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Abstract

In this paper, we introduce a new deep learning framework for discovering the phase-field
models from existing image data. The new framework embraces the approximation power
of physics informed neural networks (PINNs) and the computational efficiency of the
pseudo-spectral methods, which we named pseudo-spectral PINN or SPINN. Unlike the
baseline PINN, the pseudo-spectral PINN has several advantages. First of all, it requires
less training data. A minimum of two temporal snapshots with uniform spatial resolution
would be adequate. Secondly, it is computationally efficient, as the pseudo-spectral method
is used for spatial discretization. Thirdly, it requires less trainable parameters compared
with the baseline PINN, which significantly simplifies the training process and potentially
assures fewer local minima or saddle points. We illustrate the effectiveness of pseudo-spec-
tral PINN through several numerical examples. The newly proposed pseudo-spectral PINN
is rather general, and it can be readily applied to discover other PDE-based models from
image data.

Keywords Phase field - Linear scheme - Cahn-Hilliard equation - Physics informed neural
network

Mathematics Subject Classification 65M32

1 Introduction

The phase-field models have been widely used for investigating multiphase problems.
Among them, the well-known models are the Allen-Cahn (AC) equation and the Cahn-
Hilliard (CH) equation [3]. In general, most acknowledged phase field models are ther-
modynamically consistent, i.e., they satisfy the first and second thermodynamic laws. In
scenarios when the temperature is assumed constant, the Helmholtz free energy is non-
increasing in time. In isothermal case, the thermodynamically consistent phase-field mod-
els can usually be written in a generic gradient flow form
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with proper initial values and boundary conditions. Here ¢ represents the state variables
(or phase-field variables) and E is the Helmholtz free energy, and G is a negative semidefi-
nite operator known as the mobility operator. In this paper, we consider the free energy

62 2
E= [ [S1VoF +F@]ax ®)
Q

with € a model parameter to control the interfacial thickness. Here the first part in (2) is the
conformation entropy and F is the bulk free energy. The choice of the bulk potential F(¢)
depends on the material properties. The double-well potential and the Flory-Huggins free
energy are the common choices. We use f(¢p) = F/(¢) to denote the bulk chemical poten-
tial. Specifically, if we choose the mobility operator as G = —M, with M > 0 a constant, it
ends up with the AC equation

0, = M(*Ap — £ (). 3)

Similarly, if we pick the mobility operator as G = MA, with M > 0 a constant, it gives the
CH equation

dp = MA(=€>A¢ + (). @)

Though there is a considerable amount of work on solving the phase-field models [6, 7,
17-19, 23], there is less achievement on solving the inverse problem, i.e., discovering
the phase-field models from data. In the classical approach, the PDE models are usually
derived based on empirical observation, i.e., the PDE models with free parameters are
introduced first, and the free parameters are fitted with data afterward. In this paper, we
introduce a novel method using the physics informed neural network (PINN) approach,
where the model would be directly learned from data. In particular, we assume the bulk
potential F(¢) is unknown, and we will discover it via learning from the existing data using
the deep neural network (DNN).

The DNN has been widely used to investigate problems in various fields. Mathemati-
cally, the feed-forward neural network could be defined as compositions of nonlinear func-
tions. Given an input x € R™, with n, the dimension of the input, and denote the output of
the [-th layer with a dimension n, as a/l € R™, which is the input for the (I + 1) layer. In
general, we can define the neural network with L-layers as [9]

all =x e R™,

[k

a =0'(W[k]a[k_” +b“‘]> ER™, fork=23, L )

d[L+l] =W[L+1](1[L] + b[L+l]’

where WK € R™*-1 and bM1 € R™ denote the weights and biases at layer k, respectively,
o denotes the activation function, and al*+!is the final output of the neural network. Many
interesting works have been published in terms of solving or discovery of PDEs [1, 2, 5, 8§,
10, 12-15, 20, 21, 24]. Here we briefly point out some relevant work of PDE discovery with
DNN or machine learning method. In [15], the authors use the undetermined coefficient
approach. They assume the PDE model is a linear combination of a few known terms with
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the coefficients unknown. Then they fit the coefficients from data using the PINN. Based on
the format of known data, they propose two approaches for calculating the loss function. In
[16], the authors use the sparse regression approach. They assume the PDE model is a linear
combination of many terms from a predefined dictionary, and use the sparse regularization
technique to rule out most of the terms. Thus, after fitting with the data, only a few terms
with non-zero coefficients will be left and the model is discovered. In [11], the authors intro-
duce a feed-forward DNN to predict the PDE dynamics and uncover the underlying PDE
model (in a black box form) simultaneously.

