
Towards General-Purpose
Acceleration: Finding
Structure in Irregularity

Vidushi Dadu, Jian Weng, Sihao Liu, and

Tony Nowatzki

University of California Los Angeles

Abstract—Programmable hardware accelerators (e.g., vector processors, GPUs) have

been extremely successful at targeting algorithmswith regular control andmemory

patterns to achieve order-of-magnitude performance and energy efficiency improvements.

However, they perform far under the peak on important irregular algorithms, like those

from graph processing, database querying, genomics, advancedmachine learning, and

others. This work posits that the primary culprit is specific forms of irregular control flow

andmemory access. By capturing the problematic behavior at a domain-agnostic level, we

propose an accelerator that is sufficiently general, matches domain-specific accelerator

performance, and significantly outperforms traditional CPUs and GPUs.

& THE SLOWING IMPROVEMENTS of technology

scaling are raising the demand for specialized

hardware accelerators, especially for increas-

ingly difficult problems. While general-purpose

data-processing hardware, like GPUs or other

vector architectures, are effective on regular

algorithms, those with irregularity in their con-

trol flow or memory access patterns suffer in

performance. As evidence, many domain-specific

accelerators have been proposed for “irregular”

domains like graph processing,3,9 compressed

neural networks,4,6,10 databases12 and genomics.

Compared to such architectures, GPUs lose in

performance and/or energy efficiency by order-

of-magnitude. On the other hand, domain-agnos-

tic architectures are widely applicable, which is

valuable for economies of scale and robustness

to algorithm change. An important question

then is whether it is possible to build a program-

mable accelerator that is equally as capable as

GPUs and vector processors, but better suited

to irregular algorithms.

Digital Object Identifier 10.1109/MM.2020.2986199

Date of publication 16 April 2020; date of current version 22

May 2020.

Theme Article: Top PicksTheme Article: Top Picks

May/June 2020 Published by the IEEE Computer Society 0272-1732 ß 2020 IEEE 37
Authorized licensed use limited to: UCLA Library. Downloaded on May 03,2021 at 07:52:57 UTC from IEEE Xplore. Restrictions apply.

The first step toward this goal is to recog-

nize what makes an algorithm irregular. In

computer architecture, the concept of irregu-

larity is often used informally to indicate

behavior that causes inefficiency. We argue

that to first order, the root cause of most irreg-

ularity is data dependence. Data dependence

can appear in many forms, including control,

memory address calculation, conditional mem-

ory accesses, reuse and parallelism structure.

Consider the concrete example of sorting algo-

rithms.Merge sort has regularmemory and irregu-

lar control. The memory that is read or written at

each step is predetermined, but the control flow

decisions depend on the relative order of the lists

to be merged at each step. This data-dependent

control prevents speculative execution frombeing

effective, and it also prevents vectorization (can-

not know the operands from each lane in

advance). Conversely, the radix-sort algorithm

has regular control, but irregular memory access

(bin increment and scatter). This prevents pre-

fetching from being effective, and also prevents

vectorization with standard instructions. In gen-

eral, data dependence interferes or complicates

the fundamental mechanisms that parallel pro-

cessors use to extract performance.

Insight: To address these challenges, our key

observation is that it is not necessary to handle

arbitrary irregularity because data dependence

manifests in common forms across domains. This

work suggests two specific forms are critical:

stream join and alias-free indirection (AF-Indirect).

Stream join is defined by in-order processing

of data, where only the relative order of con-

sumption and production of new data is depen-

dent on control decisions. These joins are

surprisingly common, including merge sort,

database joins, and inner product sparse tensor

operations. AF-Indirect is characterized by mem-

ory access with data-dependent addresses, but

where the only memory dependencies are read–

modify–write. Relevant kernels include radix-

sort, outer product sparse-tensor operations,

hash joins, histograms, and synchronous graph

processing (e.g., page rank).

These data-dependence forms are not mutu-

ally exclusive; in fact they can be thought of

as different ways to relax regular (non-data-depen-

dent) algorithms (see Figure 1). An example of a

workload that requires both forms is triangle

counting in graphs. At each vertex, AF-Indirect is

used to locate a neighbor node’s adjacency list,

and stream join can be used to find common

neighbors (each indicating a triangle).

