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Characterizing people’s occupations is important for both policy and research. Because
administrative records, rather than survey data, are increasingly being used to describe
labor market activity, it will become important to find new low-cost approaches to
describing occupations. We apply new techniques—machine learning—to new sources
of data to investigate the potential of using algorithms to classify occupations. Our
analysis of human resource data from large firms (universities) and the US Census
Bureau shows that occupational classifications are inherently noisy; job titles by
themselves have insufficient consistency across institutions to serve as the sole basis for
the reliable assignment of occupations. We do find, however, that a large number of
relatively sparsely populated job titles can be assigned algorithmically, which could

greatly reduce cost with little impact on accuracy.



I. Introduction
Characterizing the work that people do on their jobs is a long-standing and core issue in
survey research. Traditionally, classification has been done manually, but there is an
extensive body of literature on the associated challenges, well summarized in an
influential paper by Mellow and Sider (1) and in a later paper by Mathiowetz (2). Many
survey organizations are beginning to investigate the potential of using new

computational tools to automatically classify workers’ occupations.

At the same time, there has been a surge of interest in using administrative wage records
to directly capture occupations in order to inform the design of training curricula and to
permit deeper longitudinal analysis of career outcomes, the effects of training, and
changes in inequality. Senator Ronald Wyden’s amendment to the Border Security,
Economic Opportunity, and Immigration Modernization Act (S.744, 113" Congress,
2013) was supported by a broad range of unions and associations'. The Secretary of
Labor’s congressionally mandated expert advisory group—the Workforce Information
Advisory Council®>—as well as its predecessor, the Workforce Information Council,
produced reports in both 2018 and 2015 that strongly recommended the inclusion of
occupations in wage records; the Secretary of Labor responded that was indeed a high
priority (3,4). In 2018, the United States Chamber of Commerce convened public and
private organizations to report on ways to gather more granular job competency data

from employers (5).

! http://www.ifpte.org/downloads/news/manager/307¢.pdf

2 https://www.doleta.gov/wioa/wiac/




The potential is enormous. If it were possible to combine new computational tools and
administrative wage records to generate an automated crosswalk between job titles and
occupations, millions of dollars could be saved in labor costs, data processing could be
sped up, data could become more consistent, and it might be possible to generate, without
a lag, current information about the changing occupational composition of the labor

market.

This paper examines the potential to assign occupations to job titles contained in
administrative data using automated, machine-learning approaches. Although there has
been little research that directly ties firm-level human resource (HR) data on job titles to
occupational classifications, there are intellectual foundations for occupational coding
that are largely grounded in the survey world. The first foundation is conceptual: to
define each occupation. The second is operational: to translate concepts to standardized
protocols. The third is statistical: to infer occupations from the information at hand. The
fourth pertains to resources: the implementation of such classifications on an extensive
scale given the limited resources available. More generally, we contribute to a much
larger set of classification problems, which are increasing in salience with the availability
of more transaction data. It is important to understand which tools and approaches
enable the new, rich, but unstructured data to be used, while minimizing the need for
expensive and slow manual classification. For instance, our data also include information

on the material, equipment, and supplies that are purchased on sponsored projects as well.

We use a new extraordinarily rich and detailed set of data on transactional HR records of
large firms (universities) in a relatively narrowly defined industry (public institutions of

higher education) to identify the potential for machine-learning approaches to classify



occupations. This is, to our knowledge, the first large-scale dataset that draws from such
HR records across multiple institutions. These data have several advantages. First, the
institutions are relatively large and complex, and they use HR systems similar to those of
other large and complex organizations in the rest of the economy. Second, the focus on
one industry limits the number of possible occupational categories, permitting a targeted
analysis. Third, the focus on public universities is attractive because the HR descriptions
associated with job titles are available online, and can be used to provide additional
information for classification purposes. Finally, the industry is interesting in its own right.
Indeed, the production of research often involves the use of intangible assets, particularly
labor inputs, and accurate classification of those labor inputs is important for the

measurement of scientific productivity.

We build a training dataset from the HR records using human curation and additional rich
data sources. First, university staff and trained students manually assign occupations to
job titles. That manual curation is then enhanced with additional information from online
job descriptions as well as Census Bureau micro-level information on demographic
characteristics and earnings. The data are then used to train machine learning models to

predict occupations from job titles. Finally, the results are evaluated.

While our results suggest that occupations can be assigned from job titles, they also point
to real challenges. In particular, our analysis suggests that there are substantial limits to
using machine learning to create discrete occupational categories, even with rich data
sources. There are two core problems. The first is that occupational classifications are
inherently noisy, so it is difficult to identify ground truth, particularly in a dynamic and

changing economy. The second is that job titles have insufficient consistency or detail



across institutions necessary for robust supervised machine learning. We do find that a
large number of relatively sparsely populated job titles—a quarter of the titles have only
one employee, and over half have fewer than ten employees—could be assigned

algorithmically, greatly reducing cost with little impact on accuracy.

