SUBCONVEXITY BOUNDS FOR TWISTED L-FUNCTIONS

RIZWANUR KHAN

ABSTRACT. We prove hybrid subconvexity bounds for a wide class of twisted L-functions L(s, f X x)
at the central point, including a new instance of the Weyl subconvexity bound.

1. INTRODUCTION

The subconvexity problem is an important problem in the theory of L-functions concerned with
bounding an automorphic L-function L(s) on the critical line (s) = % A bound which can readily
be obtained using essentially only the functional equation of the L-function is called the convexity
bound and is given by

(1.1) L(3 +it) < g,

where q is the analytic conductor of the L-function [20, Section 5.1], kK = i and € > 0 is arbitrarily
small. The subconvexity problem is to establish (1.1) with some number & strictly less than %. The
best possible expectation, essentially, is that we may take x = 0, and this is the famous Lindel6f
conjecture. The subconvexity bound for GL(1) L-functions is classical, and for GL(2) automorphic
L-functions it was completely resolved by Michel and Venkatesh [24]. However it is of great interest
to not only break the convexity bound, but to reach certain milestones called the Burgess exponent
(k = ) and the Weyl exponent (x = §). These are named after classical results in GL(1), but
also occur in higher rank. It is unknown why the Burgess and Weyl exponents occur in so many
unrelated situations, but in all cases they seem to represent natural barriers which can require deep
ideas to overcome.

We mention a few examples in GL(1) and GL(2) at the central point s = 3. For Dirichlet
L-functions of modulus ¢, the analytic conductor is equal to ¢q. Burgess [10] proved the bound
L(i,x) < g6, Conrey and Iwaniec [13] proved the Weyl bound ¢&+¢ for real characters, Petrow
and Young [29, 28] proved the Weyl bound for all Dirichlet characters, and Mili¢evié¢ [25] proved a
sub-Weyl bound in the case of Dirichlet characters of prime power modulus p™ with n large. Turning
now to GL(2), let f be a holomorphic Hecke cusp form or a Hecke Maass cusp form for the full
modular group, with associated L-function L(f,s). The Weyl subconvexity bound was proven for
L(%, f) in the spectral and weight aspects by Ivi¢ [18] and Peng [27] respectively. If f is a newform of
level ¢, the analytic conductor of L(s, f) in the level aspect is q. For f with trivial nebentypus, Duke,
Friedlander and Iwaniec [14] proved the first subconvexity bound L(%, < g1~ T2 T¢, This has seen
some recent improvements. The current best result for ¢ an odd prime is kK = % conditionally on
the Ramanujan conjecture, by Kiral and Young [22] and Blomer and Khan [6]. Unconditionally it is
k = 0.2073 by Blomer, Humphries, Khan, Milinovich [5]. For newforms with primitive nebentypus,
the best result is due to Blomer and Khan [7], with exponent x = § — 1.

It is highly frustrating that the subconvexity exponent in the level aspect does not attain even
the Burgess milestone, despite better results in other GL(2) aspects. There are however exceptions
for special forms which arise as twists. For twists of a form f of fized level by a primitive Dirichlet
character y of modulus ¢, the Burgess bound for L(%, f X x) in the ¢ aspect is known by the results

of Bykovskil [12] and Blomer, Harcos, and Michel [4, 2], and the Weyl bound is known when y is real
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by work of Petrow and Young [30]. The Weyl bound was also established for twists by characters of
prime power moduli by Blomer and Miliéevié [9] and Munshi and Singh [26]. Outstanding results
also exist for twists of forms whose level is not fixed. Conrey and Iwaniec [13] proved the Weyl
bound for L(1/2, f x x) for newforms f of level ¢ and trivial nebentypus, twisted by real primitive
characters x of modulus ¢ (see also [31]). Petrow and Young [29] generalized this result to allow any
primitive character y of modulus ¢ as long as f is a newform of level ¢ and nebentypus ¥2. The
works of Iwaniec and Conrey and of Petrow and Young are particularly significant because they also
lead to the Weyl subconvexity bound for Dirichlet L-functions.

The goal of this paper is to prove subconvexity bounds for a wide class of twisted L-functions,
including a new instance of the Weyl subconvexity bound. We restrict to prime level and modulus
in order to minimize technical details and concentrate more on the main ideas.

