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ERROR ANALYSIS OF THE SAV-MAC SCHEME FOR THE
NAVIER--STOKES EQUATIONS\ast 

XIAOLI LI\dagger AND JIE SHEN\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . An efficient numerical scheme based on the scalar auxiliary variable (SAV) and
marker and cell (MAC) scheme is constructed for the Navier--Stokes equations. A particular feature of
the scheme is that the nonlinear term is treated explicitly while being unconditionally energy stable.
A rigorous error analysis is carried out to show that both velocity and pressure approximations
are second-order accurate in time and space. Numerical experiments are presented to verify the
theoretical results.
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1. Introduction. We consider in this paper the following incompressible Navier--
Stokes equations:

\partial u

\partial t
+ u \cdot \nabla u - \nu \Delta u+\nabla p = f in \Omega \times J,(1.1a)

\nabla \cdot u = 0 in \Omega \times J,(1.1b)

u = 0 on \partial \Omega \times J,(1.1c)

where \Omega is an open bounded domain in R2, J = (0, T ], (u, p) represent the unknown
velocity and pressure, f is an external body force, \nu > 0 is the viscosity coefficient,
and n is the unit outward normal of the domain \Omega .

Numerical solution of the Navier--Stokes equations plays an important role in
computational fluid dynamics, and an enormous amount of work has been devoted to
the design, analysis, and implementation of numerical schemes for the Navier--Stokes
equations; see [23, 5, 6] and the references therein.

One of the main difficulties in numerically solving Navier--Stokes equations is the
treatment of the nonlinear term. There are essentially three types of treatment:
(i) fully implicit, which leads to a nonlinear system to solve at each time step;
(ii) semi-implicit, which needs to solve a coupled elliptic equation with variable coeffi-
cients at each time step; and (iii) explicit, which only has to solve a generalized Stokes
system, or even decoupled Poisson-type equations, at each time step but suffers from
a CFL time step constraint at intermediate or large Reynolds numbers.
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2466 XIAOLI LI AND JIE SHEN

From a computational point of view, it would be ideal to be able to treat the
nonlinear term explicitly without any stability constraint. In a recent work [12], Lin,
Yang, and Dong constructed such a scheme by introducing an auxiliary variable. The
scheme was inspired by the recently introduced scalar auxiliary variable (SAV) ap-
proach [22, 20, 21] which can lead to linear, second-order, unconditionally energy
stable schemes that require solving only decoupled elliptic equations with constant
coefficients at each time step for a large class of gradient flows. The scheme con-
structed in [12] for Navier--Stokes equations requires solving two generalized Stokes
equations (with constant coefficient) plus a nonlinear algebraic equation for the auxil-
iary variable at each time step. Hence, it is very efficient compared with other existing
schemes. Ample numerical results presented in [12] indicate that the scheme is very
effective for a variety of situations.

However, the nonlinear algebraic equation for the auxiliary variable has multiple
solutions, and it is not clear whether all solutions converge to the exact solution or how
to choose the right solution. This question can only be fully answered with a rigorous
convergence analysis. But due to the explicit treatment of the nonlinear term and the
nonlinear algebraic equation associated to the auxiliary variable, its convergence and
error analysis cannot be obtained using a standard procedure. More precisely, two of
the main difficulties for convergence and error analysis are (i) deriving a uniform L\infty 

bound for the numerical solution from the modified energy stability, and (ii) dealing
with the nonlinear algebraic equation for the auxiliary variable.

In this paper, we shall construct a fully discrete SAV scheme for the Navier--
Stokes equations with the marker and cell (MAC) method [24, 26] for the spatial
discretization. The MAC scheme has been widely used in engineering applications
due to its simplicity while satisfying the discrete incompressibility constraint as well
as locally conserving the mass, momentum, and kinetic energy [15, 16]. The stability
and error estimates for the MAC scheme have been well studied; see, for instance,
[4, 1, 8, 7] and the references therein. Most of the error estimates are only first order
for both the velocity and the pressure, although Nicolaides [14] pointed out that
numerical results suggest that the velocity is second-order convergent without proof.
Inspired by the techniques in [19, 13] for Darcy--Forchheimer and Maxwell's equations,
Rui and Li established the discrete LBB condition for the MAC method and derived
second-order error estimates for both the velocity and the pressure in discrete L2

norms for the Stokes equations in [18, 11] and for the Navier--Stokes equations in [10].
The main purposes of this paper are (i) to construct a SAV-MAC scheme for

the Navier--Stokes equations, establish its energy stability, and present an efficient
algorithm for solving the resulting system which is weakly nonlinear; and (ii) to carry
out a rigorous error analysis for the SAV-MAC scheme. In particular, at each time
step, our SAV-MAC scheme leads to two discrete MAC schemes for the generalized
Stokes system that can be efficiently solved by using the usual techniques developed
for the MAC scheme, and to a quadratic algebraic equation for the auxiliary variable.

The main contribution of this paper is a rigorous error analysis with second-
order error estimates in time and space for both the velocity and pressure. This
is achieved by using a bootstrap argument to establish the uniform bound for the
approximate solution, followed by a sequence of delicate estimates. Our results show,
in particular, that at least one solution of the quadratic algebraic equation for the
auxiliary variable will converge to the exact solution. To the best of our knowledge,
this is the first rigorous error analysis for an unconditionally energy stable scheme for
the Navier--Stokes equations where the nonlinear term is treated explicitly.

The paper is organized as follows. In section 2, we present the semidiscrete
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SAV scheme and fully discrete SAV-MAC scheme, establish the energy stability. and
show how to numerically solve them efficiently. In section 3, we carry out a rigorous
error analysis to establish second-order error estimates for the fully discrete SAV-
MAC scheme. Numerical results are presented in section 4 to validate our theoretical
results.

We now present some notation and conventions used in what follows. Throughout
the paper we use C, with or without subscript, to denote a positive constant, which
could have different values at different places.

Let Lm(\Omega ) be the standard Banach space with norm \| v\| Lm(\Omega ) =
\bigl( \int 

\Omega 
| v| md\Omega 

\bigr) 1/m
,

and set \| v\| \infty = \| v\| L\infty (\Omega ). We denote by (f, g) =
\int 
\Omega 
fg dx the L2(\Omega ) inner product,

and set \| f\| = (f, f)
1
2 . Let W k

p (\Omega ) be the standard Sobolev space

W k
p (\Omega ) = \{ g : \| g\| Wk

p (\Omega ) < \infty \} ,

where

(1.2) \| g\| Wk
p (\Omega ) =

\left(  \sum 
| \alpha | \leq k

\| D\alpha g\| pLp(\Omega )

\right)  1/p

.

We shall use the notation W p
k (J ;W

q
l (\Omega )) to represent the space with functions f(t,x)

with t \in J and x \in \Omega such that f(t, \cdot ) \in W q
l (\Omega ) for a.e. t \in J , and \| f(t, \cdot )\| W q

l (\Omega ) \in 
W p

k (J).

2. The SAV-MAC scheme. In this section, we construct the second-order
MAC scheme based on the SAV approach for the Navier--Stokes equation.

Define the scalar auxiliary variable q(t) by

(2.1) q(t) =
\sqrt{} 
E(u) + \delta ,

where E(u) =
\int 
\Omega 

1
2 | u| 

2 is the total energy of the system, and \delta is an arbitrarily small
positive constant. Then we have

(2.2)
dq

dt
=

1

2q

\int 
\Omega 

\partial u

\partial t
\cdot udx+

1

2
\sqrt{} 

E(u) + \delta 

\int 
\Omega 

u \cdot \nabla u \cdot udx.

Following [12], we rewrite the governing system in the following equivalent form:\left\{             

\partial u

\partial t
+

q(t)\sqrt{} 
E(u) + \delta 

u \cdot \nabla u - \nu \Delta u+\nabla p = f,(2.3)

dq

dt
=

1

2q

\int 
\Omega 

\partial u

\partial t
\cdot udx+

1

2
\sqrt{} 
E(u) + \delta 

\int 
\Omega 

u \cdot \nabla u \cdot udx,(2.4)

\nabla \cdot u = 0.(2.5)

Remark 2.1. Note that in the case of inhomogeneous Dirichlet boundary condi-
tion u| \partial \Omega = g, (2.4) should be replaced by
(2.6)

dq

dt
=

1

2q

\int 
\Omega 

\partial u

\partial t
\cdot udx+

1

2
\sqrt{} 
E(u) + \delta 

\biggl( \int 
\Omega 

u \cdot \nabla u \cdot udx - 
\int 
\partial \Omega 

(n \cdot g) \cdot 1
2
| g| 2ds

\biggr) 
.
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2468 XIAOLI LI AND JIE SHEN

2.1. The semidiscrete case. For the reader's convenience, we shall first con-
struct a second-order semidiscrete SAV scheme based on the Crank--Nicolson method,
although we are mainly concerned with the analysis of a fully discrete scheme in this
paper.

Set
\Delta t = T/N, tn = n\Delta t for n \leq N,

and define

[dtf ]
n =

fn  - fn - 1

\Delta t
, fn+1/2 =

fn + fn+1

2
.

Then the SAV scheme based on the Crank--Nicolson method is\left\{                                 

un+1  - un

\Delta t
+

qn+1/2\sqrt{} 
E(\~un+1/2) + \delta 

\~un+1/2(2.7)

\cdot \nabla \~un+1/2  - \nu \Delta un+1/2 +\nabla pn+1/2 = fn+1/2,

qn+1  - qn

\Delta t
=

1

2qn+1/2

\biggl( 
un+1  - un

\Delta t
,un+1/2

\biggr) 
+

1

2

\sqrt{} 
E(\~un+1/2) + \delta 

(\~un+1/2 \cdot \nabla \~un+1/2,un+1/2),(2.8)

\nabla \cdot un+1 = 0,(2.9)

where \~un+1/2 = (3un  - un - 1)/2 with n \geq 1, and we compute \~u1/2 by the following
simple first-order scheme:

(2.10)
\~u1/2  - u0

\Delta t/2
+ u0 \cdot \nabla u0  - \nu \Delta \~u1/2 +\nabla p1/2 = f1/2,

which has a local truncation error of O(\Delta t2).

Remark 2.2. In the case of inhomogeneous Dirichlet boundary condition u| \partial \Omega =
g, (2.8) should be replaced by

qn+1  - qn

\Delta t
=

1

2qn+1/2

\biggl( 
un+1  - un

\Delta t
,un+1/2

\biggr) 
+

1

2

\sqrt{} 
E(\~un+1/2) + \delta 

\biggl( 
(\~un+1/2 \cdot \nabla \~un+1/2,un+1/2) - 

\int 
\partial \Omega 

(n \cdot gn+1/2) \cdot 1
2
| gn+1/2| 2ds

\biggr) 
.

