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Abstract
Intelligent physical skills are a fundamental element needed by robots to interact with the real world. Instead of learning 
from individual sources in single cases, continuous robot learning from crowdsourced mentors over long terms provides 
a practical path towards realizing ubiquitous robot physical intelligence. The mentors can be human drivers that teleoper-
ate robots when their intelligence is not yet enough for acting autonomously. A large amount of sensorimotor data can be 
obtained constantly from a group of teleoperators, and processed by machine learning to continuously generate and improve 
the autonomous physical skills of robots. This paper presents a learning method that utilizes state space discretization to 
sustainably manage constantly collected data and synthesize autonomous robot skills. Two types of state space discretization 
have been proposed. Their advantages and limits are examined and compared. Simulation and physical tests of two object 
manipulation challenges are conducted to examine the proposed learning method. The capability of handling system uncer-
tainty, sustainably managing high-dimensional state spaces, as well as synthesizing new skills or ones that have only been 
partly demonstrated are validated. The work is expected to provide a long-term and big-scale measure to produce advanced 
robot physical intelligence.
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1  Introduction

Physical intelligence such as dexterous manipulation and 
dynamic mobility is crucial for robots to interact with the 
real world. Methods for realizing robot physical intelligence 
generally sit in two types. One relies on motion planning 
based on analytical models derived from laws of physics. 
Representative work includes the dynamic re-grasping robot 
hand by the University of Tokyo Furukawa et al. (2006) 
and the bipedal robot Cassie by Agility Robotics Acker-
man (2017). Despite the rigorous guarantee of stability and 
the full utilization of mechanical potentials, the extensive 

case-specific engineering and complex ad hoc analytical 
models required by such methods hamper their ubiquity.

Thanks to the advance of artificial intelligence, robot 
learning methods such as learning from demonstration 
(LfD) Argall et al. (2009) and reinforcement learning (RL) 
Sutton and Barto (2018) have successfully allowed robots 
to acquire physical skills with less reliance on analytical 
models. Most of such methods adopt a “policy search” 
framework Deisenroth et al. (2013) and infer meta-parame-
ter-based control policies using data collected from mentor 
demonstrations or autonomous practice. The learned con-
trol policies are often in the form of deep neural networks 
or other parameter-heavy structures that require heavy 
training, which limits their usage to mostly semi-static 
operations. A representative work is a recent project by 
OpenAI using deep reinforcement learning to realize robot 
in-hand manipulation. Both the intense training process 
and task-specific engineering have been noted by experts 
Knight et al. (2018). Improved computing efficiency can 
be achieved by formulating control policies as combina-
tions of a select few base elements (e.g., motion primi-
tives Ijspeert et al. (2003)), which allows significantly less 
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training. Nevertheless, designing the base elements and 
the reward function takes highly task-specific engineering 
and jeopardizes ubiquity.

In addition to ubiquity and computation, another con-
sideration is over the data source of skill acquisition. 
For complex physical skills, especially those involv-
ing dynamic maneuvers, it is impractical to rely solely 
on reward-driven self-practice (i.e., basic reinforcement 
learning) without advisory from mentors  Johnson and 
Hasher (1987). Over the past decade, large-scale datasets 
obtained from a group of mentors (crowdsourced) have 
greatly accelerated the advancement of artificial intelli-
gence Howe (2009). Together with crowdsourcing, human 
computation von Ahn (2005) has become an increasingly 
popular way to provide mentorship to learning agents. The 
concept is particularly popular in the field of cognitive 
machine intelligence such as language processing and 
image recognition. A classic example is Google Images, 
whose AI system is trained using a massive amount of 
sample images reviewed and labeled by human partici-
pants from over the world. Other successes include trans-
lation, merchandise review, and medical diagnosis Quinn 
and Bederson (2011), Doan et al. (2011), Geiger et al. 
(2011), Little et al. (2010).

Despite its promising potentials, replicating the success 
of crowdsourced human computation in robot physical 
intelligence has not been explored much. Challenge first 
comes from building intuitive control interfaces. Pioneer-
ing work regarding this topic includes MIT’s Homunculus 
project Lipton et al. (2018) that develops a virtual reality 
remote robot control environment and Stanford’s Roboturk 
project Mandlekar et al. (2018) that uses smartphones as 
remote robot controllers. Another challenge is on sustain-
able management and efficient utilization of the collected 
large datasets. Published projects that apply crowdsourced 
human computation to generate robot physical skills 
include grasping novel objects  Sorokin et  al. (2010), 
Forbes et al. (2014) and assembly Chung et al. (2014). 
So far, these projects are limited to realizing semi-static 
operations by searching for similar or available solutions 
in the dataset.

