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In this paper, we consider the Cahn-Hilliard equation coupled with the incompressible 
Navier-Stokes equation, usually known as the Cahn-Hilliard-Navier-Stokes (CHNS) system. 
The CHNS system has been widely embraced to investigate the dynamics of a binary 
fluid mixture. By utilizing the modified leap-frog time-marching method, we propose 
a novel numerical algorithm for solving the CHNS system in an efficient and accurate 
manner. This newly proposed scheme has several advantages. First of all, the proposed 
scheme is linear in time and space, such that only a linear algebraic system needs to be 
solved at each time-marching step, making it extremely efficient. Also, the existence and 
uniqueness of numerical solutions are guaranteed for any time step size. In addition, the 
scheme is unconditionally energy stable with second-order accuracy in time and spectral 
accuracy in space, such that relatively large temporal and spatial mesh sizes can be used to 
obtain reliable numerical solutions. The rigorous proofs for the unconditional energy stable 
property and solution existence and uniqueness are given. Furthermore, we present several 
numerical examples to test the proposed numerical algorithm and illustrate its accuracy 
and efficiency. The differences of coarsening dynamics between the Cahn-Hilliard equation 
and the Cahn-Hilliard-Navier-Stokes equations have been investigated as well.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Interfacial dynamic problems have been intensively studied in the past decades. Among many powerful modeling and 
numerical tools, the hydrodynamic phase-field approach attracts the most attention, mainly due to its simplicity of formu-
lation, and transparent relations of its model parameters to the physical properties. Also, the hydrodynamics phase-field 
models are usually thermodynamically consistent, i.e., the solutions obey the thermodynamics laws, making them phys-
ically sound. In particular, one intensively investigated example is the coupled system of the Cahn-Hilliard equation and 
incompressible Navier-Stokes equation, which has been used to study the dynamics of the binary fluid mixture. The Cahn-
Hilliard-Navier-Stokes (CHNS) system is also the main focus of this paper.

Consider a domain � with smooth boundaries ∂�. We use 1+φ
2 to denote the volume fraction of one component in the 

binary fluid mixture, such that 1−φ
2 represents the volume fraction of the other component, with φ ∈ [−1, 1]. In this paper, 
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we assume both components have the same density ρ , and the binary fluid mixture is in-compressible. Interested readers 
can refer to [1,22,27,32,33,38] on the hydrodynamic phase field models for quasi-compressible or compressible binary fluids. 
We further denote the mass-averaged velocity as u, and the pressure as p. Then the governing Cahn-Hilliard-Navier-Stokes 
(CHNS) system reads as follows.⎧⎪⎨

⎪⎩
∂tφ + ∇ · (uφ) = M�μ,

ρ(∂tu+ u · ∇u) = −∇p + η�u− φ∇μ,

∇ · u = 0,

(1.1)

with either periodic boundary conditions or the physical boundary conditions

u|∂� = 0, ∇φ · n|∂� = 0, ∇μ · n|∂� = 0. (1.2)

Here η > 0 is the viscosity parameter, M ≥ 0 is the mobility, and μ := δE
δφ

is called the chemical potential, with E the total 
energy of the binary fluid mixture. To close the system, we need to specify the expression of the total energy E of the 
system (1.1), which usually consistent two parts: the kinetic energy ENS and the free energy ECH , shown as below

E = ECH + ENS . (1.3)

The kinetic energy is given as

ENS =
∫
�

ρ

2
|v|2dx. (1.4)

The free energy usually depends on the physical properties of the binary fluid mixture. For two immiscible binary viscous 
fluid mixtures, the free energy could be proposed as

ECH = γ

∫
�

ε

2
|∇φ|2 + 1

4ε
(φ2 − 1)2dx, (1.5)

where ε relates to the interfacial thickness, and γ is the surface tension parameter.
It is known that the total energy E of the CHNS system (1.1) is non-increasing in time, and a system with such property 

is known as a dissipative system. We remark that the CHNS system in (1.1) has assumed the temperature is constant, 
which is also usually known as isothermal dissipative system. For a non-isothermal situation, the transport equation of 
temperature or the internal energy shall be added. Also, when the two fluid components have different densities, the 
incompressible Navier-Stokes equation shall be replaced/updated, as well. In this paper, we only focus on the iso-thermal 
and incompressible CHNS system.

To design accurate, efficient, and stable numerical algorithms for the CHNS system have been an active field for decades. 
Mainly, there are several difficulties/concerns: how to deal with the nonlinear terms in the chemical potential, how to 
deal with the coupling between the phase variable φ and hydrodynamic variable v, i.e., the coupling between the Cahn-
Hilliard equation and the incompressible Navier-Stokes equation, and how to guarantee the incompressible property for 
the numerical solution of the velocity field. In addition, given that the CHNS system is dissipative, i.e., it satisfies an energy 
dissipation law, one golden principle for the algorithm designs are that the algorithm shall guarantee the numerical solutions 
would also satisfy the energy dissipation laws in the discrete levels. Such types of numerical schemes are usually named 
energy-stable schemes. And if an algorithm has such property and it does not depend on the time step, the algorithm is 
then known as unconditionally energy stable scheme [18]. Otherwise, if the numerical schemes are not energy stable, the 
numerical solutions will break the hidden dissipative physics the CHNS system represents.