II. Background
A major reason for developing occupational classifications is to provide an easy-to-
measure pathway from generally understood job activities to skill needs in the economy.
The need to capture information on occupations to inform businesses, government
agencies, students, and career counsellors about the levels, trends, and changes in skill
needs is a continuing theme in national and local workforce policy (6). There are also
academic reasons. Occupational classification is deeply rooted in sociology (7), as
intrinsic to the measurement of the sources of inequality, social stratification and class
mobility. Occupational classification is also essential in economic analyses, describing
structural changes caused by technological advancement, automation, globalization, and

change in immigration laws (8).

The current approach to occupational classifications is thorough and thoughtful, but quite
costly. In addition to cost, the measurement challenges of categorizing worker
occupations on surveys are well known: they are notoriously noisy (2). In probably the
best known analysis, Mellow and Sider find that only 83.3% of CPS respondents’ major
(1-digit) occupations match their employer’s reports and that share falls to 59.7% for
detailed (3-digit) occupations (these rates are considerably lower than those for industry
of employment, at 93.1% and 85.4% for major and detailed industry) (1). Bound et al.

find similar errors in their overview of measurement errors (9), as do Abraham and



Spletzer (10). Fisher and Houseworth find that there is systematic inflation of

occupations for lower-skilled individuals (11).

As noted in the introduction, there has been high-level interest in requiring firms to report
occupational data as part of their federal reporting requirements. Both the Workforce
Information Advisory Council, an expert group formed to advise the Secretary of Labor,
and its predecessor, the Workforce Information Council, recommended adding
occupational classifications to unemployment insurance wage records (3,4). In the latter
case the group surveyed forty-four states and territories, forty-seven national, state, and
regional organizations (representing over 20 million data users in business, education,
labor, policy development, economic research, and workforce preparation fields), and
rated the need for capturing occupational information as one of the highest of their
priorities. The interest in using unemployment insurance wage records for decision-
making was also highlighted in the recent report by the Commission on Evidence Based
Policy Making (12), and is certainly part of the focus of implementing the legislation that

resulted from their recommendations (13).

However, the cost of collecting occupational data manually might well be prohibitive—
the state of Texas surveyed businesses and estimated “that the initial cost to employers
could range from $478 million to $1.2 billion, with annual recurring costs of $342 million
to $715 million. Costs to the Texas Work Commission were estimated at $3.1 million in
the first year, and a total five-year cost of $7.9 million to collect this data” (Texas

Workforce Commission 2016, p. 17).



Machine learning has become part of the analytical toolkit used by social scientists to
automate both classification and prediction tasks (15,16); it “develops algorithms
designed to be applied to datasets, with the main areas of focus being prediction
(regression), classification, and clustering or grouping tasks” (15). A good overview can
be found in the machine learning chapter by Rayid Ghani and Maltz Schierholz in our
recent book (17). In the particular context of occupational classifications, there have
been attempts to incorporate machine-learning methods by using open-ended survey
questions to inform classifications (18, 19). These works found that automated coding
was feasible if there is sufficient training data. They emphasized the importance of data
preprocessing, algorithmic quality, and thoughtful use of distance metrics in improving
occupational prediction. They also suggested that machine learning might also have value
by providing responders with candidate occupations as part of a learned cluster, rather
than as part of a constructed and hierarchical decision tree. This approach, which is very
different from ours, places a higher burden on respondents. In contrast, we use
administrative information on job titles, rather than survey responses. We provide more

detail in the technical discussion below.

III. Data and Framework

The administrative data we use are derived from the UMETRICS project, which builds
on and extends the federal STAR METRICS effort (20). These data are maintained by
the Institute for Research on Innovation and Science (IRIS) at the University of Michigan

and currently contain record-level information on all wage payments made to individuals



through research grants at 26 participating research universities (20,21). In the interest of

homogeneity, for our analysis, we chose large public research universities in the Big 10.?

Although multiple files are provided by the universities, we focus on the employee file,
which for each federally funded project, contains all payroll charges for all pay periods
(period start date to period end date) with links to both the federal award ID (unique
award number) and the internal university ID number (recipient account number). Also
available from the payroll records are the employees’ internal de-identified employee
number, the job title, their Full Time Equivalent (FTE) status, and the proportion of
earnings allocated to the award. In addition, the UMETRICS program has incorporated
additional fields (notably, the name and date of birth of those supported on federally
funded projects) to enable data linkage, and has enhanced the core data with additional

information on grants derived from public sources.

