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Abstract

In the trace reconstruction problem, an unknown source
string x ∈ {0, 1}n is sent through a probabilistic
deletion channel which independently deletes each bit
with probability δ and concatenates the surviving bits,
yielding a trace of x. The problem is to reconstruct x
given independent traces. This problem has received
much attention in recent years both in the worst-case
setting where x may be an arbitrary string in {0, 1}n
[6, 19, 7, 8, 4] and in the average-case setting where x
is drawn uniformly at random from {0, 1}n [21, 9, 8, 4].

This paper studies trace reconstruction in the
smoothed analysis setting, in which a “worst-case”
string xworst is chosen arbitrarily from {0, 1}n, and then
a perturbed version x of xworst is formed by indepen-
dently replacing each coordinate by a uniform random
bit with probability σ. The problem is to reconstruct x
given independent traces from it.

Our main result is an algorithm which, for any con-
stant perturbation rate 0 < σ < 1 and any constant
deletion rate 0 < δ < 1, uses poly(n) running time
and traces and succeeds with high probability in recon-
structing the string x. This stands in contrast with the
worst-case version of the problem, for which the best
known sample complexity is exp(Õ(n1/5)) [5], a recent
improvement on exp(O(n1/3)) [6, 19].

Our approach is based on reconstructing x from the
multiset of its short subwords and is quite different from
previous algorithms for either the worst-case or average-
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case versions of the problem. The heart of our work
is a new poly(n)-time procedure for reconstructing the
multiset of all O(log n)-length subwords of any source
string x ∈ {0, 1}n given access to traces of x.

1 Introduction

Trace reconstruction is a simple-to-state algorithmic
problem which has been intensively studied yet remains
mysterious in many respects. The problem captures
some of the core algorithmic challenges that arise in
dealing with the deletion channel ; this is a noise pro-
cess which, when given an input string, independently
deletes each coordinate with some fixed probability δ
and outputs the concatenation of surviving coordinates.
In the trace reconstruction problem an algorithm is
given access to independent traces of a fixed unknown
string x ∈ {0, 1}n, where a “trace” of x, denoted
z ∼ Delδ(x), is the string z that results from passing
x through a deletion channel. The task is to use these
traces to reconstruct the unknown string x.

Variants of the trace reconstruction problem have
a long history, going back at least to [12]. The
problem was studied on and off throughout the 2000s
[16, 15, 3, 13, 23, 11, 17], and has seen a renewed
surge of recent interest over the past few years [6, 19,
21, 9, 7, 4, 1, 2, 14, 18, 10] with the development of
new algorithms and lower bounds for both the worst-
case and average-case versions of the problem as well
as various generalizations. Below we describe these two
versions of the problem and recall the current state of
the art for each of them.

1.1 Prior work: Worst-case and average-case
trace reconstruction The original version of the trace
reconstruction problem is the worst-case version, in
which the unknown string x is an arbitrary (i.e. ad-
versarially chosen) string from {0, 1}n. This version of
the problem has proved to be quite challenging; the
first non-trivial result is due to Batu et al. [3], who
gave a poly(n)-time algorithm that uses poly(n) traces
and succeeds when the deletion rate δ is very small, at
most n−1/2−ε for any ε > 0. In [11] Holenstein et al.
gave an algorithm that runs in exp(Õ(n1/2)) time us-
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ing exp(Õ(n1/2)) traces and succeeds for any δ bounded
away from 1 by a constant. Simultaneous and indepen-
dent works of De et al. [6] and Nazarov and Peres [19]
gave an algorithm that improves the running time and
sample complexity of [11] to exp(O(n1/3)). In this same
constant-δ regime, successively stronger lower bounds
on the required sample complexity were given by [17, 8],
culminating in a Ω̃(n3/2) lower bound due to Chase [4].

Another natural variant of the trace reconstruction
problem is the average-case version; in this variant the
unknown string x is assumed to be drawn uniformly at
random from {0, 1}n, and the goal is for the algorithm
to succeed with high probability over the random choice
of x. This problem variant is motivated both by the
apparent difficulty of the worst-case problem and by
the fact that in various application domains it may be
overly pessimistic to assume that the input string x is
adversarially generated. Much more efficient algorithms
are known for the average-case problem: several early
works [3, 13, 23] gave efficient algorithms that succeed
for trace reconstruction of almost all x ∈ {0, 1}n
for various on(1) deletion rates δ, and [11] gave an
algorithm that runs in poly(n) time using poly(n) traces
when δ is at most some sufficiently small constant. More
recent results of Peres and Zhai [21] and Holden et al.
[9, 10], which build on worst-case trace reconstruction
results of [6, 19], substantially improve on this, with
[9, 10] giving an algorithm which uses exp(O(log1/3 n))
traces to reconstruct a random x ∈ {0, 1}n in n1+on(1)

time when the deletion rate is any constant bounded
away from 1.

Summarizing the results described above, the cur-
rent exp(O(n1/3)) state-of-the-art for worst-case trace
reconstruction is exponentially higher than the current
exp(O(log1/3 n)) state-of-the-art for average-case trace
reconstruction. Given this substantial gap, it is natural
to investigate intermediate formulations of the problem
between the worst-case and average-case models.

1.2 This work: Smoothed analysis of trace
reconstruction The well-studied smoothed analysis
model, introduced by Spielman and Teng [22], provides
a natural framework for interpolating between worst-
case and average-case complexity. In smoothed analysis
the input to an algorithm is obtained by applying a ran-
dom σ-perturbation to a worst-case input instance; here
σ is a “perturbation rate,” which it is natural to scale
so that σ = 1 corresponds to a truly random instance
and σ = 0 corresponds to a worst-case instance. By
choosing intermediate settings of σ it is possible to in-
terpolate between worst-case and average-case problem
variants.

We now give a detailed statement of the smoothed

trace reconstruction problem that we consider. First,
a “worst-case” string xworst is chosen arbitrarily from
{0, 1}n, and then a randomly perturbed version x of
the string xworst is formed by independently replacing
each coordinate of xworst by a uniform random bit
with probability σ. The goal is to reconstruct x given
access to independent traces drawn from Delδ(x). Note
that when σ = 0 this reduces to the worst-case trace
reconstruction problem, and when σ = 1 this reduces to
the average-case problem.

As our main result, we give an algorithm for the
smoothed trace reconstruction problem. For any initial
string xworst, our algorithm can recover a 1− 1/poly(n)
fraction of perturbed strings x obtained from xworst

(for any poly(n)) in polynomial time for any constant
perturbation rate 0 < σ ≤ 1 and any constant deletion
rate 0 < δ < 1. More precisely, the main theorem we
prove is the following:

Theorem 1.1 (Polynomial time smoothed trace
reconstruction)
Let 0 < δ, η, τ < 1 and 0 < σ ≤ 1. Let xworst be an
arbitrary and unknown string in {0, 1}n and let x be
formed from xworst by independently replacing each bit
of xworst with a uniform random bit from {0, 1} with
probability σ.

There is an algorithm with the following guarantee:
with probability at least 1− η (over the random genera-
tion of x from xworst), it is the case that the algorithm,
given access to independent traces drawn from Delδ(x),
outputs the string x with probability at least 1− τ (over
the random traces drawn from Delδ(x)). Its running
time, as well as the number of traces it uses, is(

n

η

)O( 1
σ(1−δ) log 2

1−δ )
log

1

τ
.

It is interesting that while the best currently known
algorithms for the worst-case problem, corresponding to
σ = 0, require exp(O(n1/3)) time, for any constant per-
turbation rate we can solve the problem in a dramat-
ically more efficient way. Intuitively, this shows that
worst-case instances for trace reconstruction are “few
and far between,” in the sense that even a small per-
turbation of such an instance typically makes it much
easier to solve.

1.3 Techniques Before describing our approach we
briefly recall some of the methods used in prior work for
the worst-case and average-case problems and discuss
why these approaches do not seem applicable to the
smoothed problem that we consider.

Worst-case algorithms. All of the known worst-
case algorithms [11, 6, 19] for deletion rates bounded
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away from 1 are “mean-based,” meaning that they only
use (estimates of) the n expected values Ey∼Delδ(x)[yi],
i = 1, . . . , n. The two papers [6, 19] both show that
mean-based algorithms can only succeed if they are
given estimates of these expectations that are additively
±exp(−Ω(n1/3))-accurate, and hence mean-based al-
gorithms must inherently use exp(Ω(n1/3)) traces for
the worst-case problem. Inspection of [6, 19] shows
that these worst-case lower bounds for mean-based al-
gorithms in fact hold for a 1−on(1) fraction of strings in
{0, 1}n. Thus, the mean-based algorithmic approach of
[11, 6, 19] will not work for our smoothed variant of the
problem (and indeed our algorithm is not a mean-based
algorithm).

Average-case algorithms. The average-case algo-
rithms of [21, 9, 10] work by aligning individual traces
(and are not mean-based). The analysis builds off of
some of the structural results established in [6, 19],
but also employs sophisticated probabilistic arguments
which heavily depend on the randomness of the source
string x being reconstructed.

As noted in [9, 10], their average-case algorithm ex-
tends to the setting in which the target string x is drawn
from the p-biased distribution over {0, 1}n (under which
each bit xi is independently taken to be 1 with prob-
ability p). Taking p = σ/2, this corresponds to our
smoothed analysis model in the special case in which
the original string xworst is promised to be the string 0n.
Equivalently, we can view our smoothed analysis prob-
lem as a more challenging variant of p-biased average-
case trace reconstruction — more challenging because
the initial string (xworst) is no longer promised to be
0n, but rather is both arbitrary and moreover unknown
to the reconstruction algorithm. It is not clear how to
extend the p-biased average-case results of [9, 10] even
to the setting in which the starting string xworst is a
known arbitrary string, let alone to our setting in which
xworst is both arbitrary and unknown.

1.4 Our approach: Reconstruction from sub-
words and the subword deck
reconstruction problem In contrast with prior algo-
rithms for the worst-case and average-case problem, our
approach is based on first reconstructing subwords of the
target string and then reconstructing the target string
from those subwords. Recall that a subword of a string
x = (x1, . . . , xn) is a sequence of contiguous characters
of x, i.e. a (b−a+ 1)-character string (xa, xa+1, . . . , xb)
for some 1 ≤ a ≤ b ≤ n.

Reconstruction from subwords. Given a length
1 ≤ k ≤ n, let us write subword(x, k) to denote the
multiset of all n − k + 1 length-k subwords of x; we

refer to this multiset as the k-subword deck of x. For
example, if n = 7 and k = 3, then the k-subword
deck of x = 1101011 would be the 5-element multiset
{010, 011, 101, 101, 110}.

In general the k-subword deck of xmay not uniquely
identify the string x within {0, 1}n unless k is very large;
for example, the two multisets

subword
(
0n/41n/4−10n/41n/4+1, k

)
and

subword
(
0n/41n/4+10n/41n/4−1, k

)
are identical for every k ≤ n/4−1. This simple example
shows that for worst-case strings x, the k-subword deck
of x may not suffice to information-theoretically specify
x unless k is linear in n.

