International Journal of Intelligent Robotics and Applications (2020) 4:390-402
https://doi.org/10.1007/s41315-020-00152-1

REGULAR PAPER q

Check for
updates

Handling crowdsourced data using state space discretization for robot
learning and synthesizing physical skills

Leidi Zhao' - Lu Lu' - Cong Wang'

Received: 14 July 2020 / Accepted: 19 October 2020 / Published online: 12 November 2020
© Springer Nature Singapore Pte Ltd. 2020

Abstract

Intelligent physical skills are a fundamental element needed by robots to interact with the real world. Instead of learning
from individual sources in single cases, continuous robot learning from crowdsourced mentors over long terms provides
a practical path towards realizing ubiquitous robot physical intelligence. The mentors can be human drivers that teleoper-
ate robots when their intelligence is not yet enough for acting autonomously. A large amount of sensorimotor data can be
obtained constantly from a group of teleoperators, and processed by machine learning to continuously generate and improve
the autonomous physical skills of robots. This paper presents a learning method that utilizes state space discretization to
sustainably manage constantly collected data and synthesize autonomous robot skills. Two types of state space discretization
have been proposed. Their advantages and limits are examined and compared. Simulation and physical tests of two object
manipulation challenges are conducted to examine the proposed learning method. The capability of handling system uncer-
tainty, sustainably managing high-dimensional state spaces, as well as synthesizing new skills or ones that have only been
partly demonstrated are validated. The work is expected to provide a long-term and big-scale measure to produce advanced
robot physical intelligence.

Keywords Robot learning - Physical intelligence - Robotic manipulation - Crowdsourcing

1 Introduction

Physical intelligence such as dexterous manipulation and
dynamic mobility is crucial for robots to interact with the
real world. Methods for realizing robot physical intelligence
generally sit in two types. One relies on motion planning
based on analytical models derived from laws of physics.
Representative work includes the dynamic re-grasping robot
hand by the University of Tokyo Furukawa et al. (2006)
and the bipedal robot Cassie by Agility Robotics Acker-
man (2017). Despite the rigorous guarantee of stability and
the full utilization of mechanical potentials, the extensive

b4 Cong Wang
wangcong @njit.edu

Leidi Zhao
12328 @njit.edu

LuLu
lulu@njit.edu

New Jersey Institute of Technology, Electrical and Computer
Engineering, 323 Martin Luther King Blvd, Newark,
NJ 07102, USA

@ Springer

case-specific engineering and complex ad hoc analytical
models required by such methods hamper their ubiquity.
Thanks to the advance of artificial intelligence, robot
learning methods such as learning from demonstration
(LfD) Argall et al. (2009) and reinforcement learning (RL)
Sutton and Barto (2018) have successfully allowed robots
to acquire physical skills with less reliance on analytical
models. Most of such methods adopt a “policy search”
framework Deisenroth et al. (2013) and infer meta-parame-
ter-based control policies using data collected from mentor
demonstrations or autonomous practice. The learned con-
trol policies are often in the form of deep neural networks
or other parameter-heavy structures that require heavy
training, which limits their usage to mostly semi-static
operations. A representative work is a recent project by
OpenAl using deep reinforcement learning to realize robot
in-hand manipulation. Both the intense training process
and task-specific engineering have been noted by experts
Knight et al. (2018). Improved computing efficiency can
be achieved by formulating control policies as combina-
tions of a select few base elements (e.g., motion primi-
tives Ijspeert et al. (2003)), which allows significantly less

http://orcid.org/0000-0002-3319-680X
http://crossmark.crossref.org/dialog/?doi=10.1007/s41315-020-00152-1&domain=pdf

Handling crowdsourced data using state space discretization for robot learning and synthesizing... 391

training. Nevertheless, designing the base elements and
the reward function takes highly task-specific engineering
and jeopardizes ubiquity.

In addition to ubiquity and computation, another con-
sideration is over the data source of skill acquisition.
For complex physical skills, especially those involv-
ing dynamic maneuvers, it is impractical to rely solely
on reward-driven self-practice (i.e., basic reinforcement
learning) without advisory from mentors Johnson and
Hasher (1987). Over the past decade, large-scale datasets
obtained from a group of mentors (crowdsourced) have
greatly accelerated the advancement of artificial intelli-
gence Howe (2009). Together with crowdsourcing, human
computation von Ahn (2005) has become an increasingly
popular way to provide mentorship to learning agents. The
concept is particularly popular in the field of cognitive
machine intelligence such as language processing and
image recognition. A classic example is Google Images,
whose Al system is trained using a massive amount of
sample images reviewed and labeled by human partici-
pants from over the world. Other successes include trans-
lation, merchandise review, and medical diagnosis Quinn
and Bederson (2011), Doan et al. (2011), Geiger et al.
(2011), Little et al. (2010).

Despite its promising potentials, replicating the success
of crowdsourced human computation in robot physical
intelligence has not been explored much. Challenge first
comes from building intuitive control interfaces. Pioneer-
ing work regarding this topic includes MIT’s Homunculus
project Lipton et al. (2018) that develops a virtual reality
remote robot control environment and Stanford’s Roboturk
project Mandlekar et al. (2018) that uses smartphones as
remote robot controllers. Another challenge is on sustain-
able management and efficient utilization of the collected
large datasets. Published projects that apply crowdsourced
human computation to generate robot physical skills
include grasping novel objects Sorokin et al. (2010),
Forbes et al. (2014) and assembly Chung et al. (2014).
So far, these projects are limited to realizing semi-static
operations by searching for similar or available solutions
in the dataset.

Our research on crowdsourced robot learning of physical
skills develops a unique learning scheme that brings contri-
butions with the following capabilities:

1. Allowing robots to learn physical skills from a group of
human mentors constantly through demonstrations;

2. Sustainably managing a large amount of data that is con-
stantly collected from the crowdsourced mentors;

3. Synthesizing dynamic physical skills that have been
never or only partly demonstrated, without the need of
heavy training/re-training; and

4. Efficient handling of high-dimensional large datasets.

2 Basic framework: data management
and skill synthesis based on state space
discretization

The proposed learning scheme treats physical skills as
controlled state transitions in the state space, and uses
state space discretization to manage a large and growing
amount of data collected from groups of mentors. The
scheme features a two-step process (Fig. 1) to synthesize
autonomous robot physical skills. Demonstration trajec-
tories provided by mentors are segmented and registered
to the “cells” of the discretized state space of the system.
A graph representation of the registered dataset is built
using the cells as nodes and the inter-cell trajectory seg-
ments as edges. In the skill synthesis process, a physical
skill is first “roughly” composed as a series of state transi-
tions through a number of adjacent cells in the state space,
which correspond to a route in the graph representation.
Then, statistical inference is used to generate the control
signals from the control-state data pairs of the trajectory
segments archived to the cells along the route.