Theorem 1.1. Let € > 0. Let f be a holomorphic newform with weight k > 2, prime level ¢
and trivial nebentypus. Let x be a primitive Dirichlet character of prime modulus p. Suppose that
p¢ < q < p*t€ and (¢,p) = 1. We have

L(L, f % X) <ke p°(q7 +p2).

By Atkin-Lehner theory [20, Proposition 14.20], L(s, f x x) is the L-function attached to a newform
of level gp? and nebentypus x2. Thus the result above gives the convexity bound or better in all
cases, a subconvexity bound when ¢ < p?~? for some § > 0, the Burgess subconvexity bound or
better for p§*6 <q< pg+€, and the Weyl subconvexity bound for p!=¢ < ¢ < p'*¢, which is the
best our result can do. This last bound may be viewed as complementary to the work of Conrey and
Iwaniec [13] and Petrow and Young [29]. They obtained the Weyl bound when the level of the form
and modulus of the Dirichlet character coincide, while we do the same when the level and modulus
are of the same size, but coprime.

Theorem 1.1 is a type of hybrid subconvexity bound, since it can yield subconvexity in both
parameters p and ¢ simultaneously. Such hybrid bounds are of great interest and have been studied
by Blomer and Harcos [2, 3], Aggarwal, Jo, and Nowland [1], and Chen and Hou [17]. Of these
results, the last one yields subconvexity for the widest range: for ¢ as large as p%_‘s, but it falls short
of any milestone subconvexity bound. Our result works in an even wider range, and gives much
stronger bounds when ¢ and p are about the same size. Moreover our proof is much simpler and
completely avoids the shifted convolution problem, which was central in the aforementioned works on
hybrid subconvexity. Theorem 1.1 follows immediately by establishing the following second moment
estimate. This an analogue of a bound of Holowinsky and Templier [16, Theorem 1] on the first
moment of Rankin-Selberg GL(2) x GL(2) L-functions in the level aspect.

Theorem 1.2. Keep the notation in the statement of Theorem 1.1. Let B}(q) denote a basis of
holomorphic newforms of level q and weight k > 2, with trivial nebentypus. We have

(1.2) > ILGL f XX ke p(a+Dp)
feB;(q)
for any € > 0.
For comparison, the large sieve [20, Theorem 7.26] would give a bound of O(p®(q + q%p)) for the

second moment. In connection to this, we mention a further application that our work may have.
In [11, Theorem 1.2], Buttcane and Khan proved the first moment bound

(1.3) Y L(Gsym’g x f) <ne g,
feBs(9)

where g € Bj(¢) and k is large enough in terms of e. Liu, Masri, and Young [23, page 16] observed
that if (1.3) can be extended to small &, which may be possible using current technology, then the
large sieve estimate for the left hand side of (1.2) would imply a hybrid subconvexity bound for
L(%, [ x ©,) that is uniform in all ranges of ¢ and p, where ©,, is the theta series associated to an
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ideal class group character of Q(y/—p) . We note that using our Theorem 1.2 instead of the large
sieve would give a stronger subconvexity bound for L(%, fx0y).

Throughout, we follow the e-convention: that is, e will always be positive number which can be
taken as small as we like, but may differ from one occurence to another. All implied constants may
depend on € and k.

Funding. This work was supported by the National Science Foundation (grant DMS-2001183)
and the Simons Foundation (award 630985).

Acknowledgement. I am grateful to Matthew P. Young, Peter Humphries, and the anonymous
referee for their helpful comments.

2. PRELIMINARIES

2.1. Poisson summation. One of the basic tools we will use is the Poisson summation formula.
We state it here.

Lemma 2.1. Let ¢ be a function in the Schwartz class. We have
1 amy »/m
> vm=1 3 o(T)i(T)

neZ
n=a mod r

where 1) = [ (t)e(—t&)dt and e(x) = e*™™*.

2.2. Modular forms and L-functions. Let Si(g) denote the space of holomorphic cusp forms of
prime level ¢, weight k, and trivial nebentypus. Let S} (¢) C Sk(q) denote the space of newforms.
Every f € Sk(q) has a Fourier series expansion

Zaf n)n' 7 enz)

for ¥(z) > 0. Let By(q) denote an orthogonal basis of Sy (g) which contains a basis B (g) of S} (q),
normalized so that ay(1) = 1 for every f € B{(q).
Let x be primitive Dirichlet character of prime modulus p. For f € By(q), define

(f xx)( ZX nk;e(nz).

For f € B}(q), this is a newform of level qp?, weight k, and nebentypus y2. The associated L-function
is entire and for R(s) > 1 equals

s, fxx) = ZX af

This satisfies the functional equation

2.1) Ao, £ xx) = (B ) T+ 551 L (s, £ % x) = A1 = 5, f X ),

for some complex number ¢ of modulus 1, which depends on ¢, p, and x. Thus the analytic conductor
at s = 3 is kp®q. These facts may be found in [20, Section 14]. Let L(s, sym? f) denote the symmetric
square L-function attached to f € Bj(¢). This is defined in [20, Section 5.12], but all we need are
the bounds

(2.2) (kq)™¢ < L(1,sym?f) < (kq)*

given in [15]. In particular, L(1,sym?f) is positive.



4 RIZWANUR KHAN

2.3. Approximate functional equation. We will need the following consequence of the approxi-
mate functional equation [20, Theorem 5.3].

Lemma 2.2. We have the bound

B ] S|

2
1 1 )
n>1 2 *p n>1 q=p

)

P

where we define the real function

1 B F(g + u) du

for x > 0.

By a standard argument of shifting contours, we may restrict the sum above to n < q%pHe, up to an
error of O(p~1%). Further, by splitting the n-sum in (2.3) into O(log q) sums over dyadic intervals
and applying the Cauchy-Schwarz inequality, for the purposes of Theorem 1.2 it suffices to prove

1) ¥ T[St (F)[ < rtasn
for any
1 <N < giplte
and any smooth function V' compactly supported on the positive reals with ||V )|, <; (p)7*! for
all 5 > 0.

2.4. Petersson trace formula. The Petersson trace formula [21, Proposition 2.1] states that

(25 > Maf(m)w(m):5<m_n2>+2m—k25<”hc7;270q> Jkil(ﬂxvr\ézfnz)?

f€BK(q)

c>1

where (f, f) is the Petersson inner product, S(ni,na, ¢q) is a Kloosterman sum, J;_1(z) is a J-Bessel
function, and Jp equals 1 if the statement P is true, and 0 otherwise.
By [21, equations (2.3, 2.24)], we have

272 . T(k-1)
q(k = DL(1,sym?f) — (4m)*=1(f, f)
for f € Bj(q). This combined with the bound (2.2) means that for (2.4), it suffices to prove
1 I'(k—1) n\ |2 . D
¥ 2 Tl o eV () < (1 7)

feB;(q)

By positivity, we may enlarge Bj(q) to Bx(q), expand out the square |Z ...|%, and apply the

n>1
Petersson trace formula (2.5). After doing so, we need to prove
(2.6)
1 ny Ng 1 S(n1,na,cq)x(n1)x(n2) ., /1 ng 4\ /ning
v 2 VRV - V(R ()]
’N Z>1 N) N +N Z>1 cq N (N k 1( cq
ni,n2 =~ ni,n2,c=2

ny=nsq
< pe(l + g)

The contribution of the ‘diagonal’ >
following.

is obviously O(p©). For the off-diagonal we first note the

ni=ns
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Lemma 2.3. For x < p® we have
Ji—1(4mzx) = 2Wi(x)
where W1(x) is a smooth function satisfying HWl(j)Hoo < (p€)?*t for all j > 0 and x in this range.
For x > p°, we have
e(2x)
NE

where N denotes the real part and Wy is a smooth function satisfying

(2.7) Jpo_1(47z) = 3%( Wg(:c)),

PIW (@) <o ()T
for all j > 0 and = in this range.

Proof. When x < p~¢, use the power series [19, page 82],

Jr—1(x) = i (_1)6(3«"/2)’f—1+2e.

| —1)!
2 ikt - 1)!