We view these data as a valuable laboratory for quantifying the prospects for a machine-
learning approach to occupation classification. In some ways these universities are well-
suited to a machine-learning approach—they are large, generally similar, and highly
structured. Thus, we can identify many different categories of workers and assess our
ability to identify similar workers at other institutions. On the other hand, the uniformity
of these institutions makes our task somewhat more challenging in that we need to make
relatively fine distinctions (e.g. a dataset comprised of longshoremen and financial

analysts would have more variability than our data).

3 The universities are Indiana, Wisconsin, lowa, Michigan, Minnesota, Penn State, Rutgers, and Ohio State
University.



In determining occupational classifications, we drew heavily on standard principles. We
were particularly interested in building a classification system that described the way
people are used in the production of research. Our classification system benefited from
extensive consultation with universities, which identified five core characteristics that
distinguish personnel employed on research projects: (i) Permanence in their position (i)
Research Role, (iii) Professorial Track, (iv) Scientific Training, and (v) Clinical
Association. These core characteristics are similar to ones used in Standard Occupational
Classification (SOC) system: classification principle #2 reads “Occupations are classified
based on work performed and, in some cases, on the skills, education, and/or training

needed to perform the work at a competent level.”

Based on this input, we iteratively developed a hierarchical occupation classification
system. In the end, we identified a two-level classification system. The first level is based
on a person’s relationship to the university — faculty, undergraduate, graduate student,
postdoc, or staff/other. In the second level, we subdivide staft/other based on function.
Figure 1 lays out our classification system and Appendix I provides illustrative job titles

for the occupations.

As we discuss in detail in the following sections, we manually assigned an occupation
from our classification system to job titles from the eight universities. Then we used this

manually curated data linking job titles to occupations as a training dataset for a
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supervised machine learning approach that algorithmically assigns occupations to job

titles.*

FIGURE 1 GOES HERE

IV.  Creating a Training Dataset from HR Records

The first step was to manually classify occupations based on job titles, which points to
the scale of the problem and hence the value of an automated approach. First, the total
number of job titles varied from the low hundreds to low thousands across universities—

it is likely that similar variation occurs in firms in other sectors of the economy.

The composition of the research personnel by occupation is shown in Table 1.° Also
shown in Table 1 is the average number of person-years by occupation for the four
largest and four smallest universities (i.e., those universities whose total number of
person-year counts is above or below the median). Big universities have, on average,
twice as many research personnel paid by research grants, and the share of graduate and

undergraduate students is somewhat larger for the big universities.

TABLE 1 GOES HERE

4 Our sample consists of individuals appearing in the UMETRICS employee file between 2012 and 2014.
Universities that are missing records in any year between 2012 and 2014 were dropped. Universities that
had fewer than 100 employees in any occupational class were also dropped because the accuracy of
classification algorithms may not be reliably calculated. Eight universities satisfied these sample
restrictions.

5> The occupations Staff and Others were combined into a single category because the distinction between
the two classes is somewhat ambiguous and less important. The unit of observation is a person-year. That
is, an individual can be counted up to three times, once per calendar year. Because career transitions can
happen within a calendar year (e.g., an individual changing his or her occupation from graduate student to
postdoctoral researcher over the summer), only individuals who appeared in the employee table under the
same job title both before July 1 and after September 30 were included in our sample.
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It is also worth noting that there is substantial variation in the number of people with each
job title, as reflected in the average number of people per job title and the fractions of job
titles that contain different numbers of people. We divide universities into two groups—
the four with the “coarsest” and the four with the most “detailed” job titles. As shown in
Table 2, for the universities that use more detailed job titles, as many as 30% of job titles
had only one employee. For the universities that use coarse job titles, the proportion
occupied by the job titles with more than 100 employees is nontrivial, and job titles with
more than 1000 employees were not uncommon. This has important implications for our
work—the handling of some job titles has a much greater effect on accuracy of the entire

occupation classification than others.

TABLE 2 GOES HERE

Even using the relatively straightforward categorization depicted in Figure 1, we
identified three separate measurement challenges that will almost surely be manifested in
other firms across the economy. Each results in issues that affect the quality of the

training data.

First, when different employees with the same job title perform different tasks, the same
job title can map to two distinct occupations. For instance, consider employees with the
job title of “program coordinator”. In some cases, these employees may be managing the
business operations of a scientific research program at a university center and should thus
be assigned the occupation “Research Facilitation Staff”. In other cases, these employees
may be involved in educational or student experiences and should thus be assigned the

occupation “Instructional Staff”. In this case, different people with the same job title
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perform different tasks and should thus be assigned to different occupations. This implies

that a full classification must operate at the level of individuals rather than job titles.