An elementary example explaining the framework is
shown in Fig. 2. Consider a simple motion system that
has only two state variables - position x; and velocity x,
(e.g., a force-controlled linear moving block). Assume
a simple state space discretization of a 4 x 4 full facto-
rial design is used, with three demonstration trajectories
archived. Consider a skill defined by a start state in cell
@ and a final state in cell . Using the segments of the
demonstrated trajectories, a rough skill can be composed
by routing through the graph representation of the data-
- . Note that the start and final
states do not sit exactly on any demonstration trajectories,
and the trajectory segments do not exactly intersect in
the switching cells. In order to generate the final control
signal, the second step of skill synthesis uses statistical

set: - -

Demonstration
trajectories

Skill specification

IFIE ey (initial and final states)

Graph
BEIE I T representation
to the discretized

state space

Graph
routing

Control-state
data pairs

Rough skill

Statistical
inference

Synthesized
new skill

Fig. 1 Two-step skill synthesis

S

@ Springer

392 L.Zhao et al.
.:%: 4 f ° o o o o o
g |u 12 13© 1 u (force) o © O o o |
i) 7 A o] % %% N

x (o) o o o o
3/ | | x A | 7 \% G o O%o%oooo OO o X,
PN 2} 22 23 A2 . o %, %%, 9 o 2
S X.| g \ A -A» Demonstration 1 (a) e 08 % % o o o ° ° °
X \ A -3»> Demonstration 2 ° % 00 o N
1 153 =5 AA ET | -~@»> Demonstration 3 = 0////’/ ° ° o °
‘IA’HA"A.A,AE i ® Agiven initial state 2 X X
(@@ © ® A desired final state
a1 a2 3 /‘O aa » Synthesized skill T
/o
@ .. ° o T EET a”
» x; (position) o ® o8l o | ° 8
o] (o) (]]
Oé; o@ Qs e 8 s o 00 R o
X3 o o © X[o ° OSP: B
(b) = oo © o o o o [}
o o L o
8 : p ©
0O000QQbo00QHooebae 0 = R by B
] g
e S I T
; o g
i X
Fig.2 An elementary example Zhao et al. (2020) .
- - -
o © o o o
) 00 oo
inference such as Gaussian Process Regression to handle o 9 o % i 5 ®o 0
. ® O o o o
the differences. W R = L 2 s o " Yo
. . ot o o 2 o
Based on the basic framework, advanced techniques (©) i L WEL. Py
. . o o 9 q

are needed to make the learning scheme applicable to real N Lo08 © o % ° %, .

. o _—) o © o
systems. In particular, state space discretization is a key X, — 6% % O @
element. Robot physical skills often involve many state X1

variables and have high-dimensional state spaces. The sim-
ple full-factorial design used in the elementary example
requires enormous number of cells for high-dimensional
state spaces and takes impractical amount of computing
resource. Another major concern is over the sustainability
of the discretization as the dataset grows. For crowdsourced
learning over long terms, the amount of collected data grows
rapidly and constantly. In this work, two types of state space
discretization have been developed, and are presented in
Sects. 3 and 6, with validation tests discussed in Sects. 5
and 7, respectively. Section 4 explains the graph routing and
statistical inference techniques used in skill synthesis.

3 State space discretization using
pseudo-random sequences

In the proposed robot learning scheme, physical skills are
defined using state transitions in the state space. Some
state space discretization techniques actually exist for
reinforcement learning (RL) Lee and Lau (2004), Uther
and Veloso (1998). RL applications usually tackle a sin-
gle control task and these techniques discretize the state
space according to the (one) control policy for the task.
Meanwhile, our proposed learning scheme aims at treat-
ing various control tasks ubiquitously, which allows dif-
ferent control actions to correspond to the same state.
In terms of synthesizing skills of a greater variety, it is

@ Springer

Fig.3 3D state space discretization using 64 points of different dis-
tributions and their projections to a 2D subspace - (a) full-factorial
design, (b) uniform random numbers, (¢) low-discrepancy pseudo-
random sequence

desirable to have data populate the state space thoroughly,
which in turn requires a uniform and thorough discretiza-
tion of the state space. Meanwhile, for the sake of compu-
tational affordability, the state space should be discretized
with as few cells as possible.

The total number of cells of a full factorial design (as
used in the elementary example earlier) increases expo-
nentially as the dimension of state space grows, which
leads to excessive load of data handling. In addition,
although a full factorial design provides a seemingly good
uniformity, the coverage is actually quite inefficient. As
illustrated in Fig. 3a, consider a three-dimensional state
space discretized by a four-level full factorial design. The
total number of cells is 4° = 64. However, the cells’ pro-
jection to a lower-dimensional subspace suffers severe
overlapping. In this case, a two-dimensional subspace has
only 4% = 16 cells and a one-dimensional subspace has
only 4 cells.

An intuitive better choice is a random discretization
of a uniform distribution. The randomness minimizes the
overlapping in the cells’s projection to lower-dimensional
subspaces. However, governed by the law of large number

Handling crowdsourced data using state space discretization for robot learning and synthesizing... 393

for random variables, a good uniformity can hardly appear
if only a limited numbers of cells can be computationally
afforded (Fig. 3b). Inspired by Wang et al. (2014), a low-
discrepancy pseudo-random sequence is used to discretize
the state space. Compared to the full factorial design, low-
discrepancy pseudo-random sequences ensure the uniform-
ity through all lower-dimensional subspaces. Low-discrep-
ancy pseudo-random sequences provide the same excellent
uniformity of random distributions, but are actually deter-
ministic instead of random. Even when the available com-
puting resource only allows a small amount of cells, a dis-
cretization created using a low-discrepancy pseudo-random
sequence still provides high uniformity over subspaces of
lower-dimensions (Fig. 3¢). In other words, it gives the most
uniform discretization that can be achieved with a certain
computing resource.

In our work, the Sobol sequence is adopted to discretize
the state space. It is a widely used low-discrepancy pseudo-
random sequence Niederreiter (1988). The sequence is gen-
erated using the so-called direction numbers v;; = m, ;/2',
where m;; is an odd integer from a specific recurrence
sequence. The component of the k’th point in the Sobol
sequence on the j'th dimension is given as
510 = byv1; @ byvy; @ byvs; @ -+, where b; is the th bit of
k’s binary code, and @ is the bit-by-bit exclusive-or operator.
More details can be found in Joe and Kuo (2003).