There are many existing results in the literature on addressing these difficulties. Here are some relevant work that attracts 
our attention [2,3,9,11–13,15–17,19,21,23,26,28,29,31,33,35,36,39,45,47]. Interested readers are recommended to read these 
papers and the references therein. In particular, to deal with the nonlinearity in the Cahn-Hilliard equation (for the chem-
ical potential), there are many deeply discussed approaches, including the stabilized approach, convex splitting approach, 
invariant energy quadratization (IEQ) approach, scalar auxiliary variable (SAV) approach, Taylor expansion approach, discrete 
energy variation approach, and many others [8,28,40,41,43,44,46,49]. In order to decouple the incompressible Navier-Stokes 
equation and the Cahn-Hilliard equation, one can use the operator splitting technique [30,39,42,48]. However, we emphasize 
that such decoupling is restricted to the first-order accuracy in time, due to the splitting error. How to design a second-order 
decoupling scheme for the CHNS system is still an open question.

In addition, we want to point out several relevant numerical work of the CHNS system. In [36], the authors are the 
pioneers (to our best knowledge) to propose a second-order accurate time marching scheme for the CHNS system. They 
use the convex splitting idea for discretizing the nonlinear terms in the chemical potential, and use the pressure projection 
method to decouple the flow field u and pressure p. The Newton iteration method has to be applied in each time marching 
step, given the Navier-Stokes equation is still coupled with the Cahn-Hilliard equation, and the scheme is nonlinear. This 
significantly increases the computational cost. To avoid the nonlinear iteration, the authors in [23] propose to discretize 
2
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the nonlinear term in the chemical potential with the IEQ approach, such that each time step, only a linear system is 
required to be solved. In [35], the authors propose a Crank-Nicolson-leapfrog linear scheme based on the IEQ approach. 
Furthermore, the SAV approach [41] could also be used to arrive at more efficient linear schemes for the CHNS system. 
However, as a drawback, the IEQ and SAV approach modified the free energy with new auxiliary variables, such that the 
direct connections between the modified energy and the original energy in the discrete level are not clear anymore. In 
the meanwhile, numerical algorithms for solving the quasi-incompressible phase-field hydrodynamic models have also been 
developed [25,33,34].

In this paper, by embracing the modified leap-frog time-marching approach [7], we propose a novel numerical algorithm 
to address some deficiency of the existing numerical schemes for the CHNS system mentioned above. This newly proposed 
scheme has several merits to make it stand out. First of all, unlike the IEQ approach [49] or SAV approach [41], as well their 
generalized extensions, for which the expression of the energy is modified with the auxiliary variables, the newly proposed 
schemes satisfy an energy dissipation law that is expressed by the original variables. Next, unlike the convex-splitting 
nonlinear schemes [18,36], for which nonlinear iterative Newton’s method has to be applied, the newly proposed scheme 
is fully linear such that only a linear system shall be solved at each time marching step, which is more computationally 
efficient. As a by-product, the solution’s existence and uniqueness could be easily verified. Furthermore, we emphasize that 
the proposed numerical techniques in this paper could be efficiently utilized to investigate other hydrodynamics phase-field 
models for multiphase fluids, quasi-incompressible fluids, and complex fluids. These general applications will be investigated 
in our later research projects.

The rest of the paper is organized as follows. In Section 2, we revisit the Cahn-Hilliard-Navier-Stokes (CHNS) system, 
and its properties of mass conservation and energy dissipation. Then we propose a second-order temporal discretization. 
The energy stability is also shown for the temporal semi-discrete scheme. Then we discretize the space using the pseudo-
spectral method. The energy stability, the solution existence and uniqueness, and the mass conservation property for the 
full-discrete scheme are proved. In Section 3, we implement the proposed scheme and show several numerical examples to 
demonstrate the efficiency and accuracy of the proposed scheme. In the end, we give a brief conclusion.

2. Numerical schemes

For simplicity of notations, we assume periodic boundary conditions for the CHNS system in the rest of this paper, 
otherwise specified. Note that all the following results also apply for the CHNS system with physical boundary conditions 
in (1.2).

First of all, we introduce the following notations. For any f , g ∈ L2(�), we denote the L2 inner product and the induced 
norm as below

( f , g) =
∫
�

f gdx, ‖ f ‖ = √
( f , f ). (2.1)

It could be verified that the CHNS system of (1.1) satisfies the following two properties: 1) it preserves the total mass of 
each fluid components, i.e.

d

dt

∫
�

1+ φ

2
dx = 0,

d

dt

∫
�

1− φ

2
dx = 0, (2.2)

and 2) it follows an energy dissipation law as

d

dt
E = −M‖∇μ‖2 − η‖∇u‖2, (2.3)

with E defined in (1.3), and μ = δE
δφ

the chemical potential. In this paper, we are interested in designing numerical algo-
rithms that can preserve the mass, and guarantee the energy dissipation for the numerical solutions. In the meanwhile, the 
designed numerical algorithm shall be easy to be implemented and efficient to be solved.

To design the time-marching numerical scheme, we denote the skew-symmetric operator B [36] as

B(v,u) = (v · ∇)u+ 1

2
(∇ · v)u, (2.4)

and we rewrite the CHNS system in (1.1) as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tφ + ∇ · (uφ) = M�μ,

μ = −εγ �φ + γ
ε (φ3 − φ),

ρ(∂tu+ B(u,u)) = −∇p + η�u− φ∇μ,

∇ · u = 0,

(2.5)

with either periodic boundary conditions or the physical boundary conditions
3
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u|∂� = 0, ∇φ · n|∂� = 0, ∇μ · n|∂� = 0. (2.6)

We note equation (2.5) is equivalent with (1.1) due to the incompressibility condition ∇ · u = 0. We will focus on (2.5) in 
the rest of this paper.

2.1. Temporal discretization

Consider the CHNS system in (2.5) for the time domain [0, T ]. We discretize it with a uniform time step, 0 = t0 < t1 <

t2 < ... < tN = T , with tn = n
N T , and we denote the numerical solutions at tn as (un, φn, pn), 0 ≤ n ≤ N . Then, a second-order 

linear, semi-discrete numerical scheme in time is proposed below.

Scheme 2.1. After we obtain (un−1, φn−1, pn−1) and (un, φn, pn), we can obtain (un+1, φn+1, pn+1), ∀n ≥ 1, via the following two 
step schemes:

• Step 1, solve (φn+1, ̂un+1) via the following scheme

1

2δt
(φn+1 − φn−1) + ∇ · (φn û

n+1 + un−1

2
) = M�μn, (2.7)

μn = −γ ε�
φn+1 + φn−1

2
+ γ

ε
(φn)2

φn+1 + φn−1

2
− γ

ε
φn + C(φn+1 − 2φn + φn−1), (2.8)

ρ

2δt
(ûn+1 − un−1) + ρB(un,

ûn+1 + un−1

2
) = −∇pn−1 + η�

ûn+1 + un−1

2
− φn∇μn, (2.9)

with C > 0 the stabilization parameter, and either periodic boundary conditions or the following physical boundary conditions

ûn+1|∂� = 0, ∇φn+1 · n|∂� = 0, ∇μn · n|∂� = 0. (2.10)

• Step 2, solve (un+1, pn+1) via the following scheme

ρ

2δt
(un+1 − ûn+1) + 1

2
∇(pn+1 − pn−1) = 0, (2.11)

∇ · un+1 = 0. (2.12)

Remark 2.1. We note that ûn+1 is an intermediate velocity variable, and in Step 2, the procedure of solving un+1 and pn+1

could be decoupled. Mainly if we take divergence operation on both sides of equation (2.11), we can solve pn+1 via

−�pn+1 = −�pn−1 − ρ

δt
∇ · ûn+1. (2.13)

Then we can update un+1 via

un+1 = −δt

ρ
∇(pn+1 − pn−1) + ûn+1. (2.14)

Remark 2.2. In literature, the leap-frog numerical technique is usually used for hyperbolic systems, but not parabolic systems 
like the Cahn-Hilliard equation, due to stability issues. In this paper, we introduce a key correction by using three temporal 
steps to discretize the nonlinear term in the Cahn-Hilliard equation. This special treatment is critical in the energy-stability 
analysis for the numerical scheme.

Remark 2.3. Given the initial condition u0, φ0, p0, we obtain u1, φ1, p1 via a first order energy-stable time marching scheme 
with much smaller time steps, such that u1, φ1, p1 is second-order accurate in term of δt .

Theorem 2.1. The semi-discrete Scheme 2.1 is unconditionally energy stable. And the discrete energy law reads as

En+1,n − En,n−1 = −δtM(∇μn,∇μn) − δt‖√η∇ ûn+1 + un−1

2
‖2, (2.15)

where
4
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En+1,n = γ ε

4
(‖∇φn+1‖2 + ‖∇φn‖2) + (

γ

4ε
(φn+1φn − 1)2,1) + C

2
‖φn+1 − φn‖2

+ ρ

4
(‖un+1‖2 + ‖un‖2) + δt2

4ρ
(‖∇pn+1‖2 + ‖∇pn‖2),

En,n−1 = γ ε

4
(‖∇φn‖2 + ‖∇φn−1‖2) + (

γ

4ε
(φnφn−1 − 1)2,1) + C

2
‖φn − φn−1‖2

+ ρ

4
(‖un‖2 + ‖un−1‖2) + δt2

4ρ
(‖∇pn‖2 + ‖∇pn−1‖2).

(2.16)

Proof. Taking the inner product of (2.7) with δtμn , we have

(φn+1 − φn−1

2
,μn

)
+ δt

(
μn,∇ · (φn û

n+1 + un−1

2
)
)

= −Mδt(∇μn,∇μn). (2.17)

Taking the inner product of (2.8) with 12 (φn+1 − φn−1), we have

(φn+1 − φn−1

2
,μn

)
= γ ε

4

(
‖∇φn+1‖2 − ‖∇φn−1‖2

)
+ γ

4ε

(
(φn+1φn)2 − (φnφn−1)2

− 2φn+1φn + 2φnφn−1,1
)

+ C

2

(
‖φn+1 − φn‖2 − ‖φn − φn−1‖2

)
.

(2.18)

Subtracting equation (2.18) from (2.17), we have

En+1,n
CH − En,n−1

CH + δt
(
μn,∇ · (φn û

n+1 + un−1

2
)
)

= −Mδt(∇μn,∇μn), (2.19)

where En+1,n
CH and En,n−1

CH are defined as

En+1,n
CH = γ ε

4
(‖∇φn+1‖2 + ‖∇φn‖2) + γ

4ε
((φn+1φn − 1)2,1) + C

2
‖φn+1 − φn‖2.

En,n−1
CH = γ ε

4
(‖∇φn‖2 + ‖∇φn−1‖2) + γ

4ε
((φnφn−1 − 1)2,1) + C

2
‖φn − φn−1‖2.

(2.20)

Taking inner product of (2.9) with δt
2 (ûn+1 + un−1), we have

ρ

4
(‖ûn+1‖2 − ‖un−1‖2) = −δt‖√η∇ ûn+1 + un−1

2
‖2 −

(δt

2
(ûn+1 + un−1),∇pn−1

)

− δt
( ûn+1 + un−1

2
, φn∇μn

)
,

(2.21)

by noticing the fact

(δt

2
(ûn+1 + un−1), B(un,

ûn+1 + un−1

2
)
)

= 0. (2.22)

Taking inner product of (2.11) with δt2∇pn−1

ρ
(
δt2∇pn−1,

un+1 + un−1 − (ûn+1 + un−1)

2δt

)
−

(
δt2∇pn−1,

1

2
∇(pn+1 − pn−1)

)
= 0 (2.23)

i.e.,

−
(δt

2
(ûn+1 + un−1),∇pn−1

)
+ δt2

4ρ

(
‖∇pn+1‖2 − ‖∇pn−1‖2 − ‖∇(pn+1 − pn−1)‖2

)
= 0. (2.24)

Taking the inner product of (2.11) with δtun+1

ρ

4
(‖un+1‖2 − ‖ûn+1‖2 + ‖un+1 − ûn+1‖2) = 0. (2.25)

From (2.11), we know

δt2 ‖∇pn+1 − ∇pn−1‖2 − ρ ‖un+1 − ûn+1‖2 = 0. (2.26)

4ρ 4

5
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Adding these equations (2.21), (2.24), (2.25) and (2.26) together, we can easily see

En+1,n
NS − En,n−1

NS + δt
( ûn+1 + un−1

2
, φn∇μn

)
= −δt‖√η∇ ûn+1 + un−1

2
‖2, (2.27)

where

En+1,n
NS = ρ

4
(‖un+1‖2 + ‖un‖2) + δt2

4ρ
(‖∇pn+1‖2 + ‖∇pn‖2),

En,n−1
NS = ρ

4
(‖un‖2 + ‖un−1‖2) + δt2

4ρ
(‖∇pn‖2 + ‖∇pn−1‖2).

(2.28)

Notice the fact

δt
(
μn,∇ · (φn û

n+1 + un−1

2
)
)

+ δt
( ûn+1 + un−1

2
, φn∇μn

)
= 0, (2.29)

for periodic boundary condition or the physical boundary condition in (2.10).
Adding the equations (2.19), (2.27), and (2.29), we finally get

En+1,n − En,n−1 = −Mδt(∇μn,∇μn) − δt‖√η∇ ûn+1 + un−1

2
‖2, (2.30)

where En+1,n = En+1,n
CH + En+1,n

NS and En,n−1 = En,n−1
CH + En,n−1

NS . This completes the proof. �
Remark 2.4. In literature, there are quite a few results on the convergence analysis for the phase-field hydrodynamics 
models, including Cahn-Hilliard-Navier-Stokes equations, Cahn-Hilliard-Hele-Shaw equations, Cahn-Hilliard-Stokes equations. 
And both the first-order and second-order (in time) convergence estimates have been reported. Convergence analysis is out 
of research scope in this paper, interested readers are encouraged to read [5,6,10,14,37] and the references therein.

2.2. Spatial discretization

In this paper, we consider the periodic boundary conditions, so it is natural to employ the Fourier pseudo-spectral 
method. Here we consider a two-dimensional domain for simplicity. Note that an extension of the following results to a 
three-dimensional domain is trivial.

Denote the spatial domain � = [0, Lx] × [0, L y], with Lx and L y the lengths in each direction. We discretize � with 
uniformly partitioned meshes with mesh sizes hx = Lx/Nx and hy = L y/Ny , where Nx, Ny are two positive even integers. 
Therefore, we have the discrete domain

�h = {
(xi, y j)|xi = ihx, y j = jhy,0 ≤ i ≤ Nx − 1,0 ≤ j ≤ Ny − 1

}
. (2.31)

We further introduce the space of grid functions on �h , denoted as

Vh = {
u|u = {uij|(xi, y j) ∈ �h,0 ≤ i ≤ Nx − 1,0 ≤ j ≤ Ny − 1}} . (2.32)

For any two grid functions F ∈ Vh, G ∈ Vh , we define the discrete inner product and induced l2 norm as follows

(F ,G)h =
Nx−1∑
i=0

Ny−1∑
j=0

FijGi jhxhy, ‖F‖h = √
(F , F )h. (2.33)

Following the notations in our previous work [7], we define discrete gradient operator ∇h and the discrete Laplace operator 
�h , and to distinguish with the semi-discrete solution φn , pn , un , n ≥ 0 we denote the full discrete solution with an 
subscript, as φn

N ∈ Vh , pnN ∈ Vh and un
N ∈ (Vh)

2, respectively.
Then the fully discrete numerical scheme is proposed as below.

Scheme 2.2. After we obtain φn−1
N , φn

N ∈ Vh, un−1
N , un

N ∈ (Vh)
2 , and pn−1

N , pnN ∈ Vh, we update (φn+1
N , un+1

N , pn+1
N ) ∈ (Vh, (Vh)

2, Vh), 
with n ≥ 1, via two steps.

• Step 1, solve φn+1
N and ûn+1

N via the following scheme

1

2δt
(φn+1

N − φn−1
N ) + ∇h · (φn

N
ûn+1
N + un−1

N

2
) = M�hμ

n
N , (2.34)

μn
N = −γ ε�h

φn+1
N + φn−1

N + γ
(φn

N)2
φn+1
N + φn−1

N − γ
φn
N + C(φn+1

N − 2φn
N + φn−1

N ), (2.35)

2 ε 2 ε

6
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ρ

2δt
(ûn+1

N − un−1
N ) + ρB(un

N ,
ûn+1
N + un−1

N

2
)h = −∇h p

n−1
N + η�h

ûn+1
N + un−1

N

2
− φn

N∇hμ
n
N , (2.36)

with periodic boundary conditions. Here the discrete skew-symmetric operator B is defined as

B(vN ,uN)h = (vN · ∇h)uN + 1

2
(∇h · vN)uN . (2.37)

• Step 2, solve un+1
N and pn+1

N via the following scheme

ρ

2δt
(un+1

N − ûn+1
N ) = −1

2
∇h(p

n+1
N − pn−1

N ), (2.38)

∇h · un+1
N = 0. (2.39)

Remark 2.5. In the full discrete scheme, the steps in (2.38)-(2.39) can be further simplified, by taking a discrete divergence 
on both sides, and using ∇h · un+1

N = 0. We can get pn+1
N by solving

−�h p
n+1
N = −�h p

n−1
N − ρ

δt
∇h · ûn+1

N , (2.40)

and then we can update un+1
N via

un+1
N = −δt

ρ
∇h(p

n+1
N − pn−1

N ) + ûn+1
N . (2.41)

Remark 2.6. Given the initial condition u0
N = INu0, φ0

N = INφ0, p0
N = IN p0. Here IN is the interpolation operator on the 

space of continuous functions and valued in the finite space [7], we calculate u1
N , φ1

N , p1
N via a first order energy-stable time 

marching scheme with smaller time steps, such that u1
N , φ1

N , p1
N is second-order accurate in term of δt .

Some theoretical results can be obtained for the full discrete Scheme 2.2.

Theorem 2.1. The full discrete Scheme 2.2 is unconditionally energy stable. And the full discrete solutions satisfy the following energy 
dissipation law

En+1,n
h − En,n−1

h = −δtM‖∇hμ
n
N‖2h − δt‖√η∇h

ûn+1
N + un−1

N

2
‖2h, (2.42)

where

En+1,n
h = γ ε

4
(‖∇φn+1

N ‖2h + ‖∇φn
N‖2) + γ

4ε
((φn+1

N φn
N − 1)2,1)h + C

2
‖φn+1

N − φn
N‖2h

+ ρ

4
(‖un+1

N ‖2h + ‖un
N‖2h) + δt2

4ρ
(‖∇pn+1

N ‖2 + ‖∇pnN‖2),

En,n−1
h = γ ε

4
(‖∇φn

N‖2h + ‖∇φn−1
N ‖2h) + γ

4ε
((φn

Nφn−1
N − 1)2,1)h + C

2
‖φn

N − φn−1
N ‖2h

+ ρ

4
(‖un

N‖2h + ‖un−1
N ‖2h) + δt2

4ρ
(‖∇pnN‖2h + ‖∇pn−1

N ‖2h).

(2.43)

Proof. The proof is similar to that of the semi-discrete Scheme 2.1, and we thus only show the sketch. Taking the inner 
product of (2.34) with δtμn

N , the inner product of (2.35) with 12 (φn+1
N − φn−1

N ), and subtracting them, we will have

En+1,n
CH − En,n−1

CH + δt
(
μn

N ,∇h · (φn
N
ûn+1
N + un−1

N

2
)
)
h

= −Mδt‖∇hμ
n
N‖2h, (2.44)

where En+1,n
CH and n,n−1

CH are defined as

En+1,n
CH = γ ε

4
(‖∇hφ

n+1
N ‖2h + ‖∇hφ

n
N‖2h) + γ

4ε
((φn+1

N φn
N − 1)2,1)h + C

2
‖φn+1

N − φn
N‖2h.

En,n−1
CH = γ ε

4
(‖∇hφ

n
N‖2h + ‖∇hφ

n−1
N ‖2h) + γ

4ε
((φn

Nφn−1
N − 1)2,1)h + C

2
‖φn

N − φn−1
N ‖2h.

(2.45)

Taking the inner product of (2.36) with δt
2 (ûn+1

N + un−1
N ), the inner product of (2.38) with δt2∇pn−1

N , the inner product 
of (2.38) with δtun+1, the inner product of (2.38) with itself, and then adding these equations together, we can easily see
N

7
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En+1,n
NS − En,n−1

NS + δt
( ûn+1

N + un−1
N

2
, φn

N∇μn
N

)
h

= −δt‖√η∇h
ûn+1
N + un−1

N

2
‖2h, (2.46)

where

En+1,n
NS = ρ

4
(‖un+1

N ‖2h + ‖un
N‖2h) + δt2

4ρ
(‖∇h p

n+1
N ‖2h + ‖∇h p

n
N‖2h),

En,n−1
NS = ρ

4
(‖un

N‖2h + ‖un−1
N ‖2h) + δt2

4ρ
(‖∇h p

n
N‖2h + ‖∇h p

n−1
N ‖2h).

(2.47)

Notice the fact

δt
(
μn

N ,∇h · (φn
N
ûn+1
N + un−1

N

2
)
)
h
+ δt

( ûn+1
N + un−1

N

2
, φn

N∇hμ
n
N

)
h

= 0, (2.48)

for periodic boundary condition. Adding the equations (2.44), (2.46), and (2.48) will complete the proof. �
Theorem 2.2. The full discrete Scheme 2.2 is uniquely solvable, i.e. for each time marching step, there exists a unique solution 
(φn+1

N , un+1
N , pn+1

N ) ∈ (Vh, (Vh)
2, Vh).

Proof. We only need to show there exists a unique solution for each step of the full discrete Scheme 2.2.
For the step in (2.34)-(2.36), with a little abuse of notations, it could be written as a algebraic linear system AX = b, 

where X = (μn
N , φn+1

N , ̂un+1
N ) and

A =

⎡
⎢⎢⎣

−M�h
1
2δt ∇h · ( φn

N
2 •)

−1 − ε2

2 �h + (φn
N )2

2 + C 0

φn
N∇• 0 ρ

2δt + ρB(un
N , •

2 )h − η
2�h

⎤
⎥⎥⎦ , (2.49)

and b are the remaining (explicit) terms. To show AX = b has a unique solution, we only need to show AX = 0 has only 
solution X = 0.

It is obvious that X = 0 is a solution to AX = 0. Next, we prove that X = 0, provided AX = 0. Denote X = (X1, X2, X3). 
As of matter of fact, if we take inner product of Y = (2X1, X2

δt , X3) on both sides of AX = 0, we will have

2‖√M∇h X1‖h + ε2

2
‖∇h X2‖2h + (

(φn
N)2

2
+ C, X2

2)h + ρ

2δt
‖X3‖2h + 1

2
‖√η∇h X3‖2h = 0. (2.50)

We immediately notice ‖X3‖2h = 0, which means X3 = 0. Given the facts C > 0, we have ‖X2‖2h = 0, which means X2 = 0. 
From the second equation of AX = 0, we have

X1 = ε2

2
�h X2 +

( (φn
N)2

2
+ C

)
X2 = 0. (2.51)

Therefore, we prove that X = 0, provided AX = 0.
This indicates the step in (2.34)-(2.36) has a unique solution. It is not hard to check the step in (2.40) and the step in 

(2.41) has a unique solution respectively. Hence we have shown that the full discrete Scheme 2.2 has a unique solution. �
Theorem 2.3. The full discrete Scheme 2.2 preserves the total mass of the phase variable. In other words,

(φn+1
N ,1)h = (φn

N ,1)h, ∀n ≥ 0. (2.52)

Proof. This can be easily verified if we take the discrete inner product of equation (2.34) with φn+1
N , and guarantee that the 

starting values preserve the total mass, i.e. (φ1
N , 1)h = (φ0

N , 1)h . �
3. Numerical results

In this section, we present several numerical examples of the CHNS model in a row, using the scheme (2.34)-(2.39), to 
demonstrate its efficiency and accuracy. For simplicity, in the rest of this section, we choose ρ = 1 and periodic boundary 
conditions on the square domain [0, L]2 with L representing the length of each boundary. And we choose Nx = Ny = N , 
with N a positive integer. Also, we denote the roughness measure function W (t) as follows:

W (t) =
√√√√ 1

|�|
∫ (

φ(x, y, t) − φ(x, y, t)
)2

d�, (3.1)
�

8
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Fig. 3.1. L2 solution errors with various time steps. This figure shows the second-order convergence rate in time of the proposed linear scheme (2.34)-(2.39)
with η = 0.01, M = 0.1, γ = 0.05 and ε = 0.05.

where φ(x, y, t) = ∫
�

φ(x, y, t)d�. Some detailed comparisons of the dynamics between the Cahn-Hilliard equation and the 
Cahn-Hilliard-Navier-Stokes equation are presented. And we observe that the hydrodynamics has a dramatic effect on the 
phase separation dynamics.

3.1. Convergence tests

First of all, we conduct a mesh-refinement test to verify the proposed scheme (2.34)-(2.39) is second-order accurate in 
time indeed. Consider two circular bubbles merging into a single one, starting in the middle of the domain. And we set the 
computational domain as [0, 2π ] × [0, 2π ], and fix the physical parameters M = 0.1, ε = 0.05, γ = 0.05, and computational 
parameters N = 256, C = 2. Then, we take the following initial conditions⎧⎪⎨

⎪⎩
u0(x, y) = 0,∀(x, y) ∈ �,

φ0(x, y) =
{

1, if (x− 3π
4 )2 + (y − π)2 ≤ π2

16 or (x − 5
4π)2 + (y − π)2 ≤ π2

16 ;

−1, otherwise.

(3.2)

Given the analytical solution is unknown for this problem, we take the numerical solution with δt = 0.0001 as the ‘exact’ 
solution for benchmark purpose. With the setting above, we conduct a time-step size refinement test for the full discrete 
scheme (2.34)-(2.39). The solution errors with various time step sizes at t = 1 are summarized in Fig. 3.1. We observe that 
the expected second order convergence rate in time for all variables is obtained as expected.

3.2. Merging bubbles

Then we investigate the evolution dynamics of two merging bubbles with the proposed scheme (2.34)-(2.39). We use 
the same setting as the example above. The initial condition is taken as two kissing bubbles:⎧⎪⎨

⎪⎩
u0(x, y) = 0,∀(x, y) ∈ �,

φ0(x, y) = tanh
(
√

(x− 0.75π)2 + (y − π)2 − π
4

2
√
2ε

× tanh
(
√

(x− 1.25π)2 + (y − π)2 − π
4

2
√
2ε

.
(3.3)

We simulate the CHNS system for the time domain [0, 300] using the proposed scheme (2.34)-(2.39). Then, the time evo-
lution of the total energy with various viscosity η is shown in Fig. 3.2(a). We observe that the energy drops dramatically at 
the beginning and smoothly afterward, eventually, the energies reach the steady states. We observe that the hydrodynamic 
equation accelerates the phase evolution dynamic in this example. Also, we observe the energy is non-increasing in time in 
all situations, which agrees well with our theoretical results in the previous section. The energy versus t with different δt
is plotted in Fig. 3.2(b). Obviously, the dynamic with δt = 0.1 is not accurate enough. In Fig. 3.2(c), we plot the total mass, 
M(t) = ∫

�
φ(x, y, t)d�, versus t . The mass remains a constant a least keep 10 digits the same all the time.

In Fig. 3.3, we plot the time snapshots of the phase-field profile φ at t = 1 by CHNS model with η = 0.1, M = 0.1, 
γ = 0.05. In Fig. 3.3(a), we observe that the result with δt = 0.1 is not accuracy enough in the simulation, while the result 
of δt = 0.01 and δt = 0.001 agree well. Thus we take δt = 0.001 in the following simulation. In Fig. 3.3(b), we see that 
various stability constant C does not affect the accuracy noticeably, as this term only adds a second-order error O (δt2). But 
if C is too large, the error can’t be ignored. In this paper, we choose C = 2 if not specified otherwise. Readers can refer to 
[8] on discussing the optimal choices of C . In Fig. 3.3(c), the sharp interface limit is considered. And we observe the results 
with ε = 0.01, 0.02 agree well, i.e. the solutions converge to their sharp-interface limit.

In the meanwhile, the evolution history of the bubbles driven by the CH model and the CHNS model with η = 1, 0.1
are shown in Fig. 3.4. We observe they have similar dynamics, but the hydrodynamic equation does accelerate the dynamic 
9



Fig. 3.2. Time evolution of the energy for the CH model and the CHNS model with various η (a), various time step δt (b) when t ∈ [0, 200] and M(t) for 
the CHNS model (c) when t ∈ [0, 20].

Fig. 3.3. Time snapshots of the phase field profile φ at t = 1 by the CHNS model with η = 0.1, M = 0.1, γ = 0.05, ε = 0.02. (a) takes various time steps, 
δt = 0.1, 0.01, 0.001; (b) takes various C values, C = 0.3, 2.0, 10, 1000; (c) takes various interfacial thickness, ε = 0.08, 0.04, 0.02, 0.01.

slowly. Also the profiles of vector u and the profile of pressure p at different time are presented in Fig. 3.5. We observe that 
the velocity vector field of CHNS model lead to vortexes around the bubbles.

In order to compare the efficiency of our method, we also compare it with the second-order IEQ scheme [24]. In Fig. 3.6
we present the energy decay for the CHNS model when t ∈ [0, 50] with η = 0.1, M = 0.1, γ = 0.05 and ε = 0.05. We 
observe that the energy decay agrees well by the two schemes when δt is small, while error will increase when increasing 
δt . In this example, the newly proposed scheme demonstrates compatible accuracy with the IEQ scheme.

3.3. Coarsening dynamics

In the next example, we perform numerical simulations of coarsening dynamics in the computational domain [0, 2π ] ×
[0, 2π ]. The initial conditions are given as below{

u0(x, y) = 0,∀(x, y) ∈ �,

φ0(x, y) = rand(−0.001,0.001), ∀(x, y) ∈ �,
(3.4)

where for each point, rand(−0.001, 0.001) generates a random state varying from −0.001 to 0.001. We fix the following 
physical parameters M = 0.02, γ = 0.05, ε = 0.05 and computational parameters δt = 0.001, N = 256.

As shown in Fig. 3.7(a), we observe the energy of the Cahn-Hilliard equation with constant mobility parameter decreases 
as O (t− 1

3 ). And the energy decreases as O (t−1) for CHNS is also observed. All of these agree well with existing reports 
in literature [4]. To further investigate how the hydrodynamics would affect the coarsening dynamics, we solve the CHNS 
equation with various viscosities. Their energy evolution and roughness are summarized in Fig. 3.7. We observe that the 
hydrodynamics facilitates the coarsening dramatically. At the initial time period, the energy decays follow a much faster 
power law, and at later times, the energy decays with a similar power law as the CH equation alone. In other words, the 
hydrodynamics has a dramatic effect on the coarsening dynamics when the phase-field profile has a fine-scale.

In addition, to have a better visualization of the different dynamics produced by the CH equation and the CHNS equation, 
we present the phase-field profiles at various time slots in Fig. 3.8, with snapshots are taken at t = 5, 25, 50, 100, 200, 
respectively. We observe that the hydrodynamics tremendously influence the coarsening dynamics, i.e., the evolution of the 
L. Chen and J. Zhao Journal of Computational Physics 423 (2020) 109782
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Fig. 3.4. Time snapshots of the phase field profile φ during coarsening dynamics. The dynamics is driven by the CH model with M = 0.1, γ = 0.05 and 
ε = 0.02, and the dynamics driven by the CHNS model with η = 1, 0.1, M = 0.1, γ = 0.05 and ε = 0.02. In both cases, the profiles of φ at different time 
slots t = 0, 5, 20, 100, 200, 300 are presented.

Fig. 3.5. Time snapshots of coarsening dynamics driven by the CHNS model with η = 0.1, M = 0.1, γ = 0.05 and ε = 0.02. The profiles of vector u and 
images of pressure p at different time slots t = 5, 20, 100, 300 are presented. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Fig. 3.6. Time evolution of the energy for the CHNS model when t ∈ [0,50] with η = 0.1, M = 0.1, γ = 0.05 and ε = 0.05.
11
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Fig. 3.7. Time evolution of the energy (a) and roughness (b) for the CH model and CHNS model using with a random initial condition for t ∈ [1, 200] and 
t ∈ [0, 200] respectively.

Fig. 3.8. Time snapshots of coarsening dynamics (a) driven by the CH model with γ = 0.02 and ε = 0.05; (b) driven by the CHNS model with M = 0.02, γ =
0.05, ε = 0.05 and η = 0.1; (c) driven by the CHNS model with M = 0.02, γ = 0.05, ε = 0.05 and η = 0.01. Snapshots are taken at t = 5, 25, 50, 100, 200.

phase variables, in this example. In Fig. 3.9, we present the profiles of vector u and color plots of pressure p at different 
times. It is observed that the velocity field of the CHNS model has a larger effect on the interface than in bulk, as we see 
larger velocity magnitude at the interface. And, we also observe larger pressure gradients at the phase interface.

3.4. Nucleation dynamics

In this following example, we consider the nucleation dynamics with the CHNS system. We consider the computational 
domain [0, 2π ] × [0, 2π ] and use the following initial profile
12
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Fig. 3.9. Time snapshots of coarsening dynamics driven by the CHNS model. In this figure, (a) shows the profiles of u with parameters η = 0.1, M = 0.02, 
γ = 0.05 and ε = 0.05; (b) shows the profiles of u with parameters η = 0.01, M = 0.02, γ = 0.05 and ε = 0.05. Snapshots are taken at t = 5, 25, 200.

Fig. 3.10. Time evolution of the energy (a) and the roughness (b) for the CH model and the CHNS model using with a random initial condition. In this 
figure, the evolution of the energy for t ∈ [1, 100] and the roughness for t ∈ [0, 100] are summarized.

⎧⎨
⎩

u0(x, y) = 0,∀(x, y) ∈ �,

φ0(x, y) = |x− π |
2π

+ 10−3 × rand(−1,1), ∀(x, y) ∈ �.
(3.5)

Notice with this initial profile φ0(x, y) for the phase variable, the averaged volume fraction of φ varies spatially, with a larger 
value near the sides, and smaller values in the middle. Also, we fix the physical parameters M = 0.02, γ = 0.05, ε = 0.05
and computational parameters δt = 0.001, N = 256.

As a comparison, we solve the CHNS system with various viscosity parameters, as well as the CH equation alone. The 
time evolution of the energy and roughness are summarized in Fig. 3.10. We observe that the hydrodynamics will facilitate 
the nucleation dynamics and speed up the energy decay dramatically.

Then, in Fig. 3.11, we plot the contour lines of numerical solutions of the phase function φ for the CH model and CHNS 
with η = 1, 0.1, 0.01, respectively. Snapshots are taken at t = 1, 5, 10, 20, 100, respectively. In this example, we observe 
both spinodal decomposition and nucleation are taking place on different parts of the computational domain, similarly as 
[20]. And in particular, the spinodal decomposition takes place where there are bigger averaged volume fractions, and the 
nucleation takes place, where there are smaller, averaged volume fraction. For the CH model, the band structure in the 
middle is preserved, while for the CHNS model with smaller viscosity, the band structure is broken, and a circular drop is 
formed, instead. In addition, we observe that the hydrodynamics has a tremendous influence on the phase evolution as the 
above example. And, when the fluid has a smaller viscosity, the effect is more obvious.
13
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Fig. 3.11. Time snapshots of phase separation dynamics driven by the CH model and the CHNS model with various viscosities, here we fix M = 0.02, 
γ = 0.05 and ε = 0.05. The profiles of φ at different time slots t = 1, 5, 10, 20, 100 are presented.

Finally, we plot the profiles of the velocity u by vector fields and the pressure p by a color field at t = 1, 5, 10, 100
in Fig. 3.12. Similarly, as the previous two examples, large velocity fields locate on the interface, which drive the phase 
evolution. And we observe that the pressure has a larger gradient at the interface in all cases, which also agrees with the 
previous two examples. In particular, we observe the case with a smaller viscosity evolves faster than the case with a larger 
viscosity.

4. Conclusion

In this paper, by utilizing the modified leap-frog finite difference method for temporal discretization and Fourier pseu-
dospectral method for spatial discretization, we come up with a novel numerical algorithm for solving the Cahn-Hilliard-
Navier-Stokes (CHNS) equation. The newly proposed algorithm is second-order accurate in time and spectral accurate in 
space. Also, it is linear, such that only a linear algebraic system needed to be solved in each time step. And the numerical 
scheme is proved to be unconditionally energy stable, which is also further verified numerically through several examples 
14
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Fig. 3.12. Time snapshots of phase separation dynamics driven by the CHNS model with different viscosities. Here we fix the parameters M = 0.02, γ = 0.05
and ε = 0.05. The profiles of vector field u and color plots of pressure p at different time slots t = 1, 5, 10, 100 are presented.

of coarsening and phase separation dynamics. In addition, we solve the CHNS system for several cases with various physical 
parameters, confirming the effectiveness of the newly proposed scheme. Furthermore, the proposed numerical techniques 
in this paper could be easily applied to investigate other phase-field hydrodynamics models for multiphase fluids, quasi-
incompressible fluids, and complex fluids.
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