Our research on crowdsourced robot learning of physical 
skills develops a unique learning scheme that brings contri-
butions with the following capabilities: 

1.	 Allowing robots to learn physical skills from a group of 
human mentors constantly through demonstrations;

2.	 Sustainably managing a large amount of data that is con-
stantly collected from the crowdsourced mentors;

3.	 Synthesizing dynamic physical skills that have been 
never or only partly demonstrated, without the need of 
heavy training/re-training; and

4.	 Efficient handling of high-dimensional large datasets.

2 � Basic framework: data management 
and skill synthesis based on state space 
discretization

The proposed learning scheme treats physical skills as 
controlled state transitions in the state space, and uses 
state space discretization to manage a large and growing 
amount of data collected from groups of mentors. The 
scheme features a two-step process (Fig. 1) to synthesize 
autonomous robot physical skills. Demonstration trajec-
tories provided by mentors are segmented and registered 
to the “cells” of the discretized state space of the system. 
A graph representation of the registered dataset is built 
using the cells as nodes and the inter-cell trajectory seg-
ments as edges. In the skill synthesis process, a physical 
skill is first “roughly” composed as a series of state transi-
tions through a number of adjacent cells in the state space, 
which correspond to a route in the graph representation. 
Then, statistical inference is used to generate the control 
signals from the control-state data pairs of the trajectory 
segments archived to the cells along the route.

An elementary example explaining the framework is 
shown in Fig. 2. Consider a simple motion system that 
has only two state variables - position x1 and velocity x2 
(e.g., a force-controlled linear moving block). Assume 
a simple state space discretization of a 4 × 4 full facto-
rial design is used, with three demonstration trajectories 
archived. Consider a skill defined by a start state in cell 
13  and a final state in cell 43  . Using the segments of the 
demonstrated trajectories, a rough skill can be composed 
by routing through the graph representation of the data-
set: 13 → 23 → 33 → 43  . Note that the start and final 
states do not sit exactly on any demonstration trajectories, 
and the trajectory segments do not exactly intersect in 
the switching cells. In order to generate the final control 
signal, the second step of skill synthesis uses statistical 

Fig. 1   Two-step skill synthesis
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inference such as Gaussian Process Regression to handle 
the differences.

Based on the basic framework, advanced techniques 
are needed to make the learning scheme applicable to real 
systems. In particular, state space discretization is a key 
element. Robot physical skills often involve many state 
variables and have high-dimensional state spaces. The sim-
ple full-factorial design used in the elementary example 
requires enormous number of cells for high-dimensional 
state spaces and takes impractical amount of computing 
resource. Another major concern is over the sustainability 
of the discretization as the dataset grows. For crowdsourced 
learning over long terms, the amount of collected data grows 
rapidly and constantly. In this work, two types of state space 
discretization have been developed, and are presented in 
Sects. 3 and 6, with validation tests discussed in Sects. 5 
and 7, respectively. Section 4 explains the graph routing and 
statistical inference techniques used in skill synthesis.

3 � State space discretization using 
pseudo‑random sequences

In the proposed robot learning scheme, physical skills are 
defined using state transitions in the state space. Some 
state space discretization techniques actually exist for 
reinforcement learning (RL)  Lee and Lau (2004), Uther 
and Veloso (1998). RL applications usually tackle a sin-
gle control task and these techniques discretize the state 
space according to the (one) control policy for the task. 
Meanwhile, our proposed learning scheme aims at treat-
ing various control tasks ubiquitously, which allows dif-
ferent control actions to correspond to the same state. 
In terms of synthesizing skills of a greater variety, it is 

desirable to have data populate the state space thoroughly, 
which in turn requires a uniform and thorough discretiza-
tion of the state space. Meanwhile, for the sake of compu-
tational affordability, the state space should be discretized 
with as few cells as possible.

The total number of cells of a full factorial design (as 
used in the elementary example earlier) increases expo-
nentially as the dimension of state space grows, which 
leads to excessive load of data handling. In addition, 
although a full factorial design provides a seemingly good 
uniformity, the coverage is actually quite inefficient. As 
illustrated in Fig. 3a, consider a three-dimensional state 
space discretized by a four-level full factorial design. The 
total number of cells is 43 = 64 . However, the cells’ pro-
jection to a lower-dimensional subspace suffers severe 
overlapping. In this case, a two-dimensional subspace has 
only 42 = 16 cells and a one-dimensional subspace has 
only 4 cells.

An intuitive better choice is a random discretization 
of a uniform distribution. The randomness minimizes the 
overlapping in the cells’s projection to lower-dimensional 
subspaces. However, governed by the law of large number 

Fig. 2   An elementary example Zhao et al. (2020)

Fig. 3   3D state space discretization using 64 points of different dis-
tributions and their projections to a 2D subspace - (a) full-factorial 
design, (b) uniform random numbers, (c) low-discrepancy pseudo-
random sequence
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for random variables, a good uniformity can hardly appear 
if only a limited numbers of cells can be computationally 
afforded (Fig. 3b). Inspired by Wang et al. (2014), a low-
discrepancy pseudo-random sequence is used to discretize 
the state space. Compared to the full factorial design, low-
discrepancy pseudo-random sequences ensure the uniform-
ity through all lower-dimensional subspaces. Low-discrep-
ancy pseudo-random sequences provide the same excellent 
uniformity of random distributions, but are actually deter-
ministic instead of random. Even when the available com-
puting resource only allows a small amount of cells, a dis-
cretization created using a low-discrepancy pseudo-random 
sequence still provides high uniformity over subspaces of 
lower-dimensions (Fig. 3c). In other words, it gives the most 
uniform discretization that can be achieved with a certain 
computing resource.

