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Abstract—Programmable hardware accelerators (e.g., vector processors, GPUs) have

been extremely successful at targeting algorithms with regular control and memory

patterns to achieve order-of-magnitude performance and energy efficiency improvements.

However, they perform far under the peak on important irregular algorithms, like those

from graph processing, database querying, genomics, advanced machine learning, and

others. This work posits that the primary culprit is specific forms of irregular control flow

and memory access. By capturing the problematic behavior at a domain-agnostic level, we

propose an accelerator that is sufficiently general, matches domain-specific accelerator

performance, and significantly outperforms traditional CPUs and GPUs.

B THE sLowiNg IMPROVEMENTS of technology
scaling are raising the demand for specialized
hardware accelerators, especially for increas-
ingly difficult problems. While general-purpose
data-processing hardware, like GPUs or other
vector architectures, are effective on regular
algorithms, those with irregularity in their con-
trol flow or memory access patterns suffer in
performance. As evidence, many domain-specific
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accelerators have been proposed for “irregular”
domains like graph processing,>® compressed
neural networks,*®!° databases'? and genomics.
Compared to such architectures, GPUs lose in
performance and/or energy efficiency by order-
of-magnitude. On the other hand, domain-agnos-
tic architectures are widely applicable, which is
valuable for economies of scale and robustness
to algorithm change. An important question
then is whether it is possible to build a program-
mable accelerator that is equally as capable as
GPUs and vector processors, but better suited
to irregular algorithms.
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The first step toward this goal is to recog-
nize what makes an algorithm irregular. In
computer architecture, the concept of irregu-
larity is often used informally to indicate
behavior that causes inefficiency. We argue
that to first order, the root cause of most irreg-
ularity is data dependence. Data dependence
can appear in many forms, including control,
memory address calculation, conditional mem-
ory accesses, reuse and parallelism structure.

Consider the concrete example of sorting algo-
rithms. Merge sort has regular memory and irregu-
lar control. The memory that is read or written at
each step is predetermined, but the control flow
decisions depend on the relative order of the lists
to be merged at each step. This data-dependent
control prevents speculative execution from being
effective, and it also prevents vectorization (can-
not know the operands from each lane in
advance). Conversely, the radix-sort algorithm
has regular control, but irregular memory access
(bin increment and scatter). This prevents pre-
fetching from being effective, and also prevents
vectorization with standard instructions. In gen-
eral, data dependence interferes or complicates
the fundamental mechanisms that parallel pro-
cessors use to extract performance.

Insight. To address these challenges, our key
observation is that it is not necessary to handle
arbitrary irregularity because data dependence
manifests in common forms across domains. This
work suggests two specific forms are critical:
stream join and alias-free indirection (AF-Indirect).

Stream join is defined by in-order processing
of data, where only the relative order of con-
sumption and production of new data is depen-
dent on control decisions. These joins are
surprisingly common, including merge sort,
database joins, and inner product sparse tensor
operations. AF-Indirect is characterized by mem-
ory access with data-dependent addresses, but
where the only memory dependencies are read—
modify-write. Relevant kernels include radix-
sort, outer product sparse-tensor operations,
hash joins, histograms, and synchronous graph
processing (e.g., page rank).

These data-dependence forms are not mutu-
ally exclusive; in fact they can be thought of
as different ways to relax regular (non-data-depen-
dent) algorithms (see Figure 1). An example of a

Regular

Stream-Join And
Alias-free Indirect

General
Irregularity

(a)

1 Restricted Control Restricted Memory
Dependence Dependence

Filter
Streaming Sort

Databases Join

TC
Graph BFS
Analytics AC

KSVM
Machine GBDT

Learning CONV
FC

APPROXIMATE CONTRIBUTION TO EXECUTION TIME
(b)
Figure 1. Restricted data-dependence forms cover

many algorithms. (a) Algorithm classification.
(b) Dependence forms coverage.

workload that requires both forms is triangle
counting in graphs. At each vertex, AF-Indirect is
used to locate a neighbor node’s adjacency list,
and stream join can be used to find common
neighbors (each indicating a triangle).