Approach: Critically, we find that these

restricted forms of data-dependence can serve as

abstractions, which can be exploited in hardware.

We use this insight to construct our approach to

design a “general-purpose” accelerator. Specifi-

cally, we start with an architecture known to work

well for regular algorithms: a systolic-style coarse-

grained reconfigurable architecture (CGRA) with

streaming memory support. We then develop

hardware and software mechanisms for our two

restricted data-dependence forms.

Our design is called the sparse processing

unit (SPU). SPU supports fully pipelined stream

joins with a systolic CGRA augmented with a

novel dataflow-control model. SPU supports

high-bandwidth AF-Indirect (load/store/update)

with a banked scratchpad with aggressive reor-

dering and embedded compute units for atomic

update. Data dependence complicates the sup-

port for finer grain data types [naive subword

single-instruction–multiple-data (SIMD) is insuffi-

cient]. Therefore, we add support to SPU to

enable decomposing the reconfigurable network

Figure 1. Restricted data-dependence forms cover

many algorithms. (a) Algorithm classification.

(b) Dependence forms coverage.

Top Picks

38 IEEE Micro

Authorized licensed use limited to: UCLA Library. Downloaded on May 03,2021 at 07:52:57 UTC from IEEE Xplore. Restrictions apply.

and wide memory access into power-of-two finer

grain resources while maintaining data-depen-

dence semantics.

Evaluation and contribution:We study machine

learning (ML) as our primary domain, and graph

processing and databases to demonstrate gener-

ality. SPU achieves between 1.8–7 speedup on

artificial intelligence (AI)/ML applications, and

SPU’s ability to retain performance on dense

algorithms led to 4.5 speedup. On graph

and database applications, SPU achieves similar

performance to domain-specific accelerators with

modest performance and power overheads.

Our primary contributions in this work are the

identification of the two common exploitable

data-dependence forms, and an ISA and hardware

mechanisms to support them. More broadly, we

believe that taking a domain-agnostic approach

can lead to novel insights and foster knowledge

transfer across domains.

EXPLOITABLE DATA-DEPENDENCE
FORMS

We observe that two restricted forms of data

dependence are sufficient to cover many algo-

rithms: stream join and AF-Indirect. In this section,

we first define these forms and give intuition on

their performance challenges for existing archi-

tectures, and then overview our proposal.

Preliminary Term—“Streams”: Both of the

dependence forms rely on the concept of stream

abstractions, so we briefly explain. Streams are

simply an ordered sequence of values. Relevant

to this work are memory streams, which are

sequences of loads or stores with a well-defined

pattern.7,12 Streams are similar to vector

accesses, but have no fixed length.

Stream Join

An interesting class of algorithms iterates

over each input (each stream) in order, but the

total order of operations (and perhaps whether

an output is produced) is data dependent. Two

relevant kernels are shown in Figure 2. Sparse

vector multiplication (a) iterates over two

sparse lists (in CSR format) where indices are

stored in sorted order, and performs the multi-

plication if there is a match. The core of the

merge kernel (b) iterates over two sorted lists,

and at each step outputs the smaller item. Even

though the data structures, data types, and pur-

pose are very different, their relationship to data

dependence is the same: they both have stream

access, but the relative ordering of stream con-

sumption is data dependent (they reuse data

from some stream multiple times).

Stream-join definition: A program region that

is regular except that the reuse of stream data

and the production of outputs may depend on

the data.

Problem with CPUs/GPUs and motivation:

Because of their data-dependent nature,

stream-joins introduce branch mispredictions

for CPUs. For GPGPUs, vectorization becomes

difficult due to control divergence of single-

instruction–multiple threads (SIMT) lanes; also,

the memory pattern can diverge between lanes,

causing bank conflicts.

To visualize the problem for CPUs, see

Figure 2, which shows both the traditional data-

flow and proposed stream-join dataflow repre-

sentation for the examples above. Here, black

arrows represent data dependence, and green

arrows indicate control.