(2.11)

The above scheme enjoys the following stability result.

Theorem 2.1. Let f \equiv 0. The scheme (2.7)--(2.8) is unconditionally energy stable
in the sense that

| qn+1| 2  - | qn| 2 =  - \Delta t\nu \| \nabla un+1/2\| 2L2 .

Proof. We recall that for u \in H := \{ u \in L2(\Omega ) : \nabla \cdot u = 0, u \cdot n| \partial \Omega = 0\} , we
have the identity

(2.12) (u \cdot v,v) = 0 \forall v \in H1(\Omega ).

Taking the inner products of (2.7) and (2.8) with un+1/2 and 2qn+1/2, respectively,
and summing up the results and using the above identity, we obtain immediately the
desired result.
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ERROR ANALYSIS OF SAV-MAC SCHEME 2469

We now describe how to solve the semidiscrete-in-time scheme (2.7)--(2.9) effi-
ciently. Inspired by the work in [12], we denote
(2.13)

Sn+1 =
qn+1/2\sqrt{} 

E(\~un+1/2) + \delta 
, un+1 = \^un+1 + Sn+1\v un+1, pn+1 = \^pn+1  - Sn+1\v pn+1.

Plugging the above into (2.7) and (2.9), we find that\left\{   
\^un+1

\Delta t
 - \nu 

2
\Delta \^un+1 +\nabla \^pn+1/2 = fn+1/2 +

un

\Delta t
+

\nu 

2
\Delta un,(2.14)

\nabla \cdot \^un+1 = 0,(2.15) \left\{   
\v un+1

\Delta t
 - \nu 

2
\Delta \v un+1  - \nabla \v pn+1/2 =  - \~un+1/2 \cdot \nabla \~un+1/2,(2.16)

\nabla \cdot \v un+1 = 0,(2.17)

which are linear systems that can be solved independently of Sn+1!
It remains to determine Sn+1. Taking the inner product of (2.7) with un+1/2, we

have

(2.18)

\biggl( 
un+1  - un

\Delta t
,un+1/2

\biggr) 
+ \nu \| \nabla un+1/2\| 2 + Sn+1(\~un+1/2 \cdot \nabla \~un+1/2,un+1/2)

= (fn+1/2,un+1/2).

Taking the inner product of (2.8) with 2qn+1/2 leads to
(2.19)

(qn+1)2  - (qn)2

\Delta t
=

\biggl( 
un+1  - un

\Delta t
,un+1/2

\biggr) 
+ Sn+1(\~un+1/2 \cdot \nabla \~un+1/2,un+1/2).

Combining (2.18) with (2.19) results in

(2.20)
(qn+1)2  - (qn)2

\Delta t
+ \nu \| \nabla un+1/2\| 2 = (fn+1/2,un+1/2).

Recalling (2.13), we find that

(2.21) X1,n+1(S
n+1)2 +X2,n+1S

n+1 +X3,n+1 = 0,

where

X1,n+1 =
4

\Delta t
(E(\~un+1/2) + \delta ) +

\nu 

4
\| \nabla \v un+1\| 2,

X2,n+1 =
\nu 

2
(\nabla (\^un+1 + un),\nabla \v un+1) - 4qn

\Delta t

\sqrt{} 
E(\~un+1/2) + \delta  - 1

2
(fn+1/2, \v un+1),

X3,n+1 =
\nu 

4
\| \nabla (\^un+1 + un)\| 2  - 1

2
(fn+1/2,un + \^un+1).

Note that (2.21) is a quadratic equation for Sn+1 which can be solved directly by
using the quadratic formula. Once Sn+1 is known, we can obtain un+1 and pn+1/2

through (2.13).

Remark 2.3. The nonlinear quadratic equation (2.21) has two solutions. Since
the exact solution is 1, we should choose the root which is closer to 1. In fact, to
make sure that (2.8) makes sense, i.e., qn+1/2 \not = 0, we need to fix a constant \kappa \in (0, 1)
and choose a root satisfying qn+1/2 \geq \kappa .
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2470 XIAOLI LI AND JIE SHEN

2.2. Fully discrete case. We describe below the finite difference method on
the staggered grids, i.e., the MAC scheme, for the spatial discretization of (2.7)--
(2.9). To fix the idea, we consider a two-dimensional rectangular domain in R2, i.e.,
\Omega = (Llx, Lrx)\times (Lly, Lry). We refer the reader to the appendix for detailed notation
about the finite difference method on the staggered grids.

Given \{ Uk, P k, Qk\} nk=0 approximations to \{ uk, pk, qk\} nk=0, we find \{ Un+1, Pn+1,
Qn+1\} such that

dtU
n+1
1 +

Qn+1/2

Bn+1/2

\Bigl( 
\~U
n+1/2
1 Dx(\scrP h

\~U
n+1/2
1 ) + \scrP h

\~U
n+1/2
2 dy(\scrP h

\~U
n+1/2
1 )

\Bigr) 
 - \nu Dx(dxU1)

n+1/2  - \nu dy(DyU1)
n+1/2 + [DxP ]n+1/2 = f

n+1/2
1 ,(2.22)

dtU
n+1
2 +

Qn+1/2

Bn+1/2

\Bigl( 
\scrP h

\~U
n+1/2
1 dx(\scrP h

\~U
n+1/2
2 ) + \~U

n+1/2
2 Dy(\scrP h

\~U
n+1/2
2 )

\Bigr) 
 - \nu Dy(dyU2)

n+1/2  - \nu dx(DxU2)
n+1/2 + [DyP ]n+1/2 = f

n+1/2
2 ,(2.23)

dtQ
n+1 =

1

2Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~U
n+1/2

),Un+1/2)l2

+
1

2Qn+1/2
(dtU

n+1,Un+1/2)l2 ,(2.24)

dxU
n+1
1 + dyU

n+1
2 = 0,

(2.25)

where Bn+1/2 =

\sqrt{} 
Eh( \~U

n+1/2
) + \delta with Eh( \~U

n+1/2
) = 1

2\| \~U
n+1/2\| 2l2 , and

(\scrP h
\~U
n+1/2 \cdot \nabla h(\scrP h

\~U
n+1/2

),Un+1/2)l2

=
\Bigl( 
\~U
n+1/2
1 Dx(\scrP h

\~U
n+1/2
1 ) + \scrP h

\~U
n+1/2
2 dy(\scrP h

\~U
n+1/2
1 ), U

n+1/2
1

\Bigr) 
l2,T,M

+
\Bigl( 
\scrP h

\~U
n+1/2
1 dx(\scrP h

\~U
n+1/2
2 ) + \~U

n+1/2
2 Dy(\scrP h

\~U
n+1/2
2 ), U

n+1/2
2

\Bigr) 
l2,M,T

;

here \scrP h is the bilinear interpolation operator.
The boundary and initial conditions are\left\{                 

Un
1,0,j+1/2 = Un

1,Nx,j+1/2 = 0, 0 \leq j \leq Ny  - 1,

Un
1,i,0 = Un

1,i,Ny
= 0, 0 \leq i \leq Nx,

Un
2,0,j = Un

2,Nx,j = 0, 0 \leq j \leq Ny,
Un
2,i+1/2,0 = Un

2,i+1/2,Ny
= 0, 0 \leq i \leq Nx  - 1,

U0
1,i,j+1/2 = u0

1,i,j+1/2, 0 \leq i \leq Nx, 0 \leq j \leq Ny,

U0
2,i+1/2,j = u0

2,i+1/2,j , 0 \leq i \leq Nx, 0 \leq j \leq Ny,

(2.26)

where u0 = (u0
1, u

0
2) is the initial condition.

Note that the above fully discretized scheme can be efficiently solved using exactly
the same procedure as in the semidiscrete case for (2.7)--(2.9).

For the reader's convenience, we still give the implementation of the fully discrete
scheme (2.22)--(2.25). Denote
(2.27)

Kn+1 =
Qn+1/2

Bn+1/2
, Un+1 = \^U

n+1
+Kn+1 \v U

n+1
, Pn+1 = \^Pn+1  - Kn+1 \v Pn+1.
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The discrete scheme (2.22)--(2.25) can be recast as\left\{                             

\^Un+1
1

\Delta t
 - \nu 

2
Dx(dx \^U1)

n+1  - \nu 

2
dy(Dy

\^U1)
n+1 + [Dx

\^P ]n+1/2

= f
n+1/2
1 +

Un
1

\Delta t
+

\nu 

2
Dx(dxU1)

n +
\nu 

2
dy(DyU1)

n,(2.28)

\^Un+1
2

\Delta t
 - \nu 

2
Dy(dy \^U2)

n+1  - dx(Dx
\^U2)

n+1 + [Dy
\^P ]n+1/2

= f
n+1/2
2 +

Un
2

\Delta t
+

\nu 

2
Dy(dyU2)

n +
\nu 

2
dx(DxU2)

n,(2.29)

dx \^U
n+1
1 + dy \^U

n+1
2 = 0(2.30)

and \left\{                           

\v Un+1
1

\Delta t
 - \nu 

2
Dx(dx \v U1)

n+1  - \nu 

2
dy(Dy

\v U1)
n+1  - [Dx

\v P ]n+1/2

=  - 
\Bigl( 
\~U
n+1/2
1 Dx(\scrP h

\~U
n+1/2
1 ) + \scrP h

\~U
n+1/2
2 dy(\scrP h

\~U
n+1/2
1 )

\Bigr) 
,(2.31)

\v Un+1
2

\Delta t
 - \nu 

2
Dy(dy \v U2)

n+1  - dx(Dx
\v U2)

n+1  - [Dy
\v P ]n+1/2

=  - 
\Bigl( 
\scrP h

\~U
n+1/2
1 dx(\scrP h

\~U
n+1/2
2 ) + \~U

n+1/2
2 Dy(\scrP h

\~U
n+1/2
2 )

\Bigr) 
,(2.32)

dx \v U
n+1
1 + dy \v U

n+1
2 = 0.(2.33)

The above two discrete generalized Stokes systems can be efficiently solved thanks to
the structure of the MAC scheme [17]. Next we can determine Kn+1 from (2.24) by
solving a quadratic algebraic equation. Finally, we obtain (Un+1, Pn+1) from (2.27).