Approach: Critically, we find that these
restricted forms of data-dependence can serve as
abstractions, which can be exploited in hardware.
We use this insight to construct our approach to
design a “general-purpose” accelerator. Specifi-
cally, we start with an architecture known to work
well for regular algorithms: a systolic-style coarse-
grained reconfigurable architecture (CGRA) with
streaming memory support. We then develop
hardware and software mechanisms for our two
restricted data-dependence forms.

Our design is called the sparse processing
unit (SPU). SPU supports fully pipelined stream
joins with a systolic CGRA augmented with a
novel dataflow-control model. SPU supports
high-bandwidth AF-Indirect (load/store/update)
with a banked scratchpad with aggressive reor-
dering and embedded compute units for atomic
update. Data dependence complicates the sup-
port for finer grain data types [naive subword
single-instruction-multiple-data (SIMD) is insuffi-
cient]. Therefore, we add support to SPU to
enable decomposing the reconfigurable network
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and wide memory access into power-of-two finer
grain resources while maintaining data-depen-
dence semantics.

Evaluation and contribution: We study machine
learning (ML) as our primary domain, and graph
processing and databases to demonstrate gener-
ality. SPU achieves between 1.8-7x speedup on
artificial intelligence (AI)/ML applications, and
SPU’s ability to retain performance on dense
algorithms led to 4.5x speedup. On graph
and database applications, SPU achieves similar
performance to domain-specific accelerators with
modest performance and power overheads.

Our primary contributions in this work are the
identification of the two common exploitable
data-dependence forms, and an ISA and hardware
mechanisms to support them. More broadly, we
believe that taking a domain-agnostic approach
can lead to novel insights and foster knowledge
transfer across domains.

EXPLOITABLE DATA-DEPENDENCE
FORMS

We observe that two restricted forms of data
dependence are sufficient to cover many algo-
rithms: stream join and AF-Indirect. In this section,
we first define these forms and give intuition on
their performance challenges for existing archi-
tectures, and then overview our proposal.

Preliminary Term—“Streams”: Both of the
dependence forms rely on the concept of stream
abstractions, so we briefly explain. Streams are
simply an ordered sequence of values. Relevant
to this work are memory streams, which are
sequences of loads or stores with a well-defined
pattern.”'? Streams are similar to vector
accesses, but have no fixed length.

Stream Join

An interesting class of algorithms iterates
over each input (each stream) in order, but the
total order of operations (and perhaps whether
an output is produced) is data dependent. Two
relevant kernels are shown in Figure 2. Sparse
vector multiplication (a)
sparse lists (in CSR format) where indices are
stored in sorted order, and performs the multi-
plication if there is a match. The core of the
merge kernel (b) iterates over two sorted lists,

iterates over two
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and at each step outputs the smaller item. Even
though the data structures, data types, and pur-
pose are very different, their relationship to data
dependence is the same: they both have stream
access, but the relative ordering of stream con-
sumption is data dependent (they reuse data
from some stream multiple times).

Stream-join definition: A program region that
is regular except that the reuse of stream data
and the production of outputs may depend on
the data.

Problem with CPUs/GPUs and motivation:
Because of their data-dependent nature,
stream-joins introduce branch mispredictions
for CPUs. For GPGPUs, vectorization becomes
difficult due to control divergence of single-
instruction-multiple threads (SIMT) lanes; also,
the memory pattern can diverge between lanes,
causing bank conflicts.

To visualize the problem for CPUs, see
Figure 2, which shows both the traditional data-
flow and proposed stream-join dataflow repre-
sentation for the examples above. Here, black
arrows represent data dependence, and green
arrows indicate control.