Figure 2(a) shows that the inner product

dataflow can be mapped to a dataflow-based

processor like an out-of-order core, but only at

low throughput. To explain, note that there is a

loop-carried dependence through the control-

dependent increment and memory access. This

prevents perfect pipelining, and the throughput

is limited to one instance of this computation

every n cycles, where n is the total latency of

these instructions.

Insight: Our insight is that from the perspec-

tive of the memory, the control dependence is

mostly unnecessary, as most loads at the line-

granularity will be performed anyways. There-

fore, to break the dependence, we need to sep-

arate the loads from computation (this is what

memory streams do), then expose a pipelined

mechanism for controlling the order of data

consumption. In the sparse vector example,

we would like to reuse the larger of the two

index values for consideration (data-dependent

reuse). If the comparison instruction can treat

its inputs like a queue, and specify the reuse

behavior (i.e., pop the smaller element), this

can be accomplished in a pipelined fashion.

May/June 2020 39
Authorized licensed use limited to: UCLA Library. Downloaded on May 03,2021 at 07:52:57 UTC from IEEE Xplore. Restrictions apply.

Also, the multiply–accumulate operation

is performed on only matching indices, so

we should discard some of these computations/

data. Therefore, in addition to data-dependent

reuse, we also require data-dependent discard.

The merge example [see Figure 2(b)] has

a surprisingly similar form and control

dependence loop to the sparse multiplication,

where the computation is replaced by

selecting the smaller item. A similar approach

of decoupling streams and applying data-

dependent reuse and discard will break the

control dependence loop and enable high

throughput.

Our stream-join proposal: We find the desired

behavior can be accomplished with a simple and

novel control flow model for full-throughput sys-

tolic execution. In this model, each instruction

may reuse its inputs, discard the computation,

or reset a register based on a dataflow input.

Figure 2 shows the examples written in this

model.

To enable flexible control interpretation,

each instruction embeds a simple configurable

mapping function from the instruction output

and control input to the control operations

fðinst out; control inÞ ! reuse1; reuse2; discard; reset:

Alias-Free Indirection

Many algorithms rely on indirect read, write,

and update to memory, often showing up as

a[f(b[i])]. Figure 2 shows two examples: The

sparse-vector/sparse-matrix outer product (c)

works by performing all combinations of non-

zero multiplications, and accumulating in the

correct location in a dense output vector. Histo-

gram (d) is straightforward. Both perform a

read–modify–write access to an indirect loca-

tion. This can be viewed as two dependent

streams. Another important observation is

that there are no unknown aliases between

streams—the only dependence is between the

load and store of the indirect update.

Figure 2. Example restricted dependence form algorithms.

Top Picks

40 IEEE Micro

Authorized licensed use limited to: UCLA Library. Downloaded on May 03,2021 at 07:52:57 UTC from IEEE Xplore. Restrictions apply.

AF-Indirect Definition: A program region that

is regular (including no implicit dependencies)

except that the address of one memory stream

may depend on another, and a stream can

encode a read–modify–write operation.

Problem for CPUs/GPUs and our motivation:

On CPUs, indirect memory is possible with scat-

ter/gather, however the throughput is limited

given the limited ports to read/write vector-

length number of cache lines simultaneously.

Also, not leveraging alias-freedom means a reli-

ance on expensive load-store queues.

Although GPUs can use their banked scratch-

pads for faster indirect access, the following two

reasons limit the indirect throughput. 1. No reor-

dering of requests across subsequent vector

warp accesses.11 Doing so in a GPU would

require dependence checking of in-flight

accesses, as they cannot guarantee alias free-

dom. 2. Atomic updates to the same scratchpad

bank are not pipelined even though they access

different memory locations. The reason is that

the lock bits for atomic operations are shared

among multiple addressable locations.1 The

coarse-granularity locking is required to reduce

the locking overhead.

To visualize the inefficiency of a typical GPU

scratchpad, see Figure 2, which shows how

scratchpad vector requests (corresponding to

indirect read and atomic update, respectively) are

served on a GPU. For simplicity, we assume awarp

size of 8. As GPUs do not reorder requests across

warps, the update request vector is issued after

the completion of all read requests. For updates in

GPU, we assume one lock-bit per scratchpadbank.