As in the semidiscrete case in Remark 2.3, we should only be concerned with the
roots satisfying

(2.34) | Qn+1/2| > \kappa 

for a given \kappa \in (0, 1) and choose the root which is closer to the exact solution 1.

2.3. Energy stability. In this section, we will demonstrate that the second-
order fully discrete scheme (2.22)--(2.25) is unconditionally energy stable. The energy
stability of the semi-discrete scheme (2.7)--(2.9) can be established similarly.

Theorem 2.2. In the absence of the external force f, the scheme (2.22)--(2.25) is
unconditionally stable, and the following discrete energy law holds for any \Delta t:

(2.35) | Qn+1| 2  - | Qn| 2 =  - \nu \Delta t\| DUn+1/2\| 2 \forall n \geq 0.

Proof. Multiplying (2.22) by U
n+1/2
1,i,j+1/2hk, making summation on i, j for 1 \leq i \leq 

Nx  - 1, 0 \leq j \leq Ny  - 1, and recalling Lemma A.1, we have
(2.36)

(dtU
n+1
1 , U

n+1/2
1 )l2,T,M + \nu \| dxUn+1/2

1 \| 2l2,M + \nu \| DyU
n+1/2
1 \| 2l2,Ty

+
Qn+1/2

Bn+1/2

\Bigl( 
\~U
n+1/2
1 Dx(\scrP h

\~U
n+1/2
1 ) + \scrP h

\~U
n+1/2
2 dy(\scrP h

\~U
n+1/2
1 ), U

n+1/2
1

\Bigr) 
l2,T,M

 - (Pn+1/2, dxU
n+1/2
1 )l2,M = (f

n+1/2
1 , U

n+1/2
1 )l2,T,M .
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Similarly, multiplying (2.23) by U
n+1/2
2,i+1/2,jhk, and making summation on i, j for

0 \leq i \leq Nx  - 1, 1 \leq j \leq Ny  - 1, we can obtain
(2.37)

(dtU
n+1
2 , U

n+1/2
2 )l2,M,T + \nu \| dyUn+1/2

2 \| 2l2,M + \nu \| DxU
n+1/2
2 \| 2l2,Tx

+
Qn+1/2

Bn+1/2

\Bigl( 
\scrP h

\~U
n+1/2
1 dx(\scrP h

\~U
n+1/2
2 ) + \~U

n+1/2
2 Dy(\scrP h

\~U
n+1/2
2 ), U

n+1/2
2

\Bigr) 
l2,M,T

 - (Pn+1/2, dyU
n+1/2
2 )l2,M = (f

n+1/2
2 , U

n+1/2
2 )l2,M,T .

Multiplying (2.24) by 2Qn+1/2 yields

(2.38)

1

\Delta t
(| Qn+1| 2  - | Qn| 2) = Qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h\scrP h

\~U
n+1/2

,Un+1/2)l2

+ (dtU
n+1,Un+1/2)l2 .

Combining (2.38) with (2.36) and (2.37) and noting (2.25) lead to

(2.39)
| Qn+1| 2  - | Qn| 2 + \nu \Delta t\| DUn+1/2\| 2

=\Delta t(f
n+1/2
1 , U

n+1/2
1 )l2,T,M +\Delta t(f

n+1/2
2 , U

n+1/2
2 )l2,M,T ,

which implies the desired result (2.35).

3. Error estimates. In this section we carry out a rigorous error analysis for
the fully discrete scheme (2.22)--(2.25). More precisely, we shall prove the following
main result: In what follows, (un, pn, qn) represents the exact solution of (2.3)--(2.5)
at time tn.

Theorem 3.1. Assume that the exact solution (u, p) of (2.3)--(2.5) is sufficiently
smooth such that u \in W 3

\infty (J ;W 4
\infty (\Omega ))2, p \in W 3

\infty (J ;W 3
\infty (\Omega )). Denote (un, pn, qn) =

(u(tn), p(tn), q(tn)), where q is defined as in (2.1). Then for the fully discrete scheme
(2.22)--(2.25) satisfying (2.34) for given \kappa \in (0, 1), there exists C\ast > 0 such that for
\^h = min(h, k) sufficiently small with \Delta t \leq C\ast \^h, we have the following error estimates:

(3.1) \| dx(Um
1  - um

1 )\| l2,M + \| dy(Um
2  - um

2 )\| l2,M \leq C(\Delta t2 + h2 + k2), m \leq N,

(3.2)
\| Um  - um\| l2 +

\Biggl( 
m\sum 
l=1

\Delta t\| P l - 1/2  - pl - 1/2\| 2l2,M

\Biggr) 1/2

+ | Qm  - qm| 

\leq C(\Delta t2 + h2 + k2), m \leq N,

(3.3) \| Dy(U
m
1  - um

1 )\| l2,Ty
\leq C(\Delta t2 + h2 + k3/2), m \leq N,

(3.4) \| Dx(U
m
2  - um

2 )\| l2,Tx
\leq C(\Delta t2 + h3/2 + k2), m \leq N,

where the positive constant C is independent of h, k, and \Delta t.

Remark 3.1. The above error estimates show, in particular, that at least one
root of the nonlinear algebraic equation (2.21) will converge to the exact solution

q(t)\surd 
E(\bfu )+\delta 

\equiv 1. The numerical result presented in Figure 1 clearly verifies this assertion.
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The proof of Theorem 3.1 involves several major steps. First, we shall define an
auxiliary problem in the next subsection and recall an existing result in [18, 9] for
the part of the error corresponding to the time-dependent Stokes problem. Then, we
shall derive error estimates in section 3.3 depending on the bound

(3.5) Lm = max
n=0,...,m

\| Un\| L\infty .

Finally, we show in section 3.4 that Lm can be uniformly bounded to complete the
proof of Theorem 3.1.

3.1. An auxiliary problem. We consider first an auxiliary problem which will
be used in what follows.

Set g = f - u \cdot \nabla u. We recast (1.1) as

\partial u

\partial t
 - \nu \Delta u+\nabla p = g in \Omega \times J,(3.6a)

\nabla \cdot u = 0 in \Omega \times J(3.6b)

and consider its approximation by the MAC scheme: For each n = 0, . . . , N  - 1, let
\{ Wn+1

1,i,j+1/2\} , \{ W
n+1
2,i+1/2,j\} , and \{ Hn+1

i+1/2,j+1/2\} be such that

dtW
n+1
1,i,j+1/2  - \nu Dx(dxW1)

n+1/2
i,j+1/2  - \nu dy(DyW1)

n+1/2
i,j+1/2 + [DxH]

n+1/2
i,j+1/2

= g
n+1/2
1,i,j+1/2, 1 \leq i \leq Nx  - 1, 0 \leq j \leq Ny  - 1,(3.7)

dtW
n+1
2,i+1/2,j  - \nu Dy(dyW2)

n+1/2
i+1/2,j  - \nu dx(DxW2)

n+1/2
i+1/2,j +DyH

n+1/2
i+1/2,j

= g
n+1/2
2,i+1/2,j , 0 \leq i \leq Nx  - 1, 1 \leq j \leq Ny  - 1,(3.8)

dxW
n+1/2
1,i+1/2,j+1/2 + dyW

n+1/2
2,i+1/2,j+1/2 = 0, 0 \leq i \leq Nx  - 1, 0 \leq j \leq Ny  - 1,(3.9)

where the boundary and initial approximations are the same as in (2.26).
By following closely the same arguments as in [18, 9], we can prove the following.

Lemma 3.2. Assuming that u \in W 3
\infty (J ;W 4

\infty (\Omega ))2, p \in W 3
\infty (J ;W 3

\infty (\Omega )), we have
the following results:

(3.10) \| dx(Wn+1
1  - un+1

1 )\| l2,M + \| dy(Wn+1
2  - un+1

2 )\| l2,M \leq O(\Delta t2 + h2 + k2),

(3.11)

\Biggl( 
n\sum 

l=0

\Delta t\| dt(Wl+1  - ul+1)\| 2l2

\Biggr) 1/2

+ \| Wn+1  - un+1\| l2 \leq O(\Delta t2 + h2 + k2),

(3.12) \| Dy(W
n+1
1  - un+1

1 )\| l2,Ty
\leq O(\Delta t2 + h2 + k3/2),

(3.13) \| Dx(W
n+1
2  - un+1

2 )\| l2,Tx
\leq O(\Delta t2 + h3/2 + k2),

(3.14)

\Biggl( 
N\sum 
l=1

\Delta t\| (H  - p)l - 1/2\| 2l2,M

\Biggr) 1/2

\leq O(\Delta t2 + h2 + k2).
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3.2. Discrete LBB condition. In order to carry out our error analysis, we
need the discrete LBB condition.

Here we use the same notation and results as Rui and Li [18, Lemma 3.3]. Let

b(v, q) =  - 
\int 
\Omega 

q\nabla \cdot vdx, v \in V, q \in W,

where

V = H1
0 (\Omega )\times H1

0 (\Omega ), W =

\biggl\{ 
q \in L2(\Omega ) :

\int 
\Omega 

qdx = 0

\biggr\} 
.

We construct the finite-dimensional subspaces of W and V by introducing three
different partitions \scrT h, \scrT 1

h , \scrT 2
h of \Omega . The original partition \delta x \times \delta y is denoted by \scrT h.

The partition \scrT 1
h is generated by connecting all the midpoints of the vertical sides of

\Omega i+1/2,j+1/2 and extending the resulting mesh to the boundary \Gamma . Similarly, for all
\Omega i+1/2,j+1/2 \in \scrT h we connect all the midpoints of the horizontal sides of \Omega i+1/2,j+1/2

and extend the resulting mesh to the boundary \Gamma ; then we obtain the third partition,
which is denoted by \scrT 2

h .
Corresponding to the quadrangulation \scrT h, define Wh, a subspace of W ,

Wh =

\biggl\{ 
qh : qh| T = constant \forall T \in \scrT h and

\int 
\Omega 

qdx = 0

\biggr\} 
.

Furthermore, let Vh be a subspace of V such that Vh=S1
h \times S2

h, where

Sl
h =

\Bigl\{ 
g \in C(0)(\Omega ) : g| T l \in Q1(T

l) \forall T l \in \scrT l
h and g| \Gamma = 0

\Bigr\} 
, l = 1, 2,

and Q1 denotes the space of all polynomials of degree \leq 1 with respect to each of the
two variables x and y.