Figure 2(a) shows that the inner product
dataflow can be mapped to a dataflow-based
processor like an out-of-order core, but only at
low throughput. To explain, note that there is a
loop-carried dependence through the control-
dependent increment and memory access. This
prevents perfect pipelining, and the throughput
is limited to one instance of this computation
every n cycles, where n is the total latency of
these instructions.

Insight: Our insight is that from the perspec-
tive of the memory, the control dependence is
mostly unnecessary, as most loads at the line-
granularity will be performed anyways. There-
fore, to break the dependence, we need to sep-
arate the loads from computation (this is what
memory streams do), then expose a pipelined
mechanism for controlling the order of data
consumption. In the sparse vector example,
we would like to reuse the larger of the two
index values for consideration (data-dependent
reuse). If the comparison instruction can treat
its inputs like a queue, and specify the reuse
behavior (i.e., pop the smaller element), this
can be accomplished in a pipelined fashion.
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Stream-Join Algorithms

(a) Sparse Vec. Mult. (inner-prod) (b) Merge
class row: K
int idx[] Data float in_arr[N]
float val[] structure float out_arr[N]
int cnt

float sparse_dotp(row ri, r2)
int i1=e, i2=0
float total=0
while(il<rl.cnt & i2<r2.cnt)
if  (rl.idx[i1]==r2.idx[i2])

float merge(int left, mid, right)

int i1=0, i2=mid
while(il < mid && i2 < right)
if in_arr[il] <= in_arr[i2]

Alias-free Scatter-Gather Algorithms

(c) Sparse Vec/Mat. Mult.
(outer-prod)

class row:
int idx[] Data
float val[] structure
int cnt

float sparse_mv(row ril, m2)

for i1=0 to rl.cnt, ++il

(d) Histogram

histo(float in_arr[N])
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Figure 2. Example restricted dependence form algorithms.

Also, the multiply-accumulate operation
is performed on only matching indices, so
we should discard some of these computations/
data. Therefore, in addition to data-dependent
reuse, we also require data-dependent discard.

The merge example [see Figure 2(b)] has
a surprisingly similar form and control
dependence loop to the sparse multiplication,
where the computation is replaced by
selecting the smaller item. A similar approach
of decoupling streams and applying data-
dependent reuse and discard will break the
control dependence loop and enable high
throughput.

Our stream-join proposal: We find the desired
behavior can be accomplished with a simple and
novel control flow model for full-throughput sys-
tolic execution. In this model, each instruction
may reuse its inputs, discard the computation,
or reset a register based on a dataflow input.
Figure 2 shows the examples written in this
model.

To enable flexible control interpretation,
each instruction embeds a simple configurable
mapping function from the instruction output
and control input to the control operations

f(inst_out, control_in) — reusel, reuse2, discard, reset.

Alias-Free Indirection

Many algorithms rely on indirect read, write,
and update to memory, often showing up as
a[f(b[i])]. Figure 2 shows two examples: The
sparse-vector/sparse-matrix outer product (c)
works by performing all combinations of non-
zero multiplications, and accumulating in the
correct location in a dense output vector. Histo-
gram (d) is straightforward. Both perform a
read-modify-write access to an indirect loca-
tion. This can be viewed as two dependent
streams. Another important observation is
that there are no unknown aliases between
streams—the only dependence is between the
load and store of the indirect update.
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AF-ndirect Definition: A program region that
is regular (including no implicit dependencies)
except that the address of one memory stream
may depend on another, and a stream can
encode a read—-modify-write operation.

Problem for CPUs/GPUs and our motivation:
On CPUs, indirect memory is possible with scat-
ter/gather, however the throughput is limited
given the limited ports to read/write vector-
length number of cache lines simultaneously.
Also, not leveraging alias-freedom means a reli-
ance on expensive load-store queues.