Most operations in the proposed learning scheme require
either registering or locating a state at a cell in the discre-
tized state space, which is in essence a nearest neighbor
search problem. Unlike the full factorial design, which has
an aligned distribution and is naturally sorted, a pseudo-
random sequence such as the Sobol sequence follows a
sophisticated distribution. Rather than using a brutal force
nearest neighbor search, an efficient algorithm (Algo-
rithm 1) is developed by taking advantage of the property
of a Sobol sequence - that its uniformity is fully preserved
in its projection to subspaces of any lower dimensions.
As an example, consider using a 100-point two-dimen-
sional Sobol sequence to discretize a two-dimensional
state space within the range of [0, 0] to [1, 1]. Suppose the
cell nearest to the state x = [0.2,0.7] needs to be located.
First, the sequence is sorted according to the values of the
first state variable. Thanks to the uniformity property of
Sobol sequences, the query state should sit close to the
points around the 100 X 0.2 = 20th position in the sorted
sequence. Then, the nearest point (the center of a cell) to
the query state can be located quickly by searching over a
small nearby range (e.g., the 17th-23rd points in the sorted
Sobol sequence). Figure 4 shows an example of a trajectory
registered to a discrete state space formed using a Sobol
sequence.

— Demonstration trajectory
) Center of a cell

® Trajectory registration

X,

Fig.4 A trajectory registered to a discrete state space

Algorithm 1: Nearest neighbor search in a state
space discretized by a Sobol sequence

1 SOBOL_SEARCH(SOBOL, q);

2 Parameters: N-dimensional query point
q = [q1,92, - +,qn], a Sobol sequence of n points
{s() s s(™} that discretizes the
N-dimensional state space;

Results: the Sobol point closest to the query point;

Sort the Sobol sequence in ascending order according

(k).

1

3

oW

to the value of the first state variable s
5 Calculate the search center as g1 X n. Specify an
error boundary e = [e1, ez, -, en]. The search
interval is [(g1 —e1) X n, (g1 + e1) X n]. for
it=(q1 —e1) Xn to(q1 +e1) xndo
6 Check ifsy) —q; <ej; for j =2to N,
7 if only one s(*) satisfies the condition then
8 L Return s(¥).

9 else if more than one s(%) satisfy the condition
then
10 Examine the Euclidean distance between the

q and the candidate s(%)’s;
11 Return the s(*) of the shortest distance.

In terms of archiving new demonstration trajectories
to the discretized state space, it is desirable to control the
volume of the dataset so that it does not grow unlimit-
edly as new demonstrations being constantly collected.
The trajectory segments (divided by the cells) of every
new demonstration are examined by a merit criterion, such
as time consumption, mechanical and electrical load of
the robot. If a new segment is better than the archived
one, it replaces the latter. Otherwise, it is discarded. Such
a scheme avoids comparing a new demonstration to all
previously collected demonstrations and keeps the total
number of archived trajectory segments under nA, where
A is the average number of adjacent neighbors of a cell,
and is proportional to n the total number of cells of the
discretized state space. n can be as large as the available
computing resource allows.

@ Springer

394

L. Zhao et al.

4 Two-step skill synthesis

As explained in the simple example in Sect. 2 and Fig.2,
the cells in the discretized state space and the demonstra-
tion trajectories archived to them can be represented by a
directed graph for skill synthesis. Every node of the graph
represents a cell in the discretized state space. A directed
edge connecting two nodes represents a demonstration
trajectory segment connecting the cells, indicating that
a certain maneuver is available to drive the system from
a state in the first cell to the state in the second. For each
edge in the graph, a weight can be assigned to mark the
merit of the corresponding maneuver (e.g., time, mechani-
cal/electrical load, etc.). The first step of skill synthesis is
to generate a “rough skill” in the form of a path of state
transitions (edges) through the nodes in the graph repre-
sentation. The procedure can be treated as a single-source
shortest-paths problem and solved by the widely adopted
Dijkstra’s algorithm Dijkstra (1959).

The second step of skill synthesis is to generate the con-
trol signal based on the rough skill. Using the state-control
data pairs {x, u} of the archived demonstration data, statis-
tical inference is used to infer the control action u = u(x)
that reacts to an actual state x in a synthesized skill. In
our work, Gaussian Process Regression (GPR) is used.
GPR has been widely used in robot learning control as
a non-parametric Bayesian approach [e.g.,.Nguyen-Tuong
and Peters (2012) and Wang et al. (2015)]. A good intro-
duction of GPR can be found in Rasmussen and Williams
(2006). For each cell-to-cell state transition (an edge in the
graph representation, a GPR model is trained to produce a
segment of control sequence. The whole control sequence
of an entire synthesized skill is in the form of a series of
GPR models switched from one to another sequentially.

As explained at the end of Sect. 3, only the trajectory
segments with the best performances are archived and
used for training a GPR model. This strategy avoids train-
ing for every new demonstration. In addition, for each
GPR model, only a (selected) segment of a whole trajec-
tory is used for training, which reduces the computation
load of training GPR models. While new demonstration
trajectories can be collected unlimitedly, the total number
of GPR models is bounded by nA, where n is the total
number of cells of the discretized state space. A is the
average number of adjacent neighbors of a cell and is
proportional to n. Such an upper bound is important in
terms of providing sustainability to crowdsourced learn-
ing, whose power comes from constantly collected demon-
strations. Specifically, a major step in GPR training is the
inversion of an m X m data covariance matrix Rasmussen
and Williams (2006), where m is the number of training
data points. A GPR model trained using a demonstration

@ Springer

trajectory with m = 1000 data points would require the
inversion of a matrix of the size 1000 X 1000. Assume
that the trajectory has ten 100-point segments connecting
through eleven adjacent cells in the state space, a GPR
model trained from a single segment only requires oper-
ating a 100 x 100 matrix. Even if all segments of the tra-
jectory end up being archived, all ten segments and their
GPR models only need a fraction of the computation and
memory that are required by a GPR model trained from
the entire trajectory.

5 Validation I: the fidgeting test

The proposed learning scheme is first validated using a
test of robot in-hand manipulation Zhao et al. (2019). A
majority of human activities in various industries require
dexterous in-hand manipulation skills such as adjusting the
object posture when holding it in hand. Compared to grasp-
ing and picking, in-hand manipulation requires a lot more
advanced skills, and is one of the bottlenecks that have been
keeping many tasks from automation. The latest research on
learning-based robot in-hand manipulation includes robotic
in-hand rolling Van Hoof et al. (2015) and in-hand rotation
of a cube Knight et al. (2018). These achievements are based
on reinforcement learning and require a lengthy trial-and-
error improvement process for every new skill. The proposed
robot learning scheme is expected to provide an alternative
solution of better ubiquity.