We introduce the bilinear forms

bh(vh, qh) =  - 
\sum 

\Omega i+1/2,j+1/2\in \scrT h

\int 
\Omega i+1/2,j+1/2

qh\Pi h(\nabla \cdot vh)dx, vh \in Vh, qh \in Wh,

where

\Pi h : C(0)(\Omega i+1/2,j+1/2) \rightarrow Q0(\Omega i+1/2,j+1/2) such that

(\Pi h\varphi )i+1/2,j+1/2 = \varphi i+1/2,j+1/2 \forall \Omega i+1/2,j+1/2 \in \scrT h.

Then, we have the following result [18].

Lemma 3.3. There is a constant \beta > 0 independent of h and k such that

(3.15) sup
vh\in Vh

bh(vh, qh)

\| Dvh\| 
\geq \beta \| qh\| l2,M \forall qh \in Wh.

We also define the operator Ih : V \rightarrow Vh, such that

(3.16) (\nabla \cdot Ihv, w) = (\nabla \cdot v, w) \forall w \in Wh,

with the following approximation properties [2]:

\| v - Ihv\| \leq C\| v\| W 1
2 (\Omega )

\^h,(3.17)

\| \nabla \cdot (v - Ihv)\| \leq C\| \nabla \cdot v\| W 1
2 (\Omega )

\^h,(3.18)
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and the inverse inequality

(3.19) \| Uk  - Ihu
k\| \infty \leq C\^h - 1\| Uk  - Ihu

k\| l2 \forall 1 \leq k \leq N,

where \^h = max\{ h, k\} , and the positive constant C is independent of \^h.
In addition, by the definition of Ihv and the midpoint rule of integration, the L\infty 

norm of the projection is obtained by

(3.20) \| v - Ihv\| \infty \leq C\| v\| W 2
\infty (\Omega )

\^h.

Furthermore, we have the following estimate [3]:

(3.21) \| v - Ihv\| l2 \leq C\^h2.

3.3. A first error estimate with bound depending on \bfitL \bfitm . For simplicity,
we set

(3.22)

en\bfu = (Un  - Wn) + (Wn  - un) := \bfitxi n + \bfitgamma n,

enp = (Pn  - Hn) + (Hn  - pn) := \eta n + \zeta n,

enq = Qn  - qn.

The main result of this subsection is as follows.

Proposition 3.1. Assuming u \in W 3
\infty (J ;W 4

\infty (\Omega ))2, p \in W 3
\infty (J ;W 3

\infty (\Omega )), we
have

\| \bfitxi m+1\| 2l2 +
m\sum 

n=0

\Delta t\| dt\bfitxi n+1\| 2l2 + \| D\bfitxi m+1\| 2 +
m\sum 

n=0

\Delta t\| \eta n+1/2\| 2l2,M + | em+1
q | 2

\leq C(Lm)(\Delta t4 + h4 + k4),

(3.23)

where \eta k, \bfitxi k, and ekq are defined as in (3.22), and the positive constant C(Lm) is
independent of h, k, and \Delta t but dependent on Lm.

We shall prove Proposition 3.1 through a sequence of lemmas below.
First we prove the boundedness of the discrete velocity in the discrete L2 norm

by using the energy stability.

Lemma 3.4. Let \{ Uk\} be the solution of (2.22)--(2.25). We have

(3.24) \| Um+1\| l2 \leq C(Lm),

where C(Lm) is independent of h, k, and \Delta t but dependent on Lm.

Proof. Multiplying (2.22) by dtU
n+1
1,i,j+1/2hk, making summation on i, j for 1 \leq 

i \leq Nx  - 1, 0 \leq j \leq Ny  - 1, and recalling Lemma A.1, we have
(3.25)

\| dtUn+1
1 \| 2l2,T,M +

\nu 

2\Delta t
(\| dxUn+1

1 \| 2l2,M  - \| dxUn
1 \| 2l2,M + \| DyU

n+1
1 \| 2l2,Ty

 - \| DyU
n
1 \| 2l2,Ty

)

+
Qn+1/2

Bn+1/2

\Bigl( 
\~U
n+1/2
1 Dx(\scrP h

\~U
n+1/2
1 ) + \scrP h

\~U
n+1/2
2 dy(\scrP h

\~U
n+1/2
1 ), dtU

n+1
1

\Bigr) 
l2,T,M

 - (Pn+1/2, dxdtU
n+1
1 )l2,M = (f

n+1/2
1 , dtU

n+1/2
1 )l2,T,M .
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Similarly, multiplying (2.23) by dtU
n+1
2,i+1/2,jhk and making summation on i, j for

0 \leq i \leq Nx  - 1, 1 \leq j \leq Ny  - 1, we can obtain
(3.26)

\| dtUn+1
2 \| 2l2,M,T +

\nu 

2\Delta t
(\| dyUn+1

2 \| 2l2,M  - \| dyUn
2 \| 2l2,M + \| DxU

n+1
2 \| 2l2,Tx

 - \| DxU
n
2 \| 2l2,Tx

)

+
Qn+1/2

Bn+1/2

\Bigl( 
\scrP h

\~U
n+1/2
1 dx(\scrP h

\~U
n+1/2
2 ) + \~U

n+1/2
2 Dy(\scrP h

\~U
n+1/2
2 ), dtU

n+1
2

\Bigr) 
l2,M,T

 - (Pn+1/2, dydtU
n+1
2 )l2,M = (f

n+1/2
2 , dtU

n+1
2 )l2,M,T .

Combining (3.25) with (3.26) results in
(3.27)

\| dtUn+1\| 2l2 +
\nu 

2\Delta t
(\| DUn+1\| 2  - \| DUn\| 2)

= (fn+1/2, dtU
n+1)l2  - 

Qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~U
n+1/2

), dtU
n+1)l2 .

Recalling (2.39) and using the Cauchy--Schwarz and Poincar\'e inequalities, we obtain

(3.28)

| Qn+1| 2  - | Q0| 2 + \nu 
n\sum 

k=0

\Delta t\| DUk+1/2\| 2 =
n\sum 

k=0

\Delta t(fk+1/2,Uk+1/2)

\leq \nu 

2

n\sum 
k=0

\Delta t\| DUk+1/2\| 2 + C

n\sum 
k=0

\Delta t\| fk+1/2\| 2l2 ,

which implies

(3.29) | Qn+1| \leq C.

Using (3.29), the last term on the right-hand side of (3.27) can be estimated by

(3.30)

\bigm| \bigm| \bigm| \bigm|  - Qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~U
n+1/2

), dtU
n+1)l2

\bigm| \bigm| \bigm| \bigm| 
\leq C(Ln)(\| DUn\| 2 + \| DUn - 1\| 2) + 1

4
\| dtUn+1\| 2l2 .

Combining (3.27) with (3.30) and using the Cauchy--Schwarz inequality, we have

(3.31)
\| dtUn+1\| 2l2 +

\nu 

2\Delta t
(\| DUn+1\| 2  - \| DUn\| 2)

\leq C(Ln)(\| DUn\| 2 + \| DUn - 1\| 2) + 1

2
\| dtUn+1\| 2l2 +

1

2
\| fn+1/2\| 2l2 .

Multiplying (3.31) by 2\Delta t, summing over n from 0 to m, and applying the Gronwall
inequality give that

(3.32) \| DUm+1\| 2 \leq C(Lm)
m\sum 

n=0

\Delta t\| fn+1/2\| 2l2 .

Thus, we get the desired result (3.24) by applying the discrete Poincar\'e inequality.
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Lemma 3.5. Assuming u \in W 3
\infty (J ;W 4

\infty (\Omega ))2, p \in W 3
\infty (J ;W 3

\infty (\Omega )), we have

1

2
\| \bfitxi m+1\| 2l2 +

\nu 

2

m\sum 
n=0

\Delta t\| D\bfitxi n+1/2\| 2 + | em+1
q | 2

\leq C(Lm)
m\sum 

n=0

\Delta t\| \bfitxi n\| 2l2 +
1

2

m\sum 
n=0

\Delta t\| dt\bfitxi n+1\| 2l2

+
1

\kappa 
C(Lm)

m\sum 
n=0

\Delta t| en+1
q | 2 + 1

\kappa 
C(Lm)(\Delta t4 + h4 + k4),

(3.33)

where \bfitxi k and ekq are defined in (3.22), \kappa is the constant in (2.34), and the positive
constant C(Lm) is independent of h, k, and \Delta t but dependent on Lm.

Proof. Subtracting (3.7) from (2.22), we obtain

(3.34)
dt\xi 

n+1
1,i,j+1/2  - \nu Dx(dx\xi 1)

n+1/2
i,j+1/2  - \nu dy(Dy\xi 1)

n+1/2
i,j+1/2

+ [Dx\eta ]
n+1/2
i,j+1/2 = T

n+1/2
1,i,j+1/2,

where

(3.35)

T
n+1/2
1 = - Qn+1/2

Bn+1/2

\Bigl( 
\~U
n+1/2
1 Dx(\scrP h

\~U
n+1/2
1 ) + \scrP h

\~U
n+1/2
2 dy(\scrP h

\~U
n+1/2
1 )

\Bigr) 
+

qn+1/2\sqrt{} 
E(un+1/2) + \delta 

\biggl( 
u1

\partial u1

\partial x
+ u2

\partial u1

\partial y

\biggr) n+1/2

.

Subtracting (3.8) from (2.23), we obtain

(3.36)
dt\xi 

n+1
2,i+1/2,j  - \nu Dy(dy\xi 2)

n+1/2
i+1/2,j  - \nu dx(Dx\xi 2)

n+1/2
i+1/2,j

+ [Dy\eta ]
n+1/2
i+1/2,j = T

n+1/2
2,i+1/2,j ,

where

(3.37)

T
n+1/2
2 = - Qn+1/2

Bn+1/2

\Bigl( 
\scrP h

\~U
n+1/2
1 dx(\scrP h

\~U
n+1/2
2 ) + \~U

n+1/2
2 Dy(\scrP h

\~U
n+1/2
2 )

\Bigr) 
+

qn+1/2\sqrt{} 
E(un+1/2) + \delta 

\biggl( 
u1

\partial u2

\partial x
+ u2

\partial u2

\partial y

\biggr) n+1/2

.

Subtracting (2.4) from (2.24), we obtain

(3.38) dte
n+1
q =

1

2Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~U
n+1/2

), \bfitxi n+1/2)l2 +
3\sum 

k=1

S
n+1/2
k ,

where

S
n+1/2
1 =

dqn+1/2

dt
 - dtq

n+1,

S
n+1/2
2 =

1

2Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~U
n+1/2

),Wn+1/2)l2

 - 1

2
\sqrt{} 
E(un+1/2) + \delta 

\int 
\Omega 

un+1/2 \cdot \nabla un+1/2 \cdot un+1/2dx,

S
n+1/2
3 =

1

2Qn+1/2
(dtU

n+1,Un+1/2)l2  - 
1

2qn+1/2

\int 
\Omega 

\partial un+1/2

\partial t
\cdot un+1/2dx.
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2478 XIAOLI LI AND JIE SHEN

Multiplying (3.34) by \xi 
n+1/2
1,i,j+1/2hk, making summation on i, j for 1 \leq i \leq Nx  - 1, 0 \leq 

j \leq Ny  - 1, and applying Lemma A.1, we have

(3.39)
(dt\xi 

n+1
1 , \xi 

n+1/2
1 )l2,T,M + \nu \| dx\xi n+1/2

1 \| 2l2,M + \nu \| Dy\xi 
n+1/2
1 \| 2l2,Ty

 - (\eta n+1/2, dx\xi 
n+1/2
1 )l2,M = (T

n+1/2
1 , \xi 

n+1/2
1 )l2,T,M .

Multiplying (3.36) by \xi 
n+1/2
2,i+1/2,jhk, making summation on i, j for 0 \leq i \leq Nx  - 1, 1 \leq 

j \leq Ny  - 1, and applying Lemma A.1 lead to

(3.40)
(dt\xi 

n+1
2 , \xi 

n+1/2
2 )l2,M,T + \nu \| dy\xi n+1/2

2 \| 2l2,M + \nu \| Dx\xi 
n+1/2
2 \| 2l2,Tx

 - (\eta n+1/2, dy\xi 
n+1/2
2 )l2,M = (T

n+1/2
2 , \xi 

n+1/2
2 )l2,M,T .

Multiplying (3.38) by (en+1
q + enq ) leads to

(3.41)

(en+1
q )2  - (enq )

2

\Delta t
=

e
n+1/2
q

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~U
n+1/2

), \bfitxi n+1/2)l2

+ 2

3\sum 
k=1

S
n+1/2
k en+1/2

q .

Combining (3.39) with (3.40), we have

(3.42)
(dt\bfitxi 

n+1, \bfitxi n+1/2)l2 + \nu \| D\bfitxi n+1/2\| 2  - (\eta n+1/2, dx\xi 
n+1/2
1 + dy\xi 

n+1/2
2 )l2,M

= (Tn+1/2, \bfitxi n+1/2)l2 ,

where T = (T1, T2). Subtracting (3.9) from (2.25), we obtain

(3.43) dx\xi 
n+1
1 + dy\xi 

n+1
2 = 0, 0 \leq i \leq Nx  - 1, 0 \leq j \leq Ny  - 1.

Thus we have

(3.44) (\eta n+1/2, dx\xi 
n+1/2
1 + dy\xi 

n+1/2
2 )l2,M = 0.

The term on the right-hand side of (3.42) can be recast as

(3.45)

(Tn+1/2, \bfitxi n+1/2)l2 = - e
n+1/2
q

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~U
n+1/2

), \bfitxi n+1/2)l2

 - qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~U
n+1/2

), \bfitxi n+1/2)l2

+
qn+1/2\sqrt{} 

E(un+1/2) + \delta 
(un+1/2 \cdot \nabla un+1/2, \bfitxi n+1/2)l2 .

The last two terms on the right-hand side of (3.45) can be transformed into the
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following:

(3.46)

qn+1/2\sqrt{} 
E(un+1/2) + \delta 

(un+1/2 \cdot \nabla un+1/2, \bfitxi n+1/2)l2

 - qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~U
n+1/2

), \bfitxi n+1/2)l2

\leq (un+1/2 \cdot \nabla un+1/2, \bfitxi n+1/2)l2

\Biggl( 
qn+1/2\sqrt{} 

E(un+1/2) + \delta 
 - qn+1/2

Bn+1/2

\Biggr) 

 - qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h\~u

n+1/2) - un+1/2 \cdot \nabla un+1/2, \bfitxi n+1/2)l2

 - qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h\~\bfitgamma 

n+1/2), \bfitxi n+1/2)l2

 - qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~\bfitxi n+1/2), \bfitxi n+1/2)l2 .

Recalling the midpoint approximation property of the rectangle quadrature formula
and using the Cauchy--Schwarz and Poincar\'e inequalities, the first term on the right-
hand side of (3.46) can be estimated as
(3.47)

(un+1/2 \cdot \nabla un+1/2, \bfitxi n+1/2)l2

\biggl( 
qn+1/2\sqrt{} 

E(un+1/2) + \delta 
 - qn+1/2

Bn+1/2

\biggr) 
\leq Cqn+1/2\| \bfitxi n+1/2\| l2 | Eh( \~U

n+1/2
) - E(un+1/2)| 

\leq C| qn+1/2| \| \bfitxi n+1/2\| l2\| \~U
n+1/2

+ un+1/2\| l2\| \~U
n+1/2  - un+1/2\| l2 + C(h4 + k4)

\leq \nu 

8
\| D\bfitxi n+1/2\| 2 + C(Ln)(\| \bfitxi n\| 2l2 + \| \bfitxi n - 1\| 2l2)

+ C(Ln)(\| \bfitgamma n\| 2l2 + \| \bfitgamma n - 1\| 2l2) + C(Ln)(\Delta t4 + h4 + k4).

Using the Cauchy--Schwarz and Poincar\'e inequalities, we see that the second term on
the right-hand side of (3.46) can be estimated as
(3.48)

 - qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h\~u

n+1/2) - un+1/2 \cdot \nabla un+1/2, \bfitxi n+1/2)l2

= - qn+1/2

Bn+1/2

\Bigl( 
(\scrP h

\~U
n+1/2  - un+1/2) \cdot \nabla h(\scrP h\~u

n+1/2), \bfitxi n+1/2
\Bigr) 
l2

 - qn+1/2

Bn+1/2
(un+1/2 \cdot (\nabla h\scrP h\~u

n+1/2  - \nabla un+1/2), \bfitxi n+1/2)l2

\leq \nu 

8
\| D\bfitxi n+1/2\| 2 + C(Ln)(\| \bfitxi n\| 2l2 + \| \bfitxi n - 1\| 2l2)

+ C(Ln)(\| \bfitgamma n\| 2l2 + \| \bfitgamma n - 1\| 2l2) + C(Ln)\| \nabla h\scrP h\~u
n+1/2  - \nabla \scrP h\~u

n+1/2\| 2

+ C(Ln)\| \nabla \scrP h\~u
n+1/2  - \nabla \~un+1/2\| 2 + C(Ln)\| \nabla \~un+1/2  - \nabla un+1/2\| 2

\leq \nu 

8
\| D\bfitxi n+1/2\| 2 + C(Ln)(\| \bfitxi n\| 2l2 + \| \bfitxi n - 1\| 2l2)

+ C(Ln)(\| \bfitgamma n\| 2l2 + \| \bfitgamma n - 1\| 2l2) + C(Ln)(\Delta t4 + h4 + k4).

Recalling Lemma A.1 and using the Cauchy--Schwarz inequality, we see that the third
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2480 XIAOLI LI AND JIE SHEN

term on the right-hand side of (3.46) can be controlled by

(3.49)

 - qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h\~\bfitgamma 

n+1/2), \bfitxi n+1/2)l2

\leq C(Ln)| (\nabla h(\scrP h\~\bfitgamma 
n+1/2), \bfitxi n+1/2)l2 | 

\leq \nu 

8
\| D\bfitxi n+1/2\| 2 + C(Ln)(\Delta t4 + h4 + k4).

Using Lemma A.1 and the Cauchy--Schwarz inequality, the last term on the right-hand
side of (3.46) can be bounded by

(3.50)
 - qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~\bfitxi n+1/2), \bfitxi n+1/2)l2

\leq \nu 

8
\| D\bfitxi n+1/2\| 2 + C(Ln)(\| \bfitxi n\| 2l2 + \| \bfitxi n - 1\| 2l2).

Combining (3.42) with (3.43)--(3.50) results in
(3.51)

\| \bfitxi n+1\| 2l2  - \| \bfitxi n\| 2l2
2\Delta t

+ \nu \| D\bfitxi n+1/2\| 2 + e
n+1/2
q

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~U
n+1/2

), \bfitxi n+1/2)l2

\leq C(Ln)(\| \bfitxi n\| 2l2 + \| \bfitxi n - 1\| 2l2) + C(Ln)(\| \bfitgamma n\| 2l2 + \| \bfitgamma n - 1\| 2l2)

+
\nu 

2
\| D\bfitxi n+1/2\| 2 + C(Ln)(\Delta t4 + h4 + k4).

Next we estimate the last term, which is a sum of three terms, on the right-hand side
of (3.41):

(3.52) 2S
n+1/2
1 en+1/2

q \leq C(| en+1
q | 2 + | enq | 2) + C\| q\| 2W 3

\infty (J)\Delta t4,

(3.53)

2S
n+1/2
2 en+1/2

q =
e
n+1/2
q

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h( \~\bfitxi 

n+1/2 + \~\bfitgamma n+1/2)),Wn+1/2)l2

+
e
n+1/2
q

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h\~u

n+1/2),Wn+1/2)l2

 - e
n+1/2
q\sqrt{} 

E(un+1/2) + \delta 

\int 
\Omega 

un+1/2 \cdot \nabla un+1/2 \cdot un+1/2dx.

The analysis of the first term on the right-hand side of (3.53) can be carried out with
the help of Lemmas A.1 and 3.2:

(3.54)

e
n+1/2
q

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h( \~\bfitxi 

n+1/2 + \~\bfitgamma n+1/2)),Wn+1/2)l2

\leq C(Ln)| en+1/2
q | | (\nabla h(\scrP h( \~\bfitxi 

n+1/2 + \~\bfitgamma n+1/2)),Wn+1/2)l2 | 

\leq C(Ln)| en+1/2
q | \| \~\bfitxi n+1/2 + \~\bfitgamma n+1/2\| l2\| DWn+1/2\| 

\leq C| en+1/2
q | 2 + C(Ln)(\| \bfitxi n\| 2l2 + \| \bfitxi n - 1\| 2l2)

+ C(Ln)(\Delta t4 + h4 + k4),

where, thanks to Lemma 3.2, we used the fact that \| DWn+1/2\| \leq C.
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The last two terms on the right-hand side of (3.53) can be handled similarly to
(3.47):

(3.55)

e
n+1/2
q

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h\~u

n+1/2),Wn+1/2)l2

 - e
n+1/2
q\sqrt{} 

E(un+1/2) + \delta 

\int 
\Omega 

un+1/2 \cdot \nabla un+1/2 \cdot un+1/2dx

\leq C(Ln)(\| \bfitxi n\| 2l2 + \| \bfitxi n - 1\| 2l2) + C| en+1/2
q | 2

+ C(Ln)(\| \bfitgamma n\| 2l2 + \| \bfitgamma n - 1\| 2l2)
+ C(Ln)(\Delta t4 + h4 + k4),

where, with the aid of Lemma 3.2, we use the fact that \| Wn+1/2\| l2 \leq C. Recalling
Lemma 3.4 and using the Cauchy--Schwarz inequality, we have
(3.56)

2S
n+1/2
3 en+1/2

q =
e
n+1/2
q

Qn+1/2
(dtU

n+1,Un+1/2)l2  - 
e
n+1/2
q

qn+1/2

\int 
\Omega 

\partial un+1/2

\partial t
\cdot un+1/2dx

=
e
n+1/2
q

Qn+1/2
(dt(\bfitxi 

n+1 + \bfitgamma n+1),Un+1/2)l2 +
e
n+1/2
q

Qn+1/2
(dtu

n+1, \bfitxi n+1/2 + \bfitgamma n+1/2)l2

+
e
n+1/2
q

Qn+1/2
(dtu

n+1,un+1/2)l2  - 
e
n+1/2
q

qn+1/2

\int 
\Omega 

\partial un+1/2

\partial t
\cdot un+1/2dx

\leq 1

\kappa 
C(Ln)| en+1/2

q | 2 + 1

2
\| dt\bfitxi n+1\| 2l2 +

1

\kappa 
C(Ln)\| dt\bfitgamma n+1\| 2l2

+ C\| \bfitxi n+1\| 2l2 + C\| \bfitgamma n+1\| 2l2 +
1

\kappa 
C(Ln)(\Delta t4 + h4 + k4).

Combining (3.41) with (3.52)--(3.56) leads to

(3.57)

(en+1
q )2  - (enq )

2

\Delta t
\leq e

n+1/2
q

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h(\scrP h

\~U
n+1/2

), \bfitxi n+1/2)l2

+ C(Ln)(| en+1
q | 2 + | enq | 2) +

1

2
\| dt\bfitxi n+1\| 2l2

+ C(Ln)(\| \bfitxi n\| 2l2 + \| \bfitxi n - 1\| 2l2)
+ C(Ln)(\Delta t4 + h4 + k4).

Then by combining (3.51) with (3.57), we can obtain

(3.58)

\| \bfitxi n+1\| 2l2  - \| \bfitxi n\| 2l2
2\Delta t

+
\nu 

2
\| D\bfitxi n+1/2\| 2 +

(en+1
q )2  - (enq )

2

\Delta t

\leq C(Ln)(\| \bfitxi n\| 2l2 + \| \bfitxi n - 1\| 2l2) +
1

2
\| dt\bfitxi n+1\| 2l2

+ C(Ln)(| en+1
q | 2 + | enq | 2) + C(Ln)(\Delta t4 + h4 + k4).

Then we can obtain the desired result (3.33) by multiplying (3.58) by \Delta t and summing
over n from 0 to m.
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Lemma 3.6. Assuming u \in W 3
\infty (J ;W 4

\infty (\Omega ))2, p \in W 3
\infty (J ;W 3

\infty (\Omega )), we then have

m\sum 
n=0

\Delta t\| dt\bfitxi n+1\| 2l2 +
\nu 

2
\| D\bfitxi m+1\| 2 \leq C(Lm)

m\sum 
n=0

\Delta t\| \bfitxi n\| 2l2 + C(Lm)
m\sum 

n=0

\Delta t| en+1/2
q | 2

+ C(Lm)
m\sum 

n=0

\Delta t\| D\bfitxi n\| 2 + C(Lm)(\Delta t4 + h4 + k4),

(3.59)

where \bfitxi k and ekq are defined as in (3.22), and the positive constant C(Lm) is inde-
pendent of h, k, and \Delta t but dependent on Lm.

Proof. Multiplying (3.34) by dt\xi 
n+1
1,i,j+1/2hk, making summation on i, j for 1 \leq i \leq 

Nx  - 1, 0 \leq j \leq Ny  - 1, and applying Lemma A.1, we have

\| dt\xi n+1
1 \| 2l2,T,M +

\nu 

2

\| dx\xi n+1
1 \| 2l2,M  - \| dx\xi n1 \| 2l2,M

\Delta t
+

\nu 

2

\| Dy\xi 
n+1
1 \| 2l2,Ty

 - \| Dy\xi 
n
1 \| 2l2,Ty

\Delta t

 - (\eta n+1/2, dxdt\xi 
n+1
1 )l2,M = (T

n+1/2
1 , dt\xi 

n+1
1 )l2,T,M .

(3.60)

Multiplying (3.36) by dt\xi 
n+1
2,i+1/2,jhk, making summation on i, j for 0 \leq i \leq Nx - 1, 1 \leq 

j \leq Ny  - 1 and applying Lemma A.1 lead to
(3.61)

\| dt\xi n+1
2 \| 2l2,M,T +

\nu 

2

\| dy\xi n+1
2 \| 2l2,M  - \| dy\xi n2 \| 2l2,M

\Delta t
+

\nu 

2

\| Dx\xi 
n+1
2 \| 2l2,Tx

 - \| Dx\xi 
n
2 \| 2l2,Tx

\Delta t

 - (\eta n+1/2, dydt\xi 
n+1
2 )l2,M = (T

n+1/2
2 , dt\xi 

n+1
2 )l2,M,T .

Combining (3.60) with (3.61), we have

(3.62) \| dt\bfitxi n+1\| 2l2 +
\nu 

2

\| D\bfitxi n+1\| 2  - \| D\bfitxi n\| 2

\Delta t
= (Tn+1/2, dt\bfitxi 

n+1)l2 .

The right-hand side of (3.62) can be estimated as
(3.63)

(Tn+1/2, dt\bfitxi 
n+1)l2 =

\biggl( 
qn+1/2\sqrt{} 

E(un+1/2) + \delta 
 - Qn+1/2

Bn+1/2

\biggr) 
(un+1/2 \cdot \nabla hu

n+1/2, dt\bfitxi 
n+1)l2

 - Qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h\scrP h\~u

n+1/2  - un+1/2 \cdot \nabla hu
n+1/2, dt\bfitxi 

n+1)l2

 - Qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h\scrP h

\~\bfitxi n+1/2, dt\bfitxi 
n+1)l2

 - Qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h\scrP h\~\bfitgamma 

n+1/2, dt\bfitxi 
n+1)l2 .
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The first term on the right-hand side of (3.63) can be handled similarly to (3.47):
(3.64)\biggl( 

qn+1/2\sqrt{} 
E(un+1/2) + \delta 

 - Qn+1/2

Bn+1/2

\biggr) 
(un+1/2 \cdot \nabla hu

n+1/2, dt\bfitxi 
n+1)l2

=

\biggl( 
qn+1/2\sqrt{} 

E(un+1/2) + \delta 
 - qn+1/2

Bn+1/2

\biggr) 
(un+1/2 \cdot \nabla hu

n+1/2, dt\bfitxi 
n+1)l2

 - e
n+1/2
q

Bn+1/2
(un+1/2 \cdot \nabla hu

n+1/2, dt\bfitxi 
n+1)l2

\leq 1

6
\| dt\bfitxi n+1\| 2l2 + C(Ln)(\| \bfitxi n\| 2l2 + \| \bfitxi n - 1\| 2l2)

+ C(Ln)(\| \bfitgamma n\| 2l2 + \| \bfitgamma n - 1\| 2l2) + C(Ln)| en+1/2
q | 2

+ C(Ln)(\Delta t4 + h4 + k4).

Using (3.29) and the definition of \scrP h, we can estimate the second term on the right-
hand side of (3.63) as

(3.65)

 - Qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h\scrP h\~u

n+1/2  - un+1/2 \cdot \nabla hu
n+1/2, dt\bfitxi 

n+1)l2

\leq C(Ln)(\| \bfitxi n\| 2l2 + \| \bfitxi n - 1\| 2l2) +
1

6
\| dt\bfitxi n+1\| 2l2

+ C(Ln)(\| \bfitgamma n\| 2l2 + \| \bfitgamma n - 1\| 2l2) + C(Ln)(\Delta t4 + h4 + k4).

Applying the Cauchy--Schwarz inequality, the third term on the right-hand side of
(3.63) can be controlled by

(3.66)

 - Qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h\scrP h

\~\bfitxi n+1/2, dt\bfitxi 
n+1)l2

\leq C(Ln)(\| D\bfitxi n\| 2 + \| D\bfitxi n - 1\| 2) + 1

6
\| dt\bfitxi n+1\| 2l2

+ C(Ln)(h
4 + k4).

Combining (3.62) with (3.63)-(3.66) yields

(3.67)

\| dt\bfitxi n+1\| 2l2 +
\nu 

2

\| D\bfitxi n+1\| 2  - \| D\bfitxi n\| 2

\Delta t

\leq  - Qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h\scrP h\~\bfitgamma 

n+1/2, dt\bfitxi 
n+1)l2

+
1

2
\| dt\bfitxi n+1\| 2l2 + C(Ln)(\| \bfitxi n\| 2l2 + \| \bfitxi n - 1\| 2l2)

+ C(Ln)(\| \bfitgamma n\| 2l2 + \| \bfitgamma n - 1\| 2l2) + C(Ln)| en+1/2
q | 2

+ C(Ln)(\| D\bfitxi n\| 2 + \| D\bfitxi n - 1\| 2)
+ C(Ln)(\Delta t4 + h4 + k4).
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Multiplying (3.67) by 2\Delta t and summing over n from 0 to m, we have

(3.68)

m\sum 
n=0

\Delta t\| dt\bfitxi n+1\| 2l2 + \nu \| D\bfitxi m+1\| 2

\leq  - 2
m\sum 

n=0

\Delta t
Qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h\scrP h\~\bfitgamma 

n+1/2, dt\bfitxi 
n+1)l2

+ C(Lm)
m\sum 

n=0

\Delta t\| \bfitxi n\| 2l2 + C(Lm)
m\sum 

n=0

\Delta t| en+1/2
q | 2

+ C(Lm)
m\sum 

n=0

\Delta t\| D\bfitxi n\| 2 + C(Lm)(\Delta t4 + h4 + k4).