The starting point of our approach is the observa-
tion that the situation is markedly better for random
perturbations of worst-case strings: for any worst-case
string xworst ∈ {0, 1}n, with high probability a random
σ-perturbation x of xworst is such that subword(x, k)
does uniquely identify x within {0, 1}n even if k is rel-
atively small. Moreover, there is an efficient algorithm
to reconstruct x from subword(x, k). This is captured
by the following result, which we prove in Section 3:

Lemma 1.1 (Reconstructing perturbed strings
from their subword decks)
Let 0 < σ, η < 1. There is a determinis-
tic algorithm Reconstruct-from-subword-deck which
takes as input the k-subword deck subword(x, k) of
a string x ∈ {0, 1}n, where k = Θ(log(n/η)/σ),
and outputs either a string in {0, 1}n or “fail.”
Reconstruct-from-subword-deck runs in poly(n)
time and has the following property: for any xworst ∈
{0, 1}n, if x is a random σ-perturbation of xworst

(i.e. x is obtained by independently replacing each
bit of xworst with a uniform random bit with prob-
ability σ), then with probability at least 1 − η the
output of Reconstruct-from-subword-deck on input
subword(x, k) is the string x.

The subword deck reconstruction problem.
Lemma 1.1 naturally motivates the algorithmic prob-
lem of subword deck reconstruction: given access to in-
dependent traces drawn from Delδ(x) and a length k,
can we reconstruct the k-subword deck of x? Our main
algorithmic contribution is an efficient algorithm for this
problem:

Theorem 1.2 (Reconstructing the k-subword
deck of x)
Let 0 < δ, τ < 1. There is an algorithm
Reconstruct-subword-deck which takes as input
a parameter 1 ≤ k ≤ n and access to independent traces
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of an unknown source string x ∈ {0, 1}n. The running
time of Reconstruct-subword-deck, as well as the
number of traces it uses, is(

n

(
2

1− δ

)k)O(1/(1−δ))

log
1

τ
.

Reconstruct-subword-deck has the following property:
for any string x ∈ {0, 1}n, with probability at least
1 − τ the output of Reconstruct-subword-deck is the
k-subword deck subword(x, k).

Theorem 1.1 follows immediately from Lemma 1.1
and Theorem 1.2. We note that Theorem 1.2 dominates
the overall running time of Theorem 1.1, and that
Theorem 1.2 works for arbitrary strings.

The algorithm in Lemma 1.1 and its analysis are
relatively straightforward. To explain the main idea,
we define the notion of the right (and left) extension of
a string. (Starting from this point, it will be convenient
for us to index a string x ∈ {0, 1}n using {0, . . . , n− 1}
as x = (x0, . . . , xn−1).)

Definition 1 Given a k-bit string w =
(w0, . . . , wk−1) ∈ {0, 1}k, a k-bit string
(w1, . . . , wk−1, b) for some b ∈ {0, 1} is said to be
a right-extension of w. We define left-extensions of a
string similarly.

At a high level, the algorithm relies on the fact that
if x is obtained by a random σ-perturbation of xworst,
then x has useful local uniqueness properties. More
precisely, for k = O(log(n/τ)/σ), a simple probabilistic
argument shows that with high probability x[n − k :
n − 1] is the unique element of subword(x, k) with no
right-extension in subword(x, k). Consequently, we can
identify x[n − k : n − 1] from the k-subword deck
subword(x, k) of x. This argument can be extended
inductively without much difficulty to in fact identify
the whole of x.

In contrast, Theorem 1.2 is substantially more chal-
lenging. The structural results that underlie Theo-
rem 1.2 are based on two different sets of analytic ar-
guments. The first argument only works when δ ≤ 1/2
and employs (real) Taylor series; the second argument
works for the entire range of δ < 1 and employs tools
from complex analysis. While the first argument is more
limited in scope of applicability, it is somewhat more
elementary (which we see as a positive feature) and in-
troduces a new ingredient (the so-called “generalized
deletion polynomial;” see Section 5.2) which might be
useful in future work, and thus we include both argu-
ments in the paper. In this proof overview below we
only describe the second argument.

We begin by observing that subword(x, k) can be
obtained by computing the multiplicity of occurrences
of each w ∈ {0, 1}k in the set subword(x, k); we denote
this multiplicity by #(w,x). The first key step is
to define a univariate polynomial (in the variable ζ)
SWx,w(ζ) which has the following two key properties:
(i) SWx,w(0) = #(w,x), and (ii) using traces from
Delδ(x), we have an unbiased estimator for SWx,w(ζ)
for ζ = δ. Next, observe that given traces from Delδ(x),
we can trivially simulate traces from Delδ′(x) for any
δ′ ≥ δ, and hence we can get an unbiased estimator for
SWx,w(ζ) for any ζ ∈ [δ, 1]. Recall, though, that our
goal is to estimate SWx,w(ζ) at ζ = 0 and thus items
(i) and (ii) above do not give us an unbiased estimator
for SWx,w(0).

The most obvious idea at this point would be
to do polynomial interpolation and use estimates for
SWx,w(ζ) for ζ ∈ [δ, 1] to infer SWx,w(0). Unfortu-
nately, directly applying Lagrange interpolation is too
naive an approach: to accurately estimate SWx,w(0),
it turns out that we need SWx,w(ζ) for ζ ∈ [δ, 1] up
to error ±2−Θ(n). However, to estimate SWx,w(ζ) up
to error ±κ, at least poly(1/κ) traces from Delδ(x) are
needed (Lemma 6.1). Thus, directly applying Lagrange
interpolation would require a sample complexity that
grows like 2Θ(n), which is too expensive.

Our approach is to forego Lagrange interpolation
and instead (in essence) interpolate using tools from
complex analysis. In particular, we prove a new struc-
tural result (Theorem 6.3) about polynomials whose
constant coefficient is not too small and whose coeffi-
cients have magnitude bounded from above by a param-
eter m (which is set to be nk in our application given
that every coefficient of SWx,w(ζ) is bounded by nk).
This result implies that SWx,w(0) (which must be an in-
teger given that SWx,w(0) = #(w,x)) is uniquely deter-
mined by the values of SWx,w(ζ) in the interval ζ ∈ [δ, 1]
if these values are given up to error n−O(k/(1−δ)); see
Theorem 6.2. Thus, in principle we can determine
SWx,w(0) by estimating SWx,w(ζ) for values of ζ ∈ [δ, 1]
to error ±n−O(k/(1−δ)). This essentially implies that
SWx,w(0) can be determined using ≈ nO(k/(1−δ)) traces
from Delδ(x). (Note though that this sample complex-
ity is not quite as good as is claimed in Theorem 1.2.
We refine the above argument, using stronger coeffi-
cient bounds on SWx,w and other ideas described at
the beginning of Section 7, to get Theorem 1.2 in its
full strength as stated earlier.)

In closing this subsection, we emphasize that while
Theorem 6.2 is about the behavior of polynomials on
the real line, its proof crucially uses tools from complex
analysis such as Jensen’s formula and the Hadamard
three circle theorem. We further note that while we
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have sketched above how SWx,w(0) can be determined
in principle, this does not necessarily give an efficient
algorithm. To get an efficient algorithm, we use an
approach based on linear programming.

1.5 Discussion and future work We view this pa-
per as a first exploration, establishing that the algorith-
mic framework of smoothed analysis can be fruitfully
brought to bear on the trace reconstruction problem.
There are many interesting questions and directions for
future work, some of which we highlight below.

One natural question is to establish strong sample
complexity lower bounds for smoothed trace reconstruc-
tion. Currently the best lower bound we are aware of
for this framework is Ω̃(log5/2 n) for average-case trace
reconstruction due to [4]. Can an nΩ(1) lower bound be
established for the smoothed model?

Another natural goal is to quantitatively strengthen
our algorithmic result. In the regime of σ = c/n with c
a small constant, the smoothed problem reduces to the
worst-case problem, and in the regime σ = 1 it reduces
to the average-case problem; however, the running times
of our algorithm in these regimes do not match the state-
of-the-art running times for the corresponding problems
that are provided in [6, 19] and in [9, 10] respectively. As
a concrete first question along these lines, is it possible
to improve the sample complexity of our algorithm from
its current n1/σ dependence on the perturbation rate to
a dependence more like n1/σ1/3

?

2 Preliminaries

Notation. Given a nonnegative integer n, we write [n]
to denote {1, . . . , n}. Given integers a ≤ b we write
[a : b] to denote {a, . . . , b}. It will be convenient for us
to index a binary string x ∈ {0, 1}n using [0 : n − 1]
as x = (x0, . . . , xn−1). Given such a string x and
integers 0 ≤ a < b ≤ n − 1, we write x[a : b] to denote
the subword (xa, xa+1, . . . , xb). We write ln to denote
natural logarithm and log to denote logarithm to the
base 2.

We denote the set of non-negative integers by Z≥0.
For a vector α = (α1, . . . , α`) ∈ Z`≥0, we write |α|
to denote α1 + α2 + · · · + α`, and write α! to denote
α1!α2! · · ·α`!.

Subword deck. Fix a string x ∈ {0, 1}n and an integer
k ∈ [n]. A k-subword of x is a (contiguous) subword of
x of length k, given by (xa, xa+1, . . . , xa+k−1) for some
a ∈ [0 : n − k]. For a string w ∈ {0, 1}k, let #(w, x)
denote the number of occurrences of w as a subword
of x. We define the k-subword deck of x, denoted
subword(x, k), to be the (n − k + 1)-size (unordered)
multiset of all k-subwords of x. We also extend the

notation of #(w, x) to strings w ∈ {0, 1, ∗}k, where ∗
is the wildcard symbol: #(w, x) is the sum of #(w′, x)
over all w′ ∈ {0, 1}k with w′i = wi for every wi 6= ∗.

Distributions. We use bold font letters to denote
probability distributions and random variables, which
should be clear from the context. We write “x ∼ X” to
indicate that random variable x is distributed according
to distribution X.

Deletion channel and traces. Throughout this
paper the parameter δ : 0 < δ < 1 denotes the deletion
probability. Given a string x ∈ {0, 1}n, we write Delδ(x)
to denote the distribution of the string that results
from passing x through the δ-deletion channel (so the
distribution Delδ(x) is supported on {0, 1}≤n), and we
refer to a string in the support of Delδ(x) as a trace of
x. Recall that a random trace y ∼ Delδ(x) is obtained
by independently deleting each bit of x with probability
δ and concatenating the surviving bits. 1

Perturbation and smoothed analysis.. The pertur-
bation model we consider corresponds to the standard
notion of perturbation of an n-bit string which arises
in the analysis of Boolean functions. Given an n-bit
string xworst ∈ {0, 1}n, a σ-perturbation of xworst is a
random string x ∈ {0, 1}n obtained by independently
setting each coordinate xi to be xworst

i with probability
1 − σ and to be uniformly random with the remaining
probability σ. Equivalently, x is a random string that is
(1− σ)-correlated with xworst; in the notation of Chap-
ter 2 of [20], we may write this as “x ∼ N1−σ(xworst).”

