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We present a numerical study of the dynamics of an elastic fiber in a shear flow at low
Reynolds number, and seek to understand several aspects of the fiber’s motion using
the equations for slender-body theory coupled to the elastica. The numerical simulations
are performed in the bead-spring framework including hydrodynamic interactions in two
theoretical schemes: the Generalized Rotne-Prager-Yamakawa model and a multipole
expansion corrected for lubrication forces. In general, the two schemes yield similar
results, including for the dominant scaling features of the shape that we identify. In
particular, we focus on the evolution of an initially straight fiber oriented in the flow
direction and show that the time scales of fiber bending, curling and rotation, which
depend on its length and stiffness, determine the overall motion and evolution of the
shapes. We document several characteristic time scales and curvatures representative of
the shape that vary as power laws of the bending stiffness and fiber length. The numerical
results are further supported by an interpretation using an elastica model.
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1. Introduction

Physical systems that contain flexible fibers in flow are common in the processing
needed to manufacture various textiles, which highlights the properties of fibrous sus-
pensions, in biophysics and cell biology where flagella and cilia are responsible for motion
and stirring of fluids and biopolymers constitute the matrix of the structural materials
around cells, and in proposed microfabricated sensing technologies, among others. Three
recent reviews describe the present state of the field (Lindner & Shelley 2015; du Roure
et al. 2019; Witten & Diamant 2020). These kinds of problems pose challenges since the
fluid motion is dictated, at least in part, by the shape of the filament, but the filament
shape is itself determined by the flow. Here we study a viscous dominated, low-Reynolds-
number flow where a flexible filament is confined to a plane. We document the response
in a shear flow, where we focus on large deformations and quantify dominant features of
the fiber shape as a function of its effective elasticity.
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Typically, fibers experience flow during both synthesis and application processes, and
Poiseuille and shear flows are important and ubiquitous. Single fiber dynamics in shear
and Poiseuille flows have been studied theoretically, numerically and experimentally and
many different features have been elucidated in depth. In particular, there is a large
literature on the hydrodynamics of individual rigid particles in shear flow starting with
periodic motion of spheroids, analyzed by Jeffery (1922) and later extended for periodic
and chaotic dynamics of more complex shapes by, for example, Bretherton (1962); Hinch
& Leal (1979); Yarin et al. (1997); Wang et al. (2012); Thorp & Lister (2019).

The dynamics of rigid elongated particles changes significantly if an elastic deformation
is included. In shear flows, the buckling process has been analyzed, e.g. by Forgacs &
Mason (1959a); Hinch (1976); Becker & Shelley (2001), typical evolution of shapes has
been investigated e.g. by Smith et al. (1999); Harasim et al. (2013); Nguyen & Fauci
(2014); S lowicka et al. (2015); Liu et al. (2018); LaGrone et al. (2019), including knotted
fibers (Matthews et al. 2010; Kuei et al. 2015; Narsimhan et al. 2017; Soh et al. 2018), and
also deviations from Jeffery orbits have been studied, e.g. by Forgacs & Mason (1959b);
Skjetne et al. (1997); LeDuc et al. (1999); Joung et al. (2001); Wang et al. (2012); Zhang
et al. (2019); Zhang & Graham (2020); S lowicka et al. (2020).

In the Poiseuille flow, migration and accumulation of flexible fibers have been observed
and studied, e.g. by Jendrejack et al. (2004); Ma & Graham (2005); Khare et al. (2006);
S lowicka et al. (2012, 2013); Farutin et al. (2016). Also the influence of other types of
flow (extensional, cellular, compressional) and bending stiffness on the shapes of deformed
fibers have been studied (Kantsler & Goldstein 2012; Young & Shelley 2007; Wandersman
et al. 2010; Chakrabarti et al. 2020). Related interesting research is on the rheology of
non-spherical particles (Batchelor 1970b; Cichocki et al. 2012; Zuk et al. 2017), which is
of importance in bio-sciences (de la Torre & Bloomfield 1978; Harding 1997; Zuk et al.
2018) and also includes new features caused by flexibility (Switzer III & Klingenberg
2003). In general, few have focused on typical time scales characteristic of the bending
process of a single fiber in low-Reynolds-number flow, which is the focus of our work in
the context of the shear flow.

S lowicka et al. (2020) demonstrated that in the shear flow, for a wide range of values of
the bending stiffness ratio A, elastic fibers often tend to the flow-gradient plane if initially
located out of it. More precisely, in (S lowicka et al. 2020) fibers were initially straight,
and hundreds of their 3D initial orientations spanned the whole range of 3D directions.
It turned out that in most cases fibers perform effective time-dependent Jeffery orbits
and are (exponentially in time) attracted to spinning along the vorticity direction or
tumbling motion in the flow-gradient plane. The typical relaxation times are very long.
In a certain range of A, there exists also an attracting 3D dynamical periodic mode. For
larger values of A, the tumbling motion in the flow-gradient plane is the attractor for
majority of the initial orientations. Therefore, in this paper we focus on the analysis of
fibers that perform their motion entirely in the flow-gradient plane.

We use a numerical bead-spring model and theoretical elastica model to study a single
elastic fiber in a low-Reynolds-number shear flow. In particular, we perform extensive
bead-spring simulations with n=20–300 beads and two different models of the constitutive
relations that determine the resistance of the fiber to bending, i.e., the bead-bead
elastic potential energy, and two different models of hydrodynamic interactions. The
parameters allow for high aspect ratio, highly flexible fibers. In addition to these bead-
spring simulations, we use the elastica and slender-body descriptions of the flexible fiber
deformation to rationalize the dynamics.

We characterize the dynamics evaluated numerically from the bead-spring model by
identifying typical time scales of the shape deformation and the maximum curvatures that
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represent the flexible fiber. As one example, we identify a bending time scale intrinsic to
the end of a fiber that begins to slowly bend from a straight configuration aligned with
the flow direction. The displacement is caused by a transverse force at the end induced
by hydrodynamic interactions caused by the rate-of-strain of the flow. Then, due to this
small displacement, in the shear flow a tensile force builds up in the tip region, and
eventually a rapid buckling of the tip takes place.

The tumbling motion of a flexible fiber initially aligned with the flow have been
analyzed in many previous publications, numerically and experimentally, e.g. by Forgacs
& Mason (1959a); Yamamoto & Matsuoka (1993); Skjetne et al. (1997); Lindström &
Uesaka (2007); S lowicka et al. (2012, 2013, 2015, 2020); Harasim et al. (2013); Nguyen
& Fauci (2014); Farutin et al. (2016); Liu et al. (2018); LaGrone et al. (2019). This
pattern of the dynamics, typical for elongated objects of a non-negligible thickness, is not
reproduced by the inextensible infinitely thin Euler-Bernoulli beam (elastica), analyzed
e.g. by Audoly (2015); Lindner & Shelley (2015). The elastica does not move out of the
stationary configuration perfectly along the flow. Therefore, in this paper we introduce
a modified model that accounts for the dynamics of elastica initially aligned with the
shear flow and allows it to move out of the initial position. The key idea is to extend
the Euler-Bernoulli beam model by adding a point force exerted on the end beads of
the fiber in the direction perpendicular to the flow. This force is caused by the shear
flow, in agreement with the standard theory of the hydrodynamic interactions Kim &
Karrila (1991). Using the elastica model modified in this way, we construct an analytical
solution of the early time dynamics, which is in excellent agreement with our numerical
simulations.

Moreover, we identify several additional universal scaling laws of the fiber shape and
dynamics from the numerical simulations and in some cases are able to rationalize the
results using the elastica model. We observe that essential features of the fiber dynamics
can be well understood using the parameter space of the fiber’s bending stiffness and
aspect ratio, which extends the concept of the elasto-viscous number.

This article is organized in the following way. We describe two bead-spring models,
M1 andM2, of a flexible fiber in §2.1. We specify elastic and hydrodynamic interactions
in §2.1.1 and §2.1.2, respectively. We explain why the fiber made of beads aligned with
the flow moves out of this position in §2.1.3. We evaluate the hydrodynamic force on
the tip of the fiber aligned with the flow in §2.1.4. We present the elastica/slender-body
theory in §2.2. A typical evolution of a flexible fiber, initially aligned with the shear flow,
is shown in §3. Evolution of shape and its maximum curvature are used to introduce
typical time scales. The limits of a small and a large ratio A of the bending stiffness
to the corresponding viscous stresses associated with the shear flow are discussed. The
evolution of the fiber at early times is analyzed in §4. Based on the numerical simulations,
in §4.1 we demonstrate that the bending process originates from the fiber ends, and at
early times only the fiber ends are deformed. We define the corresponding bending time
τb and show that it does not depend on the fiber aspect ratio n if n is large enough, and
it scales as τb ∝ A1/3. We also provide a scaling of τb in the whole range of A and n. A
similarity solution of small deformations and early times for the elastica is given in §4.2,
and it is used for a comparison with the numerical bead-spring simulations in §4.3. The
essential new input is the addition to the elastica model of a hydrodynamic force exerted
on the fiber tip by the rate-of-strain of the shear flow, in a similar way as it follows from
the bead-spring models of the hydrodynamic interactions. In §4.4 we demonstrate that
the fiber shapes scale approximately with A1/3 for times t 6 τb, even beyond the range
of small deformations, and provide arguments from the elastica model.

Highly bent fibers, for t > τb, are analyzed in §5. From the numerical simulations
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based on the bead models M1 and M2 we demonstrate in §5.1 that the maximum fiber
curvature κb2 over time is a local quantity - it does not depend on n if the fiber is long
enough, and it satisfies a power law dependence on A. An explanation for the results in
terms of the elastica, and also other numerically found scaling laws, are given in §5.2.
Curling motion of a highly bent fiber is analyzed with the M1 bead model and scaling
laws for the curling velocity along the flow are presented in §5.3.

Characteristic features of the fiber dynamics and curvature in the phase space of the
aspect ratio n and the bending stiffness ratio A are analyzed in §6 with the use of the
bead models M1 and M2. The universal similarity scaling of the maximum curvature
κb2 is provided in §6.1. The phase space diagram of the dynamical modes is found in
§6.2. The distinction between the fibers that bend locally (for larger n and smaller A),
and the fibers that bend globally (for smaller n and larger A) is demonstrated. The
transition between them is shown to take place gradually in a certain range of the phase
space. In contrast, within the local bending mode, there exists a sharp transition in
the phase space between the fibers that straighten out along the flow while tumbling
and the fibers that stay coiled. The transition is described by a simple scaling law. The
final conclusions are outlined in §7. In addition, we give the details of the theoretical
and numerical description of the hydrodynamic interactions between the fiber beads in
Appendix A, compare the results obtained by the theoretical models M1 and M2 in
Appendix B, discuss the universal similarity scaling and the transition between local and
global bending in Appendices C and D, respectively.

2. Model of the fiber

We consider the low-Reynolds-number motion of a neutrally buoyant elastic fiber in
a fluid of viscosity µ0. In particular, the interaction of an elastic fiber with an external
shear flow

V∞(R) = (γ̇Z, 0, 0) , (2.1)

with R = (X,Y, Z), is a nonlinear problem and many approaches have been devised
to study it theoretically and numerically, e.g. bead-spring models (Warner 1972; Larson
et al. 1999; Kuei et al. 2015; S lowicka et al. 2015, 2020), cylinder-hinge models (Schmid
& Klingenberg 2000; Férec et al. 2009), slender-body and inextensible Euler-Bernoulli
beams (elastica) approaches (Tornberg & Shelley 2004; Nazockdast et al. 2017; Becker
& Shelley 2001; Liu et al. 2018), the boundary integral technique (Peskin 2002), the
method of regularized Stokeslets (Cortez et al. 2005; Nguyen & Fauci 2014; LaGrone
et al. 2019), etc. We exploit the bead-spring approach for numerical simulations and the
elastica model for rationalization of the numerical results (see figure 1).