However, in most of the existing work in literature, there is a strong assumption on the data
format and sampling strategies. For instance, most existing PDE discovery strategies request
well-sampled data across temporal and spatial domains. Also, they usually assume the col-
lected data at different time slots are from a single time sequence. In reality, especially from
lab experiments, the data are usually sampled as snapshots (images) from various time slots,
and the images might have limited spatial and temporal resolution. The major goal of this
paper is to address the problem of PDE discovery with limited data or image snapshots. We
introduce the pseudo-spectral PINN method that provides a handy approach to deal with data
that are provided as image snapshots. Though we only focus on the discovery of phase-field
models, the proposed approach is general that can be easily applied to some other types of
PDE models.

The rest of this paper is organized as follows. In Sect. 2, we introduce some notations and
set up the phase-field PDE discovery problem. In Sect. 3, we introduce the SPINNs by intro-
ducing the deep network structures and the various definitions of the loss function. Afterward,
several examples are shown to demonstrate the approximation power of the pseudo-spectral
PINN in Sect. 4. A brief conclusion is drawn in the last section.

2 Problem Setup

For simplicity of notations, we introduce our idea with a generic example. Consider a rectan-
gular domain Q = [0, L,] X [O, Ly] with L, and L, the lengths in each direction. Recall from
(1), we use ¢(x, £) to denote the state variables, where x € Q C R are the spatial coordinates
andt € (0, T] denotes the time. Given the PDE problem

0,9 =G|8(p, Vo, Ap) + f (d))], x,0)€Qx(0,T] (6)

with periodic boundary condition, where operators G and g are known, but operator f is
unknown. The major goal of this paper is to identify the operator/functional f, thus discover
the PDE model in (6). The baseline PINN [15] would require a rather amount of data pairs
{(x;. 15, ¢(xi,ti))}f’: p with (x;,1,) € QX (0,T] properly sampled from the spatial-tempo-
ral domain. Also, it requires all the data are from a single time sequence, given that a DNN
M(x, 1) is needed to approximate ¢)(X, ¢) as an aiding neural network for the PDE discovery.
However, this is usually not the case in reality. In practice, the data are usually collected
as image snapshots at various time slots from different time sequences. For instance, for
certain experiments, the experiments will repeat multiple times from which the data will be
collected. Also, in each experiment, a picture is taken at ¢, and another picture is taken at
t; = ty + 6t, where 6¢ might be large due to constraints of resources.
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To clearly describe the problem, we need to introduce some notations. Let NX,Ny be two
positive even integers. The spatial domain Q = [0, L,] X [0, L] is uniformly partitioned with
mesh size h, = L, /N,, h, = L,/N, and

Q, = {0l = jh,y, =khy, 0<j <N, - LOSKSN, - 1},
In order to derive the algorithm conveniently, we denote the discrete gradient operator and
the discrete Laplace operator
Vi A=V, -V,

following our previous work [4]. Let V, = {ulu = [u;;], (x;,y) € 2,0 <j< N, — 1,
0 < k< N, — 1} be the space of grid functions on €,,. By discretizing the PDE problem (6)
using the pseudo-spectral method in space, it can be written as

aL‘(I)ij = gh g(q)y7 thb Ahq)z]) +f((1)l]) > l?] = 152’ M, te (O, T], (7)

l:]"

where G, is the spatially discretized mobility operator. Here we use ® € V), to denote the
discrete function values of ¢ on Q,. The periodic boundary condition is assumed in this
paper. If other type of boundary conditions is considered, the finite-difference or finite-
element method for spatial discretization might be more proper.