From the discrete-integration-by-parts, the first term on the right-hand side of (3.68)
can be transformed into

(3.69)

 - 2

m\sum 
n=0

\Delta t
Qn+1/2

Bn+1/2
(\scrP h

\~U
n+1/2 \cdot \nabla h\scrP h\~\bfitgamma 

n+1/2, dt\bfitxi 
n+1)l2

\leq C(Lm)| 
m\sum 

n=0

\Delta t(\nabla h\scrP h\~\bfitgamma 
n+1/2, dt\bfitxi 

n+1)l2 | 

\leq C(Lm)| (\nabla h\scrP h\~\bfitgamma 
m+1/2, \bfitxi m+1)l2  - 

m\sum 
n=1

\Delta t(\nabla hdt\scrP h\~\bfitgamma 
n+1/2, \bfitxi n)l2 | 

\leq C(Lm)
m\sum 

n=1

\Delta t\| dt\~\bfitgamma n+1/2\| 2l2 + C(Lm)
m\sum 

n=1

\Delta t\| D\bfitxi n\| 2

+
\nu 

2
\| D\bfitxi m+1\| 2l2 + C(Lm)(\Delta t4 + h4 + k4).

Substituting (3.69) into (3.68) leads to

m\sum 
n=0

\Delta t\| dt\bfitxi n+1\| 2l2 +
\nu 

2
\| D\bfitxi m+1\| 2

\leq C(Lm)
m\sum 

n=0

\Delta t\| \bfitxi n\| 2l2 + C(Lm)
m\sum 

n=0

\Delta t| en+1/2
q | 2(3.70)

+ C(Lm)
m\sum 

n=0

\Delta t\| D\bfitxi n\| 2 + C(Lm)(\Delta t4 + h4 + k4).

Lemma 3.7. Assuming u \in W 3
\infty (J ;W 4

\infty (\Omega ))2 and p \in W 3
\infty (J ;W 3

\infty (\Omega )), we have

(3.71)

m\sum 
n=0

\Delta t\| \eta n+1/2\| 2l2,M \leq C(Lm)
m\sum 

n=0

\Delta t\| dt\bfitxi n+1\| 2l2

+ C(Lm)
m\sum 

n=0

\Delta t\| D\bfitxi n+1/2\| 2 + C(Lm)
m\sum 

n=0

\Delta t\| \bfitxi n\| 2l2

+ C(Lm)
m\sum 

n=0

\Delta t| en+1/2
q | 2 + C(Lm)(\Delta t4 + h4 + k4),
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where \eta k, \bfitxi k, and ekq are defined as in (3.22), and the positive constant C(Lm) is
independent of h, k, and \Delta t but dependent on Lm.

Proof. For a discrete function \{ vn+1/2
1,i,j+1/2\} such that v

n+1/2
1,i,j+1/2| \partial \Omega = 0, multiplying

(3.34) by v
n+1/2
1,i,j+1/2hk and making summation for i, j with i = 1, . . . , Nx  - 1, j =

0, . . . , Ny  - 1, and recalling Lemma A.1 lead to
(3.72)

(dt\xi 
n+1
1 , v

n+1/2
1 )l2,T,M + \nu (dx\xi 

n+1/2
1 , dxv

n+1/2
1 )l2,M + \nu (Dy\xi 

n+1/2
1 , Dyv

n+1/2
1 )l2,Ty

 - (\eta n+1/2, dxv
n+1/2
1 )l2,M = (T

n+1/2
1 , v

n+1/2
1 )l2,T,M .

Similarly, in the y direction we can obtain
(3.73)

(dt\xi 
n+1
2 , v

n+1/2
2 )l2,M,T + \nu (dy\xi 

n+1/2
2 , dyv

n+1/2
2 )l2,M + \nu (Dx\xi 

n+1/2
2 , Dxv

n+1/2
2 )l2,Tx

 - (\eta n+1/2, dyv
n+1/2
2 )l2,M = (T

n+1/2
2 , v

n+1/2
2 )l2,M,T .

Combining (3.72) with (3.73) results in

(3.74)

(dt\bfitxi 
n+1,vn+1/2)l2 + \nu (D\bfitxi n+1/2, Dvn+1/2)

 - (\eta n+1/2, dxv
n+1/2
1 + dyv

n+1/2
2 )l2,M

= (Tn+1/2,vn+1/2)l2 .

Using Lemma 3.3, (3.45), and the discrete Poincar\'e inequality, we can obtain

(3.75)

\beta \| \eta n+1/2\| l2,M \leq sup
\bfv \in \bfV h

(\eta n+1/2, dxv
n+1/2
1 + dyv

n+1/2
2 )l2,M

\| Dvn+1/2\| 
\leq C\| dt\bfitxi n+1\| l2 + C\| D\bfitxi n+1/2\| + C(Ln)(\| \bfitxi n\| l2 + \| \bfitxi n - 1\| l2)
+ C(Ln)| en+1/2

q | + C(Ln)(\| \bfitgamma n\| l2 + \| \bfitgamma n - 1\| l2)
+ C(Ln)(\Delta t2 + h2 + k2).

Then we can obtain the desired result (3.71).

We are now in position to prove Proposition 3.1.
Proof of Proposition 3.1. Combining the above results, we obtain the following

under the l\infty m (L\infty ) bound assumption: Combining (3.33) with (3.59), we have

(3.76)

1

2
\| \bfitxi m+1\| 2l2 +

1

2

m\sum 
n=0

\Delta t\| dt\bfitxi n+1\| 2l2 +
\nu 

2
\| D\bfitxi m+1\| 2 + | em+1

q | 2

\leq C(Lm)
m\sum 

n=0

\Delta t\| \bfitxi n\| 2l2 + C(Lm)
m\sum 

n=0

\Delta t| en+1
q | 2

+ C(Lm)
m\sum 

n=0

\Delta t\| D\bfitxi n\| 2 + C(Lm)(\Delta t4 + h4 + k4).

Then applying the discrete Gronwall inequality, we arrive at

(3.77) \| \bfitxi m+1\| 2l2 +
m\sum 

n=0

\Delta t\| dt\bfitxi n+1\| 2l2 +\| D\bfitxi m+1\| 2+ | em+1
q | 2 \leq C(Lm)(\Delta t4+h4+k4).
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Recalling (3.71), we have
(3.78)

m\sum 
n=0

\Delta t\| \eta n+1/2\| 2l2,M \leq C(Lm)
m\sum 

n=0

\Delta t\| dt\bfitxi n+1\| 2l2 + C(Lm)
m\sum 

n=0

\Delta t\| \bfitxi n\| 2l2

+ C(Lm)
m\sum 

n=0

\Delta t| en+1
q | 2 + C(Lm)

m\sum 
n=0

\Delta t\| D\bfitxi n+1/2\| 2 + C(Lm)(\Delta t4 + h4 + k4)

\leq C(Lm)(\Delta t4 + h4 + k4),

which, together with (3.77), completes the proof of Proposition 3.1.

3.4. Uniform bound on \bfitL \bfitm . It remains to show that Lm in (3.5) can be
uniformly bounded.

Lemma 3.8. Assume that the assumptions of Theorem 3.1 hold and suppose that
\^h is sufficiently small. Then there exists a positive constant C\ast such that \Delta t \leq C\ast \^h,
and we have

(3.79) \| Um\| \infty \leq C1 \forall 0 \leq m \leq N = T/\Delta t,

where \^h = max\{ h, k\} , and C1 is a positive constant independent of h, k and \Delta t.

Proof. We proceed with the following two steps using a bootstrap argument.
Step 1 (definition of C1). Using the scheme (2.22)--(2.25) for n = 0, Proposition

3.1, the properties of the operator Ih, and the inverse inequality (3.19), we can get
the approximation U1 and the following property:

\| U1\| \infty = \| U1  - Ihu
1\| \infty + \| Ihu1  - u1\| \infty + \| u1\| \infty 

\leq C\^h - 1\| U1  - Ihu
1\| l2 + \| Ihu1  - u1\| \infty + \| u1\| \infty 

\leq C\^h - 1(\| \bfitxi 1 + \bfitgamma 1\| l2 + \| Ihu1  - u1\| l2) + \| Ihu1  - u1\| \infty + \| u1\| \infty 
\leq C\^h - 1(\Delta t2 + \^h2) + \| u1\| \infty \leq C,

where \^h and \Delta t are selected such that \^h - 1\Delta t2 is sufficiently small.
Thus define the positive constant C1 independent of \^h and \Delta t such that

C1 \geq max\{ \| U1\| \infty , 2\| u\| L\infty (L\infty )\} .

Step 2 (induction). We can easily obtain that hypothesis (3.79) holds true for
m = 1 by the definition of C1. Assuming that \| Um\| \infty \leq C1 holds true for an integer
m = 1, . . . , N  - 1 and using Proposition 3.1, we obtain

\| \bfitxi m+1\| l2 \leq C(Lm)(\Delta t2 + \^h2).

Next, we prove that \| Um+1\| \infty \leq C1 holds true since

(3.80)

\| Um+1\| \infty = \| Um+1  - Ihu
m+1\| \infty + \| Ihum+1  - um+1\| \infty + \| um+1\| \infty 

\leq C\^h - 1(\| \bfitxi m+1 + \bfitgamma m+1\| l2 + \| Ihum+1  - um+1\| l2)
+ \| Ihum+1  - um+1\| \infty + \| um+1\| \infty 
\leq C2

\^h - 1(\Delta t2 + \^h2) + \| um+1\| \infty .
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Let \Delta t \leq C\ast \^h, and let a positive constant \^h\ast be small enough to satisfy

C2(1 + C2
\ast )
\^h\ast \leq C1

2
.

Then for \^h \in (0, \^h\ast ], (3.80) can be controlled by

(3.81)
\| Um+1\| \infty \leq C2

\^h - 1(\Delta t2 + \^h2) + \| um+1\| \infty 

\leq C2(1 + C2
\ast )
\^h\ast +

C1

2
\leq C1.

Then the induction hypothesis (3.79) is proved.

Proof of Theorem 3.1. Combining Proposition 3.1 and Lemma 3.8 leads to

(3.82)
\| \bfitxi m+1\| 2l2 +

m\sum 
n=0

\Delta t\| dt\bfitxi n+1\| 2l2 + \| D\bfitxi m+1\| 2 +
m\sum 

n=0

\Delta t\| \eta n+1/2\| 2l2,M + | em+1
q | 2

\leq C(\Delta t4 + h4 + k4).