Here, the three-cycle nonpipelineable operation

further worsens the overhead of bank conflicts.

Insight: Our insight is that the dependence

check is not required between subsequent

requests (e.g., corresponding to different static

loads) if alias freedom is known. Further, the

atomic operations required in these algorithms

are often low latency integer arithmetic logic

unit (ALU) operations. Therefore, for depen-

dence check, the maximum number of possible

conflicting addresses is usually low (i.e., 1 less

than the atomic update latency). Hence, we

could compare with absolute addresses instead

of relying on a serializing lock bit mechanism.

Our AF-indirect proposal: We find that the

desired behavior can be accomplished by:

1) exposing alias-freedom in the hardware–

software interface to enable interleaving across

vectors: and 2) storing absolute address of pend-

ing atomic updates (maximum 2) to enable

pipelining of nonconflicting addresses. Figure 2

shows how SPU is able to reorder requests, and

also able to pipeline atomic update requests with

initiation with no bubbles. The stall is intro-

duced in the presence of “real” dependencies, for

example, see cycle-4 in AF-Indirect reordering in

Figure 2. This is limited to a maximum two-cycle

bubble.

SPARSE PROCESSING UNIT
In this section, we first overview the primary

aspects of the design, and then provide the

details of stream-join-enabled systolic-CGRA and

the banked memory exposed to knowledge of

AF-Indirect.

Figure 3(a) shows the proposed SPU archi-

tecture. SPU cores are integrated into a mesh

network-on-chip (NoC). Each core is composed

Figure 3. SPU microarchitecture. (a) Sparse Processing Unit (SPU). (b) SPU Core. (c) Scratchpad Controller. (d) DGRA

Processing Element.

May/June 2020 41
Authorized licensed use limited to: UCLA Library. Downloaded on May 03,2021 at 07:52:57 UTC from IEEE Xplore. Restrictions apply.

of the specialized memory and compute

fabric: decomposable granularity reconfigura-

ble architecture (DGRA), together with a con-

trol core for coordination among streams.

Communication/synchronization: SPU pro-

vides two specialized mechanisms for communi-

cation. First, we include the multicast capability

in the network. Data can be broadcast to a sub-

set of cores, using the relative offset in the

scratchpad. As a specialization for loading main

memory, cores issue their load requests to a cen-

tralized memory stream engine, and data can be

multicast from there to relevant cores. For syn-

chronizing on data-readiness, SPU uses a data-

flow-tracker-like mechanism to wait on a count

of remote-scratchpad writes.

SPU Core

The basic operation of each core [see Figure 3

(b)] is that the control core will first configure

the DGRA for a particular dataflow computation,

and then send stream commands to the scratch-

pad controller to read data or write to the DGRA,

which itself has an input and output port inter-

face to buffer data.

Stream-join compute fabric: DGRA: We aug-

ment a systolic CGRA to support stream-join

control and dataflow computation with arbitrary

data types. Figure 3(d) shows the microarchitec-

ture of a DGRA processing element (PE) (green

color represents control).

To implement control interpretation, we

add a control lookup table (CLT) to each func-

tional unit (FU), which determines a mapping

between the control inputs and possible con-

trol operations. This mapping is configured

along with the dataflow computation graph.

During dataflow operation, CLT consumes one

of the dataflow inputs to produce control sig-

nals for the ALU (discard), associated registers

(reset), and FIFOs connected to ALU inputs

(reuse).

In the DGRA, we enable each coarse-grained

resource to be able to be decomposed to

powers-of-two fine-grain resources. For compu-

tation, the decomposable PE can split each

coarse-grained input into multiple finer-grained

inputs [16-b inputs in Figure 3(d)], which are

used to feed two separate lower granularity

ALUs. Correspondingly, CLT and registers are

also composable.

To route the data from PEs, the network of

the DGRA is decomposable into multiple parallel

finer-grain subnetworks (minimum 8 b). For flexi-

ble routing, we add the ability for incoming val-

ues to shift one subnetwork per switch hop.

Alias-freedom-exposed banked memory:

Because our workloads often require a mix of

linear and indirect arrays simultaneously, for

example, streaming read of indices (direct) and

associated values (indirect), we begin our design

with two logical scratchpad memories, one

highly banked and one linear. In this design,

both exist within the same address space.