We recall that in the smoothed analysis framework,
an initial string xworst ∈ {0, 1}n is selected (in what
may be thought of as an adversarial manner), and
then a σ-perturbation x of xworst is drawn at random
from N1−σ(xworst), and the algorithm runs on instance
x. The goal is to develop algorithms which, for every
xworst ∈ {0, 1}n, succeed with high probability on the
perturbed instance x ∼ N1−σ(xworst).

3 Reconstructing perturbed worst-case strings
from their
subword decks: Proof of Lemma 1.1

In this section we prove Lemma 1.1:

Restatement of Lemma 1.1 (Reconstructing per-
turbed strings from their subword decks). Let
0 < σ, η < 1. There is a deterministic algo-
rithm Reconstruct-from-subword-deck which takes

1For simplicity in this work we assume that the deletion
probability δ is known to the reconstruction algorithm. We note

that it is possible to obtain a high-accuracy estimate of δ simply by

measuring the average length of traces received from the deletion
channel.
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as input the k-subword deck subword(x, k) of a
string x ∈ {0, 1}n, where k = Θ(log(n/η)/σ),
and outputs either a string in {0, 1}n or “fail.”
Reconstruct-from-subword-deck runs in poly(n)
time and has the following property: For any string
xworst ∈ {0, 1}n, if x is a random σ-perturbation of
xworst (i.e. x is obtained by independently replac-
ing each bit of xworst with a uniform random bit with
probability σ), then with probability at least 1 − η the
output of Reconstruct-from-subword-deck on input
subword(x, k) is the string x.

The idea of Lemma 1.1 is very simple: a probabilis-
tic argument shows that for any worst-case string xworst,
a random σ-perturbation introduces enough variability
into x ∼ N1−σ(xworst) so that the k-subwords compris-
ing the k-subword deck of x can be easily pieced to-
gether in a unique way to yield x by a simple greedy
algorithm. We now provide details.

Given subword(x, k) of a string x ∈ {0, 1}n, we use
the following greedy algorithm to recover x:

1. We will store the output in y, a string of length n.

2. Let w ∈ subword(x, k) be a string that fails to
have a right-extension in subword(x, k). (Note the
only k-subword of x that can fail to have a
right-extension in subword(x, k) is
x[n− k : n− 1].) If no such w exists, return fail;
otherwise set y[n− k : n− 1] = w and ` = n− k.

3. While ` > 0, do the following: Find
w ∈ subword(x, k) as a left-extension of
y[` : `+ k − 1]. (Note that if y agrees with x so
far, then such a left-extension must exist.) If w is
not unique (counted with multiplicity), return fail;
otherwise set y`−1 = w0 and decrement ` by 1.

4. When ` = 0, return y.

It is clear from the description of the greedy algo-
rithm above and comments therein that either it returns
fail or there is no ambiguity (in filling in the last k bits
and extending from there bit by bit) and x is recovered
correctly as y at the end. We use the following defini-
tion to capture strings x on which the greedy algorithm
succeeds:

Definition 2 An n-bit string x is said to be k-good if

(i) for every j ∈ [n− k], there is exactly one string in
subword(x, k) (counted with multiplicity) that is a
left-extension of the subword x[j : j + k − 1]; and

(ii) the subword x[n− k : n− 1] does not have a
right-extension in subword(x, k).

To prove Lemma 1.1, it remains only to establish
the following claim:

Claim 3.1 Fix any string xworst ∈ {0, 1}n. Then for
k = O(log(n/η)/σ)

Pr
x∼N1−σ(xworst)

[
x is k-good

]
≥ 1− η.

Proof. Let E(x) be the event that x is not k-good.
We observe that for E(x) to occur, there must exist
indices 0 ≤ i < j ≤ n − k + 1 such that the (k − 1)-
subwords of x starting at positions i and j are equal, i.e.,
x[i : i+k−2] = x[j : j+k−2]. In particular, we have the
following (where here and subsequently all probabilities
are over the random draw of x ∼ N1−σ(xworst)):

Pr
[
E(x)

]
≤ Pr

[
∃ i, j such that x[i : i+ k − 2] = x[j : j + k − 2]

]
(by a union bound)

≤
∑

0≤i<j≤n−k+1

Pr
[
x[i : i+ k − 2] = x[j : j + k − 2]

]
.

Let Ei,j(x) denote the event that x[i : i + k − 2] =
x[j : j + k − 2]. To prove the claim, it suffices
to show that Pr[Ei,j(x)] ≤ η/n2 for each fixed pair
1 ≤ i < j ≤ n− k + 1.

To this end, we write the probability of Ei,j(x) as

Pr
[
xi = xj

]
·
k−2∏
`=1

Pr
[
xi+` = xj+`

∣∣∣xi+h = xj+h

for all h = 0, . . . , `− 1
]
.

The first factor Pr
[
xi = xj

]
is at most 1−σ/2 because

for any fixed value b of xi, xj agrees with b after the
perturbation with probability at most 1 − σ/2. The
upper bound of 1−σ/2 holds for every other factor in the
product. For the `th factor, we note that for any fixed
values of xi, . . . ,xj+`−1 that satisfy the conditioning
part xi+h = xj+h for all h = 0, ..., ` − 1, xj+` agrees
with the fixed value of xi+` with probability at most
1− σ/2.

Thus, by setting k = C log(n/η)/σ for some large
enough constant C, we have

Pr
[
Ei,j(x)

]
≤ (1−σ/2)k−1 ≤ exp

(
−Ω

(
log

n

η

))
≤ η

n2
.

This finishes the proof of the claim.

4 Reconstructing the k-subword deck: Towards
proof of Theorem 1.2

The remaining task to establish the main result, Theo-
rem 1.1, is to prove Theorem 1.2 (restated below), which
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gives an efficient algorithm to reconstruct the k-subword
deck of an arbitrary source string x ∈ {0, 1}n given ac-
cess to independent traces of x. Throughout this sec-
tion, let ρ = (1− δ)/2.

Restatement of Theorem 1.2 (Reconstructing the
k-subword deck). Let 0 < δ, τ ′ < 1. There is an
algorithm Reconstruct-subword-deck which takes as
input a parameter 1 ≤ k ≤ n and access to independent
traces of an unknown source string x ∈ {0, 1}n. The
running time of Reconstruct-subword-deck, as well
as the number of traces it uses, is(

n/ρk
)O(1/ρ)

log(1/τ ′).

Reconstruct-subword-deck has the following property:
For any unknown string x ∈ {0, 1}n, with probability
at least 1 − τ ′, Reconstruct-subword-deck outputs
subword(x, k).

The main algorithmic ingredient that underlies
Theorem 1.2 is an algorithm for a closely related but
slightly simpler problem. This algorithm, which we call
Multiplicity, takes as input a string w ∈ {0, 1}k and
access to independent traces from an unknown source
string x, and it outputs #(w, x), the multiplicity of w
in the (n− k + 1)-element multiset subword(x, k) (note
that this multiplicity can be zero if w is not present as
a subword of x):

Theorem 4.1 Let 0 < δ, τ < 1 and let ρ = (1 − δ)/2.
There is an algorithm Multiplicity which takes as
input a string w ∈ {0, 1}k and access to indepen-
dent traces of an unknown source string x ∈ {0, 1}n.

Multiplicity runs in
(
n/ρk

)O(1/ρ)
log(1/τ) time and

uses
(
n/ρk

)O(1/ρ)
log(1/τ) many traces from Delδ(x),

and has the following property: For any unknown source
string x ∈ {0, 1}n, with probability at least 1 − τ the
output of Multiplicity is #(w, x) (i.e. the number of
occurrences of w as a subword of x).

A standard “branch-and-bound” argument gives
Theorem 1.2 from Theorem 4.1:

Proof. (Proof of Theorem 1.2 using Theorem 4.1.) Let
` = blog nc. We first consider the case that k ≤
`. In this case Reconstruct-subword-deck simply
runs Multiplicity(w) once for each of the 2k strings
w ∈ {0, 1}k, with the confidence parameter “τ” for
each run of Multiplicity set to τ ′/2k. Since we can
reuse the same traces for each of the 2k runs, in this

case the running time is 2k
(
n/ρk

)O(1/ρ)
log
(
2k/τ ′

)
=(

n/ρk
)O(1/ρ)

log(1/τ ′) and the sample complexity is(
n/ρk

)O(1/ρ)
log(1/τ ′).

Next we consider the case that k > `. To avoid
an exponential running time dependence on k, the al-
gorithm uses a simple “branch-and-prune” approach.
In the first stage, similar to the previous paragraph,
Reconstruct-subword-deck runs Multiplicity on
each of the 2` strings w ∈ {0, 1}` with confidence pa-
rameter τ ′/(2nk), thereby obtaining the `-subword deck
subword(x, `). It then executes k − ` many successive
stages j = 1, 2, . . . , k − `, where in stage j the algo-
rithm determines the (` + j)-subword deck of x using
the (` + j − 1)-subword deck of x. It does this in each
stage as follows: for each of the (at most n) distinct
strings w ∈ subword(x, ` + j − 1), the algorithm runs
Multiplicity(w0) and Multiplicity(w1), each with
confidence parameter τ ′/(2nk).

The correctness of this approach follows from the
trivial fact that an (` + j)-bit string can only be
present in subword(x, ` + j) if its (` + j − 1)-bit
prefix is present in subword(x, ` + j − 1). Since
there are at most n + 2n(k − `) < 2kn many
runs of Multiplicity overall, the running time
of Reconstruct-subword-deck is at most O(kn) ·(
n/ρk

)O(1/ρ)
log(2kn/τ ′) =

(
n/ρk

)O(1/ρ)
log(1/τ ′) and

the sample complexity is at most
(
n/ρk

)O(1/ρ)
log(1/τ ′),

and Theorem 1.2 is proved.

Thus, in the rest of the paper, we focus on proving
Theorem 4.1.

4.1 The subword polynomial The following “sub-
word polynomial” plays an important role in our ap-
proach:

Definition 3 Given x ∈ {0, 1}n and w =
(w0, . . . , wk−1) ∈ {0, 1}k, let SWx,w(ζ) be the fol-
lowing univariate polynomial of degree n− k:

SWx,w(ζ) :=∑
α∈Zk−1

≥0

|α|≤n−k

# (w0 ∗α1 w1 ∗α2 w2 · · ·wk−2 ∗αk−1 wk−1, x) ·ζ |α|.

In words, the degree-` coefficient of the subword
polynomial SWx,w is the number of ways that w arises
as a substring of x with a total of exactly ` extraneous
additional characters interspersed among the characters
of w. In particular, we have that the constant term of
SWx,w (i.e. SWx,w(0), since 00 = 1) is equal to #(w, x),
the frequency of w as a subword of x, which is what
Theorem 4.1 aims to estimate efficiently from traces of
x.

