
SUBCONVEXITY BOUNDS FOR TWISTED L-FUNCTIONS

RIZWANUR KHAN

Abstract. We prove hybrid subconvexity bounds for a wide class of twisted L-functions L(s, f×χ)

at the central point, including a new instance of the Weyl subconvexity bound.

1. Introduction

The subconvexity problem is an important problem in the theory of L-functions concerned with
bounding an automorphic L-function L(s) on the critical line <(s) = 1

2 . A bound which can readily
be obtained using essentially only the functional equation of the L-function is called the convexity
bound and is given by

L( 1
2 + it)� qκ+ε,(1.1)

where q is the analytic conductor of the L-function [20, Section 5.1], κ = 1
4 and ε > 0 is arbitrarily

small. The subconvexity problem is to establish (1.1) with some number κ strictly less than 1
4 . The

best possible expectation, essentially, is that we may take κ = 0, and this is the famous Lindelöf
conjecture. The subconvexity bound for GL(1) L-functions is classical, and for GL(2) automorphic
L-functions it was completely resolved by Michel and Venkatesh [24]. However it is of great interest
to not only break the convexity bound, but to reach certain milestones called the Burgess exponent
(κ = 3

16 ) and the Weyl exponent (κ = 1
6 ). These are named after classical results in GL(1), but

also occur in higher rank. It is unknown why the Burgess and Weyl exponents occur in so many
unrelated situations, but in all cases they seem to represent natural barriers which can require deep
ideas to overcome.

We mention a few examples in GL(1) and GL(2) at the central point s = 1
2 . For Dirichlet

L-functions of modulus q, the analytic conductor is equal to q. Burgess [10] proved the bound

L( 1
2 , χ)� q

3
16+ε, Conrey and Iwaniec [13] proved the Weyl bound q

1
6+ε for real characters, Petrow

and Young [29, 28] proved the Weyl bound for all Dirichlet characters, and Milićević [25] proved a
sub-Weyl bound in the case of Dirichlet characters of prime power modulus pn with n large. Turning
now to GL(2), let f be a holomorphic Hecke cusp form or a Hecke Maass cusp form for the full
modular group, with associated L-function L(f, s). The Weyl subconvexity bound was proven for
L( 1

2 , f) in the spectral and weight aspects by Ivić [18] and Peng [27] respectively. If f is a newform of
level q, the analytic conductor of L(s, f) in the level aspect is q. For f with trivial nebentypus, Duke,

Friedlander and Iwaniec [14] proved the first subconvexity bound L( 1
2 , f)� q

1
4−

1
192+ε. This has seen

some recent improvements. The current best result for q an odd prime is κ = 1
5 conditionally on

the Ramanujan conjecture, by Kiral and Young [22] and Blomer and Khan [6]. Unconditionally it is
κ = 0.2073 by Blomer, Humphries, Khan, Milinovich [5]. For newforms with primitive nebentypus,
the best result is due to Blomer and Khan [7], with exponent κ = 1

4 −
1

128 .
It is highly frustrating that the subconvexity exponent in the level aspect does not attain even

the Burgess milestone, despite better results in other GL(2) aspects. There are however exceptions
for special forms which arise as twists. For twists of a form f of fixed level by a primitive Dirichlet
character χ of modulus q, the Burgess bound for L( 1

2 , f ×χ) in the q aspect is known by the results
of Bykovskĭı [12] and Blomer, Harcos, and Michel [4, 2], and the Weyl bound is known when χ is real
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by work of Petrow and Young [30]. The Weyl bound was also established for twists by characters of
prime power moduli by Blomer and Milićević [9] and Munshi and Singh [26]. Outstanding results
also exist for twists of forms whose level is not fixed. Conrey and Iwaniec [13] proved the Weyl
bound for L(1/2, f × χ) for newforms f of level q and trivial nebentypus, twisted by real primitive
characters χ of modulus q (see also [31]). Petrow and Young [29] generalized this result to allow any
primitive character χ of modulus q as long as f is a newform of level q and nebentypus χ2. The
works of Iwaniec and Conrey and of Petrow and Young are particularly significant because they also
lead to the Weyl subconvexity bound for Dirichlet L-functions.