Hence, memory streams may access locations in

a remote core’s scratchpad using the similar

interface for linear and indirect streams.

The role of the scratchpad controller [see

Figure 3(c)] is to generate requests for reads/

writes to the linear scratchpad, and reads/

writes/updates to the indirect scratchpad. A

control unit assigns the scratchpad streams,

and their state is maintained in either linear or

indirect stream address generation logic. The

controller should then select between any con-

current streams for address generation and

send it to the associated scratchpad to maxi-

mize expected bandwidth. The linear address

generator’s operation is simple—create wide

scratchpad requests using the linear access

pattern.

The indirect address generator creates a vec-

tor of requests by combining each element of

the stream of addresses (coming from the

compute fabric, explained in the “Exploitable

Data-Dependence Forms” section) with each ele-

ment in the parent stream (i.e., b[i] in a[f(b
[i])]). This vector of requests is sent to an arbi-

trated crossbar for distribution to banks, and a

set of queues buffer requests for each static ran-

dom access memory (SRAM) bank until they can

be serviced.

Since there are no conflicts among indirect

read/write requests, the requests are serviced

from the top of the bank queue as soon as the

scratchpad data bus becomes available. For

atomic update requests, the requests can be ser-

viced when both scratchpad read and write

buses are available, and the updated address

Top Picks

42 IEEE Micro

Authorized licensed use limited to: UCLA Library. Downloaded on May 03,2021 at 07:52:57 UTC from IEEE Xplore. Restrictions apply.

does not conflict with the pending updates

issued from the same bank. As the ordering of

the data returned from read requests is critical

for dataflow operations, we employ an indirect

read reorder buffer (IROB) that maintains incom-

plete requests in a circular buffer (see Figure 2).

IROB entries are deallocated in-order when a

request’s data is sent to the compute unit.

Control ISA: We leverage an open-source

stream-dataflow ISA7 for the control core’s

implementation of streams, and add support for

indirect reads/writes/updates, stream-join data-

flow model, and typed dataflow graph. The ISA

contains stream instructions for the data trans-

fer, including reading/writing to main memory

and scratchpad.

METHODOLOGY
SPU: We implemented SPU’s DGRA in Chisel,

and implemented with an industry 28-nm tech-

nology. We built an SPU simulator in gem5, using

a RISCV ISA for the control core.

Architecture comparison points: Table 1 shows

the characteristics of the architectures we com-

pare against, including their on-chip memory

sizes, FU composition, and memory bandwidth.

We also address whether an inorder processor

is sufficient by comparing against “SPU-inorder,”

where the DGRA is replaced by an array of eight

inorder cores (total of 512 cores). For reference,

we also compared against a dual-socket Intel

Skylake CPU, with 24 cores.

Workload implementations: We implement

SPU kernels (both dense/sparse) for each work-

load, and use a combination of libraries and

hand-written code to compare against CPU/GPU

versions.

EVALUATION
Our evaluation broadly addresses the question

of whether restricted data-dependence forms

exposed to an ISA (and exploited in hardware) can

help achieve general-purpose acceleration.

Comparison to general-purpose accelerators:

Figure 4 shows how SPU fairs against CPU and

GPU for workloads across ML, graph processing,

and databases.

The workloads with a stream-join pattern—

kernel support vector machines (KSVM), TPCH

sort heavy queries (SH), gradient boosting deci-

sion trees (GBDT)—achieve speedup up to 10

speedup over CPU due to avoiding the through-

put-limiting cyclic dependence loop and lower

computational density. The GPU also suffers

from hardware underutilization as control leads

to masking in vector lanes.

On workloads with AF-Indirect—fully con-

nected layer (FC), convolution layer (CONV),

arithmetic circuits (AC), Graph, TPCH not sort-

heavy queries (N-SH)—both GPU and SPU use a

histogram-based approach. However, SPU’s

aggressive reordering of indirect updates in the

compute-enabled scratchpad far outperforms

the limited ordering in GPU.