4.2 Outline of our approach We prove Theo-
rem 4.1 by giving two different algorithms depending on
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the value of the deletion rate δ. The first of these algo-
rithms, Multiplicitysmall-δ, gives a simple and direct
approach to compute the value SWx,w(0) = #(w, x);
however this approach requires the deletion rate δ to
be less than 1/2. This approach is based on analyz-
ing a new object, the “generalized deletion polynomial,”
that we believe may be useful for subsequent work. The
second of these algorithms, Multiplicitylarge-δ, gives
a different and somewhat more involved algorithm (in-
volving linear programming and a new extremal result
on polynomials, proved using complex analysis) that can
be used for any deletion rate δ < 1.

Readers who are interested in a simple analysis
(albeit one that works only for δ < 1/2) may wish to
focus on Multiplicitysmall-δ (Section 5). Readers who
are interested in a more involved approach that succeeds
for all δ < 1 may wish to focus on Multiplicitylarge-δ

(Section 6). The two algorithms and analyses are each
self-contained; each may be read independently of the
other.

For each of the two algorithms, we first give a
simpler version of the analysis which establishes a
quantitatively weaker version of the result, with an
nO(k) running time and sample complexity (ignoring the
dependence on other parameters); see the statements
of Theorem 5.1 and Theorem 6.1, at the beginnings
of Section 5 and Section 6 respectively, for detailed
statements of these weaker versions. In Section 7
we quantitatively strengthen both Theorem 5.1 and
Theorem 6.1 to achieve a poly(n) · exp(O(k)) running
time and sample complexity, and thereby complete the
proof of Theorem 4.1.

5 Multiplicity′small-δ: An algorithm for
deletion rate δ < 1/2

In this section we prove Theorem 5.1, a weaker version of
Theorem 4.1. It gives an algorithm that has nO(k) run-
ning time and sample complexity (ignoring the depen-
dence on other parameters) and works when δ < 1/2.
Actually Theorem 5.1 works when δ ≤ 1/2; we only
require δ < 1/2 later in Section 7.1 to achieve the im-
proved running time and sample complexity in Theo-
rem 4.1 based on a similar approach (the running time
achieved in that section will depend on how close δ is
to 1/2).

Theorem 5.1 Let 0 < δ ≤ 1/2. There is an al-
gorithm Multiplicity′small-δ which takes as input a
string w ∈ {0, 1}k, access to independent traces of an
unknown source string x ∈ {0, 1}n, and a parameter
τ > 0. Multiplicity′small-δ draws nO(k)·log(1/τ) traces
from Delδ(x), runs in time nO(k) · log(1/τ), and has
the following property: For any unknown source string

x ∈ {0, 1}n, with probability at least 1 − τ the out-
put of Multiplicity′small-δ is the multiplicity of w in
subword(x, k) (i.e. the number of occurrences of w as a
subword of x).

In Section 7 we will build on Theorem 5.1 to give
a stronger version that has poly(n) · exp(O(k)) running
time and sample complexity (ignoring the dependence
on other parameters) for δ < 1/2.

The rest of this section is organized as follows.
In Section 5.1, we give an equivalent expression for
SWx,w(ζ) in Theorem 5.2, which relates the subword
polynomial to traces drawn from the deletion channel.
The proof uses the generalized deletion polynomial and
is presented in Section 5.2. This new expression for
SWx,w(ζ) allows one to evaluate SWx,w(ζ) at ζ = 0
up to a small error (say, ±0.1) using traces of x (see
Corollary 5.1) when δ ≤ 1/2. Given that SWx,w(0)
is an integer, the result can be rounded to obtain
the exact value of SWx,w(0); this finishes the proof of
Theorem 5.1.

We remark that the expression for SWx,w(ζ) given
in Theorem 5.2 works for any ζ ∈ C, when viewing
SWx,w(ζ) as a polynomial over C, and may be useful
for subsequent work. Indeed Corollary 5.1 shows that
SWx,w(ζ) can be evaluated at any ζ ∈ B1−δ(δ) up to a
small error using traces of x, where B1−δ(δ) denotes the
complex disc with center δ and radius 1 − δ. We need
δ ≤ 1/2 so that 0 ∈ B1−δ(δ).

5.1 Evaluating SWx,w(ζ) for ζ ∈ B1−δ(δ) us-
ing traces of x In the rest of this section we con-
sider SWx,w(ζ) as a polynomial over complex num-
bers. The main technical ingredient in the algorithm
Multiplicity′small-δ is the following theorem, which re-
lates the subword polynomial to traces drawn from the
deletion channel:

Theorem 5.2 Let x, k and w be as above. Then for all
ζ ∈ C we have

SWx,w(ζ) =

1

(1− δ)k
∑

α∈Zk−1
≥0

|α|≤n−k

Ey∼Delδ(x)

[
#(w0 ∗α1 w1 ∗α2 w2 · · ·

wk−2 ∗αk−1 wk−1, y)
]
·
(
ζ − δ
1− δ

)|α|
.

Before proving Theorem 5.2 in Section 5.2 we use it
to obtain the following corollary.

Corollary 5.1 (Corollary of Theorem 5.2) Let
x, k, w be as above, and let ε > 0. Then, given access
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to traces y ∼ Delδ(x), there exists an algorithm which,
given as input any ζ ∈ B1−δ(δ), evaluates SWx,w(ζ) up
to error ±ε with success probability at least 1− τ . The
algorithm takes(

n

1− δ

)O(k)

· 1

ε2
· log

(
1

τ

)
many traces and running time.

Recall that SWx,w(0) = #(w, x). When δ ≤ 1/2,
the disc B1−δ(δ) contains the origin. Therefore, set-
ting ε = 1/3 in Corollary 5.1 directly implies an algo-
rithm Multiplicity′small-δ that uses ((n/(1− δ))O(k)) ·
log(1/τ) = nO(k) · log(1/τ) traces and running time to
evaluate SWx,w(0) up to an error of ε = 1/3, which
succeeds with probability at least 1− τ . It then rounds
the result to the nearest integer to obtain SWx,w(0) =
#(w, x) given that the latter is an integer. This finishes
the proof of Theorem 5.1.

Proof. (Proof of Corollary 5.1) The algorithm simply
draws

s =

(
n

1− δ

)O(k)

· 1

ε2
· log

(
1

τ

)
many traces y1, . . . ,ys of x and uses them to compute
an empirical estimate Ẽα of

Eα :=

E
y∼Delδ(x)

[
#(w0∗α1w1∗α2w2 · · ·wk−2∗αk−1wk−1, y)

]
for each α ∈ Zk−1

≥0 with |α| ≤ n − k. This is done by
computing #(w0 ∗α1 w1 ∗α2 w2 · · ·wk−2 ∗αk−1 wk−1, yi)
for each α and yi (in time polynomial in n), and then
taking the average over y1, . . . ,ys for each α. Given
that the number of α’s is at most nk, the overall running
time is s · nk · poly(n), as stated in Corollary 5.1.

Given that #(w0 ∗α1 w1 ∗α2 w2 · · ·wk−2 ∗αk−1

wk−1, y) in (5.1) is between 0 and n, it follows from
our choice of s, a Chernoff bound and a union bound,
that with probability at least 1− τ , every empirical es-
timate Ẽα satisfies

(5.1) |Ẽα − Eα| ≤ ε ·
(

1− δ
n

)k
.

Using ∣∣∣∣ζ − δ1− δ

∣∣∣∣ ≤ 1

when ζ ∈ B1−δ(δ), we can use Ẽα to obtain an estimate
of SWx,w(ζ):

1

(1− δ)k
∑
α

Ẽα ·
(
ζ − δ
1− δ

)|α|

and the estimate is correct up to error

1

(1− δ)k
∑
α

|Ẽα − Eα| ≤ ε,

where the inequality holds by Equation (5.1) given that
the number of α’s is no more than nk.

5.2 Generalized deletion polynomial and the
proof of Theorem 5.2 In this subsection we prove
Theorem 5.2. We first introduce a more general class
of polynomials, the (x, f)-deletion-channel polynomials
(see Definition 4), of which SWx,w is a special case.
We then prove an extension of Theorem 5.2 (see Theo-
rem 5.3) which applies to every (x, f)-deletion channel
polynomial; Theorem 5.2 follows as a direct corollary.
While we don’t need the full generality of Theorem 5.3
to prove Theorem 5.2, working with this new class of
polynomials makes our proofs cleaner. We also believe
that Theorem 5.3 in the general form may be useful for
subsequent analysis.

The following notation will be convenient for us.
Given vectors γ ∈ Zk≥0 and ξ ∈ Ck, and a polynomial

P (z1, . . . , zk) from Ck to C, we define

ξγ = ξγ11 · · · ξ
γk
k

and the |γ|-th order partial derivatives of P

DγP =
∂|γ|P

∂zγ11 · · · ∂z
γk
k

.

Recall that γ! = γ1! · · · γk! and |γ| = γ1 + · · ·+ γk. For
v ∈ C, we will denote the vector (v, v, · · · , v) ∈ Ck by
~v, where the dimension k will be clear from context.

We define the class of (x, f)-deletion-channel poly-
nomials:

Definition 4 Given f : {0, 1}k → C and a string
x ∈ {0, 1}n, the (x, f)-deletion-channel polynomial
Px,f : Ck → C is defined by

Px,f (ξ) :=
∑
γ∈Zk≥0

|γ|≤n−k

f(xγ1 , xγ1+γ2+1, . . . , xγ1+···+γk+(k−1))·ξγ .

We call Px,f the (x, f)-deletion-channel polynomial
because by choosing k = 1 and f : {0, 1} → {0, 1} to be
the 1-bit identity function id(x) = x, we have that

Px,id(ξ) =

n−1∑
i=0

xiξ
i

is the deletion-channel polynomial defined in [6].

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited62



The next theorem shows that under a change of
variables, the coefficients of Px,f with respect to the new
variables can be expressed in terms of the expectation
of f over traces of x drawn from the deletion channel.
We state it and then show that Theorem 5.2 follows as
a direct corollary.

Theorem 5.3 For any ξ ∈ Ck, we have

Px,f (ξ) =
1

(1− δ)k
∑

β∈Zk≥0

|β|≤n−k

Ey∼Delδ(x)

[
f(yβ1

, . . . ,

yβ1+···+βk+k−1)
]
·

(
ξ − ~δ
1− δ

)β
.

Proof. (Proof of Theorem 5.2 assuming Theorem 5.3)
Given x ∈ {0, 1}n and w ∈ {0, 1}k for some k ∈ [n] as
in the statement of Theorem 5.2, we take f : {0, 1}k →
{0, 1} to be the indicator function of w:

f(b1, b2, . . . , bk) = 1 [(b1, b2, . . . , bk) = w] .