When x > p~¢, use [21, section 4]. a

2.5. Conclusion of the set-up. We now apply Lemma 2.3 to (2.6). The extra factors ”21"2
(7”;”2)_1/2 can be written as iv—q and (%)—1/2 after redefining V(%t) and V(%52). By considering
the real and imaginary parts of W5 separately, we can assume that it is a real function. Thus it

suffices to prove, for each sign =+, that

or

S+ 85 <<p€(1+§)7

where

(2.8) 51:@ 3 ’Z S(nl,nQ,cq)x(nl)y(nz)v(%,%)

C1<e<2C1 ni1,me>1

)

(2.9) szé Z ‘ Z S(nl,ng,cq)ﬂnﬂ%(m)e(w)‘/(%,%)

)

1
N%Q%C; C2<c<L2C2 ni,n2>1 “q
for any
N N
(2.10) Cr > —, 1<Cy < —,
P°q peq

and where we set
N./z1x
V(21,22) = Vi1, ) = V(ml)V(xg)Wi(ﬁ)
for i = 1,2. We drop the subscript from V' because all we need is that V is compactly supported on
R* x R* and satisfies

ot o

)
Bacl 6.1?2

V(x,22) <5 (p)' T

for all 7,5 > 0.

3. PROOF OF THEOREM 1.2

The goal now is to prove the required bounds for S&; and Sgi.
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3.1. Poisson summation in n;. By separating n; into residue classes modulo cpq, and applying
Poisson summation, we get that

(3.1) slzcévq% ISP S(a.ma,cax(@Tn)e (ot Vi (1. 52)

C1<c¢<2C; n2>1mi€Z a mod cpq

62 Sf=——— ¥ [X Y Y S @i D)y (m.52)

3
1 ~5 3
NQCQQQQP C2<c<2Cy n32>1mi1€Z a mod cpq

where
(33) Vl(ml,y) = /OO 6( - xmlN)V(xvy)dxa
—o0 cpq
" [ rE24/zyN? ~zm N
(3.4) Vi(mi,y) = /_ooe< o )e( o~ )V(%y)da:.

Lemma 3.1. Suppose ¢ < Cy in Vi(mq,y) and ¢ < Cy in Vo(my,y). Suppose my # 0. We have
Vi(my,y) = W(y)é wrte, +O(71Y),
N

my <4

—~

=

cq\z_(ypN -
V;'(ml,y) = (N) e(cqml)W<y)6(p17€§m1§p1+6) + O(p 100)7
_ _(cqa\z_(ypN ~100
Vs (m1,y) = (N) e<cqm1)W(y)(s(—plﬂgmlg—pl*ﬁ) +O(p )a

where W (y) is a smooth compactly supported function on the positive reals, depending on £, ¢, p,q, N, mq,
with |[W9|| o < (p€) for all j > 0.

Proof. For V;(my,y), we are simplying renaming this function to W (y). It’s clear from the expression
(3.3) that W satisfies the required properties. Further, by integrating by parts multiple times in (3.3),
integrating e(f%) and differentiating the rest of the integrand, we get that (3.3) is O(p~1%)

unless

C 1+e€
Ima| < tap

For V;(ml, y), we apply a stationary phase approximation. Let

+2/2yN?2 zm N
h(z) = hy(z) = 277( qu — cplq )

be the phase of the integrand.

When |m;| < p'=€ or |my| > p'*¢, we have |h/(z)| > ?I\; > p¢. We can apply [8, Lemma 8.1] with
the parameters R=Y = %7 X =@ = U = p° to see that the integral in (3.4) is O(p~1°9).

Now suppose p'~¢ < |mq| < p!T¢. The stationary point zg satisfies h/(zo) = 0, which implies

(3.5) miy/zo = £py/y.

In the + case, there is a unique solution when p'=¢ < m; < p'*¢. In the — case, there is a unique
solution when —p!'*¢ < m; < —p'~¢. We show the details for V5 and m; > 0 only. From (3.5), we
get that

o P
mi
We have
N
h(zo) =27 b
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and
—m3 N

h(x
(w0) = S e’

=

Applying [8, Proposition 8.2] with the parameters Q =1, X =V =V; =p°, Y = & §

e 0= 9, We get
that

cq 3 ypN _
Vy(ma,y) = (N) e(cqml)W(Z/)fs(plfegmlgplﬂ) +O(p 100),

where W (y) is as described in the statement of the lemma. The J function indicates the range of
mq, but anyway this information is contained in W (y). |

We now evaluate the arithmetic part in (3.1) and (3.2). We first observe that we can restrict to
(¢,p) =1 1in (2.8) and (2.9), up to an admissible error. This is because in (2.9)

plf and so c is too small to be divisible by p. This uses the assumption ¢ > p¢. In (2.8)7 we can
q2

trivially bound the terms with p|e, using Weil’s bound for the Kloosterman sum, to see that their
1/2+€

contribution is O(”QT)7 which is dominated by the required bound in (2.6). Having restricted to