Finally, the ability to support both stream-

join and AF-Indirect enables the use of new com-

pression techniques like run-length encoding

efficiently. These techniques effectively reduce

the required memory bandwidth, thus improv-

ing performance.

Even though SPU-inorder can relieve

some of the vectorization overheads suffered

by GPU, it is insufficient due to lower peak

throughput.

Domain accelerator comparison: Accelerators

for FC,4 CONV,10 and Graphs3 all employ com-

pute-enabled banked memory to achieve high

Table 1. Characteristics of evaluated architectures.

Characteristics GPU SPU-inorder SPU

Processor GP104 In-order SPU-core

Cache+Scratch 4064 kB 2560 kB 2560 kB

Cores 1792 512 64 SPU cores

FP32 Unit 3584 2048 2432

FP64 Unit 112 512 160

Max Bw 243 GB/s 256 GB/s 256 GB/s

Figure 4. Overall performance.

May/June 2020 43
Authorized licensed use limited to: UCLA Library. Downloaded on May 03,2021 at 07:52:57 UTC from IEEE Xplore. Restrictions apply.

indirect throughput. SPU is able to remain within

57% of its performance. The difference is due to

other specializations, e.g., higher radix NoC in

Graph application-specified integrated circuit

(ASIC) and higher buffer access bandwidth in

CONV ASIC.

In non-sort-heavy database workloads, the

dense version of SPU performs similar to ASIC.

With efficient stream joins, SPU is able to

catch up to and surpass database ASIC, which

spends significant area resources on special-

ized sorting units.

Benefit of decomposability: In general, we

achieve datawidth-proportional speedup by

adding decomposability. In comparison to

subword-SIMD, SPU can see 2.6 speedup by

being able to vectorize run-length decoding,

which involves control-serializing computa-

tion. Similarly, branches in AC also benefit

from decomposability (3). Overall, SPU

achieves geomean speedup of 2.12 speedup

with decomposability.

Area and power: The two major sources of

SPU’s area are the scratchpad banks and DGRA,

together occupying more than two-third of the

total; DGRA is the major contributor to power

(assuming all PEs are active).

Compared to the whole design, adding

stream-join control in the systolic CGRA

increases area by 6.6% and power by 17.5%.

Decomposability costs another 3.1% area and

7.7% power.

CONCLUSION
This work identifies two forms of data-

dependence, which are highly specializable

and are broadly applicable to a variety of

algorithms. By defining a specialized execution

model and codesigned hardware, SPU, we

enabled the efficient acceleration of a large

range of workloads. We observed up to order-

of-magnitude speedups and significant power

reductions compared to modern CPUs and

GPUs while remaining flexible.

More important than the proposed design is

how the approach of identifying and abstracting

common dependence forms can influence the

field.

Systematic understanding of irregular

accelerators: Our restricted forms of data-

dependence can be used to classify and

understand the fundamental capabilities of

domain-specific accelerators. Table 2 shows

the scope of several existing domain-specific

accelerators. What we see is that each gener-

ally specializes for only one form out of

stream-join, AF-Indirect or regular algorithms.

Beyond simply understanding the space, this

way of viewing algorithm’s interaction with

architecture can improve the portability of tech-

niques across domains. Consider the context of

accelerators for sparse linear algebra. SPU’s

design can join sparse lists at one element per

cycle (per PE). An idea proposed for a sparse ML

accelerator is to vectorize the join,6 so that N

elements can be joined at once from each list

(requiring N N comparisons). The ExTensor

accelerator,5 designed for multidimensional

sparse tensor ops, goes further. It demonstrates

that a hierarchical list intersection (a form of

stream join) can be more work efficient by skip-

ping a variable number of unmatched items in a

single step. To further reduce the memory band-

width overhead of sparsity, SparTen2 proposed

a bit-vector representation of indices. Thus,

the matched indices can be found using efficient

Table 2. Analysis of related works.

