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Abstract
In this paper, we introduce a new deep learning framework for discovering the phase-field 
models from existing image data. The new framework embraces the approximation power 
of physics informed neural networks (PINNs) and the computational efficiency of the 
pseudo-spectral methods, which we named pseudo-spectral PINN or SPINN. Unlike the 
baseline PINN, the pseudo-spectral PINN has several advantages. First of all, it requires 
less training data. A minimum of two temporal snapshots with uniform spatial resolution 
would be adequate. Secondly, it is computationally efficient, as the pseudo-spectral method 
is used for spatial discretization. Thirdly, it requires less trainable parameters compared 
with the baseline PINN, which significantly simplifies the training process and potentially 
assures fewer local minima or saddle points. We illustrate the effectiveness of pseudo-spec-
tral PINN through several numerical examples. The newly proposed pseudo-spectral PINN 
is rather general, and it can be readily applied to discover other PDE-based models from 
image data.

Keywords  Phase field · Linear scheme · Cahn-Hilliard equation · Physics informed neural 
network

Mathematics Subject Classification  65M32

1  Introduction

The phase-field models have been widely used  for investigating multiphase problems. 
Among them, the well-known models are the Allen-Cahn (AC) equation and the Cahn-
Hilliard (CH) equation [3]. In general, most acknowledged phase field models are ther-
modynamically consistent, i.e., they satisfy the first and second thermodynamic laws. In 
scenarios when the temperature is assumed constant, the Helmholtz free energy is non-
increasing in time. In isothermal case, the thermodynamically consistent phase-field mod-
els can usually be written in a generic gradient flow form
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with proper initial values and boundary conditions. Here � represents the state variables 
(or phase-field variables) and E is the Helmholtz free energy, and G is a negative semidefi-
nite operator known as the mobility operator. In this paper, we consider the free energy

with � a model parameter to control the interfacial thickness. Here the first part in (2) is the 
conformation entropy and F is the bulk free energy. The choice of the bulk potential F(�) 
depends on the material properties.  The double-well potential and the Flory-Huggins free 
energy are the common choices. We use f (�) = F�(�) to denote the bulk chemical poten-
tial. Specifically, if we choose the mobility operator as G = −M , with M > 0 a constant, it 
ends up with the AC equation

Similarly, if we pick the mobility operator as G = MΔ , with M > 0 a constant, it gives the 
CH equation

Though there is a considerable amount of work on solving the phase-field models [6, 7, 
17–19, 23], there is less achievement on solving the inverse problem, i.e., discovering 
the phase-field models from data. In the classical approach, the PDE models are usually 
derived based on empirical observation, i.e., the PDE models with free parameters are 
introduced first, and the free parameters are fitted with data afterward. In this paper, we 
introduce a novel method using the physics informed neural network (PINN) approach, 
where the model would be directly learned from data. In particular, we assume the bulk 
potential F(�) is unknown, and we will discover it via learning from the existing data using 
the deep neural network (DNN).

The DNN has been widely used to investigate problems in various fields. Mathemati-
cally, the feed-forward neural network could be defined as compositions of nonlinear func-
tions. Given an input x ∈ ℝn1 , with n1 the dimension of the input, and denote the output of 
the l-th layer with a dimension nl as a[l] ∈ ℝnl , which is the input for the ( l + 1 ) layer. In 
general, we can define the neural network with L-layers as [9]

where W [k] ∈ ℝnk×nk−1 and b[k] ∈ ℝnk denote the weights and biases at layer k, respectively, 
� denotes the activation function, and a[L+1] is the final output of the neural network. Many 
interesting works have been published in terms of solving or discovery of PDEs [1, 2, 5, 8, 
10, 12–15, 20, 21, 24]. Here we briefly point out some relevant work of PDE discovery with 
DNN or machine learning method. In [15], the authors use the undetermined coefficient 
approach. They assume the PDE model is a linear combination of a few known terms with 

(1)�t� = G
�E

��

(2)E = ∫Ω

[
�2

2
|∇�|2 + F(�)

]
dx

(3)�t� = M(�2Δ� − f (�)).

(4)�t� = MΔ(−�2Δ� + f (�)).

(5)

⎧⎪⎪⎨⎪⎪⎩

a[1] =x ∈ ℝ
n1 ,

a[k] =�
�
W [k]a[k−1] + b[k]

�
∈ ℝ

nk , for k = 2, 3,⋯ , L,

a[L+1] =W [L+1]a[L] + b[L+1],
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the coefficients unknown. Then they fit the coefficients from data using the PINN. Based on 
the format of known data, they propose two approaches for calculating the loss function. In 
[16], the authors use the sparse regression approach. They assume the PDE model is a linear 
combination of many terms from a predefined dictionary, and use the sparse regularization 
technique to rule out most of the terms. Thus, after fitting with the data, only a few terms 
with non-zero coefficients will be left and the model is discovered. In [11], the authors intro-
duce a feed-forward DNN to predict the PDE dynamics and uncover the underlying PDE 
model (in a black box form) simultaneously.

However, in most of the existing work in literature, there is a strong assumption on the data 
format and sampling strategies. For instance, most existing PDE discovery strategies request 
well-sampled data across temporal and spatial domains. Also, they usually assume the col-
lected data at different time slots are from a single time sequence. In reality, especially from 
lab experiments, the data are usually sampled as snapshots (images) from various time slots, 
and the images might have limited spatial and temporal resolution. The major goal of this 
paper is to address the problem of PDE discovery with limited data or image snapshots. We 
introduce the pseudo-spectral PINN method that provides a handy approach to deal with data 
that are provided as image snapshots. Though we only focus on the discovery of phase-field 
models, the proposed approach is general that can be  easily applied to some other types of 
PDE models.

The rest of this paper is organized as follows. In Sect. 2, we introduce some notations and 
set up the phase-field PDE discovery problem. In Sect. 3, we introduce the SPINNs by intro-
ducing the deep network structures and the various definitions of the loss function. Afterward, 
several examples are shown to demonstrate the approximation power of the pseudo-spectral 
PINN in Sect. 4. A brief conclusion is drawn in the last section.

2 � Problem Setup

For simplicity of notations, we introduce our idea with a generic example. Consider a rectan-
gular domain Ω = [0, Lx] × [0, Ly] with Lx and Ly the lengths in each direction. Recall from 
(1), we use �(�, t) to denote the state variables, where � ∈ Ω ⊂ ℝd are the spatial coordinates 
and t ∈ (0, T] denotes the time. Given the PDE problem

with periodic boundary condition, where operators G and g are known, but operator f is 
unknown. The major goal of this paper is to identify the operator/functional f, thus discover 
the PDE model in (6). The baseline PINN [15] would require a rather amount of data pairs 
{(�i, ti,�(�i, ti))}

N
i=1

 , with (�i, ti) ∈ Ω × (0, T] properly sampled from the spatial-tempo-
ral domain. Also, it requires all the data are from a single time sequence, given that a DNN 
N(�, t) is needed to approximate �(�, t) as an aiding neural network for the PDE discovery. 
However, this is usually not the case in reality. In practice, the data are usually collected 
as image snapshots at various time slots  from different time sequences. For instance, for 
certain experiments, the experiments will repeat multiple times from which the data will be 
collected. Also, in each experiment, a picture is taken at t0 , and another picture is taken at 
t1 = t0 + �t , where �t might be large due to constraints of resources.

(6)�t� = G
[
g(�,∇�,Δ�) + f (�)

]
, (�, t) ∈ Ω × (0, T]

Author's personal copy
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To clearly describe the problem, we need to introduce some notations. Let Nx,Ny be two 
positive even integers. The spatial domain Ω = [0, Lx] × [0, Ly] is uniformly partitioned with 
mesh size hx = Lx∕Nx, hy = Ly∕Ny and

In order to derive the algorithm conveniently, we denote the discrete gradient operator and 
the discrete Laplace operator

following our previous work [4]. Let Vh = {u|u = [uj,k], (xj, yk) ∈ Ωh, 0 ⩽ j ⩽ Nx − 1,

0 ⩽ k ⩽ Ny − 1} be the space of grid functions on Ωh . By discretizing the PDE problem (6) 
using the pseudo-spectral method in space, it can be written as

where Gh is the spatially discretized mobility operator. Here we use Φ ∈ Vh to denote the 
discrete function values of � on Ωh . The periodic boundary condition is assumed in this 
paper. If other type of boundary conditions is considered, the finite-difference or finite-
element method for spatial discretization might be more proper.

Under such notations, the collected data is in the form as

where Φ(1)

i
∈ Vh and Φ(2)

i
∈ Vh are two snapshots with a time lag 𝛿i > 0 between the two 

states, and N is the total number of snapshot pairs. The goal in this paper is to discover the 
bulk function f in the phase field models, with the data collected in the form of (8), i.e.,

We emphasis that �i is not required to be constant, removing the assumption in [22]. Also, 
different data pairs (Φ(1)

i
,Φ

(2)

i
) and (Φ(1)

j
,Φ

(2)

j
) (i ≠ j) are not necessarily from the same sin-

gle time sequence, removing the requirement of the baseline PINN [15].

3 � Pseudo‑Spectral Physics Informed Neural Networks

There are mainly two components (or ingredients) in the DNN method. First of all, we 
shall define what the neural network is meant to approximate along with its structures. Sec-
ondly, we shall define the loss function, which is enforced with known physics.

3.1 � Neural Network Structure

The generic way to solve the problem (9) is by introducing a DNN

Ωh =
{
(xj, yk)|xj = jhx, yk = khy, 0 ⩽ j ⩽ Nx − 1, 0 ⩽ k ⩽ Ny − 1

}
.

∇h, Δh = ∇h ⋅ ∇h,

(7)�tΦij = Gh

[
g(Φij,∇hΦij,ΔhΦij) + f (Φij)

]
, i, j = 1, 2,⋯ ,M, t ∈ (0, T],

(8){(Φ
(1)

i
,Φ

(2)

i
, 𝛿i)}

N
i=1

⊂ Vh × Vh ×ℝ
+,

(9)find the operator f in (6) from the data {(Φ
(1)

i
,Φ

(2)

i
, 𝛿i)}

N
i=1

⊂ Vh × Vh ×ℝ
+.

(10)Nf ∶ � → Nf (�;Θ)
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to approximate f (�) , where Θ represents the free parameters. In this paper, we assume f 
is only a function of � for simplicity. Notice the idea in this paper applies easily to cases 
where f is a function of � and its derivatives, saying f ∶= f (�,∇�,Δ�).

Notice, in the baseline PINN, an aiding neural network N ∶ (�, t) → ℝ is introduced to 
approximate �(�, t) , which is computationally expensive and applies only to a single time 
sequence. It will be apparent that applying the PINNs on the semi-discrete problem (7) will 
have several advantages.

3.2 � Loss Functions

Next, we define the loss function L. Our idea of defining the loss functions is inspired by 
the linear numerical methods for solving PDEs.

3.2.1 � Loss Functions Inspired by Stabilized Linear Schemes

We split g in (7) as g(Φ,∇hΦ,ΔhΦ) = Lg(Φ) + Ng(Φ) , where Lg is the linear operator and 
Ng is the rest, i.e.,

To solve it numerically in the time interval [ti, ti + �i] , we can propose the stabilized scheme

where C is a stabilizing operator, which could be chosen as

with Ci ’s constants. Then, we have

Notice the scheme (14) is first-order accurate in time. When �i is small enough, the expres-
sion for Φti+�i

 is an accurate approximation to Φ(ti + �i) . Inspired by this, we can introduce 
our linear SPINN loss function, to discover (6) from the data (8).

Definition 1  (Linear SPINN loss function) Given (Φ(1)

i
, �i) , we can approximate Φ(2)

i
 via 

NR(Φ
(1)

i
, �i) , which is defined by

where Ci ’s in C are hyper-parameters. Hence, the loss function is defined as

(11)�tΦ = Gh

[
Lg(Φ) + Ng(Φ) + f (Φ)

]
.

(12)
1

�i
(Φti+�i

− Φti
) = Gh

[
Lg(Φti+�i

) + Ng(Φti
) + f (Φti

) + C(Φti+�i
− Φti

)
]
,

(13)C =

2∑
i=0

(−1)iCi(Δh)
2i,

(14)Φti+�i
= (1 − �iGh(C + Lg))

−1
{
Φti

+ �iGh

[
Ng(Φti

) + f (Φti
) − CΦti

]}
.

(15)
NR ∶ (Φ

(1)

i
, �i) → (1 − �i(Gh(C + Lg)))

−1
{
Φ

(1)

i
+ �iGh

[
Ng(Φ

(1)

i
) +Nf (Φ

(1)

i
;Θ) − CΦ

(1)

i

]}
,
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When the time step �i is small, by minimizing L(Θ) , we can identify Nf  , which in turn 
discover the PDE problem in (6). For certain cases, �i might be large. A single step march-
ing scheme might be inaccurate. We thus introduce a loss function that is based on a more 
general recursive linear SPINN.

Definition 2  (Recursive linear SPINN loss function) Given (Φ(1)

i
, �i) , we can approximate 

Φ
(2)

i
 via a mapping NRK

∶ (Φ
(1)

i
, �i) → RK , where RK is defined recursively as

where K and Ci ’s are hyper-parameters. And the loss function is defined as

Remark 1  Similarly, we can design the neural network inspired by second-order or higher-
order numerical schemes. For instance, consider the following predictor-corrector second-
order scheme. To solve it numerically in the time interval [ti, ti + �i] , we introduce the sta-
bilized second-order scheme in two steps.

•	 First of all, we can obtain Φ̂
ti+

𝛿i

2

 via 

•	 Next, we can obtain Φti+�i
 via solving 

Therefore, if we definite the neural network Nf ∶ � → Nf (�;Θ) , once given (Φ(1)

i
, �i) , 

we can approximate Φ(2)

i
 via the mapping defined as

where Φ̂
i+

𝛿i

2

 is defined by

(16)L(Θ) =
1

N

N�
i=1

‖Φ(2)

i
−NR(Φ

(1)

i
, �i;Θ)‖22.

(17)

⎧⎪⎪⎨⎪⎪⎩

R0 =Φ
(1)

i
,

Rj =

�
1 −

�i

K
Gh(C + Lg)

�−1�
Rj−1 +

�i

K
Gh(Ng(Rj−1) +Nf (Rj−1) − CRj−1)

�
,

j =1, 2,⋯ ,K,

(18)L(Θ) =
1

N

N�
i=1

‖Φ(2)

i
−NRK

(Φ
(1)

i
, �i;Θ)‖22.

(19)
Φ̂

ti+
𝛿i

2

− Φti

𝛿i∕2
= Gh

[
Lg(Φ̂ti+

𝛿i

2

) + Ng(Φti
) + f (Φti

) + C(Φ̂
ti+

𝛿i

2

− Φti
)
]
.

(20)

Φti+𝛿i
− Φti

𝛿i
=Gh

[
Lg

(
Φti+𝛿i

+ Φti

2

)
+ Ng(Φ̂ti+

𝛿i

2

) + f (Φ̂
ti+

𝛿i

2

)

+ C

(
Φti+𝛿i

+ Φti

2
− Φ̂

ti+
𝛿i

2

)]
,

(21)

NR ∶ (Φ
(1)

i
, 𝛿i) →

(
1 −

𝛿i

2
Gh(C + Lg)

)−1(
Φ

(1)

i

+𝛿iGh

(
Lg

(
Φ

(1)

i

2

)
+ Ng(Φ̂i+

𝛿i

2

) +Nf (Φ̂i+
𝛿i

2

;Θ) + C

(
Φ

(1)

i

2
− Φ̂

i+
𝛿i

2

)))
,
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Then the loss function could be defined similarly. Some other ideas, such as exponen-
tial time integration can also be utilized for designing neural network loss functions. For 
brevity, these ideas will not be pursued in this paper. Interested readers are encouraged to 
explore these interesting topics.

3.2.2 � Loss Functions Inspired by Runge‑Kutta Method

As an analogy, we can mimic the Runge-Kutta method for solving (6) to design neural 
networks. Inspired by the idea of a four-stage explicit Runge-Kutta method for the time 
discretization, we can introduce the following loss function.

Definition 3  (Four-stage explicit Runge-Kutta SPINN loss function) Given (Φ(1)

i
, �i) , we 

can approximate Φ(2)

i
 by the mapping NR(Φ

(1)

i
, �i) defined by the four-stage method

where

Then the loss function can be defined as

Similarly, when the time step �i is large, we can define the loss function via the explicit 
Runge-Kutta SPINN recursively as below.

Definition 4  (Recursive four-stage explicit Runge-Kutta SPINN loss function) Given 
the data (Φ(1)

i
, �i) , we can approximate Φ(2)

i
 via the K-step recursive mapping denoted as 

NRK
∶ (Φ

(1)

i
, �i) → RK , where

(22)

Φ̂
i+

𝛿i

2

=

(
1 −

𝛿i

2
Gh(C + Lg)

)−1(
Φ

(1)

i
+

𝛿i

2
Gh

[
Ng(Φ

(1)

i
) +Nf (Φ

(1)

i
;Θ) − CΦ

(1)

i

])
.

(23)NR ∶ (Φ
(1)

i
, �i) → Φ

(1)

i
+

�i

6
(K1 + 2K2 + 2K3 + K4),

(24)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

K1 = Gh

�
g(Φ

(1)

i
) +Nf (Φ

(1)

i
;Θ)

�
,

K2 = Gh

�
g
�
Φ

(1)

i
+

�i

2
K1

�
+Nf

�
Φ

(1)

i
+

�i

2
K1;Θ

��
,

K3 = Gh

�
g
�
Φ

(1)

i
+

�i

2
K2

�
+Nf

�
Φ

(1)

i
+

�i

2
K2;Θ

��
,

K4 = Gh

�
g(Φ

(1)

i
+ �iK3) + Nf (Φ

(1)

i
+ �iK3;Θ)

�
.

(25)L(Θ) =
1

N

N�
i=1

‖Φ(2)

i
−NR(Φ

(1)

i
, �i)‖22.
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And the loss function is defined by

Remark 2  When the time step is even larger, one can use the implicit Runge-Kutta method 
for time discretization. However, given the intermediate stages are unknown, we need to 
introduce an extra neural network to approximate it:

where Ncj
(Φ

(1)

i
, �i) is to approximate Φ(ti + cj�i) for a q-stage Runge-Kutta method. By fol-

lowing the idea in [15], we can define the loss function

For such a case, it requires expensive computational costs, and we will not investigate it in 
the current paper.

4 � Numerical Examples

Next, we investigate the proposed SPINN approach with several examples, i.e., to identify 
the phase-field models from data (image snapshots).

Recall that we assume f (�) in (6) is unknown, and the goal is to identify it via the exist-
ing data in the form of (8). As explained, we define a neural network Nf ∶ � → Nf (�;Θ) 
to approximate f and use the loss functions as defined in the previous section. In the rest 
of this paper, we assume Nf  a feed-forward neural network with 2-hidden layers and each 
hidden layer having 20 neurons. The tanh activation function is applied in both hidden lay-
ers. During the training process, the Adam method with default learning rate is used for 

(26)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

R0 = Φ
(1)

i
,

Rj = Rj−1 +
�i

6K
(K

j−1

1
+ 2K

j−1

2
+ 2K

j−1

3
+ K

j−1

4
), j = 1, 2,⋯ ,K,

K
j−1

1
= Gh

�
g(Rj−1) +Nf (Rj−1;Θ)

�
,

K
j−1

2
= Gh

�
g
�
Rj−1 +

�i

2K
K

j−1

1

�
+Nf

�
Rj−1 +

�i

2K
K

j−1

1
;Θ

��
,

K
j−1

3
= Gh

�
g
�
Rj−1 +

�i

2K
K

j−1

2

�
+Nf

�
Rj−1 +

�i

2K
K

j−1

2
;Θ

��
,

K
j−1

4
= Gh

�
g
�
Rj−1 +

�i

K
K

j−1

3

�
+ Nf

�
Rj−1 +

�i

K
K

j−1

3
;Θ

��
.

(27)L(Θ) =
1

N

N�
i=1

‖Φ(2)

i
−NRK

(Φ
(1)

i
, �i)‖22.

(28)Nq ∶ (Φ
(1)

i
, �i) → (Nc1

(Φ
(1)

i
, �i),Nc2

(Φ
(1)

i
, �i),⋯ ,Ncq

(Φ
(1)

i
, �i)),

(29)

L(Θ) =
1

qN

q∑
j=1

N∑
i=1

‖‖‖Φ
(1)

i
−
[
Ncj

(Φ
(1)

i
, �i) + �i

q∑
k=1

ajkNck
(Φ

(1)

i
, �i)

]‖‖‖
2

2

+
1

qN

q∑
j=1

N∑
i=1

‖‖‖Φ
(2)

i
−
[
Ncj

(Φ
(1)

i
, �i) + �i

q∑
k=1

(ajk − bk)Nck
(Φ

(1)

i
, �i)

]‖‖‖
2

2
.
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10 000 training iterations, followed by an L-BFGS-B optimization training process. The 
algorithms are implemented with Tensorflow.

For simplicity of discussion, we chosen the domain Ω = [−1, 1]2 , and choose 
Nx = Ny = 128 in Ωh , i.e., the collected data Φ(1)

i
,Φ

(2)

i
 are matrices in ℝ128,128 for all the 

examples in this section. And we solve the PDE first with the high-order-accurate scheme 
with uniform time steps and uniform spatial discretization. The numerical solutions are 
randomly sampled at different time slots as training data to inversely discover the bulk 
function f. Given the free energy in (2), we get g(�) = −�2Δ� , and Lg(Φ) = −�2ΔhΦ . And 
we will chose C = 2 for the AC equation, and C = −2Δh for the CH equation.

Example 1  In the first example, we generate data by solving the AC equation in (3) with 
F(�) =

1

4
(1 − �2)2 , which means f (�) = �3 − � . The parameters used are � = 0.02  and   

M = 10 , with the initial condition �(�, t = 0) = 0.25rand(�) . Here rand() generates random 
numbers between [−1, 1] . Some snapshots of � at various time slots are shown in Fig. 1.

Fig. 1   Snapshots of the solution Φ for the AC equation at various time slots t = 0.325, 0.375, 0.575, 0.825

Fig. 2   Predicted bulk function fp using the Runge-Kutta SPINN loss function vs. the accurate bulk function 
f with � = 0.05, 0.1, 0.25, 0.5

Fig. 3   Predicted bulk function fp using the recursive Runge-Kutta SPINN loss function  vs. the accurate 
bulk function f, where K = 1, 50, 100 . This figure indicates that it gives an accurate prediction of f with suf-
ficient recursive stages
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First of all, we test out the Runge-Kutta SPINN approach. We choose N = 1 , i.e., use 
only a single data pair (Φ(1),Φ(2), �) to train the neural network. We randomly choose 
Φ(1) , and study how the size of � would affect the learned result. One experiment results 
with Φ(1) chosen at t = 0.325 and � = 0.05, 0.1, 0.25, 0.5 are summarized in Fig.  2. We 
observe that when the two snapshots are close, i.e., � is small, the Runge-Kutta SPINN 
approach can accurately learn the bulk function f. However, when the time step � is 
large, its accuracy drops.

To overcome the inaccuracy when � is large, we utilize the recursive Runge-Kutta 
SPINN approach. Here we fix the time step � = 0.25 , and test the accuracy by using 
different recursive stage K = 1, 20, 50, 100 . The results are summarized in Fig.  3. We 
observe that the accuracy improves as the recursive stage K increases. The bulk function 
f can be learned accurately when sufficient stages are used.

Example 2  However, when the time step � is large enough, the recursive Runge-Kutta 
SPINN approach will not provide an accurate  approximation to f. For instance, with the 
time step � = 0.5 , the recursive Runge-Kutta SPINN approach fails. Meanwhile, the linear 
SPINN approach shows superior accuracy. This can be intuitively explained by the stabil-
ity of numerical schemes. Even though the Runge-Kutta method is high-order accurate in 
time, it is conditionally stable concerning the time step. Therefore, when the time step � 
is relatively large,   the Runge-Kutta method loses its stability. In the meanwhile, the sta-
bilized linear semi-implicit scheme is energy stable  under mild conditions. Therefore, a 
larger time step can be used while preserving the stability.

As an example, we use a single data pair (Φ(1),Φ(2), �) with a fixed time step � = 0.5 . We 
vary the recursive stage K for the recursive linear SPINN, and the results are summarized 

Fig. 4   Discovered bulk function fp vs. the accurate bulk function f with K = 1,10, 50,100, using the recur-
sive linear SPINN approach. It shows that the accuracy of the recursive linear SPINN improves with K 
increasing

Fig. 5   Predicted bulk function fp vs. the accurate bulk function f for the AC equation with Flory-Huggins 
bulk free energy using the recursive linear SPINN with K = 10 . a snapshots of the solution � for the Allen-
Cahn equation at time t = 0.325, 0.375 . b the learned bulk function from the data in (a)
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in Fig. 4. We observe that, even when the time step � is large, the recursive linear SPINN 
approach still provides accurate approximation to f, so long as the recursive stage K is large 
enough.

We remark that the training strategy and the quality of training data might also be fac-
tors for the approximation accuracy, which we will not pursue in detail. Interested readers 
are strongly encouraged to explore.

Example 3  In the next example, we increase the problem complexity to identify a highly 
nonlinear bulk function. In details, we get the data by solving an AC equation with the 
Flory-Huggins free energy F(�) = � ln(�) + 0.5(1 − �) ln(1 − �) + 2�(1 − �) , which 
means the bulk function f = ln� − 0.5 ln(1 − �) + 2.5 − 4� . The parameters used are 
M = 10 and � = 0.1 , along with the initial condition �(�, t = 0) =

1

2
(1 + tanh

0.8−
√
x2+y2√
2�

) . 
We randomly sample two snapshots with �t = 0.05 , and train the neural network. An exam-
ple of using two snapshots at t = 0.325, 0.375 is shown in Fig. 5, where the two snapshots 
are shown in Fig. 5a, and the predicted function is shown in Fig. 5b. We observe the linear 
SPINN approach can learn the bulk function f from only two images accurately.

Example 4  In the last example, we use the linear SPINN approach to discover the bulk 
function f from the solution snapshots of the CH equation in (4). Here the data is obtained 
by solving the CH equation with F(�) = 1

4
(�2 − 1)2 , i.e., f (�) = �3 − � . We use M = 1 , 

� = 0.05 , and initial condition �(t = 0) = 0.2 + 0.001rand(�) . Here rand() generates ran-
dom numbers between [−1, 1].

Notice that the bulk free energy F for a given CH equation is not unique (that is off by 
a constant), i.e., if F is the bulk free energy, F + C0 is also the bulk free energy, with C0 

Fig. 6   Snapshots of the solution Φ for the CH equation at various time slots t = 0.05, 0.325, 0.375, 1

Fig. 7   Predicted bulk function fp vs. the accurate bulk function f  for the CH equation with various data 
pairs N = 1, 5, 10
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a constant. In this example, we enforce F(0) = 0 . Hence, for the loss function, we add an 
extra term �0‖Nf (0)‖2 , to enforce the uniqueness of Nf  , with �0 a hyper-parameter, acting 
as a weight for this term. Here we choose �0 = 103.

Some temporal snapshots for Φ are summarized in Fig.  6. We randomly choose data 
{(Φ

(1)

i
,Φ

(2)

i
, �i)}

N
i=1

 , with N = 1, 5, 10 data points and a fixed time step �i = 0.05 . The 
learned result fp is summarized in Fig. 7. We observe that the predicted bulk function has 
improved accuracy with more data used to train the neural network.

5 � Conclusion

In this paper, we introduce pseudo-spectral PINNs to discover the bulk function in the 
phase-field models. This newly proposed method well fits the data collection strategy in 
practice, i.e., taking snapshots/images at various time slots with large time lags. The defini-
tion of loss functions is inspired by classical numerical algorithms for PDEs. The effective-
ness of the proposed pseudo-spectral PINN, or SPINN, has been verified by identifying the 
bulk function f of several phase-field models. The idea of pseudo-spectral PINN introduced 
in this paper is rather general, and it can be applied to discover other PDE models from 
image data, which will be investigated in our later research projects.
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