Although GPUs can use their banked scratch-
pads for faster indirect access, the following two
reasons limit the indirect throughput. 1. No reor-
dering of requests across subsequent vector
warp accesses.'! Doing so in a GPU would
require dependence checking of in-flight
accesses, as they cannot guarantee alias free-
dom. 2. Atomic updates to the same scratchpad
bank are not pipelined even though they access
different memory locations. The reason is that
the lock bits for atomic operations are shared
among multiple addressable locations.! The
coarse-granularity locking is required to reduce
the locking overhead.

To visualize the inefficiency of a typical GPU
scratchpad, see Figure 2, which shows how
scratchpad vector requests (corresponding to
indirect read and atomic update, respectively) are
served on a GPU. For simplicity, we assume a warp
size of 8. As GPUs do not reorder requests across
warps, the update request vector is issued after
the completion of all read requests. For updates in
GPU, we assume one lock-bit per scratchpad bank.
Here, the three-cycle nonpipelineable operation
further worsens the overhead of bank conflicts.
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Insight: Our insight is that the dependence
check is not required between subsequent
requests (e.g., corresponding to different static
loads) if alias freedom is known. Further, the
atomic operations required in these algorithms
are often low latency integer arithmetic logic
unit (ALU) operations. Therefore, for depen-
dence check, the maximum number of possible
conflicting addresses is usually low (i.e., 1 less
than the atomic update latency). Hence, we
could compare with absolute addresses instead
of relying on a serializing lock bit mechanism.

Our AF-indirect proposal: We find that the
desired behavior can be accomplished by:
1) exposing alias-freedom in the hardware-
software interface to enable interleaving across
vectors: and 2) storing absolute address of pend-
ing atomic updates (maximum 2) to enable
pipelining of nonconflicting addresses. Figure 2
shows how SPU is able to reorder requests, and
also able to pipeline atomic update requests with
initiation with no bubbles. The stall is intro-
duced in the presence of “real” dependencies, for
example, see cycle-4 in AF-Indirect reordering in
Figure 2. This is limited to a maximum two-cycle
bubble.

SPARSE PROCESSING UNIT

In this section, we first overview the primary
aspects of the design, and then provide the
details of stream-join-enabled systolic-CGRA and
the banked memory exposed to knowledge of
AF-Indirect.

Figure 3(a) shows the proposed SPU archi-
tecture. SPU cores are integrated into a mesh
network-on-chip (NoC). Each core is composed
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of the specialized memory and compute
fabric: decomposable granularity reconfigura-
ble architecture (DGRA), together with a con-
trol core for coordination among streams.

Communication/synchronization: SPU pro-
vides two specialized mechanisms for communi-
cation. First, we include the multicast capability
in the network. Data can be broadcast to a sub-
set of cores, using the relative offset in the
scratchpad. As a specialization for loading main
memory, cores issue their load requests to a cen-
tralized memory stream engine, and data can be
multicast from there to relevant cores. For syn-
chronizing on data-readiness, SPU uses a data-
flow-tracker-like mechanism to wait on a count
of remote-scratchpad writes.

SPU Core

The basic operation of each core [see Figure 3
(b)] is that the control core will first configure
the DGRA for a particular dataflow computation,
and then send stream commands to the scratch-
pad controller to read data or write to the DGRA,
which itself has an input and output port inter-
face to buffer data.

Stream-join compute fabric: DGRA: We aug-
ment a systolic CGRA to support stream-join
control and dataflow computation with arbitrary
data types. Figure 3(d) shows the microarchitec-
ture of a DGRA processing element (PE) (green
color represents control).

To implement control interpretation, we
add a control lookup table (CLT) to each func-
tional unit (FU), which determines a mapping
between the control inputs and possible con-
trol operations. This mapping is configured
along with the dataflow computation graph.
During dataflow operation, CLT consumes one
of the dataflow inputs to produce control sig-
nals for the ALU (discard), associated registers
(reset), and FIFOs connected to ALU inputs
(reuse).