Under such notations, the collected data is in the form as

(@, 07 5)}¥ cV, xV, xR*, (8)

where (IDEI) €V, and CD{@ € V,, are two snapshots with a time lag 6; > 0 between the two
states, and N is the total number of snapshot pairs. The goal in this paper is to discover the
bulk function fin the phase field models, with the data collected in the form of (8), i.e.,

find the operator f in (6) from the data {(tbl(.l), <I>§2), 5,)}?;1 cV,xV,xR". 9
We emphasis that 6; is not required to be constant, removing the assumption in [22]. Also,

different data pairs (d>§1), CDEZ) ) and (<I>® , ‘D,Q) ) (i # j) are not necessarily from the same sin-
gle time sequence, removing the requirement of the baseline PINN [15].

3 Pseudo-Spectral Physics Informed Neural Networks
There are mainly two components (or ingredients) in the DNN method. First of all, we

shall define what the neural network is meant to approximate along with its structures. Sec-
ondly, we shall define the loss function, which is enforced with known physics.

3.1 Neural Network Structure

The generic way to solve the problem (9) is by introducing a DNN
N; 1 ¢ = Ny(¢:0) (10)
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to approximate f(¢), where ® represents the free parameters. In this paper, we assume f
is only a function of ¢ for simplicity. Notice the idea in this paper applies easily to cases
where fis a function of ¢ and its derivatives, saying f :=f(¢, Vo, Ap).

Notice, in the baseline PINN, an aiding neural network N : (x,7) — R is introduced to
approximate ¢(X, r), which is computationally expensive and applies only to a single time
sequence. It will be apparent that applying the PINNs on the semi-discrete problem (7) will
have several advantages.

3.2 Loss Functions

Next, we define the loss function L. Our idea of defining the loss functions is inspired by
the linear numerical methods for solving PDEs.

3.2.1 Loss Functions Inspired by Stabilized Linear Schemes

We split g in (7) as (P, V, @, A,®) = Ly(®) + Ny (P), where L, is the linear operator and
N, is the rest, i.e.,

0,® =g, [Lg(tb) + N,(D) +f(<1>)]. (11
To solve it numerically in the time interval [#;, ¢; + 6], we can propose the stabilized scheme

1
5 (@i, = ®) = Gy [L(®@,5) +N(@) 4/(@) +C@, 5 =) (1)
where C is a stabilizing operator, which could be chosen as
2
C= Y (=1 C A, (13)
i=0
with C;’s constants. Then, we have
®, 5 = (1= 5,G,(C+L,)" {(D,‘ +5.0, [Ng@,,_) +f(@,) - cq),,_] } (14)
Notice the scheme (14) is first-order accurate in time. When §; is small enough, the expres-

sion for @, ,; is an accurate approximation to ®(z; + &;). Inspired by this, we can introduce
our linear SPINN loss function, to discover (6) from the data (8).

Definition 1 (Linear SPINN loss function) Given (@El), 6;), we can approximate CDEZ) via
Nz(@'",8,), which is defined by

Ny 2 @,6) = (1 = 5,G,C + Ly { @ + 56, [N,@") + Nj@!":0) - co”] |,
5)
where C;’s in C are hyper-parameters. Hence, the loss function is defined as
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N
_ 1 ) M) .2
L(®) = N igl @7 — Nx(®,”, 5;:0)]]5. (16)

When the time step 6, is small, by minimizing L(®), we can identify J\/f which in turn
discover the PDE problem in (6). For certain cases, ; might be large. A single step march-
ing scheme might be inaccurate. We thus introduce a loss function that is based on a more
general recursive linear SPINN.

Definition 2 (Recursive linear SPINN loss function) Given (<I>l(,1), 6;), we can approximate
<I>§2) via a mapping NRK : ((I)l(.l), 6;) = Ry, where Ry is defined recursively as

Ry ="
5 - 5
Ri=(1-2G,C+L)) (R + ZGWR) +N;R )= CR)).  (17)
j=1,2, K,

where K and C;’s are hyper-parameters. And the loss function is defined as
L &
2 1
L©) = & Z‘ 10 — N, (@1, 5:0)I13 (18)

Remark 1 Similarly, we can design the neural network inspired by second-order or higher-
order numerical schemes. For instance, consider the following predictor-corrector second-
order scheme. To solve it numerically in the time interval [#;, ¢; 4+ &;], we introduce the sta-
bilized second-order scheme in two steps.