Recalling Lemma 3.2 and (3.22), we arrive at the conclusions of Theorem 3.1.

4. Numerical experiments. In this section, we provide some numerical results
to verify the accuracy of the proposed numerical scheme.

We take \Omega = (0, 1) \times (0, 1), T = 1, \nu = 1, and \delta = 0.1, and set \Delta t = h = k. We
denote \left\{             

\| eX\| \infty ,2 = max
0\leq n\leq m

\| enX\| ,

\| ep\| 2,2 =

\biggl( 
m\sum 

n=0
\Delta t
\bigm\| \bigm\| Pn+1/2  - pn+1/2

\bigm\| \bigm\| 2
l2,M

\biggr) 1/2

,

\| eq\| \infty = max
0\leq n\leq m

| Qn  - qn| ,

where X = u, dxu1, Dyu1.

Example 1. The right-hand sides of the equations are computed according to the
analytic solution given as\left\{     

p(x, y, t) = exp(t)(x3  - 1/4),

u1(x, y, t) =  - exp(t)x2(x - 1)2y(y  - 1)(2y  - 1)/256,

u2(x, y, t) = exp(t)x(x - 1)(2x - 1)y2(y  - 1)2/256.

The numerical results for Example 1 are presented in Tables 1 and 2. We observe
that the results are consistent with the error estimates in Theorem 3.1.

Example 2. The right-hand sides of the equations are computed according to the
analytic solution given as\left\{     

p(x, y, t) = exp(t)(sin(\pi y) - 2/\pi ),

u1(x, y, t) = exp(t) sin2(\pi x) sin(2\pi y),

u2(x, y, t) =  - exp(t) sin(2\pi x) sin2(\pi y).

The numerical results for Example 2 are presented in Tables 3 and 4. We observe
uniform second-order convergence for all quantities, including Dyu1 for which The-
orem 3.1 predicts only 3/2-order convergence. This is due to the fact that for this
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Table 1
Convergence rates of the velocity for Example 1.

Nx \times Ny \| e\bfu \| \infty ,2 Rate \| edxu1
\| \infty ,2 Rate \| eDyu1

\| \infty ,2 Rate

24 \times 24 1.05E-6 --- 2.78E-6 --- 8.71E-6 ---
25 \times 25 2.59E-7 2.02 6.82E-7 2.03 3.21E-6 1.44
26 \times 26 6.41E-8 2.01 1.65E-7 2.04 1.16E-6 1.47
27 \times 27 1.59E-8 2.01 4.01E-8 2.05 4.16E-7 1.48

Table 2
Convergence rates of the pressure and auxiliary variable for Example 1.

Nx \times Ny \| ep\| 2,2 Rate \| eq\| \infty Rate
24 \times 24 1.01E-3 --- 5.10E-11 ---
25 \times 25 2.52E-4 2.00 1.36E-11 1.90
26 \times 26 6.30E-5 2.00 3.44E-12 1.99
27 \times 27 1.57E-5 2.00 8.57E-13 2.00

particular exact solution, we have \partial 2ux

\partial y2 = 0 for y = 0 and y = 1 and \partial 2uy

\partial x2 = 0 for

x = 0 and x = 1, which lead to a super-convergence for Dyu1 (see related results in
[18, 10]).

Note that we only presented the results for u1 in both examples since the results
for u2 are similar.

Example 3. We take the initial condition to be u0
1(x, y) = sin2(\pi x) sin(2\pi y),

u0
2(x, y) = sin(2\pi x) sin2(\pi y), and f = 0.

In Figure 1 we present the time evolutions of the two approximate solutions of
(2.21) for Example 3 as \Delta t = 1/N \rightarrow 0 in (2.21). We clearly observe that one solution
of (2.21) converges to the exact solution 1, while the other solution converges to zero.

Appendix A. Finite difference discretization on the staggered grids. To
fix the idea, we consider \Omega = (Llx, Lrx) \times (Lly, Lry). Three-dimensional rectangular
domains can be dealt with similarly.

The two-dimensional domain \Omega is partitioned by \Omega x \times \Omega y, where

\Omega x : Llx = x0 < x1 < \cdot \cdot \cdot < xNx - 1 < xNx
= Lrx,

\Omega y : Lly = y0 < y1 < \cdot \cdot \cdot < yNy - 1 < yNy
= Lry.

For simplicity we also use the following notation:

(A.1)

\biggl\{ 
x - 1/2 = x0 = Llx, xNx+1/2 = xNx

= Lrx,
y - 1/2 = y0 = Lly, yNy+1/2 = yNy = Lry.

For possible integers i, j, 0 \leq i \leq Nx, 0 \leq j \leq Ny, define

xi+1/2 =
xi + xi+1

2
, hi+1/2 = xi+1  - xi, h = max

i
hi+1/2,

hi = xi+1/2  - xi - 1/2 =
hi+1/2 + hi - 1/2

2
,

yj+1/2 =
yj + yj+1

2
, kj+1/2 = yj+1  - yj , k = max

j
kj+1/2,

kj = yj+1/2  - yj - 1/2 =
kj+1/2 + kj - 1/2

2
,

\Omega i+1/2,j+1/2 = (xi, xi+1)\times (yj , yj+1).
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Table 3
Convergence rates of the velocity for Example 2.

Nx \times Ny \| e\bfu \| \infty ,2 Rate \| edxu1
\| \infty ,2 Rate \| eDyu1

\| \infty ,2 Rate

24 \times 24 2.15E-2 --- 4.94E-2 --- 9.53E-2 ---
25 \times 25 5.21E-3 2.05 1.28E-2 1.94 2.31E-2 2.04
26 \times 26 1.28E-3 2.02 3.29E-3 1.96 5.70E-3 2.02
27 \times 27 3.18E-4 2.01 8.20E-4 2.01 1.41E-3 2.01

Table 4
Convergence rates of the pressure and auxiliary variable for Example 2.

Nx \times Ny \| ep\| 2,2 Rate \| eq\| \infty Rate
24 \times 24 6.38E-2 --- 1.35E-2 ---
25 \times 25 1.42E-2 2.17 3.49E-3 1.95
26 \times 26 3.27E-3 2.12 8.72E-4 2.00
27 \times 27 7.97E-4 2.04 2.17E-4 2.01
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the other in Example 3
reference value S=1
reference value S=0
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0

0.005
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0.015

Fig. 1. Time evolutions of the two approximate solutions of (2.21) as \Delta t \rightarrow 0 for Example 3.

It is clear that

h0 =
h1/2

2
, hNx

=
hNx - 1/2

2
, k0 =

k1/2

2
, kNy

=
kNy - 1/2

2
.

For a function f(x, y), let fl,m denote f(xl, ym), where l may take values i, i + 1/2
for integer i, and m may take values j, j + 1/2 for integer j. For discrete functions
with values at proper nodal-points, define

(A.2)

\left\{       
[dxf ]i+1/2,m =

fi+1,m  - fi,m
hi+1/2

, [Dyf ]l,j+1 =
fl,j+3/2  - fl,j+1/2

kj+1
,

[Dxf ]i+1,m =
fi+3/2,m  - fi+1/2,m

hi+1
, [dyf ]l,j+1/2 =

fl,j+1  - fl,j
kj+1/2

.

For functions f and g, define some discrete l2 inner products and norms as follows:

(f, g)l2,M \equiv 
Nx - 1\sum 
i=0

Ny - 1\sum 
j=0

hi+1/2kj+1/2fi+1/2,j+1/2gi+1/2,j+1/2,(A.3)
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(f, g)l2,Tx
\equiv 

Nx\sum 
i=0

Ny - 1\sum 
j=1

hikjfi,jgi,j ,(A.4)

(f, g)l2,Ty
\equiv 

Nx - 1\sum 
i=1

Ny\sum 
j=0

hikjfi,jgi,j ,(A.5)

\| f\| 2l2,\xi \equiv (f, f)l2,\xi , \xi = M, Tx, Ty.(A.6)

Further define discrete l2 inner products and norms as follows:

(f, g)l2,T,M \equiv 
Nx - 1\sum 
i=1

Ny - 1\sum 
j=0

hikj+1/2fi,j+1/2gi,j+1/2,(A.7)

(f, g)l2,M,T \equiv 
Nx - 1\sum 
i=0

Ny - 1\sum 
j=1

hi+1/2kjfi+1/2,jgi+1/2,j ,(A.8)

\| f\| 2l2,T,M \equiv (f, f)l2,T,M , \| f\| 2l2,M,T \equiv (f, f)l2,M,T .(A.9)

For vector-valued functions u = (u1, u2), it is clear that

\| dxu1\| 2l2,M \equiv 
Nx - 1\sum 
i=0

Ny - 1\sum 
j=0

hi+1/2kj+1/2| dxu1,i+1/2,j+1/2| 2,(A.10)

\| Dyu1\| 2l2,Ty
\equiv 

Nx - 1\sum 
i=1

Ny\sum 
j=0

hikj | Dyu1,i,j | 2,(A.11)

and \| dyu2\| l2,M , \| Dxu2\| l2,Tx
can be represented similarly. Finally, define the discrete

H1 norm and discrete l2 norm of a vector-valued function u as

\| Du\| 2 \equiv \| dxu1\| 2l2,M + \| Dyu1\| 2l2,Ty
+ \| Dxu2\| 2l2,Tx

+ \| dyu2\| 2l2,M ,(A.12)

\| u\| 2l2 \equiv \| u1\| 2l2,T,M + \| u2\| 2l2,M,T .(A.13)

For simplicity we only consider the case when uniform meshes are used in both the
x- and y-directions with all hi+1/2 = h and kj+1/2 = k.

Finally we present the following useful lemma.

Lemma A.1 ([25]). Let \{ V1,i,j+1/2\} , \{ V2,i+1/2,j\} and \{ q1,i+1/2,j+1/2\} ,
\{ q2,i+1/2,j+1/2\} be discrete functions with V1,0,j+1/2 = V1,Nx,j+1/2 = V2,i+1/2,0 =
V2,i+1/2,Ny

= 0, with proper integers i and j. Then there holds

(A.14)

\biggl\{ 
(Dxq1, V1)l2,T,M =  - (q1, dxV1)l2,M ,
(Dyq2, V2)l2,M,T =  - (q2, dyV2)l2,M .
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