The test involves a simulated three-finger robot hand try-
ing to arbitrarily fidget a small object (Fig. 5). The goal is to
be able to manipulate the object from arbitrary initial posi-
tion and orientation to arbitrary final ones. The robot learns
from a group of human mentors using the proposed learning
scheme. The mentors provide demonstrations by controlling
the virtual robot hand using a virtual reality (VR) interface.
Thanks to the popularity on the personal electronics market,
VR technologies can now provide high quality motion sens-
ing and real-time human-machine interaction. Compared to
other demonstration interfaces such as lead-through teach-
ing, VR-based interfaces are an immersed and intuitive way

Leap Motion
sensor

“

Fig.5 VR interface and simulated robot hand Zhao et al. (2019)

Handling crowdsourced data using state space discretization for robot learning and synthesizing... 395

to collect high-quality demonstrations Zhang et al. (2018).
In our test, the HT'C Vive headset is used to provide a visual
interface. A Leap Motion sensor is attached to the headset to
capture the finger motion. Simulation of the fidgeting phys-
ics is built using Unity.

The duck-shaped object in the test moves on a plane. The
state variables include its two position coordinates and a sin-
gle orientation coordinate. The state space is discretized by
a three-dimensional Sobol sequence of 10* points. A total of
50 volunteers are invited to control the robot and manipulate
the object using the VR interface. The mentors are encour-
aged to manipulate the object in as many ways as possible.
Each mentor is asked to provide 10 demonstrations, which
can be of different lengths and cover various areas and tran-
sitions in the state space. Raw demonstration trajectories are
processed and archived as described in Sect. 3.

Along with the accumulation of new demonstrations,
the robot hand is asked to synthesize and autonomously
carry out manipulations of randomly picked initial and final
states of the object. Depending on the distribution of the
archived data in the state space, the synthesis may give more
or less efficient skills and can sometimes result in a failure.
The tests are studied in two ways. First, the success rate of
skill synthesis is studied with respect to the amount of data
archived. Without much surprise, as the archived data cov-
ers more cells of the working region in the discretized state
space, the success rate of skill synthesis increases about pro-
portionally (Fig. 6). The failed tests happen mainly because
the picked initial state and/or final state have never been
covered by any demonstration.

In addition, the performance of successfully synthesized
new skills is examined. As the archived data reaches differ-
ent levels of coverage in the state space, the robot is asked
to repetitively synthesize a manipulation defined using the
same initial and final state. Figure 7 shows the difference in
the performance. The first manipulation is synthesized when
only 100 demonstrations are collected, which covers 21% (of

80
70

Average

60 [e Standard deviation
50 -
20
30 a2
20

Success rate (%)

10 et

0 10 20 30 40 50 60 70
Coverage of state space (%)

Fig.6 Success rate of new skill synthesis Zhao et al. (2019)

Initial |
state .‘]

state

(a)
Initial '
Final ¥ S >Z 3
state
Robot hand
(b) and object

Fig.7 A skill synthesized using a dataset that covers a 21% and b
67% of the working region in the state space Zhao et al. (2019)

cells) of the working region in the state space. The second
manipulation is synthesized when all 500 demonstrations
are collected, which covers 67% (of cells) of the working
region in the state space. Both manipulations can success-
fully manipulate the object from the specified initial posi-
tion and orientation to the final ones, while the second one
clearly shows a much cleaner transition with little unneces-
sary move.

6 Data-oriented state space discretization
6.1 Dynamic cell allocation

The state space discretization method based on pesudo-
random sequences (Sect. 3) and the fidgeting test (Sect. 5)
are motivated by the assumption that the robot system needs
to visit all kinds of states over an “open” working region in
the state space. Such an assumption is proper for some skills
such as in-hand manipulation (e.g., fidgeting). Meanwhile,
for many other skills, especially those involving the manipu-
lation of multiple bodies, the working region of the robot
in the state space usually spreads through highly irregular
areas instead of a well-conditioned convex region (Fig. 8).
This makes a large portion of cells being practically empty

@ Springer

396 L.Zhao et al.
Xz xp} (1975)], hashing (e.g., Locality Sensitive Hashing Gionis
-y et al. (1999)), graphs [e.g., HNSW Malkov and Yashunin
\/7 ? (2018)], and quantization [e.g., Product Quantization Jegou
| ((B working region et al. (2011)] respectively. According to experimental
b | i cells reports Benchmarks of ANN (2020), graph-based methods

4 . ' tend to perform better than others.

Fig.8 Open v.s. irregular working regions in the state space

when a uniform discretization is used. The issue is especially
problematic for systems of high-dimensional state spaces.
Our latest work develops a data-oriented discretization strat-
egy that dynamically adjusts the cell allocation according to
the incoming data so as to achieve efficient data representa-
tion Zhao et al. (2020).

Rather than determining the state space discretization in
advance, the data-oriented method allocates cells dynami-
cally according to the incoming data. First, an initial dis-
cretization is generated by allocating cells along the trajec-
tory of one of the first demonstrations every certain data
points. As new data come in, the same way is used to gen-
erate candidate new cells. Cell allocation is updated based
on the comparison between the candidate new cells and
the existing cells. A candidate new cell is adopted to the
state space discretization if the difference is greater than a
certain threshold. Otherwise, it is merged to existing cells
that cover (mostly) the same area in the state space. Com-
pared to a uniform discretization, the data-oriented strategy
makes sure that the cells can represent the collected data
efficiently. A (minor) disadvantage of the new strategy is
the increasing total number of cells, which is fixed when
using a pre-allocated discretization. Nevertheless, the issue
is bearable—after a certain amount of data is collected, the
chance of needing to add new cells becomes trivial. This
is because there will have been enough cells to cover the
system’s working region in the state space.

6.2 Nearest neighbor search for data-oriented
discretization

As explained in Sect. 3, most operations in the proposed
learning scheme require either registering or locating a state
at a cell in the discretized state space, which is in essence
a nearest neighbor search problem. In addition to the non-
aligned distribution, the data-oriented discretization strategy
does not have the uniformity property of the Sobol sequence.
The exact solution of nearest neighbor search would require
enumerating through the distances between the query point
to all other points in the set. For large datasets obtained from
crowdsourcing, such computation is not affordable. Search
methods that give approximating solutions generally sit in
four types which use search trees [e.g., KD-tree Bentley

@ Springer

Graph-based nearest neighbor search indexes the data-
sets to graphs. In our application, the update efficiency of
the search graphs is of particular importance since the state
space discretization can change frequently which causes new
nodes being added to the search graph constantly. A high
recall (i.e., precision), on the other hand is needed only when
a candidate new cell is close to the existing cells. For ones
that are far away from the existing cells, it is not really mean-
ingful to find the exact nearest neighbor. This is because
even the exact nearest neighbor is located, no effective con-
trol signal can be generated (via statistical inference) since
the query point is too different from any data.

Based on the above considerations, a dual-graph search
method is developed to provide nearest neighbor search for
the data-oriented state space discretization method. Two
directed graphs are used by the proposed search method.
The nodes of both graphs correspond to the cells of the state
space discretization (indexed by cell ID’s) and the edges rep-
resent the neighboring relationships of the cells. Note that
these graphs are constructed for the nearest neighbor search
needed by the data-oriented state space discretization, and
are different from the routing graph discussed in Sects. 2
and 4 for skill synthesis.