2.1. Bead model

The bead-spring model illustrated in figure 1(a) describes elastic and hydrodynamic
interactions between n numbered i = 1, ..., n spherical beads of identical radii a (ith
bead position is denoted as Ri). In this work, we use three different bead models
Mi, i = 1, 2, 3 (cf. Table 1), which include combinations of two different descriptions of
hydrodynamic interactions (HI), described below and in Appendix A: the Generalized
Rotne-Prager-Yamakawa (GRPY) method (Wajnryb et al. 2013; Zuk et al. 2017) and the
multipole method with lubrication correction (Hydromultipole) (Cichocki et al. 1999;
Ekiel-Jeżewska & Wajnryb 2009) with two sets of constitutive laws specifying elastic
interactions that are described next.

The results presented in the following sections are based on the numerical simula-
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Figure 1. Models of a fiber in shear flow and the notation. (a) The bead model. (b) The
elastica model.

HI model constitutive laws
set 1 set 2

Eqs. (2.2),(2.3) Eqs. (2.4),(2.5)
GRPY + Eq. (2.6) M1 M3

Hydromultipole M2

Table 1. Physical assumptions of the bead-spring models M1, M2 and M3.

tions from the bead models M1 and M2. Both of them have the same long-distance
asymptotics of the hydrodynamic interactions, and for close beads the Hydromultipole
method is more precise than the GRPY. However, the computations based on the
Hydromultipole algorithm require more time and memory than the GRPY approach.
The GRPY model has been therefore used in simulations of very long fibers. For n 6 100
both M1 and M2 have been applied.

Qualitative results from the bead-spring modelsM1 andM2 are similar and in regimes
of large A and n they are also the same quantitatively. A detailed comparison of the
results obtained within both models is given in Appendix B. The model M3 (see table
1) is applied there to explain that some differences between the models M1 andM2 are
related to different expressions for the bending potential energy, in agreement with the
predictions of Bukowicki & Ekiel-Jeżewska (2018).

2.1.1. Elastic interactions

An elastic interaction potential model (constitutive laws) specifies a sum E of all bead-
bead interaction energies, which are used to calculate elastic forces Fi = −∇RiE acting
on each bead i. We assume that there are no elastic torques acting on the beads. For
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every pair of beads i, j the connector vector Rij = Rj −Ri points from the center of the
sphere i towards the center of sphere j.

For the first set of constitutive laws, set 1, between the centers of every two consecutive
beads i and i + 1 we impose the FENE (finitely extensible nonlinear elastic) stretching
potential energy (Warner 1972)

Es,ij =
k′sR

2
m

2
log

[
1−

(
Rij − 2a

Rm

)2
]
, (2.2)

where j = i + 1, k′s is the spring stiffness, Rm = 0.2a is the maximum stretching from
the equilibrium distance and Rij = |Rij |. Between every triplet of beads i− 1, i, i+ 1 we
impose a harmonic bending potential energy,

Eb,i =
A′

2
(θ0 − θi)2, (2.3)

where θi and θ0 are, respectively, the time-dependent and the equilibrium angles between
connector vectors Ri,i−1 and Ri,i+1, and A′ = EI/L0 is the bending stiffness (per unit
length), with the Young modulus E, the moment of inertia I = πa4/4, and the distance
L0 between the centers of the consecutive beads. Because a fiber is straight, when in
equilibrium, the angle θ0 = π. In the set 1 of the constitutive laws we assume that
L0 = 2a.

For the second set of constitutive laws, set 2, between centers of every two consecutive
beads i and i+ 1 we impose a harmonic stretching potential energy

Es,ij =
k′s
2

(Rij − L0)2, (2.4)

with j = i+ 1 and the equilibrium distance L0 between the bead centers usually close to
R0 = 2a but a bit larger. Between every triplet of beads i− 1, i, i+ 1 we impose a cosine
(Kratky-Porod) bending potential energy

Eb,i = A′
(

1 +
Ri,i−1 ·Ri,i+i

|Ri,i−1||Ri,i+i|

)
= A′(1 + cos θi). (2.5)

This potential energy is a widely used discrete approximation of the elastic bending
stiffness, see e.g. Gauger & Stark (2006).

Additionally when the GRPY model of hydrodynamic interactions is used we add the
repulsive part of the Lennard-Jones potential energy

ER,ij = 4ε′LJ

(
σLJ
Rij

)12

(2.6)

between the second nearest or further neighbor beads, where ε′LJ determines the strength
of the potential and σLJ is the characteristic distance. We set σLJ = 2a and truncate the
Lennard-Jones interaction range to 2.5σLJ . This potential acts to prevent large overlaps
of the beads (comparable with 2a − Rij � a for Rij < 2a). This is not necessary
for the Hydromultipole model because the lubrication forces prevent the beads from
overlapping.

2.1.2. Hydrodynamic interactions

In this work, we study translational motion of segments of a flexible fiber. In the
framework of the bead-spring modeling the translational motion of the fiber beads is
determined by the theory of hydrodynamic interactions between spherical particles. We
consider n spherical particles in a fluid of viscosity µ0 subject to an incompressible



Fibers in shear flow 7

external flow V∞(r). We investigate the case where the Reynolds number is much smaller
than unity and the quasi-steady fluid velocity V(R) and pressure p(R) are described by
the Stokes equations (Kim & Karrila 1991; Oseen 1927).

The theory of hydrodynamic interactions is used to calculate the translational velocities
Ui of the particles, which are in turn necessary to integrate the particle trajectories. In
our case the external flows are linear, and there are no torques applied to the particles.
Therefore the translational velocities Ui satisfy the relations,

Ui = V∞(Ri) +
n∑

j=1

(
µttij · Fj + µtdij : E∞

)
, (2.7)

where Fj is the total external force exerted on the particle j and E∞ = (∇V∞ +

(∇V∞)
T

)/2 denotes the rate-of-strain tensor of the external fluid flow V∞. For the
shear flow given by equation (2.1),

E∞ =
γ̇

2




0 0 1
0 0 0
1 0 0


. (2.8)

There are different methods to evaluate the translational-translational µttij and

translational-dipolar µtdij mobility matrices. The most precise is the multipole expansion,
corrected for lubrication, in order to speed up the convergence (Durlofsky et al. 1987;
Sangani & Mo 1994; Cichocki et al. 1994, 1999; Ekiel-Jeżewska & Wajnryb 2009) through
the inverse-power expansion in the inter-particle distance (Kim & Karrila 1991). The
analytical Rotne-Prager-Yamakawa approximation is also often used (Rotne & Prager
1969).

In this work we evaluate the mobility matrices as functions of positions of all the
beads using two methods outlined in Appendix A. First, we apply the analytical Rotne-
Prager-Yamakawa approximation of the translational-translational mobility µttij (Rotne

& Prager 1969), generalized also for the translational-dipole mobility matrix µtdij (Kim
& Karrila 1991) and implemented in the GRPY numerical program. Second, we use
the precise multipole method corrected for lubrication, implemented in the numerical
code Hydromultipole. The GRPY procedure is less precise, when particle surfaces are
closer than the radius of the smaller particle, but computationally much faster then the
Hydromultipole algorithm. Both methods will be briefly outlined in Appendix A.

The equations of motion for the positions Ri of the beads are

Ṙi = Ui, (2.9)

with Ui dependent on the positions Rj of all the bead centers j = 1, ..., n, and given by
equation (2.7).

The equations of motion (2.9) are solved numerically with the use of dimensionless
variables. We choose as a characteristic length the bead diameter 2a. The total length of
the fiber at equilibrium is L, which in the case of the M1 model is fixed to L = 2na so
that the fiber aspect ratio is n. We choose as a time scale the inverse of the shear rate γ̇−1

and the forces are normalized with πµ0γ̇(2a)2. The above introduces the dimensionless
stretching stiffness ks = k′s/(πµ0γ̇(2a)), εLJ = ε′LJ/(πµ0γ̇(2a)3) and the bending stiffness

A = A′/(πµ0γ̇(2a)3) = EI/(πµ0γ̇L0(2a)3). (2.10)

For the GRPY approach, L0 = 2a. Note that for the Hydromultipole treatment of
the hydrodynamic interactions, the dimensionless bending stiffness ratio A used here
is slightly different from the corresponding parameter EI/(πµ0γ̇(2a)4) used by S lowicka
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et al. (2013, 2015, 2020) and denoted there by the same letter. To adjust for this difference,
all the numerical values of the bending stiffness based on the Hydromultipole codes
taken from earlier works were in this paper divided by L0/(2a) (typically equal to 1.02
or 1.01, see Appendix B).

2.1.3. Why a fiber aligned with the flow moves out of this position

To answer this question, we will use equation (2.7) to analyze velocities of the beads
for a fiber aligned with the flow and at the elastic equilibrium. We will use the standard
pairwise-additive Rotne-Prager-Yamakawa (RPY) approximation for the distinct mobil-
ity matrices µttij and µtdij with i 6= j (Kim & Karrila 1991). From the geometric symmetry
we can write down the tensorial form of the mobility matrices for a pair of particles i
and j (Kim & Karrila 1991),

µttij = A(Rij)dijdij +B(Rij)(I− dijdij), (2.11a)

µtdij = C(Rij)

(
dijdij −

1

3
I

)
dij +D(Rij)dij(I− dijdij), (2.11b)

where I is the unit tensor, dij = Rij/|Rij |, and dij(I− dijdij) is a third rank
tensor symmetric and traceless in the first and second Cartesian components, i.e.,
dij(I− dijdij)αβγ = 1

2 (dαδβγ+dβδαγ) − dαdβdγ , where the Cartesian components are
labeled with the Greek letters. Within the RPY approximation, the translational-
translational self-mobility matrix

µttii =
1

6πµ0a
I (2.12)

and the translational-dipolar self-mobility matrix vanishes, µtdii = 0.
Our goal now is to investigate the initial configuration, when the fiber is parallel to

the flow. In this case dij = ±êx, with the minus sign for the beads with labels i > j.
Since the fiber is at the elastic equilibrium, the external forces vanish, Fj = 0, and the
only contribution to velocity in the direction perpendicular to the flow comes from the
translational-dipolar mobility. From equation (2.11b) it follows that the contribution to
the velocity Ui of particle i from the translational-dipolar mobility µtdij acting on the
strain tensor E∞ (where [A : B]ij = AikBkj) consists of two terms proportional to

(dijdij −
1

3
I)dij : E∞ =

γ̇

2




0
0

1/3


 and dij(I− dijdij) : E∞ =

γ̇

2




0
0
−1


, (2.13)

respectively. Therefore, there exist contributions to the bead velocities perpendicular to
the flow, and this is why the fiber moves out of the position aligned with the flow. In
the next section, we will show that the largest are perpendicular velocities of the first
and last beads, at the initial configuration aligned with the flow, and also later when the
fiber is slightly deflected. We will also demonstrate that this effect can be considered as
the result of a hydrodynamic force exerted by the shear flow on the fiber.

2.1.4. Hydrodynamic force acting on the tip of the fiber initially aligned with the flow

We now move on to the discussion of the hydrodynamic force exerted by the shear flow
on the tip of a fiber aligned with the flow or already slightly deflected from the alignment.
In the following, we are going to provide the theoretical explanation for the initial stage
of the bending process in terms of the elastica, based on the assumption that a constant
hydrodynamic force is exerted on the fiber end by the shear flow. In the standard use of
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the elastica equations the existence of such a force has not been yet taken into account.
Here we use the general framework of the theory of hydrodynamic interactions presented
in the previous sections to explain the physical origin of this force, and to estimate its
value numerically (with the bead model M1).

In the bead models, the tip force can be found rewriting equation (2.7)

Ṙi −V∞(Ri) = µttii ·


Fi + (µttii)

−1∑

j

µtdij : E∞


+

∑

j 6=i

(
µttij · Fj

)
, (2.14)

where µttii is the translational self-mobility matrix, and defining the hydrodynamic force
acting on bead i as

FHi = (µttii)
−1∑

j

µtdij : E∞. (2.15)

The dimensionless form is fHi = FHi/
(
πµ0γ̇(2a)2

)
.

Our goal is to investigate FHi at the early stage of the evolution, when the fiber,
initially aligned with the flow, slowly moves out of this configuration, but still remains
almost parallel to the flow. We will now show that for the fiber almost aligned with the
flow, the hydrodynamic forces FHi, defined by equation (2.15), are almost perpendicular
to the flow direction êx. We will also provide some theoretical arguments why the value
of FHi is the largest at the ends of the fiber.

The hydrodynamic forces FHi given by (2.15) are proportional to the shear rate γ̇.
Moreover, the force FHi is perpendicular to the flow and parallel to the z direction of
the flow gradient, FHi ≈ êz · FHi êz. Therefore they displace the fiber beads away from
the position aligned with the flow. From the explicit expressions for the functions C and
D in equation (2.11b), given e.g. by (Kim & Karrila 1991), it follows that for the first
bead êz · FH1 > 0 and for the last bead êz · FHn < 0. This means that, owing to the
hydrodynamic forces (2.15), the fiber follows the rotational component of the shear flow.

It is also known that C ∝ R−2ij and D ∝ R−4ij , see e.g. Kim & Karrila (1991). Therefore,

the major contribution to FHi comes from relatively close beads j. Additionally, µtdij is
antisymmetric in dij , which means that the terms in (2.15) corresponding to equally
distant left and right neighbors will cancel. Therefore, the total force FHi is close to zero
for i in the middle part of the fiber, and it increases when i is closer to the fiber ends.
For longer fibers, the force FHi is non-negligible only for i close to one of the fiber ends,
and it only weakly depends on the total fiber length because it comes from unbalanced
local interactions between the bead i and close beads j.

To evaluate fHi numerically, we use the pairwise-additive GRPY approximation for
the mobility matrices. As argued above, in the stage when fiber is only slightly deflected
from the straight line, at leading order, fHi is directed along êz. In figure 2(a) we plot
the dimensionless hydrodynamic force êz · fHi as a function of the bead label i for three
different fiber lengths n. It is clear that the force is well-localized close to the fiber ends.

The orientation of fHi follows the rotational component of the shear flow. As the fiber
gets longer, the force is more localized. Regardless of the fiber length, the end beads
support the largest forces, an order of magnitude larger then the forces acting on the
other beads. The magnitude of the force acting on the first bead, fH1 ·êz, initially changes
non-monotonically as a function of n (see figure 2(b)), until it reaches a limiting value
fH ≈ 0.16. Indeed, we observe a localized, length independent tip force perpendicular
to the flow. We will use this observation later to construct a modified elastica model,
applicable for a fiber initially aligned with the flow. Now it is time to present the standard
Euler-Bernoulli beam, based on the local slender-body theory.
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Figure 2. Hydrodynamic forces normal to the fiber, acting on beads i, calculated from Eq.
(2.15) with the GRPY model of the hydrodynamic interactions. (a) Spatial distribution of the
forces on the beads along the fiber. (b) The force on the first bead as a function of the fiber
length n.

2.2. The elastica and local slender-body theory

To rationalize the results of numerical simulations from the bead-spring simulations
the inextensible elastica model (Duprat & Stone 2015; Lindner & Shelley 2015) is used
with the local slender-body theory (SBT) (Cox 1970; Keller & Rubinow 1976; Johnson
1980) to account for the drag forces acting along the fiber. Within the local SBT, in
contrast to the bead models, the full long-ranged hydrodynamic interactions are not
incorporated, nor is the finite but small thickness of the filament. The last feature is
especially important for fibers that are aligned with the flow, as it will be discussed in
detail later. Similarly as in the bead model, for the elastica we also neglect Brownian
motion and buoyancy forces. The fiber has a circular cross section of radius a and length
L = 2na where ε = a

L = 1
2n � 1. We denote as R(S, T ) the dimensional position of a

fiber segment at the arc length S at time T . The equation of motion of each filament
segment as a result of the applied elastic force density F(S, T ) per unit length, under the
steady undisturbed flow V∞ can be expressed using the slender-body theory (Cox 1970;
Duprat & Stone 2015; Lindner & Shelley 2015)

Ṙ−V∞(R) =
ln(ε−1)

4πµ0
(I + RSRS) · F(S, T ) (2.16)

or alternatively

2πµ0

ln(ε−1)
(2I−RSRS) ·

(
Ṙ−V∞(R)

)
= F(S, T ) (2.17)

where Ṙ = ∂R
∂T , RS = ∂R

∂S and the relative motion of the filament is obtained by applying
the mobility tensor, proportional to the anisotropic tensor (I + RSRS), to the elastic
force F(S, T ) on the fiber. Here we consider shear flow V∞(R) = γ̇Zêx, where Z = êz ·R.
For the elastic fiber we use the notation illustrated in figure 1(b), i.e., ên denotes a unit
vector normal to the fiber in the shear plane and ês denotes a unit vector tangent to the
fiber. The inextensibility condition |RS | = 1 results in ês = RS and implies the Frenet
formulas ∂ês

∂S = Kên,
∂ên

∂S = −Kês, where K is the local curvature and we have assumed
that the fiber shape is planar.

In the elastica model the elastic forces acting on the unit segment of the fiber are
(Audoly & Pomeau 2000; Audoly 2015),

F(S, T ) = (−EIKS ên +Σês)S , (2.18)
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where Σ(S, T ) is the tension in the filament (satisfying inextensibility), E is the Young
modulus and I is the moment of inertia (I = πa4/4), as earlier. Alternatively, the force
density per unit length can be expressed as F(S, T ) = −EIRSSSS + (T ês)S , see e.g.,
Tornberg & Shelley (2004) and Lindner & Shelley (2015). It is easy to check that Σ =
T + EIK2.

With the use of the Frenet formulas it is convenient to write separately the equations
of motion in the normal and tangential directions, respectively,

4πµ0

ln(ε−1)
ên ·

(
Ṙ− γ̇êx(êz ·R)

)
= −EIKSS +ΣK, (2.19a)

2πµ0

ln(ε−1)
ês ·

(
Ṙ− γ̇êx(êz ·R)

)
=

(
Σ +

EI

2
K2

)

S

. (2.19b)

We write the dimensionless form (lowercase symbols) of equations (2.19) by expressing
length in the units of 2a and time in the units γ̇−1, as in section 2.1, to find

ηên · (ṙ− êx(êz · r)) =− κss + σκ, (2.20a)

η

2
ês · (ṙ− êx(êz · r)) =

(
σ +

1

2
κ2
)

s

, (2.20b)

where

η =
4πµ0(2a)4γ̇

EI ln(ε−1)
(2.21)

is a dimensionless compliance. Using the same normalization of EI as for the bead model,

EI/(πµ0γ̇L0(2a)3), we can formally write η = 4(2a)
AL0 ln(ε−1) . A physical comparison between

the elastica and bead models will be presented in section 4.3.
The dimensionless compliance η is very similar to the elasto-viscous number η̄ =

8πµ0L
4γ̇

EI ln(ε−1) (Becker & Shelley 2001; Tornberg & Shelley 2004; Wandersman et al. 2010;

Nguyen & Fauci 2014; Liu et al. 2018; du Roure et al. 2019; LaGrone et al. 2019). The
main difference is that η̄ has the fiber’s length L as the typical length scale, while η uses
the fiber’s radius.

3. A typical bead model simulation

The dimensionless stretching stiffness is fixed to a large value (ks = 2000 in the M1

model and ks = 1000 in theM2 model) so that the fiber is close to inextensible. In M1,
the equilibrium distance between the bead centers corresponds to the touching beads,
L0 = 2a and the dimensionless Lennard-Jones potential coefficient εLJ = 5 allows only
slight overlaps. In M2, lubrication interactions between close particle surfaces prevent
overlaps. The equilibrium distance L0 between the bead centers has to be a bit larger
than the bead diameter 2a; here we choose L0/(2a) = 1.02. Sensitivity of the M2 model
to the choice of L0 has been discussed by S lowicka et al. (2015, 2020).

We focus on the fiber dynamics under the influence of the dimensionless bending
stiffness A and the number of beads n, indicating the fiber’s aspect ratio. The typical
shape of a fiber during the evolution is presented in figure 3(a). The simulations (based
on the M1 model) start from a stretched fiber aligned in the flow direction. First we
observe a slow deflection of the fiber tips up to time around 30. Later, until the time
35, rapid bending of the tip occurs. Next, a curling motion appears, with the maximum
curvature moving to the central part of the fiber, and a typical shape is shown for t = 47.
After the kinked parts of the fiber pass over each other (around time 62), the fiber rapidly
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Figure 3. A typical evolution of the shape of a flexible fiber with aspect ratio n = 100 and a
moderate bending stiffness A = 100 (based on the model M1), starting from a straight fiber
aligned with the flow. (a) Shapes of the fiber. The circles represent the beads actual scale along
the fiber. The black circles highlight the end and middle beads during τf and τm. (b) Maximum
local curvature κ(t). Time instances corresponding to the shapes from (a) are marked with
dashed vertical lines.

straightens to a position slightly tilted from the x direction at time 66, after which the
fiber slowly stretches and aligns in the x direction until the end beads reach the same z
coordinate at time 141.

To characterize the deformation of a fiber, an informative observable is the maximum
local curvature κ(t) taken over the fiber length at every time instant, where similarly to
the elastica model, we use lowercase symbols for the dimensionless quantities (see section
2.1). At every time t we inscribe a circle of radius ri−1,i,i+1(t) on the bead centers
ri−1, ri, ri+1, defining the local curvature κi(t) = 1/ri−1,i,i+1(t). The maximum local
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curvature is defined as

κ(t) = max
26i6n−1

κi(t). (3.1)

A typical profile of κ(t) obtained from the simulations is shown in figure 3(b). We identify
two characteristic bending curvatures κb1, the value of the first plateau, and κb2, the
maximum value over time. To characterize the shape changes, we introduce characteristic
time scales: τb, the bending time, then τc, the curling time, and τs, the stretching time,
as indicated in figure 3.

Initially, for an almost straight fiber, κ(t) is close to 0. The rapid rise in curvature
(starting around t = 30) is connected with rapid bending of the ends until a characteristic
curvature κb1 is reached. We define time scale τb as the time needed for a fiber to reach
half of its maximum curvature κb2 starting from a straight fiber.

After the rapid bending, a curling motion occurs. We observe the end beads passing
above each other (having the same x coordinate) at a flipping time τf = 47†, then the
kinks visible in figure 3(a) pass each other. We identify that the last event happens
approximately at time τb2 = 61.4, when the curvature increases to a maximum value
κb2. Next, there is a rapid decrease of the fiber curvature. In particular, at a turning
time τm = 62.8 the middle beads have the same x coordinate. Later, we observe a rapid
relaxation to an almost straight fiber (here at t = 66), We define time scale τc as the
time from the moment τb when fiber reaches κb2/2 for the first time until it reaches κb2/2
again after passing the peak of curvature κb2.

After rapid relaxation, the fiber is close to straight but tilted from the flow direction.
The stretching time scale τs is evaluated from the time of passing κb2/2 for the second
time until the fiber ends are aligned with the flow direction again (here at time 141).
Then, the motion approximately repeats itself periodically though small changes in the
times identified in figure 3 are possible. Therefore, the sum τ = τb + τc + τs is the
tumbling time scale defined as the half-period of the motion and analyzed by S lowicka
et al. (2015, 2020), with typically small variations between the first tumbling and the
tumblings observed at long times.

With the definitions of τb, τc and τs we seek to capture the time scales of the slow
changes between the (much shorter) steep increase and decrease in curvature, which we
consider negligible in comparison to τb, τc, τs. Thus, the precise definitions of transitions
points between τb, τc and τs can be chosen in a different way and should not have a large
influence on the analysis.

We show the changes in the dynamics for different choices of n and A in figure 4.
For a small A and n large enough, the end of the fiber bends multiple times and never
returns to the straight state again (figure 4(a-b)), in which case τc and τs are not defined.
Nevertheless κ remains approximately constant throughout most of the process. A similar
qualitative picture was observed with different experimental (Forgacs & Mason 1959b;
Harasim et al. 2013; Liu et al. 2018) and numerical (Nguyen & Fauci 2014; Lindström
& Uesaka 2007; Liu et al. 2018; LaGrone et al. 2019) methods. The other limit is when,
for a small n, A is increased to the point when the fiber bends globally along the whole
length.

In the following, we will first analyze the dynamics for 0 6 t 6 τb when the bending
process originates (Sec. 4), and next we will study the shape evolution in the time range
of large deformation, τb 6 t 6 τb + τc (Sec. 5).

† τf was called the flipping time by S lowicka et al. (2013, 2015) and used there to characterize
the tumbling dynamics in shear and Poiseuille flows.



14 P. J. Żuk, A. M. S lowicka, M. L. Ekiel-Jeżewska and H. A. Stone

t = 72t = 60t = 57t = 55t = 45t = 20

(c)

t

κ

72

57

5545(d)

70605040302010

0.06

0.04

0.02

0

t = 165

t = 120

t = 40

(a)

t

κ

165(b)

16012080400

1

0.5

0

Figure 4. Differences in evolution of long, very flexible fibers and short, very stiff fibers (based
on the model M1). (a) Shapes of a long, flexible fiber with n = 300, A = 10. (b) Curvature
of the fiber from (a) versus time. The vertical marks correspond to the shapes from panel (a).
(c) Shapes of a short, stiff fiber with n = 40, A = 1000. (d) Curvature of fiber from (c). The
triangle symbols with vertical dashed lines correspond to the times for which the corresponding
shapes are shown in panel (c).

4. Bending process of initially straight fibers

4.1. Bending time from numerical simulations

In addition to bending, when in a shear flow, a fiber undergoes rotation (it tumbles).
It is instructive to compare the bending time τb, the curling time τc and the stretching
time τs (see figure 3) with two indicators of a fiber’s rotational motion: the flipping time
τf and the turning time τm (see figure 5(a) and the insets indicating shapes for τf and
τm). We find for A ∈ [1, 10000) that τf < τm, which shows that the ends of the flexible
fiber pass above each other earlier than the middle of the fiber rotates. As A increases,
both τm and τf acquire the interpretation of the half tumbling time τ/2 or the quarter
period TJ/4 of the Jeffery orbit (Jeffery 1922), which is understood here as a periodic
motion of a certain ‘effective’ rigid elongated object in shear flow (S lowicka et al. 2015,
2020) with the same period TJ = 2τ . The period TJ of a Jeffery orbit is approximately
proportional to the length of a fiber consisting of n beads (Jeffery 1922; Kim & Karrila
1991; Dhont & Briels 2007; Graham 2018).

For fibers that are very flexible or long enough (e.g., A = 10 and n = 300), τc and τs
are not defined, because the fiber does not straighten out again (S lowicka et al. 2015),
bending multiple times if n is sufficiently large (figure 4(a)). In the limit of very stiff
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Figure 5. Characteristic time scales in the fiber motion. (a) Comparison of time scales of
the fiber motion: the bending time τb, the stretching time τs, the curling time τc, the flipping
time τf and the turning time τm for n = 60 and the model M1. Insets show the shapes for
the times τf and τm. (b) and (c) Bending time τb as a function of A for different n from the

models M1 and M2, respectively. The solid lines show τb ∝ A1/3. In (b) the best linear fit is
A0.335±0.002 + 0.845± 0.005. (d) and (e) Bending time τb normalized by n is an almost universal
function of A/n3, as confirmed by the numerical data from the modelsM1 andM2, respectively.
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fibers, all the timescales defined above, τb, τf , τm and τc+τs, converge to TJ/4, as shown
in figure 5(a) for large values of A. More details about the relation between different time
scales can be found in Appendix B.

The dynamics of bending change systematically as a function of A. In figures 5(b) and
(c) we show τb (see figure 3) as a function of A for different n, using the models M1

and M2, respectively. Three regimes are visible. First, in the small A regime (A . 10),
bending dynamics are dominated by large bending angles close to the excluded volume
limit. Second, for intermediate A, τb does not depend on n and it follows a single power-
law τb ∝ A1/3. Third, in the regime of large A, the bending time systematically deviates
from the power law and saturates at a constant value, where larger n have larger limiting
τb, in agreement with τb → TJ/4.

Therefore, in figures 5(d) and (e) we replot the data from figures 5(b) and (c),
respectively, using the rescaled bending time, τb/n. To obtain the universal scaling, we
also need to rescale the bending stiffness as A/n3. Indeed, after such rescaling, we observe
an almost universal curve in the whole range of values of n and A.

4.2. A similarity solution of early times for elastica

In figures 5(b)-(e) we show the dependence τb ∝ A1/3, which can be argued with the
help of the elastica model, as we will demonstrate in this and the next section. We observe
numerically that in the power-law regime the bending time does not depend on the fiber
length n, which suggests an analysis based on the model of a very long fiber, initially
aligned with the flow, with a tip positioned at S = 0. We assume small deflections from
the straight line R = Sêx+U(S, T )êz, which leads to K = USS . Further, we assume that
because of small deflections, ês = êx and ên = êz. Under these assumptions we rewrite
the dimensional linearized equations (2.19)

U̇(S, T ) =− EI ln(ε−1)

4πµ0
USSSS(S, T ) +

ln(ε−1)

4πµ0
FEδ(S), (4.1a)

U(S, T ) =− ln(ε−1)

2πµ0
ΣS(S, T ), (4.1b)

with the Dirac delta δ(S) in the additional term that introduces the hydrodynamic
force FE = O(1), perpendicular to the fiber axis, acting on the tip of the fiber at
S = 0. This force results from the hydrodynamic interactions of the fiber beads in
response to the shear flow (see section 4.3 and appendix 2.1.4). Alternatively to the
delta term, the constant tip force can be formally written as a boundary condition,
USSS(S = 0, T )=FE/(EI). We will use this approach to write equations (4.1) in the
dimensionless form, corresponding to equations (2.20),

u̇ =− 1

η
ussss, (4.2a)

u =− 2

η
σs. (4.2b)

In order to solve equation (4.2a) we apply boundary conditions

u (∞, t) = 0, uss (∞, t) = 0,
1

η
usss (0, t) = F , (4.3)

where

F =
ln(ε−1)

4
fE (4.4)
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Figure 6. Similarity solution from the elastica model (4.7)-(4.8), valid at early times, for a
fiber initially aligned with the flow.

with fE = FE/
(
πµ0γ̇(2a)2

)
. We impose an initial condition

u (s, t = 0) = 0. (4.5)

We seek a similarity solution (Barenblatt 1996; Eggers & Fontelos 2015; Duprat & Stone
2015) and account for the forcing as

u (s, t) = η1/4Ft3/4U (χ) , where χ = η1/4
s

t1/4
, (4.6)

which leads to the equation

4Uχχχχ + 3U − χUχ = 0 (4.7)

with the boundary conditions

U (∞) = 0, Uχχ (0) = 0, Uχχχ (0) = 1. (4.8)

The solution can be expressed with the help of special (hypergeometric) functions (e.g.
use Mathematica) and the Gamma Γ (·) function

U(χ) =
χ3

6
−

2χ 1F3

(
− 1

2 ; 1
2 ,

3
4 ,

5
4 ; χ

4

256

)

√
π

+

√
2 1F3

(
− 3

4 ; 1
4 ,

1
2 ,

3
4 ; χ

4

256

)

Γ
(
7
4

) . (4.9)

The function U(χ) is shown in figure 6. From U(χ) we calculate

u(s, t) =F
(
ηs3

6
−
(

4ηt

π

)1/2

s 1F3

(
−1

2
;

1

2
,

3

4
,

5

4
;
s4η

256t

)

+
16η1/4

3π
t3/4Γ

(
5

4

)
1F3

(
−3

4
;

1

4
,

1

2
,

3

4
;
s4η

256t

))
. (4.10)

This result can be expanded around s = 0

u(s, t) = F
(

16η1/4t3/4

3π
Γ

(
5

4

)
− s

(
4ηt

π

)1/2

+
ηs3

6
+ . . .

)
(4.11)

and, in particular at s = 0, the end moves according to

u(0, t) = (ηt3)1/4F 16Γ
(
5
4

)

3π
. (4.12)
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The complete solution of the similarity ansatz has the magnitude of the deflection
u(0, t) ∝ (ηt3)1/4. The length scale on which the deflection occurs is s ∝ (t/η)1/4 ∝
(u(0, t)/η)1/3. In time the “height” of the deflection grows more rapidly than its “width”,
which makes the tip more and more steep. The bending stiffness has an opposite effect
and makes the deformation less steep with increasing A ∝ η−1.

4.3. Comparing the numerical simulations with the similarity solution

In this section, we present results from the numerical simulations based on the model
M1 and compare them with the predictions from the elastica model. According to the
elastica similarity solution, the fibers have features of the shape that follow the scaling
laws with t and η presented above. Therefore, we analyze the z coordinate of the relative
position of the first bead at time t with respect to its initial position, z1(t) = êz ·
(R1(t)−R1(0)), which is calculated from the bead-spring simulations M1 (figure 7(a)).
We show the same data with the rescaled time t/A1/3 in figure 7(b). This scaling is
suggested by the elastica model, if we identify the height z1(t) of the fiber end with
the deflection of the elastica tip u(0, t), given by equation (4.12), and we remind that
η ∝ 1/A. We also fit a straight line to the numerical values of log10 z1(t) as a function
of log10(t/A1/3), in the linear region log10(t/A1/3) < −1, where deformations are still
small and no deviations from the power law are observed. While fitting, we used data
from all the simulations where n > 60 and A > 50. The calculated slope 0.787 is very
close to 3/4 theoretically predicted from the dynamics of elastica. In order to further
compare simulations with the theoretical results we will use the best fit of the tip height
in the form z1(t) = C(t/A1/3)3/4, which is suggested by the elastica, that results with
C ≈ 10−0.81.

In figure 7(c) we present the numerical shapes of the fibers with different A and n
taken at different times but still within the range of the similarity solution, with t/A1/3 .
100.6 ≈ 4. The ends of these shapes can be to a certain extend superimposed onto each
other by scaling the coordinates as x̃ = x/(tA)1/4 and z̃ = z/(t3/A)1/4, respectively, in
accord with predictions from the elastica, and translating by a shift x0, which is different
for each fiber, as shown in figure 7(d). The rescaled shapes are plotted together with two
plots of the similarity solution as a function akU(x̃bk), k = I, II, which correspond to our
two different approaches to compare the hydrodynamic forces, fH1 and fE , exerted on
the fiber tip in the bead (Sec. 2.1) and elastica (Sec. 4.2) models, respectively. (Actually,
we will be comparing the limiting value fH for n→∞ rather than fH1.)

In both approaches, we assume the identical tip heights z1(t) and u(0, t) in the bead
and elastica models, respectively. In the first approach (I), both forces are assumed to
be the same, fH = fE . Therefore, F is related to fH by equation (4.4). On the other
hand, η ≈ 4/(A ln ε−1), as shown below (2.21), and equation (4.12) links F to the height
u(0, t) = z1(t) of the fiber. Using the numerical fit of z1(t), shown in figure 7(b), we
find F , and from this result, using equation (4.4) we determine the magnitude fE of the
dimensionless tip force in the elastica model. The approach (I) is given by the following
equations,

F = 10−0.81
3π(ln ε−1)1/4

16Γ
(
5
4

)√
2
≈ 0.071(ln ε−1)1/4, (4.13)

fE = 0.284(ln ε−1)−3/4 = fH ≈ 0.16, (4.14)

η ≈ 4/(A ln ε−1). (4.15)

From equation (4.14) we find ε−1 ≈ 9, which is rather far from typical aspect ratios used
in the numerical simulations. We use the above values to compare shape of the fiber made
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Figure 7. Scalings in the numerical simulations for small deflections. (a) Height z1(t) of the
fiber tip above the horizontal line passing through the center of the fiber (from the M1 model).
Fibers have n = 100, except the fiber denoted with ∗ that has n = 140. (b) Height z1(t) from

panel (a) as a function of the rescaled time t/A1/3 (in log-log scale). The red line comes from a

fit to allM1 data with n > 60, A > 50 for times t/A1/3 < 0.1. (c) Shapes of fibers from the bead
model M1 for n = 140 and different A at arbitrarily chosen times at the end of the regime of
the similarity solution. (d) Shape of fibers from the panel (c), scaled according to the similarity
solution z1(t) ≈ u(s, t), with u given by equation (4.6), and translated to approximately overlay
the left ends. The numerically obtained shapes are superimposed onto theoretically calculated
shapes akU(x̃bk), k = I, II, with U given by equation (4.9) and the coefficients ak, bk given in
terms of F and η which result from approaches I and II to compare between the bead model
and the elastica, given in equations (4.13)-(4.15) and (4.16)-(4.17), respectively.

of beads with the elastica. Starting from eq. (4.6) we find that aI = 0.1 and bI = 1.16
and plot the corresponding elastica shape (solid line) in figure 7(d).

In the second approach (II), we assume that velocities of the fiber segments are the
same in the bead and elastica models. In this way, mobilities times forces are equal to
each other. The mobility for the elastica comes from the slender body theory, while in
the equations of motion for a fiber made of beads, there appear the single-sphere Stokes
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mobility. Therefore in approach (II), we match the elastica and bead quantities as follows,

F ≡ ln(ε−1)

4
fE =

1

3
fH , (4.16)

η =
3

A
. (4.17)

Then, using the numerical results, from equation (4.12) we obtain

fH = 10−0.81
9π

16Γ (5/4)31/4
≈ 0.23, (4.18)

which is not very far from the numerical value fH = 0.16 obtained for large n. In this
approach the parameter ε−1 is not used at all. With the use of this set of values and eq.
(4.6) we find that aII = 0.1 and bII = 1.32. We plot the corresponding elastica shape
(dotted line) in figure 7(d).

4.4. At early times beyond small deformations

In this section, we will focus on an early phase of bending for times t . τb. We will
analyze the simulations with the bead model M1 and compare them with the scaling
laws following from the elastica model. In the early phase, a flexible fiber aligned with
shear flow slowly starts to bend its ends while the middle part of the fiber remains
straight. The characteristic length scale of the deformed fiber segments at both ends
remains approximately constant in time until a significant, rapid bending is developed at
the bending time τb, associated with a fast increase of both the local curvature κ (figure
3(b)) and the tip deflection z1(t) along z (figure 7(a,b)). A corresponding sequence of
consecutive fiber shapes, found numerically with the model M1, is shown in figure 8.
The significant bending from the middle to the last shape occurs at a very short time
scale.

In figure 3(b), the bending time τb was defined as the time when the maximal local
fiber curvature reaches one half of its largest value, κ(τb) = κb/2. We now add a physical
interpretation: at a time close to τb, the deflection z1(t) of the fiber tip approaches the
first local maximum, visible in figures 7(a,b). The corresponding fiber shape at t = τb is
shown in figure 8 as the last one.

The linear regime of small deformations is limited to short times. For example, in figure
8, all shown fibers are already beyond this regime. However, to understand the dynamics
in the early phase, it is worthwhile to begin the analysis from the linear regime where
the universal scaling of shapes follows directly from the self-similar solution, specified
by equations (4.6) and (4.9). One of characteristic features of the self-similar solution is
that the same deflection z1(t) = u(0, t) of the fiber tip is reached at the same rescaled
time tA−1/3 ∝ tη1/3 (and with the same rescaled length sA−1/3 along the fiber). The
numerical results shown in figure 7(b) illustrate that z1(t) is determined by tA−1/3 not
only in the range of small deformations, but also beyond it. The tip deflection z1(t)
remains a universal function of tA−1/3 until its argument reaches value slightly smaller
than, but very close to tmaxA

−1/3 ≈ 7.2, with tmax defined as the time when z1 has a
local maximum umax. In the log-log scale, as shown in figure 7(b), the universal curve is
close to a straight line for tA−1/3 . 4 (in the linear regime). For tA−1/3 & 4, a significant
deviation from the straight line is observed caused by nonlinear effects.

The deviations from the linear regime in the numerical simulations can be interpreted
by the elastica evolution in the range where the nonlinear terms in eqs. (2.20) become
important, i.e.,

κss ∼ σκ. (4.19)
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Figure 8. A typical evolution of shapes of a flexible fiber in an early stage of bending. Here
n=140 and A=1000. The consecutive time instants shown are t=50, 66, 69, 70, 70.5, with the
last one approximately equal to τb.
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Figure 9. Maximum deflection umax of the fiber tip, defined as z1(tmax) at the time tmax of
the first maximum, evaluated numerically from the bead model M1. (a) umax as a function of

A for different n, with the approximate scaling ∝ A1/3. (b) Shapes of fibers at tmax for different
A and n. (c) Rescaled shapes of fibers from (b), translated to overlay the bending left ends.

Next, we observe that the change in the elastica dynamics occurs away from the small
deflection state so we can use the relation (4.2b), which implies the scaling,

σ ∼ ηus (4.20)

with the results from similarity solution to show that

O(1) = O(σss) = O(ηus3) ≈ η1/2t3/2 ⇒ O(1) = ηt3. (4.21)

As η ∝ A−1, these balances suggest that the time scale τb, when the nonlinear terms
become important, follows the power law τb ∝ A1/3, which is in a good agreement with
results presented in figure 5(b-e).

For times close to τb and tmax, the tip deflection z1(t) leaves the universal curve, as
shown in figure 7(a,b), and the maximum deflection umax depends on A. We observe
that in the range of A, in which the evolution follows a power law, umax ∝ A0.33, as
determined numerically from the bead model M1 and shown in figure 9(a). This scaling
might reflect a memory of the initial phase of the fiber movement as analyzed using the
elastica. A linearly deflected fiber changes its shape over a length scale s ∝ A1/4t1/4 and
time scale t ∝ A1/3 (equation (4.6)) thus, we find that s ∝ A1/3 at time t. However, as
illustrated in figure 8, for early times t . τb, the typical length scale of bending remains
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almost constant in time, what allows to expect that umax ∝ A1/3. The numerical results
suggest that during the rapid bending the scaling in the x direction becomes comparable
to the scaling in the z direction. To demonstrate this feature, we collect several fiber
shapes for different values of n and A, at times tmax of the maximum deflection (figure
9(b)), and we replot them in figure 9(c) by rescaling both axes by A1/3, which allows for
the approximate overlapping of the shapes after translating them in the x direction.

The scalings with A1/3, typical for the early phase of the bending process, do not
depend on n. For t . τb, bending of the fiber ends is a local process. However, the typical
bending length scale increases with A, and therefore for a larger stiffness, the scalings
are satisfied by a sufficiently long fiber only.

5. Highly bent fiber

5.1. Bead model simulations

We now move on to discuss the dynamics for times τb . t . τb + τc, when the fiber is
significantly bent, with the maximum local bending curvature κb2/2 6 κ(t) 6 κb2, where
κb2 is the largest maximum local curvature during this time period (see figure 3). In this
range, the main feature of the dynamics is its maximum local curvature κ(t). Therefore,
we first discuss if (and how) the characteristic features of the dynamics depend on a
specific choice of the time instant when the curvature is determined.

In figure 3(b) we have illustrated that there exists a typical plateau of the curvature,
κb1, and the largest value κb2. Comparison with figures 4(b) and (d) indicates that both
values vary systematically with A. We analyze this dependence in figure 10(a). On a log-
log plot, κb1 is systematically below κb2, and the inset (for n = 140) illustrates that the
ratio κb1/κb2 slowly decays with increasing A, but this effect is not large. The numerical
data shows that over a few decades of A, the ratio κb1/κb2 changes only by 30%, and it
tends to κb1/κb2 ∼ 0.7 for large A. This observation suggests that κb2 depends on A in
a similar way as κb1. The fiber is first in the state of a typical bend and tightens to a
maximum curvature for a short time afterwards. However, the plateau in the κ(t) that
allows determination of κb1, for a given n, occurs only for a finite range of A, while κb2
is well defined for any value of A. For example, in case of n = 40, in figure 10(a) there
are no data points above A = 100 indicating κb1 while for n = 140, κb1 can be observed
up to A = 2000. Therefore, in the following we will focus on the analysis of κb2.

Depending on the values of A, three regimes of fiber bending can be identified, as shown
in figures 10(b,c) for the bead modelsM1 andM2, respectively. The schematics in figure
10(b) show three typical fiber shapes with n = 20 for each of the regimes. First, in the
regime of a very flexible fiber (A . 10), the maximum curvature is close to the excluded
volume (EV) of the beads, with log10 κb2 . log10(

√
3) ≈ 0.24, which is independent of n.

Second, there is a regime A & 10, where κb2 as a function of A continues with a power-
law dependence until it deviates from the slope, which happens for different A depending
on n. The larger n, the larger range of A that exhibit the power-law dependence. Inside
this regime, for a given A, all fibers that are long enough have the same κb2, which is
independent of n. We interpret this response as local bending. Third, there is a large
A regime, which starts after κb2 departs from the power law. This corresponds to κ−1b2
comparable to or larger than the fiber length, which we interpret as global bending. This
classification of κb2 is valid even for very long fibers (having multiple loops), and also for
very stiff ones (with no pronounced plateau of the fiber curvature κ(t)). For each n, the
regimes of A where the power laws are observed for κb2 agree with the corresponding
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Figure 10. Fiber bending curvature as a function of A, evaluated from the bead models. (a)
Difference between typical κb1 and maximum κb2 curvatures for two different lengths of fiber
(n = 40 and n = 140), based on the modelM1. The inset shows the ratio of bending curvatures
κb1/κb2 as a function of n. (b) and (c) Scaling of the maximum curvature κb2 as a function
of A, for different n, determined from the models M1 and M2, respectively. The solid lines
corresponds to κb2 ∝ A−1/4, the dashed inclined line show κb2 ∝ A−1/3, and the horizontal
dashed lines show the curvature based on excluded volume (EV). The schematics in (b) show
the shape of a fiber with n = 20 for A = 1, 10 and 100.

regimes identified for τb (compare the ranges of A in figures 10(b,c) with the ranges in
figures 5(b,c), respectively).

Comparison of figures 10(b) and 10(c) indicates that if the bending stiffness ratio
A is not very small (A & 10) and not too large (with the upper bound dependent
on n), the power-law scalings of κb2 predicted by the M1 and M2 models are in a
reasonable agreement with each other, and the curves only weakly depend on n. However,
for 10 . A . 100, the maximum curvature κb2 in theM2 model decays more rapidly with
A than in M1, with approximately κb2 ∝ A−1/3 rather than κb2 ∝ A−1/4, respectively
(for the M1 model, κb2 ∝ A−0.253±0.003 as determined numerically). For A . 10, the
maximum curvature κb2 determined from theM2 model saturates at the excluded volume
value while in modelM1 this effect is seen for more flexible fibers with A . 1. Although
the treatment of hydrodynamic interactions is more precise within the bead modelM2, it
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seems that the main reason for some differences between the maximum bending curvature
κb2 obtained by theM1 andM2 models is the use of different expressions for the bending
potential energy, as discussed in detail in Appendix B.

5.2. Comparing with the elastica model

We are going to show now that the scaling of the fiber maximum curvature κb ∝ A−1/4,
independent of n and characteristic for the local bending, can be argued with the elastica
model (2.20). We propose that in the local bending process there is only one length scale
κ−1b representative of the deformed fiber. It is consistent with the models of Harasim
et al. (2013); LaGrone et al. (2019); Liu et al. (2018) and with our findings that κ(t) is
in the curling motion close to a typical constant value κb1.

Next, from the linearity of shear flow, we argue that the magnitude of the flow
velocity incident on the fiber and the fiber velocity scale linearly with the length scale
(êx(êz · r)− ṙ) ∝ κ−1b . Comparing the magnitudes of terms in (2.20b), we find that the
dimensionless tension scales as

σ ∝ ηκ−2b + κ2b . (5.1)

This dependence together with (2.20a) gives

ηκ−1b ∝ κ3b +
(
ηκ−2b + κ2b

)
κb, (5.2)

resulting in κb ∝ η1/4 ∝ A−1/4. It is also true that σ ∝ A−1/2 and σs ∝ A−3/4. Note
that these arguments apply to the maximum curvature in the whole range of the curling
motion with a large shape deformation, in particular for κb = κb1 and κb = κb2.

The scalings obtained from the elastica model can be compared with the results from
the bead-spring simulations with the model M1. The force Fi acting on each bead i as
the result of the elastic constitutive laws can be decomposed into the force components
normal Ni and tangential Ti to the fiber centerline. In figure 11(a) we show shapes
of locally bent fibers with n = 100 for three different values of A. The color-coded
representations of Ni and Ti are included in the following way. Each bead is depicted by
a hemisphere, which has an orientation that indicates the direction of Ti (inset), while
the color coding shows the ratio of the magnitudes of forces normal and tangential to the
fiber, |Ni|/|Ti|. In order to compare the simulation data quantitatively with the scalings
deduced above from the elastica, it is sufficient to choose any time from the curling motion
of the fiber. As we compare between different A, we introduce the transformation of the
bead numbering i′ = (i − i0)A−1/4 (i is a discrete analog of the arc length s), where a
shift i0 is chosen (for each fiber separately) to overlap the extrema. In the figures 11(b,c)
we show the profile of local curvature κi over half of the fiber (i = 1 . . . 50) for the shapes
presented in figure 11(a). In figure 11(b) the raw data is plotted and in figure 11(c) κi
is multiplied by A1/4 to show the scaling suggested by the elastica model. From the
bead-spring simulations we have direct access to Ti · ês acting at the center of bead i,
which is the analog of the derivative of the tension σs(s) for the elastica. Ti · ês is shown
in figure 11(d), and in figure 11(e) we demonstrate that the tangential forces scale as
A−3/4, which has been also suggested by the elastica model.

5.3. Curling velocity and curling time

In section 3 we introduced the curling motion and the associated curling time τc (see
figure 3). During the curling motion, the first bead travels from left to right approximately
over the distance L = 2na with respect to the fiber’s center. Snapshots illustrating the
shape evolution are shown using the schematics at the top of figure 12(a) for the fiber
with n = 100 and A = 100. We define the curling velocity vx(t) as the x-component of the
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Figure 11. Instantaneous distribution of forces and curvatures on individual beads (fiber statics)
for three locally bent fibers with n = 100 and A = 100, 500, 2000. (a) Shapes of the fibers. The
color coding shows the ratio of the normal |Ni| to the tangential |Ti| force components acting on
each bead i, represented as a hemisphere. The orientation of hemispheres shows the direction of
Ti. (b) Curvature κi on bead i along the fiber. (c) Rescaled curvature as a function of rescaled

position i′ = (i− i0)A−1/4 along the fiber. (d) Tangential forces Ti · ês acting on beads i - the
discrete analog of the tension’s derivative σs for the elastica. (e) Rescaled Ti · ês as a function
of i′.

velocity of the first bead. At the bottom of figure 12(a), we plot vx versus time, for the
fibers with A = 100 and different values of n. Initially, vx is close to zero. Then, it rises
significantly and we observe the first peak, the plateau and the second peak. Numerical
simulations show that for a given A, the profile of vx(t) in the initial phase of the motion
is almost the same for different n. In figure 12(a), the plots of vx(t) for different n are
almost superimposed for a long time. The changes between vx(t) with different n occur
when the fiber stops to undergo curling motion due to its limited length. The peaks of
vx are observed at the times of the steepest changes in κ(t), as illustrated in figure 12(b).
The first peak takes place at the time close to the bending time τb, and the second one
approximately after the curling time τc (compare with figure 3). Therefore, our definitions
of τb and τc seem to well separate three different phases of the fiber dynamics.

We have found empirically that τc as a function of A and n can be collapsed on a single
universal line when plotted versus A/n3.5, as shown in figure 12(c). For small values of
A/n3.5, the curling time τc tends to a power law with the exponent −1/3, as determined
empirically. Thus we observe that in the limit of long fibers, we can approximate the
curling time as τc ∝ A−1/3n1.17. That is, τc is almost linear in n. The deviations might be
related to a larger average resistance during the curling motion of longer fibers. Indeed,
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Figure 12. The curling motion. Results from the bead modelM1. (a) The x component vx of the
first bead velocity as a function of time for A = 100 and different aspect ratios n. The enlarged
black circles represent the fiber of aspect ratio n = 100 (shown in figure 3). The schematics
above the plot show the shapes for n = 100 at times marked with vertical dashed lines; the first
bead is marked with a dot. (b) Comparison of vx(t) (normalized with the maximum observed
value vxm) with κ(t) (normalized with the maximum curvature κb2), for A = 100 and n = 100.
(c) Scaling of the curling time τc as a function of A/n3.5, found empirically.

figure 12(a) illustrates that for longer fibers, the contribution to the average curling
velocity from the initial and final peaks is smaller, and therefore the average curling
velocity is smaller, which leads to the curling time increasing with n a little faster than
linearly.

The dynamics analogous to the curling motion was investigated in the literature
experimentally, numerically and by the elastica model, with and without the Brownian
motion (Forgacs & Mason 1959b; du Roure et al. 2019). We have shown here that on the
onset of curling motion the characteristic length scale (∝ A1/3) is different from the one
observed later in the highly bent state (∝ A1/4), which leads to the analogous scalings
for vx at earlier and later times, respectively. Therefore we emphasize the importance
of the time evolution during the curling motion but at the same time we benefit from
the previous studies of Harasim et al. (2013); Liu et al. (2018) who reported the linear
dependence between the local radius of curvature of the bent tip and its track velocity
(analogous to our curling velocity), both approximately constant in time.

We have found that in the regime of the local bending, during the curling motion, the
curling velocity and the local curvature are mostly determined by the bending stiffness
A and practically do not depend on the fiber aspect ratio n, This finding agrees well
with the results of another numerical model of LaGrone et al. (2019) where only minute
changes in the local radius of curvature of the fiber tip and its snaking (analogous to
our curling) velocity have been observed in a wide range of relatively large fiber aspect
ratios.
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6. Universal scaling and phase diagram

6.1. Shapes of fibers with different n and A

The transition from the locally to globally bent fibers, observed for the increasing
values of the bending stiffness A and illustrated in figures 10(b,c), motivated us to search
for κb2n as a universal function of A/nγ , with a certain value of the exponent γ. We use
here κb2n because in the global bending mode we expect bending along the whole fiber
length. Indeed, in figures 13(a,b), plotted in log-log scale, we find the universal scaling
of κb2n, based on the numerical simulations M2 (in a) and M1 (in b), respectively.
We added to figure 13(a) also the results of the M2 simulations reported by S lowicka
et al. (2015), with the parameters n = 10, L0/(2a) = 1.01 and ks = 2000. From the
numerical data for the model M2 we obtain the exponent γ = 3.25 and we find the
slopes -0.3 and -5 of the two straight lines for the local and global bending regimes,
for log10(A/n3.25) . −2.9 and log10(A/n3.25) & −2.3, respectively. The fits agree very
well with the results of the M2 simulations, and reasonably well with the results of the
M1 simulations, as shown in figures 13(a) and (b), respectively. The deviations from
the universal curve are observed only owing to the excluded volume effects seen for
very flexible fibers, with the excluded volume value of the maximum local curvature
κb2 = log10

√
3 ≈ 0.24. The deviations correspond to the first (small A) regime of the

fiber bending described in section 5.1 and shown in figure 10. For the local bending,
the relation log10(κb2n) ∼ −0.3 log10

(
A/n3.25

)
+ 0.48, fitted to the M2 numerical data,

gives the approximate scaling of the maximum curvature κb2 ∼ A−0.3 independent of
n, in agreement with the previous discussion of the local character of the dynamics of
very elastic fibers. The exponent -0.3 is close but not identical to -1/4 fitted to the
M1 numerical data in figure 10(b). In the global bending regime, we find that κb2n ∼
(A/n3.25)−5.

The fitting of the exponent γ in the relation A/nγ is based on the choice of 2an to
represent the fiber length L, and it is sensitive to a choice of L. For example, γ ≈ 3 if the
fiber length L = (n−1)L0 is chosen. Such a shorter fiber length was proposed by Farutin
et al. (2016) as the result of comparing shapes of flexible fibers and deformable vesicles
in Poiseuille flow and partially accounts for the rigidity of the beads at the fiber ends. On
the other hand, in shear flow a matching of the tumbling period with the half-period of
the Jeffery’s orbit could be used to determine L. In the bead modelM2 for stiffer fibers,
the effective aspect ratio L defined in this way is greater than 2an, and it could lead to
γ closer to 4, what means also closer to the scaling κb2 ∼ A−1/4 of the local bending
proposed in figure 10(b).

We expect that also the shape of the whole fiber is a universal function of A/n3.25.
Indeed, as illustrated in figure 13, for the models M2 (left) and M1 (right), the fiber
shapes depend on n and A approximately through the ratio A/n3.25. We show it sepa-
rately for the global bending in figures 13(c,d) and for the local bending in figures 13(e,f).
The corresponding values of A/n3.25 are explicitly indicated below each fiber shape, with
approximately the same values for all the similar shapes.

Comparison of the power-law scaling of the fiber shapes with an attempt to find another
similarity solution, based on a logarithmic dependence on n and a generalized elasto-
viscous number, standard in the SBT and elastica approaches, is presented in Appendix
C. We show there that, although such a possibility cannot be excluded, it seems to be
quite complicated to construct. Using simple arguments, we are able to find such a scaling
function only for the local bending mode.
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Figure 13. Universal similarity scaling of fiber shapes, evaluated with the modelM2, (a,c,e) in
the left column, and with the model M1, (b,d,f) in the right column. The maximum curvature
κb2n, scaled by the inverse of the fiber length, can be approximated as a universal function
of A/n3.25, as shown in (a-b) in the log-log scale. The regimes of local and global bending
correspond to a more flat and a more steep straight lines, respectively. As shown in figures 13(c-f),
in both regimes shapes of fibers are almost the same for approximately the same values of A/n3.25

(as indicated). In (c) (n,A)=(10,8.4), (20,79.4), (40,720.6), (60,2922.5), in (d) (n,A)=(20,100),
(40,1000), in (e) (n,A)=(40,8.8),(60,29.4), (80,79.4) and in (f) (n,A)=(60,100), (100,500).

6.2. Phase diagram of the dynamical modes

The analysis of the fiber dynamics can be summarized on a phase diagram in the
space of the fiber aspect ratio n and the bending stiffness A. In figure 14 we show the



Fibers in shear flow 29

numerical results, with essentially the same features for the bead models M1 and M2.
The elastic fiber initially aligned with the shear flow has three characteristic modes of
motion, depending on values of n and A:

1. The fiber does not straighten out again. The curvature κ does not return to
zero after the first bend event.
2. The fiber bends locally, curls and then stretches; correspondingly curvature

grows, reaches a plateau and then returns to zero in a periodic way.
3. The fiber periodically bends globally along the whole length. Curvature maxima

are observed but the plateau vanishes.
At early times, the fiber is bent only at the ends. During the curling motion, as shown

in figures 3 and 12 and earlier by Harasim et al. (2013); Liu et al. (2018); LaGrone et al.
(2019), the range of the most curved segments shifts towards the central part of the
fiber. The fiber ends become straight and almost aligned with the flow, and the length
of straight ends increases with time. Therefore, in general, we might expect that the
end of such a long fiber will behave in a similar way as a fiber of a comparable length
aligned with the flow. Therefore, if the curling continues long enough, with τc & τb,
the fiber may bend its end again, even several times, and it will not straighten out.
Indeed, such a scenario sometimes happens for very long or very flexible fibers, as shown
in figure 4, and earlier by Nguyen & Fauci (2014); LaGrone et al. (2019). Using our
scalings, τb ∝ A1/3 and τc ∝ A−1/3n1.17, a dynamical transition could be expected
around A ∝ n1.75. However, the physical origin of the transition between the coiled and
straightening out modes is more complicated. Shorter fibers cannot bend several times,
but still they do not straighten out along the flow when their bending stiffness is small
enough.

The transition between the coiled and locally bent modes for shorter fibers with n640
and a wide range of values of the bending stiffness A has been analyzed by S lowicka et al.
(2015). The dynamics of flexible fibers were evaluated over a long time, starting from
the initial configuration aligned with the flow. A characteristic value ACS(n) was found
for the transition between the fibers that remain coiled and the fibers that straighten
out along the flow while tumbling, with ACS(n) ∝ n3/2. Moreover, the dynamics was
shown to be very sensitive to a small change of A close to ACS . For A slightly below the
critical value, fibers often straightened out a smaller or larger number of times before
changing to the coiled mode. S lowicka et al. (2015) sorted the data for the modes 1 and
2 based on the long-time behavior. We present in figure 14 (small open symbols) some of
the results obtained by S lowicka et al. (2015). The inset illustrates high precision of the
critical values ACS determined there and marked by stars in figure 14. The results of the
model M2 applied in this work (large open symbols) also support the ACS(n) ∝ n3/2

scaling of the transition between the coiled and straightening out modes. The numerical
simulations in the M1 model also agree well with the above scaling, with a different
factor which could be interpreted as the result of different bending potentials in both
models.

In contrast to the transition between the modes 1 and 2, the transition between the
modes 2 and 3 is not sharp. It takes place in a range of the phase space (n,A) marked
gray in figure 14. This stripe corresponds to −2.3 . log10(A/n3.25) . −2.9, i.e., the
range between the local and global bending found numerically with the bead model M2

and shown in figure 13(a), in agreement with the findings of the model M1 presented in
figure 13(b). The different symbols are the locally and globally bent fibers that indicate
just an approximation, based on a comparison of the time instant of the maximum κb to
the flipping time τf , as described in Appendix D. In the regime of the local bending, for
a smaller A or larger n, the bending time scales as τb ∝ A1/3 and the maximum local
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Figure 14. Diagram of three dynamical modes in the phase space of the parameters n and
A, for the bead models M1 (filled symbols) and M2 (open symbols). The dynamical modes of
the fibers initially aligned with the flow are the following: the fibers that are coiled and do not
straighten out (mode 1, triangles); the fibers that straighten out along the flow while tumbling
periodically and bend locally (mode 2, rhombus) or globally (mode 3, circles). A sharp transition
between the fibers that straighten out while tumbling and the fibers that stay coiled is marked
by a dashed line and the stars, taken from (S lowicka et al. 2015), for the M2 model and by a
solid line for the M1 model. In contrast, the transition between fibers bent locally and globally
is gradual (gray area). The sizes of symbols for the M2 model discriminate between data from
this work with l0=1.02 and ks=1000 (large open symbols) and the data of S lowicka et al. (2015)
with l0=1.01 and ks=2000 (small open symbols).

curvature scales as κb ∝ A−1/4, independently of n. In the regime of the global bending,
τb ∝ n independently of A, and κbn ∝ (A/n3.25)−5.

The transition between the local and global bending could be interpreted as a com-
petition between bending and rotation. If the fiber bends before it manages to rotate
in shear flow, it belongs to the local bending mode while if it rotates before it bends,
it belongs to the global bending mode. Approximating the rotation time as TJ/4 ∝ n,
and equating τb ≈ TJ/4, we obtain A ∝ n3, which is an approximation of the transition
between the local and global bending shown in figure 14. Another way of looking at the
transition between the local and global bending is to compare the typical length scales.
The length of the bent fiber end at τb scales as A1/3. In the local bending mode, it needs
to be smaller than half of the fiber length, proportional to n, which again estimates the
transition roughly as A ∝ n3.

7. Conclusions

In this paper, we analyze the evolution of an elastic thin fiber that is initially straight
and aligned with an ambient shear flow. We consider a wide range of the fiber aspect
ratios n and many different values of the bending stiffness ratio A (i.e., the ratio of
the bending forces to the hydrodynamic forces caused by the flow rate γ̇). We use
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two theoretical descriptions of the fiber: the bead-spring model with elastic potential
energy and hydrodynamic interactions, and also a generalized elastica model. These two
approaches complement each other and allow to rationalize analytically many of the
observed numerical results for the bead-spring model.

To quantify evolution of the fiber shapes, we introduce and evaluate numerically three
main characteristic time-dependent quantities: the deflection of the fiber tip u(0, t) in the
direction perpendicular to the flow, with the first maximum at umax, the maximum local
curvature κ(t), with the largest value κ2b = maxt κ(t), and the curling velocity vx(t),
with the maximum value vxm. Their behavior allows us to identify three characteristic
time scales of the dynamics: the bending time τb, the curling time τc and the tumbling
time τ equal to the half-period TJ/2 of the effective Jeffery rotation.

Accordingly to the time scales, we identify three characteristic stages of the time
evolution of flexible fibers initially aligned with the flow: bending of the fiber tips for
0 6 t 6 τb, curling of the deformation towards the center of the fiber for τb 6 t 6 τb + τc
and stretching of the fiber for τb + τc 6 t 6 TJ/2 with an effective Jeffery’s period
TJ . In the bending stage, we find the scaling u(0, t) ∝ (t3/A)1/4, with the maximum
umax ∝ A1/3 at τb ∝ A1/3, all independent of n, in agreement with the local character of
the early stage of the fiber dynamics for all the modes. In the curling stage, the maximum
curvature κ(t) and the curling velocity vx(t) are approximately independent of n (except
for short final time intervals), and for a sufficiently large n change in time only a little
(except for short initial and final time intervals), as argued by Harasim et al. (2013) and
Liu et al. (2018).

We demonstrate that τb/n, κb2n and τc depend on n and A approximately through
certain universal functions A/nα. Based on the numerical simulations, we determine
the exponents α which are equal to 3, 3.25 and 3.5, respectively (close to but different
than 4 as in case of the elasto-viscous number). In particular, the shapes of fibers (and
the maximum ‘global’ curvature κb2n) are shown to depend on n and A approximately
through A/n3.25. Referee suggested to try another similarity function, dependent on log n,
for the same reason that slender body theory depends on the logarithm of the aspect
ratio. An (unsuccessful) attempt to replace a power law with the exponent 3.25 by a
logarithmic dependence is described in Appendix C. In figure 16 we present an analog
of figure 13, but with an elasto-viscous number log10[A(lnn + ln 2 + 1/2)/n4] on the
horizontal axis. The constants in the numerator follow from equation (8.8) for the SBT
transverse motion, derived by Batchelor (1970a). Different constants in the logarithmic
expressions are also used e.g. by Becker & Shelley (2001) and Young & Shelley (2007).
We find it interesting that the plots of κb2n versus the elasto-viscous number in figure
16 seem to indicate that the fiber shape (at the time of its maximum curvature) might
be a universal function of the elasto-viscous number in the local bending mode (left part
of the plot) but not in the global bending mode (right part of the plot). The difficulty
of matching a logarithmic expression might be related to relatively small values of n in
our simulations. A scaling which involves ln n might require very large aspect ratios n.
It seems logical that comparison of κb2n for fibers with different thickness and the same
length may depend not only on the elasto-viscous number, the parameter adequate for
asymptotically large values of n. Moreover, it is known from SBT that the constants
added to lnn are sensitive to fiber shape. It is also worth remembering that for moderate
values of n a constant added to the logarithm has a significant influence. This constant
for a flexible, deformed fiber depends on both n and A, and it is difficult to evaluate it
theoretically. However, it is clear that its value is different from Batchelor’s result for a
straight rigid rod. Therefore it is clear that an additive constant for a flexible fiber should
depend on shape, and therefore on both n and A.
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Based on the numerical simulations, we classify the dynamics of flexible fibers in the
phase space of n and A, according to the essential features of the motion and shape
deformation. We find three different modes of the fiber motion: coiled, locally bent and
globally bent, and we identify the characteristic range of n and A for each of them. The
classification refers to the fibers initially aligned with the flow. In the coiled mode, found
for larger n or smaller A, the fibers later do not straighten out along the flow, in contrast
to the other two modes. Global bending of fibers takes place at smaller n or larger A
and it corresponds to coherent deformation along the whole fiber length. Local bending
means that only a part of the fiber is curved, and it is typical for intermediate values
of n and A. Essentially, basic features of these three scenarios were identified already
in experiments performed by Forgacs & Mason (1959b) who called them a coiled orbit,
springy rotation and snake turn, and then analyzed e.g. by Lindström & Uesaka (2007),
Harasim et al. (2013), Nguyen & Fauci (2014), Liu et al. (2018) and LaGrone et al. (2019),
with differences between shapes observed under different physical conditions (e.g. with
or without Brownian motion). Here for the first time a systematic analysis of these three
modes is performed.

In particular, all three stages of the evolution are observed for the local bending
dynamical mode. In the global bending, the curling stage is absent, and for the coiled
mode there is no stretching stage and the curling motion is much more complicated
than in case of the local bending mode. For the local bending, we find the approximate
scaling κb2 ∝ A−0.3† independent of n, with the exponent close to -1/4 found by Harasim
et al. (2013) and Liu et al. (2018). The dependence of the global bending on A has not
been analyzed. We find that the maximum ‘global’ curvature κb2n ∝ (A/n3.25)−5 decays
rapidly with A, which is much faster than in the local bending mode.

Our analysis of the dynamics for different n and A indicates that the transition between
the local and global bending takes place for −2.3 . log10(A/n3.25) . −2.9. Therefore, it
is close but not exactly equal to a certain universal value of the elasto-viscous number

η̄ = 8πµ0γ̇(2a)
4n4

EI ln(ε−1) ‡, which scales as n4/A (Becker & Shelley 2001; Tornberg & Shelley

2004; Harasim et al. 2013; Nguyen & Fauci 2014; Liu et al. 2018; LaGrone et al. 2019).
Moreover, we have found that a second transition, between the coiled fibers and the fibers
that straighten out, is given as log10(A/n3/2) = C and it takes place at different values
of the elasto-viscous number when n or A are changed. Therefore, we find it beneficial
to extend the concept of the elasto-viscous number and analyze the dynamics in the
phase-space of n and A. Certain features of the dynamics depend on n and A in a more
complex way than the elasto-viscous number predicts.

We also analyze the elastica model and rationalize some of the scalings described
above. We provide a self-similar exact solution of the linear elastica equations when the
fiber is almost aligned with the flow. The main new idea is to assume as the boundary
condition the existence of a constant hydrodynamic force exerted on the fiber tip by the
rate-of-strain of the ambient flow. This allows tracing the early stage of the fiber bending
from the initial position aligned with the flow which, is not possible within the standard
elastica approach. Moreover, we derive such a hydrodynamic force from the theory of
hydrodynamic interactions and evaluate it numerically. These findings indicate that the
standard elastica model in some cases may be too simple to predict the dynamics, and
cannot always serve as a source of a theoretical explanation.

† In the M1 model we can also deduce from the numerical results that κb2 ∝ A−1/4, see
figure 9(b). In this case, our data seem to agree with both scalings.

‡ or effective viscosity (effective flow forcing) µ̄ = 8πµ0γ̇(2a)
4n4

EI
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A. Hydrodynamic interactions in GRPY and Hydromultipole models

A.1. GRPY - model 1

The GRPY approximation generalizes the Rotne-Prager (Rotne & Prager 1969; Ya-
makawa 1970) and Goldstein (Goldstein 1985) analytical expressions for the translational
and rotational mobilities to the dipolar degrees of freedom, for both non-overlapping and
overlapping spherical particles of different radii (Wajnryb et al. 2013; Zuk et al. 2014,
2017). The GRPY includes pairwise hydrodynamic interactions through the analytic
positive-definite mobility matrices acting on the lowest force multipoles induced at
the sphere surfaces by the fluid flow (Kim & Karrila 1991). In this way, the GRPY
approximation takes some of the ideas from the method of reflections (Kim & Karrila
1991), Stokesian dynamics developed by Durlofsky et al. (1987) and Brady & Bossis
(1988) and the multipole expansion performed by Felderhof (1988) and Cichocki et al.
(1994, 1999). Although the GRPY does not include the lubrication interactions, by
construction it gives positive definite mobility matrices for overlapping spheres which
can be easily used for soft objects allowing for overlaps of the particle surfaces.

In this work, mobility matrix was used for the Lees-Edwards (Lees & Edwards 1972)
periodic boundary conditions with the Generalized Rotne-Prager-Yamakawa model of
hydrodynamic interactions derived by Mizerski et al. (2014). The periodic box was
elongated in the direction of the shear flow so has dimensions Lx, Ly, Lz, with ratio
Lx : Ly : Lz = 4 : 1 : 1. The volume of the computational cell was set for each fiber
length separately and we kept the volume fraction occupied by the fiber smaller then 10−5

to have Lx, Ly, Lz � 2na. For such a large periodic cell the values of the hydrodynamic
tensors differ from the values of the hydrodynamic tensors in the case without periodic
boundary conditions on the level of the numerical accuracy when using double precision
calculations.

A.2. Hydromultipole - model 2

Consider now a general system of n spherical particles immersed in an incompressible
fluid flow with velocity V(R) and pressure p(R) that satisfies the quasi-steady Stokes
equations with the boundary condition at infinity,

V(R)−V∞(R)→ 0, when R→∞, (A.1)

where V∞(R) is an arbitrary external fluid flow. Assume the no-slip boundary conditions
at the bead surfaces, Si,

V(R) = Wi(R) ≡ Ui +Ωi × (R−Ri), for R ∈ Si, i = 1, ..., n. (A.2)

The integral representation (Pozrikidis 1992) and the method of induced forces (Cox &
Brenner 1967; Mazur & Bedeaux 1974; Felderhof 1976) can be used to express the fluid
velocity in terms of the Oseen tensor T0(R − R̄), given e.g. by (Kim & Karrila 1991),
applied to the density fj(R) of the forces exerted by the surface of the particle i on
the fluid. Application of the boundary conditions (A.2) results in the boundary integral
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equation for the force density fj(R),

Wi(R)−V∞(R) =
n∑

j=1

∫
T0(R− R̄) · fj(R̄)dR̄, R ∈ Si and R̄ ∈ Sj , (A.3)

which is then projected onto a complete set of elementary (spherical multipole) solutions
of the Stokes equations (Felderhof 1988; Cichocki et al. 1988). As a result, an infinite set
of algebraic equations is obtained. This set is truncated at a certain multipole order L
and solved for the vector of the force multipoles. Converting from the spherical to the
Cartesian representation, we obtain a linear relation between 1) the forces Fi, torques
Ti, stresslets Si and higher-order force multipoles exerted on the fluid by the particles
i = 1, ..., N , and 2) the translational and rotational velocities, Uj and Ωj of particle
j = 1, ..., N , and the multipoles of the external velocity field V∞(R). This relation is
written using the grand friction matrix ζ,




F̃

T̃

S̃
...


 = −




ζtt ζtr ζtd ...
ζrt ζrr ζrd ...
ζdt ζdr ζdd ...
... ... ... ...


 ·




Ṽ∞ − Ũ
ω̃∞ − Ω̃
Ẽ∞
...


 . (A.4)

In the above the 3N dimensional vectors are F̃ = (F1,F2, . . . ,FN ), T̃ = (T1,T2, . . . ,TN ),
Ũ = (U1,U2, . . . ,UN ), Ω̃ = (Ω1,Ω2, . . . ,ΩN ). The velocity multipoles are evaluated
at the centers Ri of the particle i = 1, ..., N from the external flow velocity and its
derivatives. In particular, Ṽ∞ = (V∞(R1), . . . ,V∞(RN )). Similarly ω̃∞ is the vector
of vorticities, with ω∞(Ri) = 1

2 (∇ × V∞)|Ri . Next we introduce the tensor of strain

rates Ẽ∞ = (E∞(R1), . . . ,E∞(RN )) with E∞(Ri) = 1
2

(
∇V∞ + (∇V∞)T

)
|Ri . The

second rank strain tensors E∞(Ri) are symmetric and traceless and therefore Ẽ∞ has
5N independent components. Finally, the symmetric tensor S̃ = (S1, . . . ,SN ) represents
the particle stresslets. To speed up the convergence of the multipole expansion, the
lubrication correction is applied to friction matrices, as described by Durlofsky et al.
(1987), Sangani & Mo (1994) and Cichocki et al. (1999).

The system of the particles evolves according to velocities calculated with the use of
the grand mobility matrix µ




Ũ − Ṽ∞
Ω̃ − ω̃∞
−S̃
...


 =




µtt µtr µtd ...
µrt µrr µtd ...
µdt µdr µdd ...
... ... ... ...


 ·




F̃

T̃

Ẽ∞
...


 (A.5)

which is a partial inversion of the relation (A.4), i.e., note that S̃ is now grouped with
generalized velocities and Ẽ∞ with generalized forces. The superscripts t, r and d denote
translational, rotational and dipolar degrees of freedom of the grand friction and grand
mobility matrices ζ and µ, respectively. The hydrodynamic matrices ζ and µ in general
depend on the positions of all the particles in the system. In particular, for the external
shear flow and in the absence of external torques, equation (A.5) leads to equation (2.7)
for the translational velocities of the fiber beads that make up the fiber.

B. Comparing results from the M1 and M2 models

In this Appendix, we compare in detail the results for the curvature κb2 obtained with
the use of the M1 and M2 bead models and discuss the physical reason for the small
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Figure 15. Comparison of three bead models of a flexible fiber. The maximum curvature κb2
vs. bending stiffness A, evaluated with the use of the models M1 (filled symbols), M2 (empty
symbols) and M3 (stars). The excluded volume (EV) limit is marked as the horizontal dashed
line.

differences. We start from a brief reminder of both models, described in Sec. 2.1. Hydrody-
namic interactions in the bead modelM1 are approximated using the generalized Rotne-
Prager-Yamakawa mobility matrices. The treatment of the hydrodynamic interactions
in the bead model M2 is based on the multipole expansion corrected for lubrication,
as described in Appendices 2.1.2, A.2 and implemented in the precise numerical codes
Hydromultipole. The repulsive part of the Lennard-Jones potential energy (2.6) used
in M1 is not needed (and therefore not present) in the model M2, because of the stick
boundary conditions at the bead surfaces and the lubrication hydrodynamic forces that
are taken into account.

In the M1 approach, the elastic properties are determined by the sum of the FENE
(finitely extensible nonlinear elastic) stretching and harmonic bending potential energies
defined in equations (2.2) and (2.3), respectively. In the M2 approach, the elastic
properties are determined by the sum of the Hookean stretching and cosine (Kratky-
Porod) bending potential energies defined in equations (2.4) and (2.5), respectively. The
elastic constitutive laws (set 1 or set 2, see table 1) in the models M1 and M2 are the
same for small deformations, but have different forms for a significant change of the fiber
length (which is irrelevant because the fiber practically does not extend) and for large
bending angles (which is important because we consider highly bent fibers).

It is known from Bukowicki & Ekiel-Jeżewska (2018) that different bending potential
energies can result in significant differences of the dynamics of flexible fibers in case of
large bending angles, which correspond to a large curvature. Therefore we investigate if
this effect is responsible for the differences between the dependence of κb on A resulting
from the models M1 and M2 and shown in figures 10(b,c). To this goal we introduce a
third bead model M3 and apply it in test simulations. In the M3 model, hydrodynamic
interactions are treated with the GRPY approach supplemented with equation. (2.6) as
in M1, but the elastic constitutive laws are given by equations (2.4), (2.5) as in M2.
The difference between the stretching potential energies is irrelevant because the fiber
length practically does not change. The essential difference between M1 and M3 is the
the difference between harmonic and cosine bending potential energies.

Figure 15 presents comparison of the behavior of the three fiber models for n = 20
and n = 100 elucidating the differences between the models. For n = 20, the maximum
curvature κb2 is evaluated with the modelsM1,M2,M3 and plotted in the log-log scale
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in figure 15. For A . 20−30 there is a difference betweenM1 andM2, and also between
M1 and M3. However, the results from M2, M3 are close to each other. Therefore the
form of the bending potential at large angles seems to be essential for the dynamics of
more flexible fibers, in agreement with the same conclusion for sedimenting flexible fibers
given in Bukowicki & Ekiel-Jeżewska (2018).

Indeed the cosine bending potential from the modelsM2 andM3 is more flexible than
harmonic bending potential from M1 and for large bends it leads to higher curvatures.
For such large values of the bending stiffness that the radius of curvature is three or more
times larger than the bead radius, the maximum curvatures obtained with the models
M1, M2, M3 are the same because the bending potential energies behave alike.† This
is expected since both are intended to approximate the elastic bending potential energy
in the limit of large A.

The agreement between theM1,M2 andM3 models of more stiff fibers is illustrated
in figure 15 where we also present the maximum curvature κb2 for much longer fibers with
n = 100, evaluated withM1 andM2 models. For A & 100 a good agreement is obtained
between all the computations performed with the use of M1 andM2 models, regardless
of the fiber length. Actually, all the properties of flexible fibers that were discussed in the
main text for the modelM1 are analogous for the modelM2 in the range of intermediate
and large A, where the constitutive laws are manifesting similar behavior.

C. Discussion of the universal scaling

The idea of figures 13(c-f) and 16(b-c) is to compare properties of fibers of the same
length, but different thickness and different bending stiffness. To this goal, on vertical
axis we plotted the maximum curvature normalized by the inverse fiber length (rather
than by its inverse width), i.e., κb2n. The universal scaling of the maximum curvature
κb2n, provided in §6.1, is based on the similarity solution as a function of A/n3.25. Here
we check if a universal scaling can be based on a certain modification of the standard
elasto-viscous number, including a logarithmic dependence on n. Therefore in 16(a) we
plot in log-log scale κb2n versus the elasto-viscous number A(lnn+ ln 2 + 1/2)/n4, with
the constant modified following SBT of Batchelor (1970a). The scaling works reasonably
well for the local bending mode, as shown in figure 16(b), but does not account for the
global bending mode, as shown in figure 16(c). Possible reasons for this discrepancy are
discussed in section 7.

† It was estimated by (Bukowicki & Ekiel-Jeżewska 2018) that a difference smaller than 5%
is expected for the maximum bending angles π − θi = κ . 0.7.
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Figure 16. The elasto-viscous number A(lnn+ ln 2 + 1/2)/n4, based on the SBT by Batchelor
(1970a), is not a universal scaling function of the numerical results obtained with the model
M2. (a) The maximum curvature κb2n, scaled by the inverse of the fiber length, is plotted in
the log-log scale versus the elasto-viscous number A(lnn+ ln 2 + 1/2)/n4. The similarity scaling
of shapes is observed in (b) for the local bending mode, but it does not work in (c) for the
global bending, with values of the elasto-viscous number as indicated. In (b) (n,A)=(40,8.8),
(60,39.2), (80,119.6) and in (c) (n,A)=(20,79.4), (40,1078.4), (60,4902.0), respectively.

D. Time scales close to the transition between local and global
bending

In Sec. 6, the distinction between the locally and globally bent fibers was approximately
estimated by comparing the time instant of the maximum κb with the flipping time
(S lowicka et al. 2015, 2020; Farutin et al. 2016), i.e., the time when two end beads have
the same x coordinate. This procedure is illustrated in figure 17 using the numerical data
from the model M2. If flipping occurs before maximum of κb, the corresponding point
(n,A) is marked by a square in the phase diagram (figure 14), while if flipping happens
at or after κb – by a plus or a circle, respectively. However, it should be kept in mind that
the change between the locally and globally bent fibers takes place in a certain range of
A. The values marked by the symbols + in figure 14 correspond already to the global
mode scaling κb2n ∝ (A/n3.25)−5 but they are too large to satisfy κb2 ∝ A−1/4 typical
for the local bending. The shapes at the maximum curvature shown in figures 17(b-c)
are bent globally, but the shape presented in figure 17(a) is not locally bent. In the local
bending mode, at the moment of the maximum local curvature, the fiber ends are almost
parallel to the flow.
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1

0

335 345 338 348 340 350

Figure 17. Characteristic fiber shapes at the time of the maximum curvature, shown for n = 40
and (a) A=483.3, (b) A=720.6, (c) A=880.4. For the global bending mode, the maximum of the
local curvature is observed at the flipping moment or later, as in (b) and (c).
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S lowicka, A. M., Stone, H. A. & Ekiel-Jeżewska, M. L. 2020 Flexible fibers in shear flow
approach attracting periodic solutions. Phys. Rev. E 101 (2), 023104.
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