e First of all, we can obtain <I>t+i, via
it

N

O -0

5
L+ !

T =g, [Lg(ém% )+ N(@,) +(®,) + C@H% -o,)|. (19)

e Next, we can obtain @, s via solving
i+5i

(I)z +6; q)t- q)t-+5 + th- A ~
—2— =g, [Lg<T> N, 0) +f(D,0)

4+
i 2

C<M_@> >] (20)
2 fity

Therefore, if we definite the neural network /\/f > /\G»(d);@), once given ((1)51),5[),
we can approximate CDl@ via the mapping defined as

-1
N @5) > (1-26G,C+1))(of!
()] " . ) R
+5igh(Lg<q’7f> + Ny (@, ) + Ny D, 5:0) + c<% - d>i+a,,>)), @
2 B >

where d)i 4 is defined by
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2 6 - n 0 1 1 1
b5 = <1 - 2G,(C+ Lg)> (@ + 26, [N, @) + Ny@f:0) - col] ).
(22)
Then the loss function could be defined similarly. Some other ideas, such as exponen-
tial time integration can also be utilized for designing neural network loss functions. For
brevity, these ideas will not be pursued in this paper. Interested readers are encouraged to
explore these interesting topics.

3.2.2 Loss Functions Inspired by Runge-Kutta Method
As an analogy, we can mimic the Runge-Kutta method for solving (6) to design neural
networks. Inspired by the idea of a four-stage explicit Runge-Kutta method for the time

discretization, we can introduce the following loss function.

Definition 3 (Four stage explicit Runge-Kutta SPINN loss function) Given (dD(l) 6;), we
can approximate dD by the mapping N (<IJ(1) 6,) defined by the four-stage method

N 2@, 6) - oV + é(Kl +2K, + 2K, + K,,), (23)
where

=3, [g@“)) + N @; @)]
Kz—gh[ (80 + 4K ) + 85 (0"+ 25,0) |
g

) @, 5 L, 5 24)
= Gy[s(@" + 2K, ) + A, (0" + LKy0)],
K, =G, [g(CDEI) + 5,K) + N (@ + 5,.K3;®)].
Then the loss function can be defined as
L(®) = Z 107 — Np(@, 8)I13- (25)

Similarly, when the time step 6, is large, we can define the loss function via the explicit
Runge-Kutta SPINN recursively as below.

Definition 4 (Recursive four-stage explicit Runge-Kutta SPINN loss function) Given
the data (@El), 6;), we can approximate <D§2) via the K-step recursive mapping denoted as

Ni,  (@".6) - Ry, where
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—_ s
Ro = 8 -1 -1 i1 -1
le= Ry + (K +2K) +2K, +K,).j=12.K,
K =G [e®) + Ny (R0,

1K' =g, [g(Rj_l + %K{-l) +/\/f(1ej_1 + %K{-‘;@)], (26)

=1 _ bi =1 bi pd—l.
Ky =G, [g<Rj—l + %K ) +N.'f(Rj—l + %K ®>]

-1 5 i1 8 i1
K =G lg(Ro + 267 ) + N (R + 265750) |

And the loss function is defined by

N
_ 1 @ M sv2
L(@)—N;uq — N (@, 812 27)

Remark 2 When the time step is even larger, one can use the implicit Runge-Kutta method
for time discretization. However, given the intermediate stages are unknown, we need to
introduce an extra neural network to approximate it:

Ny 2 (@7,8) = W (@], 8), N, (@, 3), -+, N, (@, 6)), 28)

where A[c, (@El), 6;) is to approximate ®(z; + ¢;6,) for a g-stage Runge-Kutta method. By fol-
lowing the idea in [15], we can define the loss function

a N <
L(®) =qiN 2 Z ”‘I’El) - [/\/L,@f«”’ 6) +6; Z “.fk/\/ck((bil)’ 51')] “2
j=1 i=1 =l

N

Q

1
+ —_
aN j=1 i=1

o - [V, @.5)+5 3 a — b, @, s, @
k=1

For such a case, it requires expensive computational costs, and we will not investigate it in
the current paper.