Using this f we get the following connection between
SWx,w(ζ) and Px,f (1, ζ, ζ, . . . , ζ):

SWx,w(ζ)

=
∑

α∈Zk−1
≥0

|α|≤n−k

# (w0 ∗α1 w1 ∗α2 w2 · · ·wk−2 ∗αk−1 wk−1, x) · ζ |α|

=

∑
α∈Zk−1

≥0

|α|≤n−k

n−k−|α|∑
i=0

f(xi, xi+α1+1, xi+α1+α2+2, . . . ,

xi+|α|+k−1) 1i ζ |α|

= Px,f (1, ζ, ζ, · · · , ζ)

Applying Theorem 5.3 on Px,f (1, ζ, ζ, . . . , ζ), we have

SWx,w(ζ)

=

1

(1− δ)k
∑

α∈Zk−1
≥0

|α|≤n−k

n−k−|α|∑
i=0

Ey∼Delδ(x)

[
f(yi,yi+α1+1, . . . ,

yi+|α|+k−1)
]
·
(
ζ − δ
1− δ

)|α|

=

1

(1− δ)k
∑

α∈Zk−1
≥0

|α|≤n−k

Ey∼Delδ(x)

[
#(w0 ∗α1 w1 ∗α2 w2 · · ·

wk−2 ∗αk−1 wk−1, y)
]
·
(
ζ − δ
1− δ

)|α|
where the last step follows by linearity of expectation.
This concludes the proof of Theorem 5.2.

We now prove Theorem 5.3. The high-level idea
is to relate the expectation of f over traces of x
drawn from the deletion channel to partial derivatives of
polynomial Px,f at ~δ, and then apply Taylor’s expansion
to Px,f at the point ~δ.

Claim 5.1 Let β ∈ Zk≥0 with |β| ≤ n− k. We have

Ey∼Delδ(x)

[
f(yβ1

, . . . ,yβ1+···+βk+(k−1))
]

= (1− δ)k · (1− δ)|β|

β!
·DβPx,f (~δ ).

To get some intuition, consider the special case of
k = 1 (so Px,f is univariate) and f = id. Then it is
straightforward to verify that

Ey∼Delδ(x)

[
y0

]
= (1− δ)

n−1∑
i=0

xiδ
i = (1− δ) · Px,id(δ),

and

Ey∼Delδ(x)

[
y1

]
= (1− δ)

n−1∑
i=1

xi

(
i

1

)
(1− δ)δi−1

= (1− δ)2
n−1∑
i=1

xiiδ
i−1

= (1− δ)2 ·D1Px,id(δ).

Proof. (Proof of Claim 5.1) For a fixed γ ∈ Zk≥0 with
|γ| ≤ n− k, we write

γ → β, or equivalently (γ1, γ2, . . . , γk)→ (β1, β2, . . . , βk),

to denote the event that the (γ1, γ1 + γ2 + 1, . . . , γ1 +
· · · + γk + (k − 1)) positions of x become the (β1, β1 +
β2 + 1, . . . , β1 + · · · + βk + (k − 1)) positions of
y ∼ Delδ(x) respectively. For this to occur, each of
xγ1 , xγ1+γ2+1, . . . , xγ1+···+γk+(k−1) must be present in

y, which happens with probability (1 − δ)k. Further,
for each xγi to become yβi , exactly βi out of the γi bits
between (and including) positions γ1 + · · ·+γi−1 + i and
γ1 + · · · + γi + (i − 1) of x must be retained. So, the
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probability of this event is

Pr[γ → β]

(5.2)

= (1− δ)k
k∏
i=1

(
γi
βi

)
(1− δ)βiδγi−βi

= (1− δ)k
k∏
i=1

γi(γi − 1) · · · (γi − βi + 1)

βi!
(1− δ)βiδγi−βi

=

(1− δ)k ·

(
k∏
i=1

(1− δ)βi
βi!

)
·
k∏
i=1

(
γi(γi − 1) · · ·

(γi − βi + 1) · δγi−βi
)

= (1− δ)k · (1− δ)|β|

β!
·
k∏
i=1

dβi

dδβi
δγi .

As a result, we have that

Ey∼Delδ(x)

[
f(yβ1 , . . . ,yβ1+···+βk+(k−1))

]
=

∑
|γ|≤n−k

f(xγ1 , . . . , xγ1+···+γk+(k−1)) ·Pr[γ → β]

=

(1− δ)k · (1− δ)|β|

β!

∑
|γ|≤n−k

f(xγ1 , . . . ,

xγ1+···+γk+(k−1)) ·
k∏
i=1

dβi

dδβi
δγi

(Equation (5.2))

= (1− δ)k · (1− δ)|β|

β!
·DβPx,f (~δ ).

This finishes the proof of Claim 5.1.

Proof. (Proof of Theorem 5.3) Since Px,f is a polyno-
mial of degree at most n−k, applying Taylor’s expansion
to Px,f at the point ~δ and using Claim 5.1, we get that

(1− δ)k · Px,f (ξ)

= (1− δ)k
∑

|β|≤n−k

DβPx,f (~δ )

β!
· (ξ − ~δ)β

=

∑
|β|≤n−k

Ey∼Delδ(x)

[
f(yβ1 , . . . ,

yβ1+···+βk+k−1)
]
·

(
ξ − ~δ
1− δ

)β
.

6 Multiplicity′large-δ: An algorithm for deletion
rate δ < 1

In this section we prove a weaker version of Theorem 4.1,
giving an algorithm that works for any deletion rate
δ < 1 but has quasipolynomial running time and sample
complexity when k ≈ log n (as will be the case in our
ultimate application):

Theorem 6.1 Let 0 < τ, δ < 1. There is an
algorithm Multiplicity′large-δ which takes as input

a string w ∈ {0, 1}k and access to independent
traces of an unknown source string x ∈ {0, 1}n.

Multiplicity′large-δ runs in
(
n1/(1−δ)

1−δ

)O(k)

log
(

1
τ

)
time

and uses
(
n1/(1−δ)

1−δ

)O(k)

log
(

1
τ

)
many traces from

Delδ(x), and has the following property: For any un-
known source string x ∈ {0, 1}n, with probability at
least 1−τ the output of Multiplicity′large-δ is #(w, x),
the multiplicity of w in subword(x, k) (equivalently, the
value SWx,w(0)).

Looking ahead, in Section 7 we will build on the
proof of Theorem 6.1 to give a stronger version that has
polynomial running time and sample complexity when
k ≈ log n.

The following result is central to our analysis.
Informally, it says that if q is a polynomial with “not-
too-large” coefficients and a constant term which is
bounded away from SWx,w(0) by at least 1/2, then q
must “differ noticeably” from SWx,w over a particular
interval. (Looking ahead, for our purposes it is crucially
important that this interval corresponds to a range of
deletion probabilities for which it is easy to estimate the
polynomial’s value given access to traces drawn from
Delδ(x).)

Theorem 6.2 Fix strings x ∈ {0, 1}n, w ∈ {0, 1}k for

some k ∈ [n]. Let q(z) =
∑n−k
`=0 q` z

` be any polynomial
such that |SWx,w(0)− q(0)| ≥ 1/2, and 0 ≤ q` ≤ nk for
all ` ∈ {0, 1, · · · , n− k}. Then

sup
ζ∈[δ,(δ+1)/2]

∣∣SWx,w(ζ)− q(ζ)
∣∣ ≥ n−O( k

1−δ

)
(6.3)

for any δ ∈ (0, 1).

Theorem 6.2 is an easy consequence of the following
more general theorem:

Theorem 6.3 Let 1 ≤ n ≤ m. Let p(z) =
∑n
`=0 p` z

`

be a polynomial of degree at most n with real coefficients
such that |p0| ≥ 1/2, and |p`| ≤ m for all `. Then we
have

sup
ζ∈[δ,(δ+1)/2]

∣∣p(ζ)
∣∣ ≥ m−O(1/(1−δ))(6.4)
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for any δ ∈ (0, 1).

To obtain Theorem 6.2 from Theorem 6.3, set
p = SWx,w − q. By the condition of Theorem 6.2
we have that |p0| = |SWx,w(0) − q0| ≥ 1/2. Writing
(SWx,w)` for the degree-` coefficient of SWx,w, from
the discussion following Definition 3 it is immediate
that 0 ≤ (SWx,w)` ≤

(
n
k

)
≤ nk, and hence |p`| =

|(SWx,w)` − q`| ≤ nk. Thus we can invoke Theorem 6.3
with m = nk to obtain Theorem 6.2.

In Section 6.1 we present and analyze the algorithm
Multiplicity′large-δ (which is based on linear program-
ming) and prove Theorem 6.1 assuming Theorem 6.2.
The proof of Theorem 6.3, which is based on complex
analysis, is given in Section 6.2.

6.1 Proof of Theorem 6.1 assuming Theo-
rem 6.2

6.1.1 Estimating SWx,w(δ′) for δ′ ≥ δ The fol-
lowing easy lemma gives an unbiased estimator for
SWx,w(δ′), for all δ′ ≥ δ, given traces from Delδ(x).

Lemma 6.1 Let x ∈ {0, 1}n, w ∈ {0, 1}k and let
ε > 0. Then, given traces y ∼ Delδ(x), there exists an
algorithm, which for any δ′ ∈ [δ, 1], evaluates SWx,w(δ′)
up to error ±ε with success probability at least 1−τ . The
algorithm takes

nO(1) ·
(

1

1− δ′

)O(k)

· 1

ε2
· log

(
1

τ

)
many traces and running time.

Proof. First of all, observe that given y ∼ Delδ(x),
we can sample y ∼ Delδ′(x) for any δ′ ≥ δ with no
overhead. The algorithm simply draws

s = nO(1) ·
(

1

1− δ′

)O(k)

· 1

ε2
· log

(
1

τ

)
traces y1, · · · ,ys ∼ Delδ′(x), and returns the estimator

1

s(1− δ′)k
s∑
j=1

#(w,yj).

Correctness. Observe that the expected number
of w in a randomly trace y ∼ Delδ′(x) is given by

E
y∼Delδ′ (x)

[#(w,y)]

=
∑

α∈Zk−1
≥0

|α|≤n−k

#(w0 ∗α1 w1 ∗α2 w2 · · ·

wk−2 ∗αk−1 wk−1, x) · δ′|α| · (1− δ′)k.

This follows from the fact that every occurrence of w as
a subword of trace y can be uniquely identified with a
subsequence (i1 ≤ . . . ≤ ik) such that (i) xi1 = w1∧. . .∧
xik = wk. (ii) positions i1, . . . , ik are not deleted in y.
(iii) every position in [i1, . . . , ik] \ {i1, . . . , ik} is deleted
in the trace y. However, by Definition 3, it follows that

E
y∼Delδ′ (x)

[#(w,y)] = SWx,w(δ′) · (1− δ′)k.(6.5)

Now for any y ∼ Delδ′(x), #(w,y) is an integer
between 0 and n. So, the output is an estimate of
Ey∼Delδ′ (x)[#(w,y)]/(1 − δ′)k up to ±ε. Using (6.5),
we get the claim.

Inputs

w ∈ {0, 1}k
access to independent traces drawn from Delδ(x) for an
unknown string x ∈ {0, 1}n
error parameter τ ∈ (0, 1)

Output
#(w, x) or “fail”

Algorithm description

1. Let κ := n−O(k/(1−δ)) be the RHS of Equation (6.3)
in Theorem 6.2, let ∆ := κ/(2nk+2), and let

S :=
{
δ, δ + ∆, δ + 2∆, . . . , δ + L∆

}
such that L is the largest integer with δ + L∆ ≤
(δ + 1)/2. (Note that |S| = O(1/∆).)

2. For each ζ ∈ S, compute the empirical estimate
ŜWx,w(ζ) of SWx,w(ζ) up to accuracy κ/5 with
correctness probability 1− τ/|S| using Lemma 6.1.
(We reuse traces from Delδ(x) for each ζ ∈ S.)

3. Set up a linear program as follows:

(a) Variables are q0, . . . , qn−k ∈ [0, nk].

(b) Constraints are: For each ζ ∈ S,∣∣∣∣∣
n−k∑
`=0

q`ζ
` − ŜWx,w(ζ)

∣∣∣∣∣ ≤ κ/5.
4. Return “fail” if the above linear program has no

solution.

5. Otherwise solve the linear program and return the
nearest integer to q0.

Figure 1: Description of the algorithm
Multiplicity′large-δ.
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6.1.2 The Multiplicity′large-δ algorithm
and its analysis We present the algorithm
Multiplicity′large-δ in Figure 1. For its correct-
ness we first observe that with probability at least
1− τ , we have that

for every ζ ∈ S,
∣∣∣ŜWx,w(ζ)− SWx,w(ζ)

∣∣∣ ≤ κ/5.
We finish the proof by showing that when this happens,
the linear program in lines 3(a) and 3(b) is feasible,
and furthermore, |q0 − SWx,w(0)| < 1/2 in any feasible
solution (q0, . . . , qn−k) (when this happens, the closest
integer to q0 is exactly SWx,w(0)).

To see that the linear program is feasible, we
let p0, . . . , pn−k denote the coefficients of SWx,w, so

SWx,w(ζ) =
∑n−k
`=0 p` ζ

`. From the discussion after
Theorem 6.3, every p` lies between 0 and nk. As a
result, p0, . . . , pn−k is a feasible solution to the linear
program because for every ζ ∈ S,∣∣∣∣∣
n−k∑
`=0

p`ζ
` − ŜWx,w(ζ)

∣∣∣∣∣ =
∣∣∣SWx,w(ζ)− ŜWx,w(ζ)

∣∣∣ ≤ κ/5.
Next we let q0, . . . , qn−k be any feasible solution

to the linear program and assume for a contradiction
that |q0 − SWx,w(0)| ≥ 1/2. Let q be the polynomial

q(ζ) =
∑n−k
`=0 q` ζ

`. Given that 0 ≤ q` ≤ nk for every
` (as required by the linear program), Theorem 6.2
implies (using the choice of κ in line 1 of the algorithm)
that

(6.6) sup
ζ∈[δ,(δ+1)/2]

∣∣SWx,w(ζ)− q(ζ)
∣∣ ≥ κ.

The following claim (with s = SWx,w − q and m = nk)
shows that there exists a ζ ∈ S such that∣∣SWx,w(ζ)− q(ζ)

∣∣ ≥ κ/2,
a contradiction to the assumption that q0, . . . , qn−k is a
feasible solution because∣∣∣∣∣

n−k∑
`=0

q`ζ
` − ŜWx,w(ζ)

∣∣∣∣∣
=
∣∣q(ζ)− ŜWx,w(ζ)

∣∣
≥
∣∣q(ζ)− SWx,w(ζ)

∣∣− ∣∣SWx,w(ζ)− ŜWx,w(ζ)
∣∣

> κ/5.

Claim 6.2 (Searching over S suffices) Let s(t) =
s0 + s1t + · · · + snt

n be a polynomial such that every
coefficient s` has |s`| ≤ m. Suppose |s(t0)| ≥ κ for
some t0 ∈ [δ, (δ + 1)/2]. Then there exists an integer k
such that t′ = δ + k∆ ∈ [δ, (δ + 1)/2] and |s(t′)| ≥ κ/2,
where ∆ = κ/(2mn2).

Proof. Let k be an integer such that t′ := δ + k∆ ∈
[δ, (δ + 1)/2] and |t′ − t0| ≤ ∆. Since |t0| ≤ 1 and
|t′| ≤ 1, for each ` ∈ {1, . . . n} we have that

|t′` − t`0| ≤ |t′ − t0| ·
`−1∑
i=0

∣∣t′it`−1−i
0

∣∣ ≤ ∆` ≤ ∆n.

Since |s`| ≤ m and ∆ = κ/(2mn2), we have∣∣s`t′` − s`t`0∣∣ =
∣∣s`∣∣ · ∣∣t′` − t`0∣∣ ≤ mn∆ = κ/(2n).

Therefore

|s(t′)− s(t0)| ≤
n∑
`=1

∣∣s`t′` − s`t`0∣∣ ≤ κ/2.
It follows from the triangle inequality that |s(t′)| ≥
|s(t0)| − |s(t′)− s(t0)| ≥ κ/2.

We now analyze the complexity of the algorithm.
Note that for all ζ ∈ S, we have 1− ζ ≥ (1− δ)/2. By
Lemma 6.1, the sample complexity is

(6.7) nO(1) ·
(

2

1− δ

)O(k)

·
(

5

κ

)2

· log

(
|S|
τ

)
=

(
n1/(1−δ)

1− δ

)O(k)

log

(
1

τ

)
.

The running time of the algorithm is (6.7) multiplied
by |S| plus the time needed to solve the linear program.
The former can still be bounded by the same expression
on the RHS of (6.7) above. The latter can be bounded
by poly(n) multiplied by the number of bits needed to
describe the linear program, which can also be bounded
by the RHS of (6.7). This proves the claimed upper
bounds on the running time and sample complexity,
and concludes the proof of Theorem 6.1 assuming
Theorem 6.2.

6.2 Proof of Theorem 6.3 In this subsection we
prove Theorem 6.3. For convenience we define ρ :=
1 − δ ∈ (0, 1), and we restate the theorem below in
terms of ρ:

Restatement of Theorem 6.3: Let 1 ≤ n ≤ m. Let
p(z) =

∑n
i=0 piz

i be a polynomial of degree at most n
with real coefficients such that |p0| ≥ 1/2, and |pi| ≤ m
for all i. Then for any ρ ∈ (0, 1),

sup
ζ∈[1−ρ,1−ρ/2]

∣∣p(ζ)
∣∣ ≥ m−O(1/ρ).

The proof uses the Hadamard three-circle theorem,
along with other standard results in complex analysis.
Consider the mapping w : C→ C given by

w(z) = 1− 3ρ

4
+
ρ

8

(
z +

1

z

)
.
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We observe that the map w(z) is meromorphic with only
one pole at z = 0. Define radii

r1 = 1; r2 = 2; r3 = 4.

For i = 1, 2, 3, let Ci ⊂ C be the circle centered at the
origin with radius ri. Consider the map f : C → C

given by f(z) = p(w(z)). Like w(·), f is meromorphic
with only one pole at z = 0. The idea of the proof is to
use the Hadamard three-circle theorem [24] on f , which
tells us that

(6.8) 2 log

(
sup
z∈C2

|f(z)|
)

≤ log

(
sup
z∈C1

|f(z)|
)

+ log

(
sup
z∈C3

|f(z)|
)
.

Now, we will analyze each term in the above in-
equality. We first record some facts about the behaviour
of w over each circle Ci that are immediate from the def-
inition:

Fact 6.1 Let w,C1, C2 and C3 be as defined above.

(1) When z ranges over C1, w(z) ranges over the real
line segment [1− ρ, 1− ρ/2].

(2) When z ranges over C2, w(z) ranges over the
ellipse E2 in the complex plane which is centered
at the real value 1 − 3ρ/4 and is the locus of all
points z = x+ iy satisfying(

x− (1− 3ρ/4)

5ρ/16

)2

+

(
y

3ρ/16

)2

= 1.

(3) Similarly, when z ∈ C3, w(z) ranges over the
ellipse E3 in the complex plane which is centered
at the real value 1 − 3ρ/4 and is the locus of all
points z = x+ iy satisfying(

x− (1− 3ρ/4)

17ρ/32

)2

+

(
y

15ρ/32

)2

= 1.

Moreover, the ellipse E3 is completely contained in
the unit disk B1(0).

Equation (6.8) will be useful to us because of
the following simple claim, which is immediate from
Fact 6.1, Item (1):

Claim 6.3

sup
z∈C1

|f(z)| = sup
ζ∈[1−ρ,1−ρ/2]

|p(ζ)|.

Given Equation (6.8) and Claim 6.3, in order to
lower bound supζ∈[1−ρ,1−ρ/2] |p(ζ)|, it suffices to upper
bound supz∈C3

|f(z)| and to lower bound supz∈C2
|f(z)|.

We do this in the following claims:

Claim 6.4

sup
z∈C3

|f(z)| ≤ m · (n+ 1).

Proof. By Fact 6.1, Item (3) above, we have E3 ⊆ B1(0)
and so

sup
z∈C3

|f(z)| = sup
z∈E3

|p(z)| ≤ sup
z∈B1(0)

|p(z)|,

The bounds on the coefficients of p immediately imply
that supz∈B1(0) |p(z)| ≤ m · (n+ 1).

Claim 6.5

sup
z∈C2

|f(z)| ≥ m−O(1/ρ).

Proof. Applying Jensen’s formula [25] to p on the closed
origin-centered disk of radius 1− 3ρ/4, we get that

(6.9) Ez[ln |p(z)|] ≥ ln |p(0)| ≥ ln(1/2) = − ln 2.

Here z is taken to be a uniform random point on the
circle C of radius 1− 3ρ/4 centered at the origin.

Now, consider the arc

A = {z ∈ C : |z| = 1− 3ρ/4 and | arg(z)| ≤ 3ρ/16}.

Let cmax,A = maxz∈A |p(z)| and θ∗ = 3ρ/16 (note that
θ∗/π is the fraction of C that lies in A). Now since
|p(z)| ≤ m(n+ 1) for all z ∈ B1−3ρ/4(0) \A (because of
the coefficient bound on p), we have by Equation (6.9)
that

− ln 2 ≤
(

1− θ∗

π

)
ln (m(n+ 1)) +

θ∗

π
· ln cmax,A

≤ ln (m(n+ 1)) +
θ∗

π
· ln cmax,A.