(¢,p) = 1, we can write the complete sum mod ¢pg in terms of complete sums mod c¢q and mod p.
We get, writing >." to denote a sum over primitive residue classes and a bar over a residue class to
mean the inverse of that residue class,

> S(a,ng,cq)x(a)e (aml)

C,
a mod cpq Pq

S Sl e co)(ane( T e (27T )

cq p

aj mod cq
az mod p

Z Z (a1b+nzb)x(a2)€(alm@)e(aﬂm@)

C
a1 mod ¢q b mod cq q p
az mod p

—TNapimy

(3.6) = cq7(00)3ms cqr=ae )x(m)x(ea.

cq

where 7(x) is the Gauss sum. The final equality uses [20, equation (3.12)] and the orthogonality of
additive characters [20, page 44].

After applying (3.6) and Lemma 3.1 to (3.1) and (3.2), and using that |7(x)| = pz, we sce that
it suffices to prove

(37— 3 3

Cl q p C1<e<20,

> (= K ()

C
nng q

> (=)< (G X ()

ng>1

< pf (1 n 3),
\m1|§cl#l+£ !

(m1,cq)=1

1
R ST
P¥ CyezaCh pime<im |<pi e
(m1,cq)=1

<r(1+2).
q

3.2. Reciprocity. This is a key step. Using reciprocity, or the Chinese remainder theorem, for

(m1,cq) =1, we have
( nap ) _ (nzpml) <n2pfq)
e =e e .
cqmg cq my
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Thus (3.7) and (3.8) become

(3.9) ]\g > >

2 1
Cigp? C1<e<2C)

> (e (G 3w ()

< pf(l + Q),
ng>1 q

Craplte
|mq| <=1 —

(m1,cq)=1

(3.10) N; > >

C2<e<2Cs pl=e<Jmy|<pi*
(m1,cq)=1

> (S xtmw ()

RQZI

<p(1+2).
q

3.3. Poisson summation in ns.

3.3.1. The case of large c. We first consider the left hand side (3.9). Observe that we can add the
condition (my,p) = 1 to the sum, because the total contribution of the terms with p|m; is trivially
O(pli%). The following notation will assume that m; is positive, with the case of negative m;
q

being entirely similar. Define

o0 — N —yN,
(3.11) W) = [ o( L) e( L)W (g)dy,

—o0 mip cqmsy

and keep in mind that W is compactly supported. By separating no into residue classes modulo
m1p and appying Poisson summation, we get that

> (SRR ()

nng

= (T e (22 )W)

m
1P b mod mip mo€Z

Y (e () (v,

mlp by mod m1 mo€Z
bs mod p
N7(%) -
(3.12) = Z X(ma)x(m2)W(ms).
p mo€EZL
chEpQE mod m
By integrating by parts multiple times in (3.11), we find that W(ms) < p~1°° unless

’ITLQN Np
mip cqm

in which case W(mz) < 1. This implies

€

<p,

2
cmg = {ij +/4
q

for
cm1p1+e

N

Since ¢ has only O(¢) divisors, once we apply (3.12) to (3.9) and bound everything absolutely, we
may collapse the the sum over ¢ and ms to a sum over £ only. The congruence condition in (3.12)
translates to a congruence condition on ¢. Thus we see that to establish (3.9), it suffices to prove
that for any ou,,, we have

N? Z Z P
19°P 1<m <Clpq1+€ y Ccymyplte q
SMis—x§ [¢|< N
£=ay,, mod mq

[ <
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This follows since the f-sum is O(Cllere +1).

N

3.3.2. The case of small c. We now consider the left hand side (3.10), assuming m; > 0. Again, a
trivial bound for the terms with p|m; allows us to restrict to (mi,p) = 1. The details of Poisson
summation in ng are the same as in subsection 3.3.1, except that the transform function will equal

Wona) = [ e(F22 )i g)ay,

— 00 mip

from which it follows using integration by parts that we can restrict to

The same congruence condition as in (3.12) will hold here. Thus to establish (3.10), it suffices to
prove that for any o,

1
- > > 1<p(L+1).
p q
pl—ESmlng—e Cr<c<2Cy
|7n2|§p21\/5

CM2=ay,,; mod m1

This again is immediate, keeping in mind (2.10).

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
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