4 Numerical Examples

Next, we investigate the proposed SPINN approach with several examples, i.e., to identify
the phase-field models from data (image snapshots).

Recall that we assume f(¢) in (6) is unknown, and the goal is to identify it via the exist-
ing data in the form of (8). As explained, we define a neural network /\/f PP /\/f(qb;®)
to approximate f and use the loss functions as defined in the previous section. In the rest
of this paper, we assume N, a feed-forward neural network with 2-hidden layers and each
hidden layer having 20 neurons. The tanh activation function is applied in both hidden lay-
ers. During the training process, the Adam method with default learning rate is used for
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s

Fig.2 Predicted bulk function f, using the Runge-Kutta SPINN loss function vs. the accurate bulk function
fwith 6 =0.05,0.1,0.25,0.5

0.5 0.5 0.5
< S S
0 0 0
< T T
-0.5 -0.5 -0.5
-1 0 1 -1 0 1 -1 0 1
¢ ¢ ¢

Fig.3 Predicted bulk function f, using the recursive Runge-Kutta SPINN loss function vs. the accurate
bulk function f, where K = 1, 50, 100. This figure indicates that it gives an accurate prediction of f with suf-
ficient recursive stages

10 000 training iterations, followed by an L-BFGS-B optimization training process. The
algorithms are implemented with Tensorflow.

For simplicity of discussion, we chosen the domain Q =[-1,1]?, and choose
N, =N, =128 in Q,, i.e., the collected data @El), <Dl<.2) are matrices in R!28:128 for all the
examples in this section. And we solve the PDE first with the high-order-accurate scheme
with uniform time steps and uniform spatial discretization. The numerical solutions are
randomly sampled at different time slots as training data to inversely discover the bulk
function f. Given the free energy in (2), we get g(¢) = —2A¢, and L,(P)= —EzAhdl And
we will chose C = 2 for the AC equation, and C = —2A,, for the CH equation.

Example 1 In the first example, we generate data by solving the AC equation in (3) with
F(¢) = i(l — ¢*)?, which means f(¢) = ¢> — ¢. The parameters used are £ = 0.02 and
M = 10, with the initial condition ¢(x, = 0) = 0.25rand(x). Here rand() generates random
numbers between [—1, 1]. Some snapshots of ¢ at various time slots are shown in Fig. 1.
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“a : 0 1 4 0 1

Fig.4 Discovered bulk function fp vs. the accurate bulk function f with K = 1,10, 50,100, using the recur-
sive linear SPINN approach. It shows that the accuracy of the recursive linear SPINN improves with K
increasing

0.8 0.8
0.6 0.6 §
0.4 0.4
0.2 0.2
0.5 1.0 0 0.5 1.0 0.2 0.4 ’ 0.6 0.8
X x
(a) Snapshots of ¢ at t =0.325,0.375 (b) Predicted f

Fig.5 Predicted bulk function f, vs. the accurate bulk function f for the AC equation with Flory-Huggins
bulk free energy using the recursive linear SPINN with K = 10. a snapshots of the solution ¢ for the Allen-
Cahn equation at time ¢t = 0.325,0.375. b the learned bulk function from the data in (a)

First of all, we test out the Runge-Kutta SPINN approach. We choose N = 1, i.e., use
only a single data pair (), ®@, §) to train the neural network. We randomly choose
@D, and study how the size of § would affect the learned result. One experiment results
with @D chosen at # = 0.325 and & = 0.05,0.1,0.25,0.5 are summarized in Fig. 2. We
observe that when the two snapshots are close, i.e., § is small, the Runge-Kutta SPINN
approach can accurately learn the bulk function f. However, when the time step 6 is
large, its accuracy drops.

To overcome the inaccuracy when § is large, we utilize the recursive Runge-Kutta
SPINN approach. Here we fix the time step 6 = 0.25, and test the accuracy by using
different recursive stage K = 1,20,50, 100. The results are summarized in Fig. 3. We
observe that the accuracy improves as the recursive stage K increases. The bulk function
fcan be learned accurately when sufficient stages are used.