In our work, the Sobol sequence is adopted to discretize 
the state space. It is a widely used low-discrepancy pseudo-
random sequence Niederreiter (1988). The sequence is gen-
erated using the so-called direction numbers vi,j = mi,j∕2

i , 
where mi,j is an odd integer from a specific recurrence 
sequence. The component of the k’th point in the Sobol 
sequence on the j’th dimension is  given as 
s
(k)

j
= b1v1,j ⊕ b2v2,j ⊕ b3v3,j ⊕⋯ , where bi is the i’th bit of 

k’s binary code, and ⊕ is the bit-by-bit exclusive-or operator. 
More details can be found in Joe and Kuo (2003).

Most operations in the proposed learning scheme require 
either registering or locating a state at a cell in the discre-
tized state space, which is in essence a nearest neighbor 
search problem. Unlike the full factorial design, which has 
an aligned distribution and is naturally sorted, a pseudo-
random sequence such as the Sobol sequence follows a 
sophisticated distribution. Rather than using a brutal force 
nearest neighbor search, an efficient algorithm (Algo-
rithm 1) is developed by taking advantage of the property 
of a Sobol sequence - that its uniformity is fully preserved 
in its projection to subspaces of any lower dimensions. 
As an example, consider using a 100-point two-dimen-
sional Sobol sequence to discretize a two-dimensional 
state space within the range of [0, 0] to [1, 1]. Suppose the 
cell nearest to the state x = [0.2, 0.7] needs to be located. 
First, the sequence is sorted according to the values of the 
first state variable. Thanks to the uniformity property of 
Sobol sequences, the query state should sit close to the 
points around the 100 × 0.2 = 20 th position in the sorted 
sequence. Then, the nearest point (the center of a cell) to 
the query state can be located quickly by searching over a 
small nearby range (e.g., the 17th–23rd points in the sorted 
Sobol sequence). Figure 4 shows an example of a trajectory 
registered to a discrete state space formed using a Sobol 
sequence.

Algorithm 1: Nearest neighbor search in a state
space discretized by a Sobol sequence
1 SOBOL SEARCH(SOBOL, q);
2 Parameters: N -dimensional query point

q = [q1, q2, · · · , qN ], a Sobol sequence of n points
{s(1) s(2) · · · s(n)} that discretizes the
N -dimensional state space;

3 Results: the Sobol point closest to the query point;
4 Sort the Sobol sequence in ascending order according

to the value of the first state variable s
(k)
1 ;

5 Calculate the search center as q1 × n. Specify an
error boundary e = [e1, e2, · · · , eN ]. The search
interval is [(q1 − e1)× n, (q1 + e1)× n]. for
i = (q1 − e1)× n to (q1 + e1)× n do

6 Check if s(i)j − qj < ej for j = 2 to N ;
7 if only one s(i) satisfies the condition then
8 Return s(i).

9 else if more than one s(i) satisfy the condition
then

10 Examine the Euclidean distance between the
q and the candidate s(i)’s;

11 Return the s(i) of the shortest distance.

In terms of archiving new demonstration trajectories 
to the discretized state space, it is desirable to control the 
volume of the dataset so that it does not grow unlimit-
edly as new demonstrations being constantly collected. 
The trajectory segments (divided by the cells) of every 
new demonstration are examined by a merit criterion, such 
as time consumption, mechanical and electrical load of 
the robot. If a new segment is better than the archived 
one, it replaces the latter. Otherwise, it is discarded. Such 
a scheme avoids comparing a new demonstration to all 
previously collected demonstrations and keeps the total 
number of archived trajectory segments under nA, where 
A is the average number of adjacent neighbors of a cell, 
and is proportional to n the total number of cells of the 
discretized state space. n can be as large as the available 
computing resource allows.

Fig. 4   A trajectory registered to a discrete state space



394	 L. Zhao et al.

1 3

4 � Two‑step skill synthesis

As explained in the simple example in Sect. 2 and Fig.2, 
the cells in the discretized state space and the demonstra-
tion trajectories archived to them can be represented by a 
directed graph for skill synthesis. Every node of the graph 
represents a cell in the discretized state space. A directed 
edge connecting two nodes represents a demonstration 
trajectory segment connecting the cells, indicating that 
a certain maneuver is available to drive the system from 
a state in the first cell to the state in the second. For each 
edge in the graph, a weight can be assigned to mark the 
merit of the corresponding maneuver (e.g., time, mechani-
cal/electrical load, etc.). The first step of skill synthesis is 
to generate a “rough skill” in the form of a path of state 
transitions (edges) through the nodes in the graph repre-
sentation. The procedure can be treated as a single-source 
shortest-paths problem and solved by the widely adopted 
Dijkstra’s algorithm Dijkstra (1959).

The second step of skill synthesis is to generate the con-
trol signal based on the rough skill. Using the state-control 
data pairs {x, u} of the archived demonstration data, statis-
tical inference is used to infer the control action u = u(x) 
that reacts to an actual state x in a synthesized skill. In 
our work, Gaussian Process Regression (GPR) is used. 
GPR has been widely used in robot learning control as 
a non-parametric Bayesian approach [e.g.,Nguyen-Tuong 
and Peters (2012) and Wang et al. (2015)]. A good intro-
duction of GPR can be found in Rasmussen and Williams 
(2006). For each cell-to-cell state transition (an edge in the 
graph representation, a GPR model is trained to produce a 
segment of control sequence. The whole control sequence 
of an entire synthesized skill is in the form of a series of 
GPR models switched from one to another sequentially.

As explained at the end of Sect. 3, only the trajectory 
segments with the best performances are archived and 
used for training a GPR model. This strategy avoids train-
ing for every new demonstration. In addition, for each 
GPR model, only a (selected) segment of a whole trajec-
tory is used for training, which reduces the computation 
load of training GPR models. While new demonstration 
trajectories can be collected unlimitedly, the total number 
of GPR models is bounded by nA, where n is the total 
number of cells of the discretized state space. A is the 
average number of adjacent neighbors of a cell and is 
proportional to n. Such an upper bound is important in 
terms of providing sustainability to crowdsourced learn-
ing, whose power comes from constantly collected demon-
strations. Specifically, a major step in GPR training is the 
inversion of an m × m data covariance matrix Rasmussen 
and Williams (2006), where m is the number of training 
data points. A GPR model trained using a demonstration 

trajectory with m = 1000 data points would require the 
inversion of a matrix of the size 1000 × 1000 . Assume 
that the trajectory has ten 100-point segments connecting 
through eleven adjacent cells in the state space, a GPR 
model trained from a single segment only requires oper-
ating a 100 × 100 matrix. Even if all segments of the tra-
jectory end up being archived, all ten segments and their 
GPR models only need a fraction of the computation and 
memory that are required by a GPR model trained from 
the entire trajectory.

5 � Validation I: the fidgeting test

The proposed learning scheme is first validated using a 
test of robot in-hand manipulation Zhao et al. (2019). A 
majority of human activities in various industries require 
dexterous in-hand manipulation skills such as adjusting the 
object posture when holding it in hand. Compared to grasp-
ing and picking, in-hand manipulation requires a lot more 
advanced skills, and is one of the bottlenecks that have been 
keeping many tasks from automation. The latest research on 
learning-based robot in-hand manipulation includes robotic 
in-hand rolling Van Hoof et al. (2015) and in-hand rotation 
of a cube Knight et al. (2018). These achievements are based 
on reinforcement learning and require a lengthy trial-and-
error improvement process for every new skill. The proposed 
robot learning scheme is expected to provide an alternative 
solution of better ubiquity.

The test involves a simulated three-finger robot hand try-
ing to arbitrarily fidget a small object (Fig. 5). The goal is to 
be able to manipulate the object from arbitrary initial posi-
tion and orientation to arbitrary final ones. The robot learns 
from a group of human mentors using the proposed learning 
scheme. The mentors provide demonstrations by controlling 
the virtual robot hand using a virtual reality (VR) interface. 
Thanks to the popularity on the personal electronics market, 
VR technologies can now provide high quality motion sens-
ing and real-time human-machine interaction. Compared to 
other demonstration interfaces such as lead-through teach-
ing, VR-based interfaces are an immersed and intuitive way 

Fig. 5   VR interface and simulated robot hand Zhao et al. (2019)



395Handling crowdsourced data using state space discretization for robot learning and synthesizing…

1 3

to collect high-quality demonstrations Zhang et al. (2018). 
In our test, the HTC Vive headset is used to provide a visual 
interface. A Leap Motion sensor is attached to the headset to 
capture the finger motion. Simulation of the fidgeting phys-
ics is built using Unity.

The duck-shaped object in the test moves on a plane. The 
state variables include its two position coordinates and a sin-
gle orientation coordinate. The state space is discretized by 
a three-dimensional Sobol sequence of 104 points. A total of 
50 volunteers are invited to control the robot and manipulate 
the object using the VR interface. The mentors are encour-
aged to manipulate the object in as many ways as possible. 
Each mentor is asked to provide 10 demonstrations, which 
can be of different lengths and cover various areas and tran-
sitions in the state space. Raw demonstration trajectories are 
processed and archived as described in Sect. 3.

Along with the accumulation of new demonstrations, 
the robot hand is asked to synthesize and autonomously 
carry out manipulations of randomly picked initial and final 
states of the object. Depending on the distribution of the 
archived data in the state space, the synthesis may give more 
or less efficient skills and can sometimes result in a failure. 
The tests are studied in two ways. First, the success rate of 
skill synthesis is studied with respect to the amount of data 
archived. Without much surprise, as the archived data cov-
ers more cells of the working region in the discretized state 
space, the success rate of skill synthesis increases about pro-
portionally (Fig. 6). The failed tests happen mainly because 
the picked initial state and/or final state have never been 
covered by any demonstration.

In addition, the performance of successfully synthesized 
new skills is examined. As the archived data reaches differ-
ent levels of coverage in the state space, the robot is asked 
to repetitively synthesize a manipulation defined using the 
same initial and final state. Figure 7 shows the difference in 
the performance. The first manipulation is synthesized when 
only 100 demonstrations are collected, which covers 21% (of 

cells) of the working region in the state space. The second 
manipulation is synthesized when all 500 demonstrations 
are collected, which covers 67% (of cells) of the working 
region in the state space. Both manipulations can success-
fully manipulate the object from the specified initial posi-
tion and orientation to the final ones, while the second one 
clearly shows a much cleaner transition with little unneces-
sary move.

6 � Data‑oriented state space discretization

6.1 � Dynamic cell allocation

The state space discretization method based on pesudo-
random sequences (Sect. 3) and the fidgeting test (Sect. 5) 
are motivated by the assumption that the robot system needs 
to visit all kinds of states over an “open” working region in 
the state space. Such an assumption is proper for some skills 
such as in-hand manipulation (e.g., fidgeting). Meanwhile, 
for many other skills, especially those involving the manipu-
lation of multiple bodies, the working region of the robot 
in the state space usually spreads through highly irregular 
areas instead of a well-conditioned convex region (Fig.  8). 
This makes a large portion of cells being practically empty Fig. 6   Success rate of new skill synthesis Zhao et al. (2019)

Fig. 7   A skill synthesized using a dataset that covers a 21% and b 
67% of the working region in the state space Zhao et al. (2019)
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when a uniform discretization is used. The issue is especially 
problematic for systems of high-dimensional state spaces. 
Our latest work develops a data-oriented discretization strat-
egy that dynamically adjusts the cell allocation according to 
the incoming data so as to achieve efficient data representa-
tion Zhao et al. (2020).

Rather than determining the state space discretization in 
advance, the data-oriented method allocates cells dynami-
cally according to the incoming data. First, an initial dis-
cretization is generated by allocating cells along the trajec-
tory of one of the first demonstrations every certain data 
points. As new data come in, the same way is used to gen-
erate candidate new cells. Cell allocation is updated based 
on the comparison between the candidate new cells and 
the existing cells. A candidate new cell is adopted to the 
state space discretization if the difference is greater than a 
certain threshold. Otherwise, it is merged to existing cells 
that cover (mostly) the same area in the state space. Com-
pared to a uniform discretization, the data-oriented strategy 
makes sure that the cells can represent the collected data 
efficiently. A (minor) disadvantage of the new strategy is 
the increasing total number of cells, which is fixed when 
using a pre-allocated discretization. Nevertheless, the issue 
is bearable—after a certain amount of data is collected, the 
chance of needing to add new cells becomes trivial. This 
is because there will have been enough cells to cover the 
system’s working region in the state space.

6.2 � Nearest neighbor search for data‑oriented 
discretization

As explained in Sect. 3, most operations in the proposed 
learning scheme require either registering or locating a state 
at a cell in the discretized state space, which is in essence 
a nearest neighbor search problem. In addition to the non-
aligned distribution, the data-oriented discretization strategy 
does not have the uniformity property of the Sobol sequence. 
The exact solution of nearest neighbor search would require 
enumerating through the distances between the query point 
to all other points in the set. For large datasets obtained from 
crowdsourcing, such computation is not affordable. Search 
methods that give approximating solutions generally sit in 
four types which use search trees [e.g., KD-tree Bentley 

(1975)], hashing (e.g., Locality Sensitive Hashing Gionis 
et al. (1999)), graphs [e.g., HNSW Malkov and Yashunin 
(2018)], and quantization [e.g., Product Quantization Jegou 
et  al. (2011)] respectively. According to experimental 
reports Benchmarks of ANN (2020), graph-based methods 
tend to perform better than others.

Graph-based nearest neighbor search indexes the data-
sets to graphs. In our application, the update efficiency of 
the search graphs is of particular importance since the state 
space discretization can change frequently which causes new 
nodes being added to the search graph constantly. A high 
recall (i.e., precision), on the other hand is needed only when 
a candidate new cell is close to the existing cells. For ones 
that are far away from the existing cells, it is not really mean-
ingful to find the exact nearest neighbor. This is because 
even the exact nearest neighbor is located, no effective con-
trol signal can be generated (via statistical inference) since 
the query point is too different from any data.

Based on the above considerations, a dual-graph search 
method is developed to provide nearest neighbor search for 
the data-oriented state space discretization method. Two 
directed graphs are used by the proposed search method. 
The nodes of both graphs correspond to the cells of the state 
space discretization (indexed by cell ID’s) and the edges rep-
resent the neighboring relationships of the cells. Note that 
these graphs are constructed for the nearest neighbor search 
needed by the data-oriented state space discretization, and 
are different from the routing graph discussed in Sects. 2 
and 4 for skill synthesis.

The first graph is called an In-Dataset Graph (IDG). 
This graph utilizes a particular search-and-build strategy 
(explained later) that guarantees to return the query candi-
date cell itself if a same cell is already indexed in the graph 
(i.e., in-dataset query). In case that no existing cell overlaps 
with the candidate new cell, the IDG returns a relatively 
nearby existing cell. The result will then be used by the 
second graph, called a Diversified Graph (DG) as an initial 
point to search for a potentially closer neighbor. If the near-
est neighbor found in the DG is too close (under a certain 
threshold) to the candidate cell, the candidate will be merged 
to it. Otherwise, the candidate new cell will be adopted to 
the state space discretization as well as indexed to the two 
search graphs. Note that the nodes in the IDG and DG are 
the same (both representing all the existing cells), whereas 
the edges of them are different. Both graphs are structured 
using “neighbor lists”. In terms of topology, including a 
node in the neighbor list of another means the former is 
connected to the latter with an edge directing to it.

The two graphs are built and updated as the state space 
discretization changes when new data come in and candi-
date new cells are generated. Algorithm 2 explaines the 
search strategy for an IDG. The first node in an IDG is used 
as the initial base node. The distance between a query point 

Fig. 8   Open v.s. irregular working regions in the state space
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and a base node is calculated as a baseline. Then, the nodes 
in the base node’s neighbor list are checked in the order 
of when they were added to the graph. If a node in the list 
is found closer to the query point, it becomes a new base 
node. The search continues until all nodes in a neighbor 
list are checked and the base node is still the nearest to the 
query point. The last base node will be the returned search 
result from the IDG. In case of a candidate cell eventually 
getting adopted, the update strategy for an IDG is simply 
registering it as the (new) last node in the last searched 
neighbor list. A node newly added to the IDG has an empty 
neighbor list. Such a search-and-build strategy ensures that 
the adoption of a new node does not alter the search paths 
of all previously adopted nodes - because the nodes are 
always checked following the same orders in the neighbor 
lists. The feature guarantees the detection of the situation 
when a candidate new cell overlaps with an existing cell, 
which leads to a merge. In other cases, if a query point is 
close to an existing node in an IDG, the search also has a 
great chance to locate that node.

Algorithm 2: Search using an IDG
1 IDG SEARCH(IDG, q, k);
2 Parameters: the latest IDG (nodes {p1, p2, ...} and

their neighbor lists), candidate new cell q, initial
search node pk;

3 Result: ID of the nearest node in IDG;
4 while i ≤ number of neighbors(pk) do
5 n = ID of pk’s i’th neighbor;
6 if distance(q, pn) < distance(q, pk) then
7 k = n, i = 1;
8 else
9 i = i+ 1;

10 Return k.

The result from searching over the IDG is passed 
to the DG as an initial node to search for a potentially 
closer neighbor of the candidate new cell. A greedy algo-
rithm is used to search over a DG (Algorithm 3). Unlike 
searching over an IDG, all nodes in a neighbor list in a 
DG are checked, and the scale of neighbor lists has a 
major impact on the search efficiency. In order to limit 
the scale of the neighbor lists, the DG adopts a prun-
ing strategy used in many graph-based search meth-
ods such as FANNG Harwood and Drummond (2016) 
and HNSW Malkov and Yashunin (2018). For a given 
node Pi and a distance metric d, a new node q can be 
adopted to Pi ’s neighbor list L = {L1, L2,…} if and only 
if d(q,Pi) < min(d(q, L1),… , d(q, Lk)) , i.e., q is closer to 
Pi than it is to all nodes in the neighbor list of Pi . Refer 
to Fig.  9 and consider a base node p whose neighbor 
list has two nodes a and b. A query point q is adopted 

to the neighbor list of p as a new node if and only if 
d(q, p) < min(d(q, a), d(q, b)) . The other query point q′ can-
not be adopted because d(p, q�) > d(a, q�) . Based on this 
rule, pruning is performed to truncate and bound the scale 
of the neighbor lists. Pruning has been known to promote 
the “diversification” of a graph Li et al. (2019), and gives 
the name of DG.

Algorithm 3: Search using a DG
1 DG SEARCH(DG, p, q, k, m);
2 Parameters: the latest DG (nodes {p1, p2, ...} and

their neighbor lists), a candidate new cell q, initial
search node pk, search memory m, candidate pool
S = ∅, flag f = 0, search path log L = ∅;

3 Result: ID of the nearest neighbor, search path;
4 Add pk to S, add pk to L;
5 while f < m do
6 f = the index of the first unchecked node in S;
7 Mark S(f) as checked;
8 for any neighbor pn of pk in DG do
9 if pn /∈ L then

10 Add pn to S;
11 Add pn to L;

12 Sort the elements of S according to their
distances to q in ascending order ;

13 if size(S) > m then
14 Truncate S to keep its first m elements;

15 Return j = ID of S(1), search path L.

Adding a new node to a complete DG requires enu-
meration - the new node should be first added to the DG 
with all other nodes in its neighbor list; then include the 
new node to all other nodes’ neighbor lists; and finally 
perform pruning to all nodes’ neighbor lists. The com-
putational complexity for such an update procedure is 
O(nC), where n is the total number of nodes and C is the 
average out-degree (neighbor list size). For a large DG 
with a high update frequency required in our robot learn-
ing scheme, such a method is impractical. A reduced DG 
is constructed instead (Algorithm 4) to enable efficient 
DG updating. Although there is a sacrifice on the recall 
(precision), a strategy can be used to reduce the impact. 
Specifically, the search path of finding a candidate new 
cell’s nearest neighbor using the DG is logged. When a 

Fig. 9   Construction of neighbor 
lists for DG Zhao et al. (2020)
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new cell is added to the state space discretization and a 
corresponding node is added to the DG, its neighbor list 
will only include the nodes in the search path (instead 
of all other nodes). In the meantime, the new node will 
be adopted only to the neighbor lists of the nodes in the 
search path. If any neighbor list’s size grows beyond the 
maximum allowed out-degree during the update, pruning 
will be performed using Algorithm 5.

Algorithm 4: Adopting a node to an IDG and
a DG
1 REG NEW NODE(IDG, DG, q, C);
2 Parameters: the latest IDG and DG (nodes {p1, p2,

...} and their neighbor lists), candidate new cell q,
initial search node pk, search memory m, search
path log L, threshold t, maximum out-degree R;

3 Result: updated IDG and DG;
4 k =IDG SEARCH(IDG, q, k);
5 if distance(q, pk) < t/2 then
6 q is virtually the same as pk. The candidate cell

is not adopted;
7 else
8 [j, L] = DG SEARCH(DG, q, k, m);
9 if distance(q, pj) > t then

10 Add q to the neighbor list of pj in IDG;
11 Add all nodes in L to the neighbor list of q in

DG;
12 Add q to the neighbor lists of all nodes in L

in DG;
13 for any node pn ∈ L do
14 if size(pn’s neighbor list) > R then
15 DG DIV(DG, pn, R);

16 if size(q’s neighbor list) > R then
17 DG DIV(DG, q, R);

18 else
19 The candidate cell is not adopted.

In terms of computational efficiency, the monotonic 
search paths of an IDG give its search strategy a com-
plexity of O(log(n)) Fu et al. (2019), where n is the total 
number of nodes. For the search strategy of a DG, our 
simulation shows an empirical average complexity of 
O(Klog(n)), where K is related to the search memory and 
the maximum out-degree. Such a complexity indicates that 
the reduced DG preserves the monotonic search character 
of a complete DG to some extent. The update strategy 
for an IDG takes trivial computation. The update strategy 
for a DG involves pruning, which is performed when the 
size of a neighbor list is greater than the maximum out-
degree R. The total computational complexity for updating 
a DG is then bounded by O(R2log(R)Klog(n)) . Overall, the 
proposed dual-graph strategy gives a satisfactory balance 
between the recall and search/update efficiency.

Algorithm 5: Pruning for a DG
1 DG DIV(DG, q, R);
2 Parameters: the latest DG (nodes {p1, p2, ...} and

their neighbor lists), base node q, its neighbor list
C before pruning, its neighbor list L = ∅ after
pruning, maximum out-degree R;

3 Result: the selected neighbor list L;
4 Sort the neighbor list C in the ascending order of the

distance to q;
5 for i = 1:size(C) do
6 for j = 1:size(L)+1 do
7 if j == size(L)+1 then
8 Add C(i) to L;

9 if distance(q, C(i)) > distance(q, L(j)) then
10 break.

11 if size(L)>R then
12 break.

7 � Validation II: the bottle puzzle

7.1 � Simulation

The data-oriented state space discretization is motivated to 
handle systems of irregular working regions in high-dimen-
sional state spaces. A “bottle puzzle” that has a 12-dimen-
sional state space is conceived to challenge the method. 
Figure 10 shows the setup of the test. The goal of the bottle 
puzzle is to use an T-shaped tool to retrieve a ball from 
inside a bottle. The bottle is fixed and has a tight opening, 
which makes the only possible way to retrieve the ball being 
a special maneuver that involves first managing to place the 

Fig. 10   Successful autonomous solving of the bottle puzzle (simu-
lated) Zhao et al. (2020)
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ball on top of the tool by bumping it against a corner. The 
12 state variables of the system include the position and 
orientation of the T-shaped tool and the position and velocity 
of the ball. The control variables are the 6-axis force/torque 
applied to the tool. Other than having a high-dimensional 
state space, the bottle puzzle bears both “contemporary” and 
“sequential” characters. A skill is contemporary if no steps 
are involved and the control law is relatively time-invariant 
(e.g., balancing an inverted pendulum). Such skills often fea-
ture strong real-time dynamics. A skill is sequential if causal 
steps of specific sequences are needed whereas dynamical 
maneuvers are not necessarily involved (e.g., chess games). 
Skills of either of the two types have been well tackled sepa-
rately by many learning methods. The unique skill synthe-
sis function of the proposed learning scheme is expected 
to allow robots to handle skills of both contemporary and 
sequential characters.

The test is first conducted using a simulator Zhao et al. 
(2020). The physical dynamics is simulated using Unity 
Physics. Data management and robot learning are imple-
mented using MATLAB. Similar to the simulation of the 
fidgeting test, the HTC Vive system is used to provide a vir-
tual reality (VR) interface for human mentors to intuitively 
give demonstrations. The Unity Physics engine, MATLAB, 
and the VR interface are bridged using real-time UDP con-
nections. Ten novice participants provided 50 demonstra-
tions by controlling the (virtual) T-shaped tool using the 
HTC Vive hand-held controller. The control signals of the 
mentors and the response signals of the tool and the ball are 
collected as the demonstration data. Less than 8000 cells 
are created by the data-oriented discretization method. As 
a comparison, because of the high dimension of the state 
space, the method introduced in Sect. 3 using pseudo-ran-
dom sequences can hardly provide satisfactory skill synthe-
sis for this test even with more than 1020 cells.

