial partition and subdomains at times t =
0, 0.05, 0.5, 1, 5, 10 computed by the BDF2 scheme of the first approach with \delta t = 1\times 10 - 5.

Fig. 10. Evolution of Lagrange multipliers \lambda 1, \lambda 2 and \lambda 3, \lambda 4 with respect to time for 4-
subdomain partition in Figure 9.

For the optimal partition problem, it is shown in [4] that all Lagrange multipliers
are positive and will decay with time. In Figure 10, we plot evolutions of the four
Lagrange multipliers and observe that they are indeed positive and decay with time.

Next, we increase the numbers of partitions to m = 8 and plot in Figure 11 the
evolutions of the phase configuration at various times. We observe that the partition
eventually evolves into a honeycomb shape with mostly hexagonal patterns. Similar
behaviors are observed with m = 10 as shown in Figure 12.

These numerical results are qualitatively consistent with the numerical simula-
tions presented in [11], where the Dirichlet boundary condition was used.
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(a) t=0 (b) t=0.05 (c) t=0.5

(d) t=2 (e) t=5 (f) t=10

Fig. 11. An 8-subdomain partition: initial partition and subdomains at times t =
0, 0.05, 0.5, 2, 5, 10 computed by the BDF2 scheme of the first approach with \delta t = 1\times 10 - 5.

(a) t=0 (b) t=0.05 (c) t=0.5

(d) t=2 (e) t=5 (f) t=10

Fig. 12. A 10-subdomain partition: initial partition and subdomains at times t =
0, 0.05, 0.5, 2, 5, 10 computed by the BDF2 scheme of the first approach with \delta t = 1\times 10 - 5.

6. Concluding remarks. How to construct efficient numerical schemes for gra-
dient flows with global constraints is a challenging task. The popular penalty approach
may lead to very stiff systems that are difficult to solve, while a direct implementation
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of the Lagrangian multiplier approach leads to nonlinear systems to solve at each time
step. We developed several efficient numerical schemes which can preserve exactly the
constraints for gradient flows with global constraints by combining the SAV approach
with the Lagrangian multiplier approach. These schemes are as efficient as the SAV
schemes for unconstrained gradient flows, i.e., only require solving linear equations
with constant coefficients at each time step plus an additional nonlinear algebraic
system which can be solved at negligible cost, and preserve exactly the constraints
for constrained gradient flows. Moreover, the second and third approaches lead to
schemes which are unconditionally energy stable. And the Lagrangian multipliers in
the third approach can be determined sequentially, as opposed to coupled together in
the second approach, making it more robust and efficient than the second approach.

We presented ample numerical results to compare the three approaches with the
penalty approach. Our numerical results indicate that the proposed approaches can
achieve accurate results and preserve exactly the constraints with larger time steps
than those allowed in the penalty approach. And the first and third approaches are
more robust and efficient than the second approach.

Although we considered only time discretization schemes in this paper, they can
be combined with any consistent finite dimensional Galerkin type approximations in
practice, since the stability proofs are all based on variational formulations with all
test functions in the same space as the trial functions.

We would like to point out that we only provided formal stability results for the
schemes presented in this paper, in the sense that we did not address the existence
and uniqueness for the nonlinear algebraic systems involved in these schemes in the
neighborhood of the exact solutions. A rigorous analysis for the well posedness and
error estimates of these schemes is a subject of future study.
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