Exploitable dependence

forms
Specialized architectures

No data-dependence

TPUv1—Dense ML

GPU—Dense

LSSD8—Dense

SPU

Stream-Join

Q10012—Database

Sparse ML6—Sparse

Algebra

ExTensor5—Tensor

SPU

AF-Indirect

SCNN10—DNN CONV

EIE4—DNN FC

OuterSPACE9—Sparse

Algebra

Graphicionado3—Graphs

SPU

Top Picks

44 IEEE Micro

Authorized licensed use limited to: UCLA Library. Downloaded on May 03,2021 at 07:52:57 UTC from IEEE Xplore. Restrictions apply.

bit-level operations. These optimizations can

apply to SPU. More importantly, by finding struc-

ture and commonality in the dependence forms

across domains, it becomes clear

how to apply these optimizations

to other superficially different

problems, like database join or

decision tree training.

Impact on general-purpose pro-

cessors: This work focused on

reconfigurable dataflow-like pro-

cessors for implementing depen-

dence-form specialization. While it

was convenient, other architec-

tures can equally benefit from

such specialization.

Indirection in GPUs: A conceiv-

able extension to a GPU ISA

could enable the annotation of

a program region as being alias-free indirect

(informed by programmer or compiler). This

would allow GPU scratchpads to eliminate

memory dependence checking and enable

aggressive reordering, leading to reduced

impact of bank conflicts and higher through-

put. NVIDIA’s tensor core is precedence that

such specialization is feasible.

Stream-join SIMD: Stream-join control could

be supported in a CPU, for example, through

extensions to SIMD operations. An approach

could be to add specialized instructions,

which allow treating registers as FIFOs, and

the branch instructions may control the

order of data consumption (using simple

finite-state machine at FIFOs).

Hybrid FPGAs: Recent FPGAs (Xilinx Alveo)

include neural network accelerator units,

demonstrating the need for specialization

of even reconfigurable hardware. Increasing

these units’ flexibility to be similar to

SPU could simultaneously provide many

of the same efficiency benefits as an

ASIC while also retaining the fundamental

value proposition of FPGAs: broad work-

load efficiency while retaining fine-grain

reprogrammability.

Other exploitable data-dependence forms: It

is possible that there may be alternate

formulations or definitions of restricted data-

dependence forms, which could lead to new

opportunities for specialization. For example, a

coarser grain form of data depen-

dence than we have explored is

data-dependent parallelism (aka

dynamic parallelism). At the other

end of the spectrum could be

data-dependent data types, where

at a fine grain, the data-type size

is chosen to meet the precision

requirements. One could imagine

exposing these forms as first-class

primitives in the hardware/soft-

ware interface, and each could be

plausibly useful in many domains.

Effect on algorithms: Finally,

we think it is important not to

forget that systems and applica-

tion experts are constantly inno-

vating new algorithms, and are now doing so

with deep knowledge of the underlying hard-

ware. Our results support the notion that a

rigid architecture can limit certain algorithmic

approaches from being viable. Therefore, we

believe that incorporating support for struc-

tured irregularity into existing and new pro-

grammable architectures can lead to

innovations in novel algorithms and data

structures.

ACKNOWLEDGMENTS
We would like to thank G. Van den Broeck

and A. Choi for their insights and help with arith-

metic circuits workloads. We would also like to

thank D. Ott and P. Subrahmanyam for their

thoughtful conversations on the nature of irregu-

larity and data dependence. This work was

supported in part by the National Science Foun-

dation under Grant CCF-1751400 and Grant CCF-

1937599 and in part by the gift funding from

VMware.

& REFERENCES

1. J. Gomez-Luna, J.M. Gonzalez-Linares, J. I. Benavides

Benitez, andN. Guil Mata, “Performancemodeling

of atomic additions onGPU scratchpadmemory,”

IEEE Trans. Parallel Distrib. Syst., vol. 24, no. 11,

pp. 2273–2282, Nov. 2013.

We think it is important

not to forget that

systems and

application experts are

constantly innovating

new algorithms, and

are now doing so with

deep knowledge of the

underlying hardware.

Our results support the

notion that a rigid

architecture can limit

certain algorithmic

approaches from being

viable.

May/June 2020 45
Authorized licensed use limited to: UCLA Library. Downloaded on May 03,2021 at 07:52:57 UTC from IEEE Xplore. Restrictions apply.