Because of the challenging physical interactions involved, 
majority (43 out of 50) of the demonstrations are unsuccess-
ful. Meanwhile, the few successful ones do not cover all 
possible situations. In particular, no successful demonstra-
tion has been collected with the ball initially under the tool, 
which is set to be the test case in the autonomous operation. 
Such a setting challenges the learning scheme on synthesiz-
ing new skills and reacting to unexpected situations that are 
never demonstrated or only partly demonstrated. Figure 13 
shows a successful autonomous solving of the bottle puzzle. 
Due to the complicated physical contacts, the ball’s response 
deviates from the expected trajectories easily if the control 
is applied in an open-loop manner (as opposed to real-time 
feedback control). Rather than blindly applying an entire 
synthesized control sequence from the beginning to the end, 
as the task goes on, it is necessary to conduct real-time skill 
re-synthesis to adjusts the control based on the actual system 
response. Such a strategy provides closed-loop stability to 

some extent. Its successful implementation also approves the 
real-time computing efficiency of the proposed algorithms.

7.2 � Physical tests

Our latest development includes a physical test of the bottle 
puzzle. In the simulated test, the force and torque applied 
on the tool are directly controlled. The physical test uses an 
AUBO i5 6-axis robot arm and a bionic robot hand Zhao 
et al. (2018) to manipulate the tool (Fig. 11). Instead of rig-
idly mounting the tool to the robot, there is nontrivial loose-
ness between the fingers of the robot hand and the tool. The 
slack grasping introduces additional degrees of freedom and 
causes significant passive movement of the tool with respect 
to the hand during the manipulation (Fig. 11). This factor 
makes the task much more difficult than in the simulation, 
and is kept as a new challenge to test the potential of the 
proposed method.

In the physical test, the state of the system, including 
the motion variables of the T-shaped tool and the ball, is 
sensed by a vision system consisted of a high frame rate 
camera as well as an embedded image acquisition and 
processing unit based on Nvidia’s Jetson TX2 controller. 
Instead of shape recognition, color recognition is used to 
identify objects so as to shorten the sensing latency brought 
by image processing. In addition, instead of using simple 
differentiation to obtain velocity from position measurement, 

Fig. 11   Physical setup of the bottle puzzle test
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predictive learning Wang et al. (2015) based on a dual-rate 
Kalman filter framework is used to enhance the accuracy of 
estimation and reduce negative effects brought by sensing 
latency. The vision acquisition and processing systems run 
on a standalone module which only sends the estimated state 
variables to the robot control console via UDP connections. 
The robot arm receives control signals via a Controller Area 
Network (CAN) bus. MATLAB is used to implement the 
learning scheme and generate control signals (Fig. 12).

Unlike in the simulation, much more uncertain factors 
exist in the physical test, especially those caused by the 
slack grasping of the robot hand (which is kept as a major 
challenge to test the proposed method). The friction vari-
ation and other surface irregularities also contribute to the 
system uncertainty. These factors cause the system state 
to deviate from the expected trajectories and significantly 
lower the repeatability of actions. As a countermeasure, 

online skill re-synthesis is used to provide a form of state 
feedback control. In terms of implementation, the meas-
ures described earlier to shorten the sensing latency as 
well as the real-time capability of communication pro-
tocols all contribute to ensure the effectiveness of online 
skill re-synthesis.

Demonstrations are provided by mentors through tel-
eoperating the robot using the HTC Vive system. Again, 
a group of 10 novice human mentors provided 50 dem-
onstrations. In order to make the operation as intuitive as 
possible, the motion capture interface is configured to map 
the motion of the handheld controller directly to the robot 
hand using velocity tracking. Similar to the simulated test, 
in order to validate the synthesis of new skills, the initial 
conditions (i.e., the tool-ball relative positions) used in 
the autonomous tests are designed to be at those where no 
successful demonstrations have been provided. Figure 13 
shows a synthesized successful autonomous execution 
of the task. The test results also show that the proposed 
learning scheme can handle strong uncertainties (e.g., the 
uncertain caused by the slack grasping).

8 � Conclusions

This paper summarizes our work on crowdsourced robot 
learning of physical skills. A unique learning scheme is 
developed to allow robots to learn from a group of men-
tors over long terms. State space discretization is used to 
sustainably manage constantly collected crowdsourced data 
and synthesize new skills. Two types of discretization meth-
ods are introduced. First, a discretization method based on 
pseudo random sequences is developed, featuring superior 
uniformity over the state space and a fixed upper bound of 
the archived data. Such a method is suitable for applications 
in which the robot system needs to visit all kinds of states 
over an open working region in the state space. For cases 
that the main working region of the robot in the state space 
spreads through highly irregular areas, a data-oriented state 
space discretization method is developed. The method aims 
particularly at handling systems with high-dimensional state 
spaces. Simulation and physical tests of a fidgeting challenge 
and a bottle puzzle are conducted. The test results validate 
the proposed learning scheme’s capability on synthesizing 
new skills, sustainable management of crowdsourced data, 
efficient handling of high-order systems, and tolerating 
strong system uncertainties.

Funding  This work is part of the project “CAREER: Enhancing Robot 
Physical Intelligence via Crowdsourced Surrogate Learning” funded by 
the National Science Foundation (Award number 1944069).

Fig. 12   Sensing and control deployment of the physical test

Fig. 13   Successful autonomous solving of the bottle puzzle (physical 
test)
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