The first graph is called an In-Dataset Graph (IDG).
This graph utilizes a particular search-and-build strategy
(explained later) that guarantees to return the query candi-
date cell itself if a same cell is already indexed in the graph
(i.e., in-dataset query). In case that no existing cell overlaps
with the candidate new cell, the IDG returns a relatively
nearby existing cell. The result will then be used by the
second graph, called a Diversified Graph (DG) as an initial
point to search for a potentially closer neighbor. If the near-
est neighbor found in the DG is too close (under a certain
threshold) to the candidate cell, the candidate will be merged
to it. Otherwise, the candidate new cell will be adopted to
the state space discretization as well as indexed to the two
search graphs. Note that the nodes in the IDG and DG are
the same (both representing all the existing cells), whereas
the edges of them are different. Both graphs are structured
using “neighbor lists”. In terms of topology, including a
node in the neighbor list of another means the former is
connected to the latter with an edge directing to it.

The two graphs are built and updated as the state space
discretization changes when new data come in and candi-
date new cells are generated. Algorithm 2 explaines the
search strategy for an IDG. The first node in an IDG is used
as the initial base node. The distance between a query point

Handling crowdsourced data using state space discretization for robot learning and synthesizing... 397

and a base node is calculated as a baseline. Then, the nodes
in the base node’s neighbor list are checked in the order
of when they were added to the graph. If a node in the list
is found closer to the query point, it becomes a new base
node. The search continues until all nodes in a neighbor
list are checked and the base node is still the nearest to the
query point. The last base node will be the returned search
result from the IDG. In case of a candidate cell eventually
getting adopted, the update strategy for an IDG is simply
registering it as the (new) last node in the last searched
neighbor list. A node newly added to the IDG has an empty
neighbor list. Such a search-and-build strategy ensures that
the adoption of a new node does not alter the search paths
of all previously adopted nodes - because the nodes are
always checked following the same orders in the neighbor
lists. The feature guarantees the detection of the situation
when a candidate new cell overlaps with an existing cell,
which leads to a merge. In other cases, if a query point is
close to an existing node in an IDG, the search also has a
great chance to locate that node.

Algorithm 2: Search using an IDG

1 IDG_SEARCH(IDG, g, k);

2 Parameters: the latest IDG (nodes {p1, p2, ...} and
their neighbor lists), candidate new cell g, initial
search node pg;

3 Result: ID of the nearest node in IDG;

4 while i < number_of_neighbors(py) do

5 n = ID of py’s i’th neighbor;

6 if distance(q, pn) < distance(q, pi) then
7 ‘ k=n,1=1;

8 else

9 | i=i+1;

10 Return k.

The result from searching over the IDG is passed
to the DG as an initial node to search for a potentially
closer neighbor of the candidate new cell. A greedy algo-
rithm is used to search over a DG (Algorithm 3). Unlike
searching over an IDG, all nodes in a neighbor list in a
DG are checked, and the scale of neighbor lists has a
major impact on the search efficiency. In order to limit
the scale of the neighbor lists, the DG adopts a prun-
ing strategy used in many graph-based search meth-
ods such as FANNG Harwood and Drummond (2016)
and HNSW Malkov and Yashunin (2018). For a given
node P; and a distance metric d, a new node g can be
adopted to P;’s neighbor list L = {L,,L,, ...} if and only
if d(gq, P;) < min(d(q,L,), ...,d(q,L})), i.e., q is closer to
P; than it is to all nodes in the neighbor list of P;. Refer
to Fig. 9 and consider a base node p whose neighbor
list has two nodes a and b. A query point g is adopted

Fig. 9 Construction of neighbor q
lists for DG Zhao et al. (2020)

to the neighbor list of p as a new node if and only if
d(gq,p) < min(d(q, a),d(q, b)). The other query point ¢’ can-
not be adopted because d(p, q’) > d(a,q’). Based on this
rule, pruning is performed to truncate and bound the scale
of the neighbor lists. Pruning has been known to promote
the “diversification” of a graph Li et al. (2019), and gives
the name of DG.

Algorithm 3: Search using a DG

1 DG_SEARCH(DG, p, ¢, k, m);

2 Parameters: the latest DG (nodes {p1, p2, ...} and
their neighbor lists), a candidate new cell g, initial
search node pg, search memory m, candidate pool
S =0, flag f = 0, search path log L = 0J;

3 Result: ID of the nearest neighbor, search path;

4 Add pg to S, add px to L;

5 while f <m do

6 f = the index of the first unchecked node in S;
7 Mark S(f) as checked;
8 for any neighbor p,, of p;, in DG do
9 if p, ¢ L then
10 Add p,, to S;
11 L Add p, to L;
12 Sort the elements of S according to their
distances to g in ascending order ;
13 if size(S) > m then
14 L Truncate S to keep its first m elements;

15 Return j = ID of S(1), search path L.

Adding a new node to a complete DG requires enu-
meration - the new node should be first added to the DG
with all other nodes in its neighbor list; then include the
new node to all other nodes’ neighbor lists; and finally
perform pruning to all nodes’ neighbor lists. The com-
putational complexity for such an update procedure is
O(nC), where n is the total number of nodes and C is the
average out-degree (neighbor list size). For a large DG
with a high update frequency required in our robot learn-
ing scheme, such a method is impractical. A reduced DG
is constructed instead (Algorithm 4) to enable efficient
DG updating. Although there is a sacrifice on the recall
(precision), a strategy can be used to reduce the impact.
Specifically, the search path of finding a candidate new
cell’s nearest neighbor using the DG is logged. When a

@ Springer

398

L. Zhao et al.

new cell is added to the state space discretization and a
corresponding node is added to the DG, its neighbor list
will only include the nodes in the search path (instead
of all other nodes). In the meantime, the new node will
be adopted only to the neighbor lists of the nodes in the
search path. If any neighbor list’s size grows beyond the
maximum allowed out-degree during the update, pruning
will be performed using Algorithm 5.

Algorithm 4: Adopting a node to an IDG and

a DG

1 REG.NEW_NODE(IDG, DG, ¢, C);

2 Parameters: the latest IDG and DG (nodes {p1, p2,
...} and their neighbor lists), candidate new cell g,
initial search node pg, search memory m, search
path log L, threshold ¢, maximum out-degree R;

3 Result: updated IDG and DG;

a4 k =IDG_SEARCH(IDG, ¢, k);

5 if distance(q,pr) < t/2 then

6 q is virtually the same as pr. The candidate cell

is not adopted;

7 else
8 [4, L] = DG_.SEARCH(DG, ¢, k, m);
9 if distance(q,p;) >t then

10 Add g to the neighbor list of p; in IDG;

11 Add all nodes in L to the neighbor list of ¢ in
DG;

12 Add ¢ to the neighbor lists of all nodes in L
in DG;

13 for any node p,, € L do

14 if size(pn’s neighbor list) > R then

15 |_ DG.DIV(DG, pn, R);

16 if size(q’s neighbor list) > R then

17 |_ DG_DIV(DG, q, R);

18 else

19 |_ The candidate cell is not adopted.

In terms of computational efficiency, the monotonic
search paths of an IDG give its search strategy a com-
plexity of O(log(n)) Fu et al. (2019), where n is the total
number of nodes. For the search strategy of a DG, our
simulation shows an empirical average complexity of
O(Klog(n)), where K is related to the search memory and
the maximum out-degree. Such a complexity indicates that
the reduced DG preserves the monotonic search character
of a complete DG to some extent. The update strategy
for an IDG takes trivial computation. The update strategy
for a DG involves pruning, which is performed when the
size of a neighbor list is greater than the maximum out-
degree R. The total computational complexity for updating
a DG is then bounded by O(R?log(R)Klog(n)). Overall, the
proposed dual-graph strategy gives a satisfactory balance
between the recall and search/update efficiency.

@ Springer

Algorithm 5: Pruning for a DG

1 DGDIV(DG, q, R);

2 Parameters: the latest DG (nodes {p1, p2, ...} and
their neighbor lists), base node g, its neighbor list
C before pruning, its neighbor list L = @) after
pruning, maximum out-degree R;

Result: the selected neighbor list L;

Sort the neighbor list C in the ascending order of the
distance to q;

5 for i = 1:size(C) do

6 for j = I1:size(L)+1 do

7 if j == size(L)+1 then

8 L Add C(i) to L;

if distance(q, C(i)) > distance(q, L(j)) then
10 L break.

11 if size(L)>R then
12 L break.

L

©

7 Validation II: the bottle puzzle
7.1 Simulation

The data-oriented state space discretization is motivated to
handle systems of irregular working regions in high-dimen-
sional state spaces. A “bottle puzzle” that has a 12-dimen-
sional state space is conceived to challenge the method.
Figure 10 shows the setup of the test. The goal of the bottle
puzzle is to use an T-shaped tool to retrieve a ball from
inside a bottle. The bottle is fixed and has a tight opening,
which makes the only possible way to retrieve the ball being
a special maneuver that involves first managing to place the

Fig. 10 Successful autonomous solving of the bottle puzzle (simu-
lated) Zhao et al. (2020)

Handling crowdsourced data using state space discretization for robot learning and synthesizing... 399

ball on top of the tool by bumping it against a corner. The
12 state variables of the system include the position and
orientation of the T-shaped tool and the position and velocity
of the ball. The control variables are the 6-axis force/torque
applied to the tool. Other than having a high-dimensional
state space, the bottle puzzle bears both “contemporary” and
“sequential” characters. A skill is contemporary if no steps
are involved and the control law is relatively time-invariant
(e.g., balancing an inverted pendulum). Such skills often fea-
ture strong real-time dynamics. A skill is sequential if causal
steps of specific sequences are needed whereas dynamical
maneuvers are not necessarily involved (e.g., chess games).
Skills of either of the two types have been well tackled sepa-
rately by many learning methods. The unique skill synthe-
sis function of the proposed learning scheme is expected
to allow robots to handle skills of both contemporary and
sequential characters.

The test is first conducted using a simulator Zhao et al.
(2020). The physical dynamics is simulated using Unity
Physics. Data management and robot learning are imple-
mented using MATLAB. Similar to the simulation of the
fidgeting test, the HTC Vive system is used to provide a vir-
tual reality (VR) interface for human mentors to intuitively
give demonstrations. The Unity Physics engine, MATLAB,
and the VR interface are bridged using real-time UDP con-
nections. Ten novice participants provided 50 demonstra-
tions by controlling the (virtual) T-shaped tool using the
HTC Vive hand-held controller. The control signals of the
mentors and the response signals of the tool and the ball are
collected as the demonstration data. Less than 8000 cells
are created by the data-oriented discretization method. As
a comparison, because of the high dimension of the state
space, the method introduced in Sect. 3 using pseudo-ran-
dom sequences can hardly provide satisfactory skill synthe-
sis for this test even with more than 10%° cells.

Because of the challenging physical interactions involved,
majority (43 out of 50) of the demonstrations are unsuccess-
ful. Meanwhile, the few successful ones do not cover all
possible situations. In particular, no successful demonstra-
tion has been collected with the ball initially under the tool,
which is set to be the test case in the autonomous operation.
Such a setting challenges the learning scheme on synthesiz-
ing new skills and reacting to unexpected situations that are
never demonstrated or only partly demonstrated. Figure 13
shows a successful autonomous solving of the bottle puzzle.
Due to the complicated physical contacts, the ball’s response
deviates from the expected trajectories easily if the control
is applied in an open-loop manner (as opposed to real-time
feedback control). Rather than blindly applying an entire
synthesized control sequence from the beginning to the end,
as the task goes on, it is necessary to conduct real-time skill
re-synthesis to adjusts the control based on the actual system
response. Such a strategy provides closed-loop stability to

some extent. Its successful implementation also approves the
real-time computing efficiency of the proposed algorithms.

7.2 Physical tests

Our latest development includes a physical test of the bottle
puzzle. In the simulated test, the force and torque applied
on the tool are directly controlled. The physical test uses an
AUBO i5 6-axis robot arm and a bionic robot hand Zhao
et al. (2018) to manipulate the tool (Fig. 11). Instead of rig-
idly mounting the tool to the robot, there is nontrivial loose-
ness between the fingers of the robot hand and the tool. The
slack grasping introduces additional degrees of freedom and
causes significant passive movement of the tool with respect
to the hand during the manipulation (Fig. 11). This factor
makes the task much more difficult than in the simulation,
and is kept as a new challenge to test the potential of the
proposed method.

In the physical test, the state of the system, including
the motion variables of the T-shaped tool and the ball, is
sensed by a vision system consisted of a high frame rate
camera as well as an embedded image acquisition and
processing unit based on Nvidia’s Jetson TX?2 controller.
Instead of shape recognition, color recognition is used to
identify objects so as to shorten the sensing latency brought
by image processing. In addition, instead of using simple
differentiation to obtain velocity from position measurement,

A

Slack (non-rigid)
grasping

.

O\ Raies
M—

¥——— HTC Vive base stations ﬂ

Robot arm

AR

control
console

demonstration

1~ 3
S contrgner \
i s . y Vision
A mentor giving / '\ module
S .

Fig. 11 Physical setup of the bottle puzzle test

@ Springer

L. Zhao et al.

400
HTC Vive
(motion capture)
ubP
High frame |MIp1| Nvidia Jetson) ypp ™ VAT(AB xPC Target

(color identification,
latency compensation)

(learning and robot control)

s %

Bionic robot | 6-axis robot
hand arm

rate camera

Fig. 12 Sensing and control deployment of the physical test

)
I W e 1
o— J
@
b -. g
= |
[o L =g |
®
- 1 LT
P F Y. e J
ot oL &

Fig. 13 Successful autonomous solving of the bottle puzzle (physical
test)

predictive learning Wang et al. (2015) based on a dual-rate
Kalman filter framework is used to enhance the accuracy of
estimation and reduce negative effects brought by sensing
latency. The vision acquisition and processing systems run
on a standalone module which only sends the estimated state
variables to the robot control console via UDP connections.
The robot arm receives control signals via a Controller Area
Network (CAN) bus. MATLAB is used to implement the
learning scheme and generate control signals (Fig. 12).
Unlike in the simulation, much more uncertain factors
exist in the physical test, especially those caused by the
slack grasping of the robot hand (which is kept as a major
challenge to test the proposed method). The friction vari-
ation and other surface irregularities also contribute to the
system uncertainty. These factors cause the system state
to deviate from the expected trajectories and significantly
lower the repeatability of actions. As a countermeasure,

@ Springer

online skill re-synthesis is used to provide a form of state
feedback control. In terms of implementation, the meas-
ures described earlier to shorten the sensing latency as
well as the real-time capability of communication pro-
tocols all contribute to ensure the effectiveness of online
skill re-synthesis.

Demonstrations are provided by mentors through tel-
eoperating the robot using the HTC Vive system. Again,
a group of 10 novice human mentors provided 50 dem-
onstrations. In order to make the operation as intuitive as
possible, the motion capture interface is configured to map
the motion of the handheld controller directly to the robot
hand using velocity tracking. Similar to the simulated test,
in order to validate the synthesis of new skills, the initial
conditions (i.e., the tool-ball relative positions) used in
the autonomous tests are designed to be at those where no
successful demonstrations have been provided. Figure 13
shows a synthesized successful autonomous execution
of the task. The test results also show that the proposed
learning scheme can handle strong uncertainties (e.g., the
uncertain caused by the slack grasping).

8 Conclusions

This paper summarizes our work on crowdsourced robot
learning of physical skills. A unique learning scheme is
developed to allow robots to learn from a group of men-
tors over long terms. State space discretization is used to
sustainably manage constantly collected crowdsourced data
and synthesize new skills. Two types of discretization meth-
ods are introduced. First, a discretization method based on
pseudo random sequences is developed, featuring superior
uniformity over the state space and a fixed upper bound of
the archived data. Such a method is suitable for applications
in which the robot system needs to visit all kinds of states
over an open working region in the state space. For cases
that the main working region of the robot in the state space
spreads through highly irregular areas, a data-oriented state
space discretization method is developed. The method aims
particularly at handling systems with high-dimensional state
spaces. Simulation and physical tests of a fidgeting challenge
and a bottle puzzle are conducted. The test results validate
the proposed learning scheme’s capability on synthesizing
new skills, sustainable management of crowdsourced data,
efficient handling of high-order systems, and tolerating
strong system uncertainties.

Funding This work is part of the project “CAREER: Enhancing Robot
Physical Intelligence via Crowdsourced Surrogate Learning” funded by
the National Science Foundation (Award number 1944069).

Handling crowdsourced data using state space discretization for robot learning and synthesizing... 401

References

Ackerman, E.: Agility robotics introduces cassie, a dynamic and tal-
ented robot delivery ostrich. IEEE Spectrum 2017, 28 (2017)

Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of
robot learning from demonstration. Robot. Autonomous Syst.
57(5), 469483 (2009)

Benchmarks of ANN. https://github.com/erikbern/ann-benchmarks
(2020). Accessed 16 Oct 2020

Bentley, J.L..: Multidimensional binary search trees used for associative
searching. Commun. ACM 18(9), 509-517 (1975)

Chung, M.J.Y., Forbes, M., Cakmak, M., Rao, R.P.N.: Accelerating
imitation learning through crowdsourcing. In: IEEE international
conference on robotics and automation, pp. 4777-4784 (2014)

Deisenroth, M.P., Neumann, G., Peters, J., et al.: A survey on policy
search for robotics. Found. Trends Robot. 2(1-2), 1-142 (2013)

Dijkstra, E.W.: A note on two problems in connexion with graphs.
Numer. Math. 1(1), 269-271 (1959)

Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on
the world-wide web. Commun. ACM 54(4), 86-96 (2011)

Forbes, M., Chung, M., Cakmak, M., Rao, R.P.N.: Robot program-
ming by demonstration with crowdsourced action fixes. In: The
Second AAAI conference on human computation and crowdsourc-
ing (2014)

Fu, C., Xiang, C., Wang, C., Cai, D.: Fast approximate nearest neigh-
bor search with the navigating spreading-out graph. Proc. VLDB
Endowment 12(5), 461-474 (2019)

Furukawa, N., Namiki, A., Taku, S., Ishikawa, M.: Dynamic regrasping
using a high-speed multifingered hand and a high-speed vision
system. In: IEEE international conference on robotics and automa-
tion (ICRA), pp. 181-187 (2006)

Geiger, D., Seedorf, S., Schulze, T., Nickerson, R.C., Schader, M.:
Managing the crowd: towards a taxonomy of crowdsourcing pro-
cesses. In: Americas conference on information systems (2011)

Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimen-
sions via hashing. In: Proceedings of The 25th international con-
ference on very large data bases, pp. 518-529 (1999)

Harwood, B., Drummond, T.: Fanng: Fast approximate nearest neigh-
bour graphs. In: IEEE conference on computer vision and pattern
recognition (CVPR), pp. 5713-5722 (2016)

Howe, J.: Crowdsourcing: Why the Power of the Crowd is Driving the
Future of Business. Crown Business, New York (2009)

Ijspeert, AJ., Nakanishi, J., Schaal, S.: Learning attractor landscapes
for learning motor primitives. Adv. Neural Inf. Process. Syst.
2003, 1547-1554 (2003)

Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest
neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1),
117-128 (2011)

Joe, S., Kuo, F.Y.: Remark on algorithm 659: implementing sobol’s
quasirandom sequence generator. ACM Trans. Math. Softw. 29(1),
49-57 (2003)

Johnson, M.K., Hasher, L.: Human learning and memory. Annu. Rev.
Psychol. 38(1), 631-668 (1987)

Knight, W.: An Al-driven robot hand spent a hundred years teaching
itself to rotate a cube. https://www.technologyreview.com/s/61172
4 (2018) Accessed 16 Oct 2020

Lee, I.S., Lau, H.Y.: Adaptive state space partitioning for reinforcement
learning. Eng. Appl. Artif. Intell. 17(6), 577-588 (2004)