In the DGRA, we enable each coarse-grained
resource to be able to be decomposed to
powers-of-two fine-grain resources. For compu-
tation, the decomposable PE can split each
coarse-grained input into multiple finer-grained
inputs [16-b inputs in Figure 3(d)], which are
used to feed two separate lower granularity

ALUs. Correspondingly, CLT and registers are
also composable.

To route the data from PEs, the network of
the DGRA is decomposable into multiple parallel
finer-grain subnetworks (minimum 8 b). For flexi-
ble routing, we add the ability for incoming val-
ues to shift one subnetwork per switch hop.

Alias-freedom-exposed ~ banked
Because our workloads often require a mix of
linear and indirect arrays simultaneously, for
example, streaming read of indices (direct) and
associated values (indirect), we begin our design
with two logical scratchpad memories, one
highly banked and one linear. In this design,
both exist within the same address space.
Hence, memory streams may access locations in
a remote core’s scratchpad using the similar
interface for linear and indirect streams.

The role of the scratchpad controller [see
Figure 3(c)] is to generate requests for reads/
writes to the linear scratchpad, and reads/
writes/updates to the indirect scratchpad. A
control unit assigns the scratchpad streams,
and their state is maintained in either linear or
indirect stream address generation logic. The
controller should then select between any con-
current streams for address generation and
send it to the associated scratchpad to maxi-
mize expected bandwidth. The linear address
generator’s operation is simple—create wide
scratchpad requests using the linear access
pattern.

The indirect address generator creates a vec-
tor of requests by combining each element of
the stream of addresses (coming from the
compute fabric, explained in the “Exploitable
Data-Dependence Forms” section) with each ele-
ment in the parent stream (i.e., b[i] in a[f(b
[iDD. This vector of requests is sent to an arbi-
trated crossbar for distribution to banks, and a
set of queues buffer requests for each static ran-
dom access memory (SRAM) bank until they can
be serviced.

Since there are no conflicts among indirect
read/write requests, the requests are serviced
from the top of the bank queue as soon as the
scratchpad data bus becomes available. For
atomic update requests, the requests can be ser-
viced when both scratchpad read and write
buses are available, and the updated address

memory:
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does not conflict with the pending updates
issued from the same bank. As the ordering of
the data returned from read requests is critical
for dataflow operations, we employ an indirect
read reorder buffer (IROB) that maintains incom-
plete requests in a circular buffer (see Figure 2).
IROB entries are deallocated in-order when a
request’s data is sent to the compute unit.

Control ISA: We leverage an open-source
stream-dataflow ISA? for the control core’s
implementation of streams, and add support for
indirect reads/writes/updates, stream-join data-
flow model, and typed dataflow graph. The ISA
contains stream instructions for the data trans-
fer, including reading/writing to main memory
and scratchpad.

METHODOLOGY

SPU: We implemented SPU’s DGRA in Chisel,
and implemented with an industry 28-nm tech-
nology. We built an SPU simulator in gemb5, using
a RISCV ISA for the control core.

Architecture comparison points: Table 1 shows
the characteristics of the architectures we com-
pare against, including their on-chip memory
sizes, FU composition, and memory bandwidth.
We also address whether an inorder processor
is sufficient by comparing against “SPU-inorder,”
where the DGRA is replaced by an array of eight
inorder cores (total of 512 cores). For reference,
we also compared against a dual-socket Intel
Skylake CPU, with 24 cores.

Workload implementations: We implement
SPU kernels (both dense/sparse) for each work-
load, and use a combination of libraries and
hand-written code to compare against CPU/GPU
versions.

Table 1. Characteristics of evaluated architectures.

Characteristics GPU SPU-inorder SPU
Processor GP104 In-order SPU-core
Cache+Scratch 4064 kB 2560 kB 2560 kB
Cores 1792 512 64 SPU cores
FP32 Unit 3584 2048 2432
FP64 Unit 112 512 160
Max Bw 243 GB/s 256 GB/s 256 GB/s
May/June 2020
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Figure 4. Overall performance.