2. A. Gondimalla, N. Chesnut, M. Thottethodi, and

T. N. Vijaykumar, “SparTen: A sparse tensor accelerator

for convolutional neural networks,” inProc. 52ndAnnu.

IEEE/ACM Int. Symp.Microarchit., 2019, pp. 151–165.

3. T. J. Ham, L. Wu, N. Sundaram, N. Satish, and

M. Martonosi, “Graphicionado: A high-performance

and energy-efficient accelerator for graph analytics,”

in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchit.,

Oct. 2016, pp. 1–13.

4. S. Han et al., “EIE: Efficient inference engine on

compressed deep neural network,” in Proc. 43rd

Annu. Int. Symp. Comput. Archit., 2016, pp. 243–254.

5. K. Hegde et al., “ExTensor: An accelerator for sparse

tensor algebra,” in Proc. 52nd Annu. IEEE/ACM Int.

Symp. Microarchit., 2019, pp. 319–333.

6. A. K. Mishra, E. Nurvitadhi, G. Venkatesh, J. Pearce,

and D. Marr, “Fine-grained accelerators for sparse

machine learning workloads,” in Proc. 22nd Asia South

Pacific Design Autom. Conf., 2017, pp. 635–640.

7. T. Nowatzki, V. Gangadhar, N. Ardalani, and

K. Sankaralingam, “Stream-dataflow acceleration,” in

Proc. 44th Annu. Int. Symp. Comput. Archit., 2017,

pp. 416–429.

8. T. Nowatzki, V. Gangadhar, K. Sankaralingam, and

G.Wright, “Pushing the limits of accelerator efficiency

while retaining programmability,” inProc. IEEE Int. Symp.

High Perform. Comput. Archit., Mar. 2016, pp. 27–39.

9. S. Pal et al., “OuterSPACE: An outer product based

sparse matrix multiplication accelerator,” in Proc. IEEE

Int. Symp. High Perform. Comput. Archit., Feb. 2018,

pp. 724–736.

10. A. Parasharet al., “SCNN:Anaccelerator for compressed-

sparse convolutional neural networks,” inProc. 44th Annu.

Int. Symp.Comput. Archit., 2017, pp. 27–40.

11. NVIDIA Whitepaper, “Cuda C best practices guide,”

May 2019. [Online]. Available: https://docs.nvidia.

com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

12. L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross,

“Q100: The architecture and design of a database

processing unit,” in Proc. 19th Int. Conf. Archit. Support

Program. Lang. Oper. Syst., 2014, pp. 255–268.

Vidushi Dadu is currently working toward the Ph.D.

degree with the Department of Computer Science,

University of California Los Angeles. Her current

research focuses on hardware–software codesign to

enable general-purpose acceleration. Dadu received

the B.Tech. degree in electronics and communica-

tion engineering from the Indian Institute of Technol-

ogy Roorkee. She is a student member of IEEE.

Contact her at vidushi.dadu@cs.ucla.edu.

Jian Weng is currently working toward the Ph.D.

degree with the Department of Computer Science,

University of California Los Angeles. His research

interests include analyzing and designing reconfig-

urable spatial architectures along with the associ-

ated compilation techniques. Weng received the

B.Eng. degree in computer science from Shanghai

Jiao Tong University. He is a member of the Asso-

ciation of Computing Machinery. Contact him at

jian.weng@cs.ucla.edu.

Sihao Liu is currently working toward the Ph.D.

degree with the Department of Computer Science,

University of California Los Angeles. His research

interests include spatial architecture prototyping and

design space exploration. Liu received the B.Eng.

degree in electrical engineering from Xi’an Jiaotong

University. He is a student member of IEEE. Contact

him at sihao@cs.ucla.edu.

Tony Nowatzki is currently an Assistant Professor

with the Department of Computer Science, University

of California Los Angeles. His research interests

include architecture and compiler codesign and novel

hardware/software interfaces. Nowatzki received the

Ph.D. degree in computer science from the University

of Wisconsin-Madison. He is a member of IEEE.

Contact him at tjn@cs.ucla.edu.

Top Picks

46 IEEE Micro

Authorized licensed use limited to: UCLA Library. Downloaded on May 03,2021 at 07:52:57 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf

