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This work discusses a crowdsourced learning scheme for robot physical intelligence. Using
a large amount of data from crowdsourced mentors, the scheme allows robots to synthesize
new physical skills that are never demonstrated or only partially demonstrated without
heavy re-training. The learning scheme features a data management method to sustainably

manage continuously collected data and a growing knowledge library. The method is val-
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1 Introduction

Physical intelligence is of fundamental importance for robots to
interact with the real world. Compared to cognitive intelligence
for tasks such as language processing and image recognition,
robot physical intelligence for tasks such as dexterous manipulation
and dynamic mobility is still at an early stage. Methods for enabling
robot physical intelligence generally sit in two categories. The first
category is motion planning based on analytical physics models.
Representative work includes the running MIT cheetah robot [1],
the dynamic vision guided baseball [2], and so on. Despite the
impressive motion capabilities, such methods require extensive case-
specific engineering that relies heavily on ad hoc and complex
models, which limit ubiquity.

Meanwhile, learning-based methods, such as learning from
demonstration [3] and reinforcement learning [4] allow robots to
acquire physical skills through mimicking a mentor or self-directed
trying. Robot learning based on data-driven methods greatly
reduces the reliance on analytical models derived from laws of
physics. Nevertheless, certain limitations exist. Most state-of-the-art
methods for robot learning physical skills follow a “policy search”
framework, which instead of recording and replaying demonstrated/
self-explored successful motion, aims at producing a control policy
that can handle the variations when fulfilling the skills. Many of
these control policies are in the form of parameter-heavy structures
such as a deep neural network (DNN) (e.g., Ref. [5]). Such control
policies require lengthy training of a massive amount of parameters,
which hampers them from handling dynamic manipulation and real-
izing online real-time feedback control. The latter is especially nec-
essary to open-loop unstable tasks such as in-hand manipulation.
Another popular practice is to formulate control policies as combi-
nations of a few base elements such as the “motion primitives” (e.g.,
Refs. [6,7]). Training such control policies requires significantly
less computation, but the choice of the base elements and the
design of the reward function require very task-specific engineering
and jeopardize ubiquity. Recently, deep reinforcement learning has
gained great attention. It provides better ubiquity by approximating
the reward function using a DNN (e.g., Refs. [8,9]). Limitation of
such approaches is brought by the lengthy training curves required
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by every new task. A representative example is the recent work by
OpenAl on using a Shadow robot hand to learn in-hand rotation of a
cube. Both the heavy training process and the need of task-specific
engineering have been marked by experts [10].

One potential breakthrough comes from the concepts of Crowd-
sourcing and Human Computation. Crowdsourcing is summarized
as “taking a job traditionally performed by a designated agent and
outsourcing it to a ... large group of people’” [11]. Human compu-
tation is defined as “utilizing human processing power to solve
problems that computers cannot yet solve’” [12]. Great success
has been achieved by Google Images by training Al systems with
a massive amount of images reviewed and labeled by human partic-
ipants from over the world. Other successes of crowdsourced
human computation include translation, website ranking, and
product reviews [13—16]. These applications, however, all belong
to cognitive intelligence and have little to do with robot physical
intelligence. Meanwhile, the few achievements related to robot
physical skills mostly focus on designing the robot control user
interface (e.g., MIT Baxter’s Homunculus [17], Sarcos Robotics’
Guardian GT [18]) or the search for similar or available solutions
in the demonstration dataset (e.g., picking and grasping objects
[19,20], machine operation [21], and assembly [22]). Major remain-
ing challenges include the synthesis of new skills and the sustain-
able management of the constantly collected massive amount of
data. Starting from the previous publication [23], this project
makes contributions by addressing these two challenges.

2 Basic Framework

A two-step skill synthesis scheme has been developed based on
state space discretization [23], which discretizes the state space
into a finite number of cells. Figure 1 shows a functional block
diagram of the scheme. A physical skill is considered as a controlled
state transition through the cells in the discretized state space. A
skill is specified by a given initial state and a desired final state,
with optional intermediate key states. Demonstration trajectories
can be obtained from human demonstration as well as the self-
practice of the robot. Such trajectories can be constantly collected,
segmented, and registered to the cells of the discretized state space.
Instead of replaying the collected trajectories, new skills can be
synthesized by first routing through trajectory segments registered
to the cells and then applying statistical inference tools such as
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Fig. 1 Two-step skill synthesis

Gaussian Process Regression to handle the difference between the
actual states and the archived data.

Figure 2 explains the scheme with a simple example. Consider a
simple 4x4 full factorial discretization applied over a two-
dimensional state space, with position and velocity as two state var-
iables of a force controlled linearly moving block. Suppose three
demonstration trajectories (in the form of timed data point
sequences) are archived to the cells that they go through in the
state space. A corresponding routing graph can be formed with
the cells as nodes and the archived trajectories as edges. Routing
algorithms as simple as the classic Dijkstra’s algorithm can be
applied to the routing graph and synthesize a control sequence to
realize the skill. Our previous publication [23] presents several tech-
niques to practically realize the proposed scheme, including

(1) The use of pseudo-random sequences to allocate a relatively
small total number of cells while assuring inter-dimensional
uniformity.

(2) The use of Gaussian process regression to connect trajectory
segments and handle the difference between the actual states
and the archived data.

(3) Merging collected trajectories to the achieved ones so that
the size of the knowledge library is upper bounded and can
be managed sustainably regardless of the continuous collec-
tion of new data.

However, efficiency of the state space discretization strategy
using pseudo-random sequences turns out to be still a bottleneck.
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Fig. 2 A simple example of state space discretization and the
corresponding routing graph
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The collected trajectories usually distribute highly non-uniformly
over the state space, leaving a large portion of cells empty. The
issue is especially problematic when the state space is of high
dimension, which is common for multi-degrees-of-freedom
systems. The unnecessary computation caused by the inefficiency
makes systems of high-dimensional state spaces intractable, as
well as hampers running the skill synthesis in real-time. The latter
is much needed for open-loop unstable systems such as the
“bottle puzzle” introduced later in Sec. 5. In regard to this issue,
this paper advances from Ref. [23] and presents a data-oriented dis-
cretization strategy.

3 Data-Oriented State Space Discretization

Instead of using pre-allocated cells, this paper presents a new
method that dynamically allocates cells to discretize the state
space based on the changing distribution of the collected data.
Despite a changing total number of cells (which is fixed when
using the previous method), the creation of new cells tends to con-
verge to a trivial speed as data collection continues. A set of initial
cells are allocated along the trajectory of a randomly selected
demonstration (in the form a timed sequence of data points) every
certain number of data points. For every new incoming demonstra-
tion trajectory, the same segmentation is conducted to produce a set
of candidate new cells. The candidate new cells are then compared
with the existing cells. If a candidate new cell relatively overlaps
with certain existing cells, the candidate will be merged to the exist-
ing cells. Otherwise, it will be assigned an ID and join as a new cell.
All allocated cells have the same size. Most computation of such a
strategy is spent on finding similar cells, which can be formulated as
a high-dimensional nearest neighbor search problem.

Unlike one-dimensional cases and the multi-dimensional cases
with aligned data points where a complete sorting can be done
easily, the exact solution of high-dimensional nearest neighbor
search for a randomly distributed dataset requires examining the
distances between the query point and all other points in the
dataset. Due to the computational challenge, many approximating
solutions have been developed and can be roughly grouped into
four categories: tree-based methods, hashing-based methods, graph-
based methods, and quantization-based methods. Some widely used
algorithms include the KD-tree [24], HNSW [25], Locality Sensi-
tive Hashing [26], and Product Quantization [27]. The search effi-
ciency and accuracy of each method vary greatly depending on
the specific application. Experimental results [28] have indicated
that the graph-based methods tend to perform better than others in
general.

A graph-based method is developed to provide nearest neighbor
search for the proposed robot learning scheme. In addition to high
search efficiency, high graph updating efficiency is also important
since the cell allocation changes constantly. Meanwhile, a high pre-
cision (a.k.a., recall) is only needed when the query point is close to
an existing cell in the knowledge library. For a query point far away
from all existing cells in the library, a high precision is unnecessary.
This is because even the exact nearest neighbor of the query point is
found, a quality control signal can hardly be produced using statis-
tical inference since the states are too different.

The proposed search method utilizes two direct graphs whose
nodes represent the cells for state space discretization with edges
connecting to certain close cells. Note the two graphs are for
nearest neighbor search only (i.e., search graphs) and are different
from the routing graph introduced earlier for skill synthesis. One
of the two search graphs is called an In-dataset Graph (IDG),
which locates either an existing cell if the candidate new cell
happens to overlap with it (closer than a small threshold), or find
a relatively close cell. In the first case, the candidate cell will be
merged to the existing cell. Otherwise a second search graph,
called diversified graph (DG) will be used to search further from
the cell located in the IDG and find a possibly closer existing
cell. Again, if eventually an overlapping cell is located, the
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candidate cell will be merged. Otherwise, the candidate cell will be
assigned an ID and join the discretization of the state space. In addi-
tion, every newly adopted cell will be registered to IDG and DG.
IDG and DG have the same nodes representing all the allocated
cells (indexed using their cell IDs), while their topologies are orga-
nized using “neighbor lists"—having a node in the neighbor list of
another node means the former is connected to the latter with an
edge directing to it.

Algorithm 1 explains the search over IDG. If the candidate cell is
eventually adopted to the state space discretization (after the
follow-up search using DG), it will be registered to the end of the
neighbor list of its closest node in IDG (i.e., the node located by
Algorithm 1). Building the IDG using such a strategy is also a
(partial) sorting process. Despite the inclusion of new nodes over
time, all previous search paths are preserved since the searches all
follow the same order of the nodes in the neighbor lists. It also guar-
antees a monotonic path to locate an existing cell if the candidate
cell overlaps with it (closer than a small threshold).

Algorithm 1 Nearest neighbor search in IDG

1 IDG_SEARCH(DG, ¢, k);

2 Parameters: current IDG (including nodes {pi, p», ...} and the neighbor
list of each node), node representing a candidate new cell g, ID of the
initial search node k;

3 Result: ID of the nearest node in the IDG k;

4 While i < number_of _neighbors(py) do

5 n=1D of p;’s i’th neighbor;

6 if distance(q, p,) <distance(q, p;) then

7 | k=ni=1

8 else

9 | i=i+1;

10 Return k.

The node found from searching IDG (by Algorithm 1) is used as
the initial node to search further for a closer neighbor in the diver-
sified graph (DG) using a greedy algorithm (Algorithm 2). Figure 3
explains the construction of the neighbor lists in DG. Consider a
base node p that has two nodes @ and b in its neighbor list. A
node g can only join the neighbor list of p if and only if distance
(g, p) <min(distance(q, a), distance(q, b))—i.e., its distance to the
base node has to be shorter than its distances to all the nodes previ-
ously joined that neighbor list. The node ¢’ in Fig. 3 cannot join the
neighbor list of p after a and b since distance(p, q') > distance(a, q').
Based on such a rule, pruning can be applied to truncate and limit
the sizes of the neighbor lists below an upper bound.

Algorithm 2 Nearest neighbor search in DG

1 DG_SEARCH(DG, p, q, k, m);
2 Parameters: current DG (including nodes {p;, ps, ...} and the neighbor
list of each node), node representing a candidate new cell g, ID of the
initial search node k, search memory m, candidate pool S =g, flag
f =0, search path log L = &;
Result: ID of the nearest neighbor j, search path L;
Add py to S, add py to L;
while f <m do
f = the index of the first unchecked node in S;
Mark S(f) as checked;
for any neighbor p, of px in DG do
L if p, € L then
Add p, to S, add p, to L;
Sort the elements of S in ascending order according to their dis-
tance to ¢;
if size(S) > m then
| Truncate S to keep its first m elements;
14 Return j=1ID of S(1), search path L.
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Fig. 3 Neighbor list construction for DG

A complete update of the DG with an incoming node requires a
brute force procedure—first put all existing nodes in its neighbor list
as well as try to put the incoming node in the neighbor lists of all
existing nodes following the rule described earlier. Then, perform
pruning. Such an action bears a computational complexity O(Cn),
where C is the average out-degree of a node and is affected by
the order of the nodes in the neighbor lists, and n is the total
number of nodes (cells). For a large set of nodes required by the
robot learning scheme, such a method is extremely inefficient and
impractical. Thus, instead of a complete DG, a reduced DG is con-
structed as described in Algorithm 3. Specifically, the search path
for the nearest neighbor of an incoming node (representing a candi-
date new cell for state space discretization) is recorded when per-
forming the greedy search over DG. If the cell is qualified to join
the state space discretization, the new node will be added to the
neighbor lists of (only) the nodes along the search path. Meanwhile,
the nodes along the search path will be put in the new node’s neigh-
bor list. If any updated neighbor list’s size is larger than a specified
maximum out-degree R, graph diversification will be performed
using Algorithm 4.

4 Computational Complexity

Based on the nearest neighbor search using IDG and DG,
dynamic cell allocation can be realized efficiently for the state
space discretization needed by the robot learning scheme. The
same nearest neighbor search method is also used to locate the
cell that contains a given state. The computational complexity of
the search method is crucial to the implementation of the robot
learning scheme. This is especially true for open-loop unstable
physical skills, which require periodical online re-synthesis of the
control sequence to achieve real-time feedback control.

Algorithm 3 Registering a new node

1 REG_NEW_NODE(IDG, DG, ¢, C);

2 Parameters: current IDG and DG (including nodes {py, p», ...} and their
neighbor lists in IDG and DG), node representing a candidate new cell g,
ID of the initial search node k, search memory m, search path log L,
threshold ¢, maximum out-degree R;

3 Result: updated IDG and DG;

4 k=IDG_SEARCH(DG, g, k);

5 if distance(q, pr) < t/2 then

6 | q is considered the same as py, no new cell is created;
7 else

8 [j, LI=DG_SEARCH(DG, g, k, m);

9 if distance(q, p;) > t then

10 Add g to the neighbor list of p; in IDG;

11 Add all nodes in L to the neighbor list of ¢ in DG;
12 Add ¢ to the neighbor lists of all nodes in L in DG;
13 for any node p, € L do

14 L if size(p,,’s neighbor list) > R then

15 | DG_DIV(DG, p., R);

16 if size(q’s neighbor list)>R then

17 | DG_DIV(DG, ¢, R);

18 else

19 | = No new cell is created.
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Algorithm 4 Graph diversification for DG

1 DG_DIV(DG, g, R);

2 Parameters: current DG (including nodes {pi, p2, ...} and their neighbor
lists), base node ¢, ¢’s neighbor list before diversification C, ¢’s neighbor
list after diversification L = @, maximum out-degree R;

3 Result: the selected neighbor list L;

4 Sort the nodes in C in an ascending order of their distance to g;
5 for i=1:size(C) do

6 for j=1:size(L)+1 do

7 if j == size(L)+1 then

8 | Add C@i) to L;

9 if distance(q, C(i)) > distance(q, L(j)) then

10 L Break.

11 if size(L)>R then

12 L Break.

The search over IDG has monotonic paths, which give a com-
plexity of O(log(n)) [29], where n is the total number of nodes
(cells). Updating IDG with a new node takes trivial additional
action. The reduced DG preserves the monotonic search character
of a complete DG to some extent, with certain variations depending
on the search memory and the maximum out-degree. When the
search memory and the maximum out-degree are fixed, simulation
indicates an empirical average complexity of O(K log(n)) for DG
searches, where K is related to the search memory and the
maximum out-degree. This indicates that there could be an
amount at the order of K log(n) nodes whose neighbor lists need
update. Additional computation is needed for diversification of
DG, which is performed only when the size of a neighbor list is
larger than the maximum out-degree R and thus requires an O(R
log(R)) computation for sorting and an O(R) computation for
pruning. The overall complexity related to DG is then bounded
by O(R*log(R)K log(n)).

5 Validation

The proposed data-oriented state space discretization is largely
motivated against the challenge of handling systems with state
spaces of high dimensions. A “bottle puzzle” that has a
12-dimensional state space is designed to validate the upgraded
robot learning scheme. Figure 4 explains the setup of the test. The

W t=0s ———ﬂ B t=5s ———-ﬂ

B30 —_-% | PR

Fig. 4 Successful autonomous solving of the bottle puzzie
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task requires an L-shaped tool to be maneuvered to retrieve a ball
from a bottle. The bottle is grounded and cannot be moved. Con-
strained by the shape and dimensions of the items, the only way to
remove the ball from the bottle is to first place the ball on top of
the thin part of the tool through a dynamic maneuver and then retrieve
the ball while balancing the tool laterally so the ball does not fall off.

In addition to having a high-dimensional state space, the test also
bears both “contemporary” and “sequential” characters. A task is
considered contemporary if no steps are involved and the control
law is relatively time-invariant (e.g., balancing an inverted pendu-
lum). Such tasks often feature strong dynamic maneuvers. A task
is considered sequential if nontrivial logical steps of a specific
sequence are required while dynamical maneuvers are not necessar-
ily involved (e.g., chess games). Tasks of either of the two charac-
ters have already been tackled separately by many learning
methods. The unique feature of skill synthesis based on state
space discretization of the proposed robot learning scheme is
expected to be capable of handling tasks of both contemporary
and sequential characters. The test is facilitated using a simulator.
Simulation of the physics is based on Unity Physics, while data
management and learning are deployed using MATLAB. A virtual
reality (VR) interface based on HTC Vive system is used to allow
human mentors to provide demonstrations intuitively. UDP connec-
tions are used to bridge among Unity, MATLAB, and the VR interface.

The 12 state variables of the system include the position and ori-
entation of the tool and the position and velocity of the ball. The
control variables are the six-axis force/torque applied to the tool.
Ten non-expert participants provided 50 demonstrations by control-
ling the L-shaped tool using the VR interface. Their control signals
and the response signals of the tool and the ball are recorded as the
demonstration data. A total of less than 8000 cells are allocated by
the proposed method. As a comparison, the previous method intro-
duced in Ref. [23] using pseudo-random sequences can hardly
provide any satlsfactory skill synthesis for this test even with
more than 10?° cells (because of the high dimension of the state
space).

Due to the tricky physics involved, majority (43 out of 50) of the
demonstrations is unsuccessful, while the few successful ones do
not cover all possible situations. In particular, no successful demon-
stration has been collected with the ball initially beneath the tool,
which is set to be the case in the autonomous operation. This is
to challenge the capability of the learning scheme to synthesize
new skills and handle unexpected situations that are never demon-
strated or only partly demonstrated. More demonstrations covering
larger areas in the state space would certainly improve the skill
synthesis, similar to the quantitative analysis on the success rate
of synthesis discussed in Ref. [23].

Figure 4 shows the screen shots of a successful autonomous
solving of the bottle puzzle. Due to the complex contacts involved
and the open-loop unstable nature of the maneuvers, the ball’s
response deviates from the expected trajectories easily without real-
time feedback control. Thus, instead of blindly running one synthe-
sized control sequence from the beginning to the end, real-time skill
re-synthesis is conducted periodically as the task goes on. Such an
online re-synthesis strategy adjusts the control based on the actual
real-time response of the system. Its successful implementation
also approves the acceptable efficiency of the proposed algorithms
for real-time computing.

6 Conclusions and Future Work

This paper presents a new milestone of our work on crowd-
sourced robot learning. In order to handle systems with high-
dimensional state spaces, a data-oriented state space discretization
method is developed. The method dynamically allocates cells to dis-
cretize the state space based on the changing distribution of the col-
lected data. A dual-graph nearest neighbor search algorithm is
developed to realize computationally efficient dynamic cell alloca-
tion. The method is validated using a simulated bottle puzzle that
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Fig. 5 Setup of the upcoming physical tests

features both contemporary and sequential characters. Test results
have demonstrated the capability of the method to

(1) synthesize new skills,
(2) handle a system of a high-dimensional state space, and
(3) provide efficient online skill re-synthesis.

Advancing further from the simulation, a physical test (Fig. 5) is
being setup and will be discussed in future publications.
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