The goal of this paper is to prove subconvexity bounds for a wide class of twisted L-functions,
including a new instance of the Weyl subconvexity bound. We restrict to prime level and modulus
in order to minimize technical details and concentrate more on the main ideas.

Theorem 1.1. Let ε > 0. Let f be a holomorphic newform with weight k ≥ 2, prime level q
and trivial nebentypus. Let χ be a primitive Dirichlet character of prime modulus p. Suppose that
pε ≤ q ≤ p2+ε and (q, p) = 1. We have

L( 1
2 , f × χ)�k,ε p

ε(q
1
2 + p

1
2 ).

By Atkin-Lehner theory [20, Proposition 14.20], L(s, f ×χ) is the L-function attached to a newform
of level qp2 and nebentypus χ2. Thus the result above gives the convexity bound or better in all
cases, a subconvexity bound when q ≤ p2−δ for some δ > 0, the Burgess subconvexity bound or
better for p

2
3−ε ≤ q ≤ p

6
5+ε, and the Weyl subconvexity bound for p1−ε ≤ q ≤ p1+ε, which is the

best our result can do. This last bound may be viewed as complementary to the work of Conrey and
Iwaniec [13] and Petrow and Young [29]. They obtained the Weyl bound when the level of the form
and modulus of the Dirichlet character coincide, while we do the same when the level and modulus
are of the same size, but coprime.

Theorem 1.1 is a type of hybrid subconvexity bound, since it can yield subconvexity in both
parameters p and q simultaneously. Such hybrid bounds are of great interest and have been studied
by Blomer and Harcos [2, 3], Aggarwal, Jo, and Nowland [1], and Chen and Hou [17]. Of these

results, the last one yields subconvexity for the widest range: for q as large as p
3
2−δ, but it falls short

of any milestone subconvexity bound. Our result works in an even wider range, and gives much
stronger bounds when q and p are about the same size. Moreover our proof is much simpler and
completely avoids the shifted convolution problem, which was central in the aforementioned works on
hybrid subconvexity. Theorem 1.1 follows immediately by establishing the following second moment
estimate. This an analogue of a bound of Holowinsky and Templier [16, Theorem 1] on the first
moment of Rankin-Selberg GL(2)×GL(2) L-functions in the level aspect.

Theorem 1.2. Keep the notation in the statement of Theorem 1.1. Let B?k(q) denote a basis of
holomorphic newforms of level q and weight k ≥ 2, with trivial nebentypus. We have∑

f∈B∗
k(q)

|L( 1
2 , f × χ)|2 �k,ε p

ε(q + p)(1.2)

for any ε > 0.

For comparison, the large sieve [20, Theorem 7.26] would give a bound of O(pε(q + q
1
2 p)) for the

second moment. In connection to this, we mention a further application that our work may have.
In [11, Theorem 1.2], Buttcane and Khan proved the first moment bound∑

f∈B∗
2k(q)

L( 1
2 , sym2g × f)�k,ε q

1+ε,(1.3)

where g ∈ B∗k(q) and k is large enough in terms of ε. Liu, Masri, and Young [23, page 16] observed
that if (1.3) can be extended to small k, which may be possible using current technology, then the
large sieve estimate for the left hand side of (1.2) would imply a hybrid subconvexity bound for
L( 1

2 , f ×Θχ) that is uniform in all ranges of q and p, where Θχ is the theta series associated to an



SUBCONVEXITY BOUNDS FOR TWISTED L-FUNCTIONS 3

ideal class group character of Q(
√
−p) . We note that using our Theorem 1.2 instead of the large

sieve would give a stronger subconvexity bound for L( 1
2 , f ×Θχ).

Throughout, we follow the ε-convention: that is, ε will always be positive number which can be
taken as small as we like, but may differ from one occurence to another. All implied constants may
depend on ε and k.

Funding. This work was supported by the National Science Foundation (grant DMS-2001183)
and the Simons Foundation (award 630985).

Acknowledgement. I am grateful to Matthew P. Young, Peter Humphries, and the anonymous
referee for their helpful comments.

2. Preliminaries

2.1. Poisson summation. One of the basic tools we will use is the Poisson summation formula.
We state it here.

Lemma 2.1. Let ψ be a function in the Schwartz class. We have∑
n∈Z

n≡a mod r

ψ(n) =
1

r

∑
m∈Z

e
(am
r

)
ψ̂
(m
r

)
,

where ψ̂(ξ) =
∫∞
−∞ ψ(t)e(−tξ)dt and e(x) = e2πix.

2.2. Modular forms and L-functions. Let Sk(q) denote the space of holomorphic cusp forms of
prime level q, weight k, and trivial nebentypus. Let S∗k(q) ⊂ Sk(q) denote the space of newforms.
Every f ∈ Sk(q) has a Fourier series expansion

f(z) =

∞∑
n=1

af (n)n
k−1
2 e(nz)

for =(z) > 0. Let Bk(q) denote an orthogonal basis of Sk(q) which contains a basis B?k(q) of S∗k(q),
normalized so that af (1) = 1 for every f ∈ B∗k(q).

Let χ be primitive Dirichlet character of prime modulus p. For f ∈ Bk(q), define

(f × χ)(z) =

∞∑
n=1

χ(n)af (n)n
k−1
2 e(nz).

For f ∈ B?k(q), this is a newform of level qp2, weight k, and nebentypus χ2. The associated L-function
is entire and for <(s) > 1 equals

L(s, f × χ) =

∞∑
n=1

χ(n)af (n)

ns
.

This satisfies the functional equation

Λ(s, f × χ) :=
(pq 1

2

2π

)s
Γ(s+ k−1

2 )L(s, f × χ) = εΛ(1− s, f × χ),(2.1)

for some complex number ε of modulus 1, which depends on q, p, and χ. Thus the analytic conductor
at s = 1

2 is kp2q. These facts may be found in [20, Section 14]. Let L(s, sym2f) denote the symmetric
square L-function attached to f ∈ B∗k(q). This is defined in [20, Section 5.12], but all we need are
the bounds

(kq)−ε � L(1, sym2f)� (kq)ε(2.2)

given in [15]. In particular, L(1, sym2f) is positive.
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2.3. Approximate functional equation. We will need the following consequence of the approxi-
mate functional equation [20, Theorem 5.3].

Lemma 2.2. We have the bound

|L( 1
2 , f × χ)|2 �

∣∣∣∑
n≥1

af (n)χ(n)

n
1
2

V
( n

q
1
2 p

)∣∣∣2 +
∣∣∣∑
n≥1

af (n)χ(n)

n
1
2

V
( n

q
1
2 p

)∣∣∣2,(2.3)

where we define the real function

V (x) =
1

2πi

∫
(2)

(2πx)−u
Γ(k2 + u)

Γ(k2 )

du

u

for x > 0.

By a standard argument of shifting contours, we may restrict the sum above to n ≤ q 1
2 p1+ε, up to an

error of O(p−100). Further, by splitting the n-sum in (2.3) into O(log q) sums over dyadic intervals
and applying the Cauchy-Schwarz inequality, for the purposes of Theorem 1.2 it suffices to prove

1

N

∑
f∈B∗

k(q)

∣∣∣∑
n≥1

χ(n)af (n)V
( n
N

)∣∣∣2 � pε(q + p)(2.4)

for any

1 ≤ N ≤ q 1
2 p1+ε

and any smooth function V compactly supported on the positive reals with ‖V (j)‖∞ �j (pε)j+1 for
all j ≥ 0.

2.4. Petersson trace formula. The Petersson trace formula [21, Proposition 2.1] states that∑
f∈Bk(q)

Γ(k − 1)

(4π)k−1〈f, f〉
af (n1)af (n2) = δ(n1=n2) + 2πi−k

∑
c≥1

S(n1, n2, cq)

cq
Jk−1

(4π
√
n1n2
cq

)
,(2.5)

where 〈f, f〉 is the Petersson inner product, S(n1, n2, cq) is a Kloosterman sum, Jk−1(x) is a J-Bessel
function, and δP equals 1 if the statement P is true, and 0 otherwise.

By [21, equations (2.3, 2.24)], we have

2π2

q(k − 1)L(1, sym2f)
=

Γ(k − 1)

(4π)k−1〈f, f〉
for f ∈ B∗k(q). This combined with the bound (2.2) means that for (2.4), it suffices to prove

1

N

∑
f∈B∗

k(q)

Γ(k − 1)

(4π)k−1〈f, f〉

∣∣∣∑
n≥1

χ(n)af (n)V
( n
N

)∣∣∣2 � pε
(

1 +
p

q

)
.

By positivity, we may enlarge B∗k(q) to Bk(q), expand out the square |
∑
n≥1

. . . |2, and apply the

Petersson trace formula (2.5). After doing so, we need to prove

(2.6)∣∣∣ 1

N

∑
n1,n2≥1
n1=n2

V
(n1
N

)
V
(n2
N

)∣∣∣+∣∣∣ 1

N

∑
n1,n2,c≥1

S(n1, n2, cq)χ(n1)χ(n2)

cq
V
(n1
N

)
V
(n2
N

)
Jk−1

(4π
√
n1n2
cq

)∣∣∣
� pε

(
1 +

p

q

)
.

The contribution of the ‘diagonal’
∑
n1=n2

is obviously O(pε). For the off-diagonal we first note the
following.
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Lemma 2.3. For x ≤ pε we have

Jk−1(4πx) = xW1(x)

where W1(x) is a smooth function satisfying ‖W (j)
1 ‖∞ �j (pε)j+1 for all j ≥ 0 and x in this range.

For x > pε, we have

Jk−1(4πx) = <
(e(2x)√

x
W2(x)

)
,(2.7)

where < denotes the real part and W2 is a smooth function satisfying

xjW
(j)
2 (x)�j,ε (pε)j+1

for all j ≥ 0 and x in this range.

Proof. When x ≤ p−ε, use the power series [19, page 82],

Jk−1(x) =
∞∑
`=0

(−1)`(x/2)k−1+2`

`!(k + `− 1)!
.

When x > p−ε, use [21, section 4]. �

2.5. Conclusion of the set-up. We now apply Lemma 2.3 to (2.6). The extra factors
√
n1n2

cq or

(
√
n1n2

cq )−1/2 can be written as N
cq and (Ncq )−1/2 after redefining V (n1

N ) and V (n2

N ). By considering

the real and imaginary parts of W2 separately, we can assume that it is a real function. Thus it
suffices to prove, for each sign ±, that

S1 + S±2 � pε
(

1 +
p

q

)
,

where

S1 =
1

C2
1q

2

∑
C1≤c≤2C1

∣∣∣ ∑
n1,n2≥1

S(n1, n2, cq)χ(n1)χ(n2)V
(n1
N
,
n2
N

)∣∣∣,(2.8)

S±2 =
1

N
3
2 q

1
2C

1
2
2

∑
C2≤c≤2C2

∣∣∣ ∑
n1,n2≥1

S(n1, n2, cq)χ(n1)χ(n2)e
(±2
√
n1n2
cq

)
V
(n1
N
,
n2
N

)∣∣∣,(2.9)

for any

C1 ≥
N

pεq
, 1 ≤ C2 ≤

N

pεq
,(2.10)

and where we set

V (x1, x2) := Vi(x1, x2) = V (x1)V (x2)Wi

(N√x1x2
cq

)
for i = 1, 2. We drop the subscript from V because all we need is that V is compactly supported on
R+ × R+ and satisfies

∂i

∂xi1

∂j

∂xj2
V (x1, x2)�j (pε)1+i+j

for all i, j ≥ 0.

3. Proof of Theorem 1.2

The goal now is to prove the required bounds for S1 and S±2 .
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3.1. Poisson summation in n1. By separating n1 into residue classes modulo cpq, and applying
Poisson summation, we get that

S1 =
N

C3
1q

3p

∑
C1≤c≤2C1

∣∣∣ ∑
n2≥1

∑
m1∈Z

∑
a mod cpq

S(a, n2, cq)χ(a)χ(n2)e
(am1

cpq

)
V1
(
m1,

n2
N

)∣∣∣,(3.1)

S±2 =
1

N
1
2C

3
2
2 q

3
2 p

∑
C2≤c≤2C2

∣∣∣ ∑
n2≥1

∑
m1∈Z

∑
a mod cpq

S(a, n2, cq)χ(a)χ(n2)e
(am1

cpq

)
V±2
(
m1,

n2
N

)∣∣∣,(3.2)

where

V1(m1, y) =

∫ ∞
−∞

e
(
− xm1N

cpq

)
V (x, y)dx,(3.3)

V±2 (m1, y) =

∫ ∞
−∞

e
(±2

√
xyN2

cq

)
e
(
− xm1N

cpq

)
V (x, y)dx.(3.4)

Lemma 3.1. Suppose c � C1 in V1(m1, y) and c � C2 in V2(m1, y). Suppose m1 6= 0. We have

V1(m1, y) = W (y)δ
(|m1|≤C1qp

1+ε

N )
+O(p−100),

V+
2 (m1, y) =

(cq
N

) 1
2

e
( ypN
cqm1

)
W (y)δ(p1−ε≤m1≤p1+ε) +O(p−100),

V−2 (m1, y) =
(cq
N

) 1
2

e
( ypN
cqm1

)
W (y)δ(−p1+ε≤m1≤−p1−ε) +O(p−100),

where W (y) is a smooth compactly supported function on the positive reals, depending on ±, c, p, q,N,m1,
with ‖W (j)‖∞ �j (pε)j for all j ≥ 0.

Proof. For V1(m1, y), we are simplying renaming this function to W (y). It’s clear from the expression
(3.3) thatW satisfies the required properties. Further, by integrating by parts multiple times in (3.3),
integrating e(−xm1N

cpq ) and differentiating the rest of the integrand, we get that (3.3) is O(p−100)

unless

|m1| ≤
C1qp

1+ε

N
.

For V±2 (m1, y), we apply a stationary phase approximation. Let

h(x) = h±(x) = 2π
(±2

√
xyN2

cq
− xm1N

cpq

)
be the phase of the integrand.

When |m1| < p1−ε or |m1| > p1+ε, we have |h′(x)| � N
cq � pε. We can apply [8, Lemma 8.1] with

the parameters R = Y = N
cq , X = Q = U = pε to see that the integral in (3.4) is O(p−100).

Now suppose p1−ε ≤ |m1| ≤ p1+ε. The stationary point x0 satisfies h′(x0) = 0, which implies

m1
√
x0 = ±p√y.(3.5)

In the + case, there is a unique solution when p1−ε ≤ m1 ≤ p1+ε. In the − case, there is a unique
solution when −p1+ε ≤ m1 ≤ −p1−ε. We show the details for V+

2 and m1 > 0 only. From (3.5), we
get that

x0 =
p2y

m2
1

.

We have

h(x0) = 2π
ypN

cqm1
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and

h′′(x0) =
−m3

1

2yp3
N

cq
.

Applying [8, Proposition 8.2] with the parameters Q = 1, X = V = V1 = pε, Y = N
cq , δ = 1

9 , we get

that

V+(m1, y) =
(cq
N

) 1
2

e
( ypN
cqm1

)
W (y)δ(p1−ε≤m1≤p1+ε) +O(p−100),

where W (y) is as described in the statement of the lemma. The δ function indicates the range of
m1, but anyway this information is contained in W (y). �

We now evaluate the arithmetic part in (3.1) and (3.2). We first observe that we can restrict to
(c, p) = 1 in (2.8) and (2.9), up to an admissible error. This is because in (2.9) we have c� N

pεq �
p1+ε

q
1
2

and so c is too small to be divisible by p. This uses the assumption q ≥ pε. In (2.8), we can

trivially bound the terms with p|c, using Weil’s bound for the Kloosterman sum, to see that their

contribution is O(p
1/2+ε

q1/2
), which is dominated by the required bound in (2.6). Having restricted to

(c, p) = 1, we can write the complete sum mod cpq in terms of complete sums mod cq and mod p.
We get, writing

∑∗
to denote a sum over primitive residue classes and a bar over a residue class to

mean the inverse of that residue class,∑
a mod cpq

S(a, n2, cq)χ(a)e
(am1

cpq

)
=

∑
a1 mod cq
a2 mod p

S(a1, n2, cq)χ(a2)e
(a1m1p

cq

)
e
(a2m1cq

p

)

=
∑

a1 mod cq
a2 mod p

∑∗

b mod cq

e
(a1b+ n2b

cq

)
χ(a2)e

(a1m1p

cq

)
e
(a2m1cq

p

)

= cqτ(χ)δ(m1,cq)=1e
(−n2pm1

cq

)
χ(m1)χ(cq),(3.6)

where τ(χ) is the Gauss sum. The final equality uses [20, equation (3.12)] and the orthogonality of
additive characters [20, page 44].

After applying (3.6) and Lemma 3.1 to (3.1) and (3.2), and using that |τ(χ)| = p
1
2 , we see that

it suffices to prove

N

C2
1q

2p
1
2

∑
C1≤c≤2C1

∑
|m1|≤C1qp

1+ε

N

(m1,cq)=1

∣∣∣∣∣ ∑
n2≥1

e
(−n2pm1

cq

)
χ(n2)W

(n2
N

)∣∣∣∣∣� pε
(

1 +
p

q

)
,(3.7)

1

Np
1
2

∑
C2≤c≤2C2

∑
p1−ε≤|m1|≤p1+ε

(m1,cq)=1

∣∣∣∣∣ ∑
n2≥1

e
(−n2pm1

cq

)
e
( n2p

cqm1

)
χ(n2)W

(n2
N

)∣∣∣∣∣� pε
(

1 +
p

q

)
.(3.8)

3.2. Reciprocity. This is a key step. Using reciprocity, or the Chinese remainder theorem, for
(m1, cq) = 1, we have

e
( n2p

cqm1

)
= e
(n2pm1

cq

)
e
(n2pcq
m1

)
.
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Thus (3.7) and (3.8) become

N

C2
1q

2p
1
2

∑
C1≤c≤2C1

∑
|m1|≤C1qp

1+ε

N

(m1,cq)=1

∣∣∣∣∣ ∑
n2≥1

e
(n2pcq
m1

)
e
(−n2p
cqm1

)
χ(n2)W

(n2
N

)∣∣∣∣∣� pε
(

1 +
p

q

)
,(3.9)

1

Np
1
2

∑
C2≤c≤2C2

∑
p1−ε≤|m1|≤p1+ε

(m1,cq)=1

∣∣∣∣∣ ∑
n2≥1

e
(n2pcq
m1

)
χ(n2)W

(n2
N

)∣∣∣∣∣� pε
(

1 +
p

q

)
.(3.10)

3.3. Poisson summation in n2.

3.3.1. The case of large c. We first consider the left hand side (3.9). Observe that we can add the
condition (m1, p) = 1 to the sum, because the total contribution of the terms with p|m1 is trivially

O(p
1/2+ε

q1/2
). The following notation will assume that m1 is positive, with the case of negative m1

being entirely similar. Define

W(m2) =

∫ ∞
−∞

e
(−ym2N

m1p

)
e
(−yNp
cqm1

)
W (y)dy,(3.11)

and keep in mind that W is compactly supported. By separating n2 into residue classes modulo
m1p and appying Poisson summation, we get that∑

n2≥1

e
(n2pcq
m1

)
χ(n2)e

(−n2p
cqm1

)
W
(n2
N

)
=

N

m1p

∑
b mod m1p

∑
m2∈Z

e
(bpcq
m1

)
χ(b)e

( bm2

m1p

)
W(m2)

=
N

m1p

∑
b1 mod m1
b2 mod p

∑
m2∈Z

e
(b1pcq
m1

)
χ(b2)e

(b1m2p

m1

)
e
(b2m2m1

p

)
W(m2)

=
Nτ(χ)

p

∑
m2∈Z

cm2≡p2q mod m1

χ(m1)χ(m2)W(m2).(3.12)

By integrating by parts multiple times in (3.11), we find that W(m2)� p−100 unless∣∣∣m2N

m1p
+

Np

cqm1

∣∣∣ ≤ pε,
in which case W(m2)� 1. This implies

cm2 =
⌊−p2
q

⌋
+ `

for

|`| ≤ cm1p
1+ε

N
.

Since ` has only O(`ε) divisors, once we apply (3.12) to (3.9) and bound everything absolutely, we
may collapse the the sum over c and m2 to a sum over ` only. The congruence condition in (3.12)
translates to a congruence condition on `. Thus we see that to establish (3.9), it suffices to prove
that for any αm1

, we have

N2

C2
1q

2p

∑
1≤m1≤C1pq

1+ε

N

∑
|`|≤C1m1p

1+ε

N
`≡αm1

mod m1

1� pε
(p
q

+ 1
)
.
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This follows since the `-sum is O(C1p
1+ε

N + 1).

3.3.2. The case of small c. We now consider the left hand side (3.10), assuming m1 > 0. Again, a
trivial bound for the terms with p|m1 allows us to restrict to (m1, p) = 1. The details of Poisson
summation in n2 are the same as in subsection 3.3.1, except that the transform function will equal

W(m2) =

∫ ∞
−∞

e
(−ym2N

m1p

)
W (y)dy,

from which it follows using integration by parts that we can restrict to

|m2| ≤ pε
m1p

N
≤ p2+ε

N
.

The same congruence condition as in (3.12) will hold here. Thus to establish (3.10), it suffices to
prove that for any αm1 ,

1

p

∑
p1−ε≤m1≤p1+ε

∑
C2≤c<2C2

|m2|≤ p
2+ε

N
cm2≡αm1

mod m1

1� pε
(p
q

+ 1
)
.

This again is immediate, keeping in mind (2.10).

References

1. K. Aggarwal, Y. Jo, and K. Nowland, Hybrid level aspect subconvexity for GL(2) × GL(1) Rankin-Selberg L-
functions, Hardy-Ramanujan J. 41 (2018), 104–117.

2. V. Blomer and G. Harcos, Hybrid bounds for twisted L-functions, J. Reine Angew. Math. 621 (2008), 53–79.

3. , Addendum: Hybrid bounds for twisted L-functions [mr2431250], J. Reine Angew. Math. 694 (2014),
241–244.

4. V. Blomer, G. Harcos, and P. Michel, A Burgess-like subconvex bound for twisted L-functions, Forum Math. 19

(2007), no. 1, 61–105, Appendix 2 by Z. Mao.
5. V. Blomer, P. Humphries, R. Khan, and M. B. Milinovich, Motohashi’s fourth moment identity for non-

archimedean test functions and applications, Compos. Math. 156 (2020), no. 5, 1004–1038.

6. V. Blomer and R. Khan, Twisted moments of L-functions and spectral reciprocity, Duke Math. J. 168 (2019),
no. 6, 1109–1177.

7. , Uniform subconvexity and symmetry breaking reciprocity, J. Funct. Anal. 276 (2019), no. 7, 2315–2358.
8. V. Blomer, R. Khan, and M. P. Young, Distribution of mass of holomorphic cusp forms, Duke Math. J. 162

(2013), no. 14, 2609–2644.
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25. D. Milićević, Sub-Weyl subconvexity for Dirichlet L-functions to prime power moduli, Compos. Math. 152 (2016),

no. 4, 825–875.

26. R. Munshi and S. K. Singh, Weyl bound for p-power twist of GL(2) L-functions, Algebra Number Theory 13
(2019), no. 6, 1395–1413.

27. Z. Peng, Zeros and central values of automorphic L-functions, ProQuest LLC, Ann Arbor, MI, 2001, Thesis

(Ph.D.)–Princeton University.
28. I. Petrow and M. P. Young, The fourth moment of dirichlet L-functions along a coset and the Weyl bound,

preprint (arXiv:1908.10346).
29. , The Weyl bound for Dirichlet L-functions of cube-free conductor, preprint (arXiv:1811.02452).

30. I. Petrow and M. P. Young, A generalized cubic moment and the Petersson formula for newforms, Math. Ann.

373 (2019), no. 1-2, 287–353.
31. M. P. Young, Weyl-type hybrid subconvexity bounds for twisted L-functions and Heegner points on shrinking sets,

J. Eur. Math. Soc. (JEMS) 19 (2017), no. 5, 1545–1576.

Department of Mathematics, University of Mississippi, University, MS 38677

Email address: rrkhan@olemiss.edu