Example 2 However, when the time step & is large enough, the recursive Runge-Kutta
SPINN approach will not provide an accurate approximation to f. For instance, with the
time step 6 = 0.5, the recursive Runge-Kutta SPINN approach fails. Meanwhile, the linear
SPINN approach shows superior accuracy. This can be intuitively explained by the stabil-
ity of numerical schemes. Even though the Runge-Kutta method is high-order accurate in
time, it is conditionally stable concerning the time step. Therefore, when the time step 6
is relatively large, the Runge-Kutta method loses its stability. In the meanwhile, the sta-
bilized linear semi-implicit scheme is energy stable under mild conditions. Therefore, a
larger time step can be used while preserving the stability.

As an example, we use a single data pair (®V, ®®, §) with a fixed time step § = 0.5. We
vary the recursive stage K for the recursive linear SPINN, and the results are summarized
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0.202

0.200

0.198

\ 0.196 " ®-1.0

Fig. 6 Snapshots of the solution ® for the CH equation at various time slots # = 0.05, 0.325,0.375, 1

"1 0 1 | 0 1 | 0 1

Fig.7 Predicted bulk function f, vs. the accurate bulk function f for the CH equation with various data
pairs N =1,5,10

in Fig. 4. We observe that, even when the time step 6 is large, the recursive linear SPINN
approach still provides accurate approximation to f; so long as the recursive stage K is large
enough.

We remark that the training strategy and the quality of training data might also be fac-
tors for the approximation accuracy, which we will not pursue in detail. Interested readers
are strongly encouraged to explore.

Example 3 In the next example, we increase the problem complexity to identify a highly
nonlinear bulk function. In details, we get the data by solving an AC equation with the
Flory-Huggins free energy F(¢) = ¢In(¢)+ 0.5(1 — ¢)In(1 — @) +2¢(1 — ¢p), which
means the bulk function f=1In¢ —0.5In(1 — ¢) + 2.5 —4¢. The parameters used are

M =10 and £ = 0.1, along with the initial condition ¢(x,7 = 0) = (I + tanh OS_T V2+V)
£

We randomly sample two snapshots with 6¢ = 0.05, and train the neural network. An exam-
ple of using two snapshots at # = 0.325,0.375 is shown in Fig. 5, where the two snapshots
are shown in Fig. 5a, and the predicted function is shown in Fig. 5b. We observe the linear
SPINN approach can learn the bulk function f from only two images accurately.

Example 4 In the last example, we use the linear SPINN approach to discover the bulk
function f from the solution snapshots of the CH equation in (4). Here the data is obtained
by solving the CH equation with F(¢) = i(¢2 -1 e, f(p)=¢p>—¢ . Weuse M = 1,
€ = 0.05, and initial condition ¢(t = 0) = 0.2 + 0.001rand(x). Here rand() generates ran-
dom numbers between [—1, 1].

Notice that the bulk free energy F for a given CH equation is not unique (that is off by
a constant), i.e., if F is the bulk free energy, F' + C,, is also the bulk free energy, with C,
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a constant. In this example, we enforce F(0) = 0. Hence, for the loss function, we add an
extra term /10||./\ff(0)||2, to enforce the uniqueness of j\ff with 4, a hyper-parameter, acting
as a weight for this term. Here we choose A, = 10°.

Some temporal snapshots for @ are summarized in Fig. 6. We randomly choose data
{(tbl(.'),tbl(.z),éi)}fi], with N =1,5,10 data points and a fixed time step 6; = 0.05. The
learned result f, is summarized in Fig. 7. We observe that the predicted bulk function has
improved accuracy with more data used to train the neural network.

5 Conclusion

In this paper, we introduce pseudo-spectral PINNs to discover the bulk function in the
phase-field models. This newly proposed method well fits the data collection strategy in
practice, i.e., taking snapshots/images at various time slots with large time lags. The defini-
tion of loss functions is inspired by classical numerical algorithms for PDEs. The effective-
ness of the proposed pseudo-spectral PINN, or SPINN, has been verified by identifying the
bulk function f of several phase-field models. The idea of pseudo-spectral PINN introduced
in this paper is rather general, and it can be applied to discover other PDE models from
image data, which will be investigated in our later research projects.
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