Thus,

ln cmax,A ≥ −
π · ln (2m(n+ 1))

θ∗
,

and hence

cmax,A ≥ (2m(n+ 1))
−π/θ∗

.

Next, we observe that the arc A is entirely in the
interior of the ellipse E2. (To see this, observe that
the center of the arc is the real value 1 − 3ρ/4, which
coincides with the center of the ellipse, and that every
point on the arc is within distance less than 3ρ/16 from
the center of the arc (ellipse). Since 3ρ/16 is the length
of the semi-minor axis of the ellipse, it follows that every
point in the arc is within the ellipse.) We further recall
that m ≥ n and that θ∗ = Θ(ρ). Using these facts along
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with the maximum modulus principle and Fact 6.1 Item
(2), we conclude that

sup
z∈C2

|f(z)| = sup
z∈E2

|p(z)| ≥ sup
z∈A
|p(z)|

= cmax,A ≥ m−O(1/ρ),

and Claim 6.5 is proved.

Proof. (Proof of Theorem 6.3) We combine Claims 6.3
to 6.5 in Equation (6.8) to get that

log sup
ζ∈[1−ρ,1−ρ/2]

|p(ζ)| = log sup
z∈C1

|f(z)|

≥ −O(1/ρ) logm− log(m(n+ 1))

≥ −O(1/ρ) logm.

Exponentiating both sides finishes the proof of Theo-
rem 6.3.

7 Improved algorithms: Proof of Theorem 4.1

In this section we give improved algorithms strengthen-
ing the quantitative bounds given in Theorem 5.1 and
Theorem 6.1 and thereby complete the proof of Theo-
rem 4.1.

First we describe the main ideas underlying the
improved algorithms. Both algorithms benefit from the
same insights, so we will just describe the improvement
of Theorem 6.1 in this overview. Recall the definition
of the subword polynomial SWx,w from Definition 3:

SWx,w(ζ)

:=
∑

α∈Zk−1
≥0

|α|≤n−k

# (w0 ∗α1 w1 ∗α2 w2 · · ·wk−2 ∗αk−1 wk−1, x)·ζ |α|.

Grouping terms of the same degree together, we can
write it as SWx,w(ζ) =

∑
`≥0 γ` ζ

`, where

γ` =
∑

α∈Zk−1
≥0

|α|=`

# (w0 ∗α1 w1 ∗α2 w2 . . . wk−2 ∗αk−1 wk−1, x)

is the degree-` coefficient, for each 0 ≤ ` ≤ n−k. In the
proofs of Corollary 5.1 in Section 5 and Theorem 6.2
in Section 6, we bounded these coefficients uniformly
by m = nk. The first insight is that in fact a sharper
bound holds for these coefficients: specifically, we have

(7.10) 0 ≤ γ` ≤ m` := n

(
`+ k − 2

k − 2

)
.

This is simply because there are at most n choices
for the position of the first character w0 in x, and

there are
(
`+k−2
k−2

)
ways to choose a tuple of non-

negative integers α1, · · · , αk−1 that sum to `. The
second insight is that since our approaches only involve
evaluating SWx,w(ζ) on non-negative real inputs ζ that
are bounded below 1, we can exploit this improved
coefficient bound to truncate the high-degree portion
of the polynomial; working with the resulting (much)
lower-degree polynomial leads to an overall gain in
efficiency.

To explain this in more detail, we need the following
definition:

Definition 5 Let p(ζ) =
∑n
`=0 p` ζ

` be a univariate
polynomial of degree at most n. For d ∈ {0, 1, · · · , n},
we define the d-low-degree part of p (denoted as p≤d)
to be

p≤d(ζ) =
d∑
`=0

p` ζ
`.

Analogously, we define the d-high-degree part of p to be
p>d(ζ) :=

∑
`>d p` ζ

` = p(ζ)− p≤d(ζ).

Consider any polynomial q with a constant term
which is an integer different from SWx,w(0). In order
for q to be a polynomial that could possibly arise from
the k-subword deck of some string z ∈ {0, 1}n, it must
also have coefficients bounded by the right hand side
of Equation (7.10). Using these sharper bounds on the
coefficients, we show that there exists a threshold degree
d that is roughly2 O(k + log n) such that

� The d-low-degree part of the polynomials SWx,w

and q must differ by at least(
1

n

(
1− δ

2

)k)O(1/(1−δ))

(see Equation (7.16)) at some point in the interval
[δ, (δ + 1)/2]. This result is stronger than the
analogous ≈ n−O(k/(1−δ)) lower bound established
in Theorem 6.2, which leads to savings on both time
and sample complexity.

� The maximum value that the high-degree part of
such polynomials attains on the relevant interval
is negligible compared to the difference specified
above.

Combining these two facts enables us to carry out our
analysis just on the d-low-degree part, which has much
smaller coefficients and thereby admits a more efficient
algorithm.

2We ignore the dependence on δ for the overview here; see
(7.11) and (7.15) for exact choices of d.
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In Section 7.1, we implement these ideas to
strengthen Theorem 5.1 when δ < 1/2. In Section 7.2,
we do the same to derive a stronger analogue of Theo-
rem 6.2, which reduces the sample complexity of com-
puting #(w, x) for general δ < 1 significantly. Finally in
Section 7.3, we obtain an LP-based algorithm to com-
pute #(w, x) which is faster than the corresponding al-
gorithm in Section 6.1.

7.1 Improvement of Theorem 5.1 for deletion
rate δ < 1/2 In this subsection we strengthen Theo-
rem 5.1 for deletion rate δ < 1/2 as follows:

Theorem 7.1 Let 0 < δ < 1/2. There is an algo-
rithm Multiplicitysmall-δ which takes as input a string
w ∈ {0, 1}k, access to independent traces of an unknown
source string x ∈ {0, 1}n, and a parameter τ > 0.
Multiplicitysmall-δ draws poly(n) · (1/2 − δ)−O(k) ·
log(1/τ) traces from Delδ(x), runs in time poly(n) ·
(1/2−δ)−O(k) · log(1/τ), and has the following property:
For any unknown source string x ∈ {0, 1}n, with proba-
bility at least 1− τ the output of Multiplicitysmall-δ is
the multiplicity of w in subword(x, k) (i.e. the number
of occurrences of w as a subword of x).

Recall Theorem 5.2, which relates the subword
polynomial value at any point ζ ∈ C to traces drawn
from the deletion channel using Taylor series:

SWx,w(ζ)

=
1

(1− δ)k
∑

α∈Zk−1
≥0

|α|≤n−k

Ey∼Delδ(x)

[
#(w0 ∗α1 w1 ∗α2 w2 · · ·

wk−2 ∗αk−1 wk−1, y)
]
·
(
ζ − δ
1− δ

)|α|
.

As in Section 7.1, our goal is to evaluate SWx,w(0) =
#(w, x) up to error 1/3 in magnitude, and return the
integer nearest to our estimate. Let ξ = (ζ− δ)/(1− δ),
so that ζ = δ + ξ(1 − δ). Consider the polynomial p
defined as follows:

p(ξ) := (1− δ)k · SWx,w

(
δ + ξ(1− δ)

)
.

We have that SWx,w(0) = (1 − δ)−k p(−δ/(1 − δ)),
so estimating SWx,w(0) up to error ±1/3 is equivalent
to estimating p(−δ/(1 − δ)) up to error ±(1 − δ)k/3.
As 0 < δ < 1/2, we have 1 − δ > 1/2, and so it
suffices to estimate p(−δ/(1 − δ)) up to error 2−k/3.
Moreover, we have | − δ/(1 − δ)| = δ/(1 − δ) < 1. We
will use these observations to bound the contribution
of the high-degree-part of p. Let θ = 1/2 − δ, so that
δ/(1− δ) ≤ 2δ = 1− 2θ.

Lemma 7.1 Let δ < 1/2, and let p and θ be as above.
Then by setting

(7.11) d :=
C

θ

(
k ln

C

θ
+ lnn

)
with C = e2, we have

sup
|ξ|≤1−2θ

|p>d(ξ)| ≤ 0.1

2k
.

Before proving Lemma 7.1, we show that it implies
Theorem 7.1.

Proof. (Proof of Theorem 7.1 assuming Lemma 7.1)
Consider p≤d, the d-low-degree-part of p, where d is as
given by Lemma 7.1. For all ξ with |ξ| ≤ 1− 2θ,

|p(ξ)− p≤d(ξ)| = |p>d(ξ)| ≤ 0.1

2k
.

So, by the triangle inequality, in order to estimate
p(−δ/(1−δ)) up to error ±2−k/3, it suffices to estimate
p≤d(−δ/(1− δ)) up to error ±2−k/5.

Let Sd be the set {α ∈ Zk−1
≥0 : |α| ≤ d}. As in

Section 5.1, let

Eα := E
y∼Delδ(x)

[
#(w0∗α1w1∗α2w2 · · ·wk−2∗αk−1wk−1, y)

]
for each α ∈ Sd. (Note that by definition, p≤d only
includes terms Eα for |α| ≤ d.) Then

p≤d(ξ) =
∑
α∈Sd

Eα · ξ|α|.

Each Eα is between 0 and n and using the same
argument as that following Equation (7.10), we have

|Sd| = M :=
d∑
`=0

(
`+ k − 2

k − 2

)
=

(
d+ k − 1

k − 1

)
≤
(
d+ k

k

)

and we use the following claim to bound the right hand
side:

Claim 7.2 Let d = C
θ (k ln C

θ + lnn) for some θ ∈ (0, 1]
and C ≥ e2. Then we have(

d+ k

k

)
≤ n ·

(
C

θ

)3k

.

Proof. Using d ≥ k and the approximation k! ≥
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√
2πk(k/e)k ≥ (k/e)k, we have(

d+ k

k

)
≤ (2d)k

(k/e)k
= exp

(
k ln

2ed

k

)
≤ exp

(
k

(
2 + ln

C

θ
+ ln

(
ln
C

θ
+

lnn

k

)))
≤ exp

(
k

(
2 + ln

C

θ
+ ln

C

θ
+

lnn

k

))
(7.12)

≤ n ·
(
C

θ

)3k

,(7.13)

where (7.12) used ln a ≤ a, (7.13) used 2 < ln(C/θ)
since C ≥ e2.

Plugging in Claim 7.2, we have M ≤ n/θO(k) using
θ < 1/2. The algorithm just draws s (to be specified)
traces y ∼ Delδ(x), computes an empirical estimate Ẽα
of Eα for each α ∈ Sd so that∣∣∣Ẽα − Eα∣∣∣ ≤ 0.2

2kM
.

with probability at least 1− τ . This can be achieved by
setting the number of traces to be

s := O
((
M22k

)2) · log

(
M

τ

)
=
( n
θk

)O(1)

· log
1

τ

and a simple application of a Chernoff bound and a
union bound. When this happens, it follows from the
fact that | − δ/(1− δ)| < 1 that

∑
α∈Sd

Ẽα ·
(
−δ

1− δ

)|α|
is an estimate that deviates by at most 2−k/5. Com-
bined with the observations at the beginning of the
proof, this implies that we can estimate SWx,w(0) =
#(w, x) up to error ±1/3, and hence our output (the
nearest integer to our estimate of SWx,w(0)) is #(w, x)
with probability at least 1− τ .