Li, W., Zhang, Y., Sun, Y., Wang, W., Li, M., Zhang, W., Lin, X.:
Approximate nearest neighbor search on high dimensional data-
experiments, analyses, and improvement. IEEE Trans. Knowl.
Data Eng. 2019, 1 (2019)

Lipton, J.I., Fay, A.J., Rus, D.: Baxter’s homunculus: virtual reality
spaces for teleoperation in manufacturing. IEEE Robot. Autom.
Lett. 3(1), 179-186 (2018)

Little, G., Chilton, L.B., Goldman, M., Miller, R.C.: Turkit: Human
computation algorithms on mechanical turk. In: The 23rd Annual
ACM symposium on user interface software and technology, pp.
57-66 (2010)

Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs.
IEEE Trans. Pattern Anal. Mach. Intell. 2018, 1 (2018)

Mandlekar, A., Zhu, Y., Garg, A., Booher, J., Spero, M., Tung, A., Gao,
J., Emmons, J., Gupta, A., Orbay, E., et al.: Roboturk: A crowd-
sourcing platform for robotic skill learning through imitation. In:
Proceedings of The 2nd Conference on Robot Learning, vol. 87,
pp. 879-893 (2018)

Nguyen-Tuong, D., Peters, J.: Online kernel-based learning for task-
space tracking robot control. IEEE Trans. Neural Netw. Learn.
Syst. 23(9), 1417-1425 (2012)

Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J.
Number Theory 30(1), 51-70 (1988)

Quinn, A.J., Bederson, B.B.: Human computation: a survey and tax-
onomy of a growing field. In: The SIGCHI conference on human
factors in computing systems, pp. 1403-1412 (2011)

Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine
Learning, vol. 1. MIT Press, Cambridge (2006)

Sorokin, A., Berenson, D., Srinivasa, S.S., Hebert, M.: People helping
robots helping people: crowdsourcing for grasping novel objects.
In: IEEE/RSJ international conference on intelligent robots and
systems, pp. 2117-2122 (2010)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction.
MIT Press, Cambridge (2018)

Uther, W.T., Veloso, M.M.: Tree based discretization for continuous
state space reinforcement learning. In: The annual conference
on innovative applications of artificial intelligence (IAAI), pp.
769-774 (1998)

Van Hoof, H., Hermans, T., Neumann, G., Peters, J.: Learning robot in-
hand manipulation with tactile features. In: The 15th IEEE-RAS
international conference on humanoid robots, pp. 121-127 (2015)

von Ahn, L.: Human Computation. PhD Thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA (2005)

Wang, C., Zhao, Y., Lin, C.Y., Tomizuka, M.: Fast planning of well
conditioned trajectories for model learning. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp.
1460-1465 (2014)

Wang, C., Lin, C.Y., Tomizuka, M.: Statistical learning algorithms to
compensate slow visual feedback for industrial robots. J. Dyn.
Syst. Measure. Control 137(3), 031011 (2015)

Wang, C., Zhao, Y., Chen, Y., Tomizuka, M.: Nonparametric statistical
learning control of robot manipulators for trajectory or contour
tracking. Robot. Comput.-Integr. Manuf. 35, 96-103 (2015)

Zhang, T., McCarthy, Z., Jow, O., Lee, D., Chen, X., Goldberg, K.,
Abbeel, P.: Deep imitation learning for complex manipulation
tasks from virtual reality teleoperation. In: IEEE International
Conference on Robotics and Automation (ICRA), pp. 1-8 (2018)

Zhao, L., Lawhorn, R., Wang, C., Lu, L., Ouyang, B.: Synthesis of
robot hand skills powered by crowdsourced learning. In: IEEE
International Conference on Mechatronics, pp. 211-216 (2019)

Zhao, L., Zhao, Y., Patil, S., Davies, D., Wang, C., Lu, L., Ouyang, B.:
Robot composite learning and the nunchaku flipping challenge.
In: IEEE International Conference on Robotics and Automation
(ICRA), pp. 3160-3165 (2018)

Zhao, L., Lu, L., Wang, C.: Data-oriented state space discretization for
crowdsourced robot learning of physical skills. ASME Lett. Dyn.
Syst. Control 1, 2 (2020)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

https://github.com/erikbern/ann-benchmarks
https://www.technologyreview.com/s/611724
https://www.technologyreview.com/s/611724

L. Zhao et al.

Leidi Zhao is currently a PhD
candidate in Electrical Engineer-
ing at New Jersey Institute of
Technology. He received his
MSc degree in Electrical Engi-
neering from New Jersey Insti-
tute of Technology in 2016, and
BSc degree in Electrical Engi-
neering from Shanghai Maritime
University in 2015. His current
research focuses on data-driven
learning schemes for robot phys-
ical intelligence such as dynamic
and dexterous manipulation
skills.

Dr. Lu Lu received the B.Eng.
degree in Mechatronic Engineer-
ing from Zhejiang University,
Hangzhou, China, in Aug 2008,
the M.Sc. and the Ph.D. degree
in Mechanical Engineering from
Purdue University, West Lafay-
ette, in Dec 2010 and Aug 2013,
respectively. From Sep 2013 to
Aug 2015, he worked as a post-
doctoral Research Associate at
the Center for Automation Tech-
nologies and Systems (CATS) at
Rensselaer Polytechnic Institute.
Since Aug 2015, he has been a
faculty member in Mechanical

and Industrial Engineering at New Jersey Institute of Technology. Dr.
Lu’s research interests include controls, robotics, UAYV, artificial intel-
ligence, and human-machine interaction.

@ Springer

Dr.CongWang is a faculty mem-
ber in Electrical and Computer
Engineering at New Jersey Insti-
tute of Technology. Before join-
ing NJIT in 2015, Dr. Wang was
a Lecturer and Research Engi-
neer at University of California,
Berkeley, where he earlier
obtained a PhD degree in the
area of Controls and Dynamics
in 2014. He also attended Tsing-
hua University and obtained a
master’s degree in Automotive
Engineering and a bachelor’s
degree in Manufacturing Engi-
neering and Automation in 2010

and 2008 respectively. His research interests include nonlinear sys-
tems, learning control, and robot physical intelligence.

	Handling crowdsourced data using state space discretization for robot learning and synthesizing physical skills
	Abstract
	1 Introduction
	2 Basic framework: data management and skill synthesis based on state space discretization
	3 State space discretization using pseudo-random sequences
	4 Two-step skill synthesis
	5 Validation I: the fidgeting test
	6 Data-oriented state space discretization
	6.1 Dynamic cell allocation
	6.2 Nearest neighbor search for data-oriented discretization

	7 Validation II: the bottle puzzle
	7.1 Simulation
	7.2 Physical tests

	8 Conclusions
	References