EVALUATION

Our evaluation broadly addresses the question
of whether restricted data-dependence forms
exposed to an ISA (and exploited in hardware) can
help achieve general-purpose acceleration.

Comparison to general-purpose accelerators:
Figure 4 shows how SPU fairs against CPU and
GPU for workloads across ML, graph processing,
and databases.

The workloads with a stream-join pattern—
kernel support vector machines (KSVM), TPCH
sort heavy queries (SH), gradient boosting deci-
sion trees (GBDT)—achieve speedup up to 10x
speedup over CPU due to avoiding the through-
put-limiting cyclic dependence loop and lower
computational density. The GPU also suffers
from hardware underutilization as control leads
to masking in vector lanes.

On workloads with AF-Indirect—fully con-
nected layer (FC), convolution layer (CONV),
arithmetic circuits (AC), Graph, TPCH not sort-
heavy queries (N-SH)—both GPU and SPU use a
histogram-based approach. However, SPU’s
aggressive reordering of indirect updates in the
compute-enabled scratchpad far outperforms
the limited ordering in GPU.

Finally, the ability to support both stream-
join and AF-Indirect enables the use of new com-
pression techniques like run-length encoding
efficiently. These techniques effectively reduce
the required memory bandwidth, thus improv-
ing performance.

Even though SPU-inorder can relieve
some of the vectorization overheads suffered
by GPU, it is insufficient due to lower peak
throughput.

Domain accelerator comparison: Accelerators
for FC,* CONV,!° and Graphs® all employ com-
pute-enabled banked memory to achieve high

Databases
ASIC

111

N-SH SH GM
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indirect throughput. SPU is able to remain within
57% of its performance. The difference is due to
other specializations, e.g., higher radix NoC in
Graph application-specified integrated -circuit
(ASIC) and higher buffer access bandwidth in
CONV ASIC.

In non-sort-heavy database workloads, the
dense version of SPU performs similar to ASIC.
With efficient stream joins, SPU is able to
catch up to and surpass database ASIC, which
spends significant area resources on special-
ized sorting units.

Benefit of decomposability: In general, we
achieve datawidth-proportional speedup by
adding decomposability. In comparison to
subword-SIMD, SPU can see 2.6x speedup by
being able to vectorize run-length decoding,
which involves control-serializing computa-
tion. Similarly, branches in AC also benefit
from decomposability (3x). Overall, SPU
achieves geomean speedup of 2.12x speedup
with decomposability.

Area and power: The two major sources of
SPU’s area are the scratchpad banks and DGRA,
together occupying more than two-third of the
total; DGRA is the major contributor to power
(assuming all PEs are active).

Compared to the whole design, adding
stream-join control in the systolic CGRA
increases area by 6.6% and power by 17.5%.
Decomposability costs another 3.1% area and
7.7% power.

CONCLUSION

This work identifies two forms of data-
dependence, which are highly specializable
and are broadly applicable to a variety of
algorithms. By defining a specialized execution
model and codesigned hardware, SPU, we
enabled the efficient acceleration of a large
range of workloads. We observed up to order-
of-magnitude speedups and significant power
reductions compared to modern CPUs and
GPUs while remaining flexible.

More important than the proposed design is
how the approach of identifying and abstracting
common dependence forms can influence the
field.

Systematic
accelerators:

understanding of irregular
Our restricted forms of data-

Table 2. Analysis of related works.

Exploitable dependence

Specialized architectures
forms

TPUvl—Dense ML

GPU—Dense

No data-dependence
LSSD®—Dense

SPU

Q100'>—Database

Sparse ML®—Sparse

Stream-Join Algebra

ExTensor"—Tensor

SPU

SCNN!'—DNN CONV

EIE*—DNN FC

OuterSPACE®—Sparse

AF-Indirect Algebra

Graphicionado®—Graphs

SPU

dependence can be used to classify and
understand the fundamental capabilities of
domain-specific accelerators. Table 2 shows
the scope of several existing domain-specific
accelerators. What we see is that each gener-
ally specializes for only one form out of
stream-join, AF-Indirect or regular algorithms.
Beyond simply understanding the space, this
way of viewing algorithm’s interaction with
architecture can improve the portability of tech-
niques across domains. Consider the context of
accelerators for sparse linear algebra. SPU’s
design can join sparse lists at one element per
cycle (per PE). An idea proposed for a sparse ML
accelerator is to vectorize the join,® so that N
elements can be joined at once from each list
(requiring NxN comparisons). The ExTensor
accelerator,5 designed for multidimensional
sparse tensor ops, goes further. It demonstrates
that a hierarchical list intersection (a form of
stream join) can be more work efficient by skip-
ping a variable number of unmatched items in a
single step. To further reduce the memory band-
width overhead of sparsity, SparTen? proposed
a bit-vector representation of indices. Thus,
the matched indices can be found using efficient
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bit-level operations. These optimizations can
apply to SPU. More importantly, by finding struc-
ture and commonality in the dependence forms
across domains, it becomes clear
how to apply these optimizations
to other superficially different
problems, like database join or
decision tree training.

Impact on general-purpose pro-
cessors: This work focused on
reconfigurable dataflow-like pro-
cessors for implementing depen-
dence-form specialization. While it
was convenient, other architec-
tures can equally benefit from
such specialization.

« Indirection in GPUs: A conceiv-
able extension to a GPU ISA
could enable the annotation of
a program region as being alias-free indirect
(informed by programmer or compiler). This
would allow GPU scratchpads to eliminate
memory dependence checking and enable
aggressive reordering, leading to reduced
impact of bank conflicts and higher through-
put. NVIDIA’s tensor core is precedence that
such specialization is feasible.

«  Stream-join SIMD: Stream-join control could
be supported in a CPU, for example, through
extensions to SIMD operations. An approach
could be to add specialized instructions,
which allow treating registers as FIFOs, and
the branch instructions may control the
order of data consumption (using simple
finite-state machine at FIFOs).

+ Hybrid FPGAs: Recent FPGAs (Xilinx Alveo)
include neural network accelerator units,
demonstrating the need for specialization
of even reconfigurable hardware. Increasing
these units’ flexibility to be similar to
SPU could simultaneously provide many
of the same efficiency benefits as an
ASIC while also retaining the fundamental
value proposition of FPGAs: broad work-
load efficiency while retaining fine-grain
reprogrammability.

Other exploitable data-dependence forms: It
is possible that there may be alternate
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We think it is important
not to forget that
systems and
application experts are
constantly innovating
new algorithms, and
are now doing so with
deep knowledge of the
underlying hardware.
Our results support the
notion that a rigid
architecture can limit
certain algorithmic
approaches from being

formulations or definitions of restricted data-
dependence forms, which could lead to new
opportunities for specialization. For example, a
coarser grain form of data depen-
dence than we have explored is
data-dependent parallelism (aka
dynamic parallelism). At the other
end of the spectrum could be
data-dependent data types, where
at a fine grain, the data-type size
is chosen to meet the precision
requirements. One could imagine
exposing these forms as first-class
primitives in the hardware/soft-
ware interface, and each could be
plausibly useful in many domains.

Effect on algorithms: Finally,
we think it is important not to
forget that systems and applica-
tion experts are constantly inno-
vating new algorithms, and are now doing so
with deep knowledge of the underlying hard-
ware. Our results support the notion that a
rigid architecture can limit certain algorithmic
approaches from being viable. Therefore, we
believe that incorporating support for struc-
tured irregularity into existing and new pro-

viable.

grammable architectures can lead to
innovations in novel algorithms and data
structures.
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