The runtime is governed by the time required to
compute estimates Ẽα. We can bound it by

s · nO(1) · |Sd| ≤
( n
θk

)O(1)

· log
1

τ

= nO(1) ·
(

1

1/2− δ

)O(k)

· log
1

τ
.

This finishes the proof of the theorem.

Proof. (Proof of Lemma 7.1) We are interested in
|p>d(ξ)| over |ξ| ≤ 1 − 2θ, which is trivially bounded

by

|p>d(ξ)| ≤
n−k∑
`=d+1

n

(
`+ k − 2

k − 2

)
· (1− 2θ)`

≤
n−k∑
`=d

n

(
`+ k

k

)
· (1− 2θ)`.

First, we show that terms in the sum on the right hand
side above decreases with ` so it suffices to bound the
term with ` = d multiplied by n. To see this, observe
that∣∣∣∣∣
(
`+k
k

)(
`+k−1
k

) · (1− 2θ)

∣∣∣∣∣ =
`+ k

`
· (1− 2θ) ≤ 1 +

k

`
− 2θ < 1,

whenever ` > k/2θ, which holds for all ` > d given our
choice of d. So,

sup
|ξ|≤1−2θ

∣∣p>d(ξ)∣∣ ≤ n2

(
d+ k

k

)
(1− 2θ)

d

≤ n2

(
d+ k

k

)
e−2θd.

We have e−2θd = n−2C · (C/θ)−2Ck, and so plugging in
Claim 7.2 we have

n2 ·
(
n ·
(
C/θ

)3k) · e−2θd ≤ n3−2C ·
(
C/θ

)(3−2C)k ≤ 1

n2k

because 3− 2C ≤ −1 when C = e2. This concludes the
proof of the lemma.

7.2 Improvement of Theorem 6.2 for deletion
rate δ < 1 Our main technical result is the following,
which is a strengthening of Theorem 6.2:

Theorem 7.2 Fix x ∈ {0, 1}n and w ∈ {0, 1}k with

k ≤ n. Let q(z) =
∑n−k
`=0 q` z

` be any polynomial such
that |SWx,w(0) − q(0)| ≥ 1/2 and 0 ≤ q` ≤ m` for all
` ∈ {0, 1, · · · , n− k}. Then for any δ ∈ (0, 1),

sup
ζ∈[δ,(δ+1)/2]

∣∣SWx,w(ζ)− q(ζ)
∣∣ ≥ ( 1

n

(
1− δ

2

)k)O( 1
1−δ

)
.

(7.14)

Let p(z) = SWx,w(z) − q(z) =
∑n−k
`=0 p` z

`. Let
c > 0 be the constant hidden in the exponent of the RHS
of Equation (6.4) in Theorem 6.3. Let θ = (1 − δ)2/2.
We will choose the threshold on the degree to be

(7.15) d :=
C

θ

(
k ln

C

θ
+ lnn

)
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where C = e2 max(1, c). For this d, consider the d-low-
degree part p≤d. This is a polynomial of degree at most
d with |p≤d(0)| ≥ 1/2 and the degree-` coefficient is
bounded by

|p≤d` | ≤ n
(
`+ k − 2

k − 2

)
≤ n

(
d+ k − 2

k − 2

)
≤ n

(
d+ k

k

)
for all ` ≤ d. We invoke Theorem 6.3 on p≤d to conclude
that

(7.16) sup
ζ∈[δ,(δ+1)/2]

∣∣p≤d(ζ)
∣∣ ≥ (n(d+ k

k

))−c/(1−δ)
.

The following lemma upper bounds the contribution of
the high-degree part p>d of p:

Lemma 7.3 Let p and d be as above. Then
(7.17)

sup
ζ∈[δ,(δ+1)/2]

∣∣p>d(ζ)
∣∣ ≤ 1

n
·
(
n

(
d+ k

k

))−c/(1−δ)
.

Before proving this lemma, we show that it implies
Theorem 7.2.

Proof. (Proof of Theorem 7.2 using Lemma 7.3) Since
p = p≤d + p>d, we use Lemma 7.3 and (7.16) to get

sup
ζ∈[δ,(δ+1)/2]

|p(ζ)| ≥ 0.9 ·
(
n

(
d+ k

k

))−c/(1−δ)
.

Plugging in Claim 7.2 with our choice of d, we have

sup
ζ∈[δ,(δ+1)/2]

|p(ζ)| ≥ 0.9

(
n

(
d+ k

k

))−c/(1−δ)

≥

(
1

n

(
1− δ

2

)k)O(1/(1−δ))

,

which concludes the proof of Theorem 7.2 using
Lemma 7.3.

Proof. (Proof of Lemma 7.3) This proof is similar to
that of Lemma 7.1. First we show that the maximum
possible contribution to p>d(ζ), when ζ ∈ [δ, (δ + 1)/2],
arises from the degree-d term in p:∣∣∣∣∣

(
`+k
k

)(
`+k−1
k

) · ζ∣∣∣∣∣ =
`+ k

`
· |ζ|

≤
(

1 +
k

`

)(
1− 1− δ

2

)
≤ 1 +

k

`
− 1− δ

2
< 1

whenever ` > 2k/(1− δ), which holds for all ` > d. So,

sup
|ζ|≤(δ+1)/2

∣∣p>d(ζ)
∣∣ ≤ n2

(
d+ k

k

)(
1− 1− δ

2

)d
≤ n2

(
d+ k

k

)
· exp

(
− (1− δ)d

2

)
.

It suffices to show that

n2

(
d+ k

k

)
· exp

(
− (1− δ)d

2

)
≤ 1

n

(
n

(
d+ k

k

))− c
1−δ

or equivalently,

n3+ 2c
1−δ ·

(
d+ k

k

)1+ c
1−δ

· exp

(
− (1− δ)d

2

)
≤ 1.

(7.18)

By our choice of d we have

exp

(
− (1− δ)d

2

)
≤ n−

C
1−δ ·

(
C/θ

)− kC
1−δ .

Using Claim 7.2 again, the left hand side of Equa-
tion (7.18) is at most

n3+ 2c
1−δ−

C
1−δ ·

(
C/θ

)k(3+ 3c
1−δ−

C
1−δ ) ≤ 1

because 3+ 3c
1−δ −

C
1−δ ≤ 0 when C = e2 max(1, c). This

concludes the proof of the lemma.

7.3 The algorithm of Theorem 4.1 Armed with
Theorem 7.2 in place of Theorem 6.2, the algorithm
Multiplicitylarge-δ giving Theorem 4.1 and its analysis
are very similar to the algorithm Multiplicity′large-δ

and its analysis given earlier in Section 6.1; we only
indicate the differences here.

The algorithm changes in the following ways:

� In Line 1 of the algorithm, we now set κ to be the
RHS of Equation (7.14):

κ :=

(
1

n

(
1− δ

2

)k)O(1/(1−δ))

.

With this choice of κ, it follows from the proof of
Theorem 7.2 that the RHS of Equation (7.17) in
Lemma 7.3 can be bounded from above by 0.01κ.

� Later in Line 1, we now set

∆ :=
κ

2d2md
=

κ

2d2 · n
(
d+k−2
k−2

) ,
where d is as given in Equation (7.15) (the idea is
that now we are using the sharper coefficient bound
m` ≤ md given by Equation (7.10) rather than the
cruder nk bound used earlier).
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� The coefficient bound on q0, . . . , qn−k in Line 3(a)
for the linear program is now q` ∈ [0,m`] for all ` ∈
{0, 1, · · · , n − k} rather than q0, . . . , qn−k ∈ [0, nk]
as earlier.

With these changes to the algorithm, most of the
analysis goes through unchanged. As before, we observe
that with probability at least 1− τ , we have

for every ζ ∈ S,
∣∣∣ŜWx,w(ζ)− SWx,w(ζ)

∣∣∣ ≤ κ/5.
We assume this happens henceforth. The solution which
sets q` = (SWx,w)`, the degree-` coefficient of SWx,w,
for all `, is clearly feasible.

Now we show that every feasible solution
q0, · · · , qn−k to the linear program must satisfy |q0 −
SWx,w(0)| < 1/2; this is the only part of the anal-
ysis that is somewhat different. Suppose for a con-
tradiction that q0, · · · , qn−k is a feasible solution with
|q0 − SWx,w(0)| ≥ 1/2. Let q(ζ) =

∑
` q` ζ

` and de-
fine the polynomial p = SWx,w − q, with coefficients
p`. We invoke Theorem 7.2 to get that |p(ζ∗)| ≥ κ for
some ζ∗ ∈ [δ, (δ+1)/2]. By Lemma 7.3 (and the remark
below the choice of κ),

(7.19)
∣∣p(ζ)− p≤d(ζ)

∣∣ =
∣∣p>d(ζ)

∣∣ ≤ 0.01κ

for all ζ ∈ [δ, (δ+1)/2]. As a result, we have |p≤d(ζ∗)| ≥
0.99κ. Applying Claim 6.2 with s = p≤d, n = d,
t0 = ζ∗, m = md and our choice of ∆, there exists
a ζ ′ ∈ S such that |p≤d(ζ ′)| ≥ 0.495κ and thus,
|p(ζ ′)| ≥ |p≤d(ζ ′)|−|p>d(ζ ′)| ≥ 0.485κ. Hence, recalling
that p = SWx,w − q, we have∣∣∣ŜWx,w(ζ ′)− q(ζ ′)

∣∣∣ ≥ |p(ζ ′)| − ∣∣∣ŜWx,w(ζ ′)− SWx,w(ζ ′)
∣∣∣

≥ 0.285κ > κ/5.

As ζ ′ ∈ S, the solution q violates a constraint of the LP.
This concludes the proof of correctness.

Now we analyze the sample complexity of the
algorithm. We have

|S| = O(1/∆) =

(
n

(
2

1− δ

)k)O(1/(1−δ))

,

using the bounds established in Section 7.2. Moreover,
all points ζ ∈ S satisfy 1 − ζ ≥ (1 − δ)/2. So, by
Lemma 6.1, the sample complexity is at most

s =
nO(1)

κ2

(
2

1− δ

)O(k)

log

(
|S|
τ

)
(7.20)

=

(
n

(
2

1− δ

)k)O(1/(1−δ))

log
1

τ
.(7.21)

The running time is dominated by the time required
to compute ŜW x,w(ζ) for each ζ ∈ S. The running
time for each ζ can be bounded by (7.20) and the same
expression can be used to bound the overall running
time given the bound on |S| above.
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