Second, some job titles are at the margins of categories. For instance, consider employees
with the job title “laboratory supervisor”. In many cases, these employees appeared to
perform some tasks that would suggest assigning them the occupation “Research
Facilitation Staff” and other tasks that would suggest assigning them the occupation of
“Research Staff”. For instance, a laboratory supervisor may serve as an administrator for
a university research lab and also conduct research within the lab. Because such
employees’ work encompasses the responsibilities of two occupations, it can be argued
that they fall at the margin of the occupational categories, which points to the value of a
task/skill-based classification versus a categorical classification. This measurement
challenge is conceptually distinct from the first insofar as a single individual performs
functions that cross categories, rather than two separate people with the same job title

performing different functions.®

The third measurement challenge is ambiguity: vague titles limited our ability to
confidently assign occupations to job titles. “Administrative support”, “coordinator”, and
“professional aide” are examples of unclear job titles. Some employees with these titles

work in human resources, undergraduate admissions, or a wide range of offices

supporting general university functions, while other employees with these titles are

% Although jobs at the margins of categories are not limited to managerial jobs (and our categories are
carefully chosen to minimize such uncertainty), managerial jobs often lie at the margins of categories
because they require expertise in different kinds of skillsets. One way to address this issue is to create
management occupations. For our data, the number of job titles at the margins of categories is relatively

small; therefore, we proceeded without creating managerial occupations.
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directly involved in supporting or conducting scientific research. To a large extent, this
ambiguity reflects a fundamental noisiness in occupational classifications in their own
right.” When dealing with ambiguous titles, researchers should be aware that it could
influence the learning process of machine-learning algorithms if manually classified
occupations were subsequently used for training. For example, the job title “Student help”
can belong to either a student who provides help or a staff member who helps students. If
we assign this title to a student occupation, we implicitly reinforce the association
between the word “student” in the job title and the title belonging to a student occupation,
potentially increasing the chance of misclassification for job titles such as “Student
learning center coordinator”. Another example of this type is “Fellowship”, which may
be intended to mean “fellow”, usually a graduate student, or a staff member who handles
administrative work involving fellowship. Addressing title ambiguity is conceptually
straightforward, but it requires a great degree of cooperation from data-submitting

organizations.

It is worth noting that the same person can have multiple relationships to a university. For
instance, a student may hold a staff position or a staff member can become a student to
take advantage of a discount on tuition. In this case, the person would be both a staff
member and a student. Such multiple relationships pose a challenge, but also present an

opportunity for obtaining unique data on career paths. The ideal handling of such cases

7 We benefited tremendously from input from member universities that provided extensive input on our
classification approach up front, provided a wealth of data, and that have, in many cases, provided

extensive feedback on our classification of their employees, especially to address the issues above.
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depends on the intended use of the data. If one wants to measure the inputs to a
production function, then the preferred approach would likely be to assign the person to
the staff title (i.e., to the role that he or she is playing on the sponsored project in
question). If the goal is to identify people who have studied at the university, the
preferred approach would be to assign the person to the appropriate student occupation.
Our data tend to favor the first approach because the primary classification is based on

the job title.

Another issue that generates a challenge, but also has the potential to enrich the data
greatly, is that people’s relationship to a university may change over time. An
undergraduate may graduate and enter a graduate program at the same school or take a
job as a staff member. A graduate student may take a staff, faculty, or postdoc position
upon completion of his or her degree. Obviously, some such pathways are more likely
than others. These transitions potentially provide additional leverage on the classification

of specific job titles and also provide rich data on career paths.

Incorporating additional external information

We use several different sources of external information, including online job
descriptions, publicly available electronic salary databases, university and professional

networking websites, and historical administrative earnings and employment data.

Many firms will have HR descriptions that map directly onto job titles. This information
could, in principle, provide substantial external information that can be leveraged for

occupational classification. In our case, the eight universities had searchable databases
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for employment and job postings on university HR websites. These typically provided
detailed descriptions of specific job titles to confirm the nature of an employee’s work.
When these descriptions failed to provide the necessary information to correctly classify
a position, electronic salary databases for public universities proved to be particularly
helpful sources of information on employee names. Using names and job titles enabled us
to examine individual profiles on university and professional networking websites, both
of which offered detailed explanations of employees’ work. Specific information on
actual employees rather than just their titles enabled a more careful classification of

similarly related positions in some cases.

Placement and earnings are obtained by linking UMETRICS data to data at the U.S.
Census Bureau. Given large differences in age and earnings between various occupations
in our data, information on an individual’s age and earnings can provide valuable
information about that individual’s occupation. Employees in the UMETRICS data are
linked to Census data using a Protected Identification Key (PIK), Census’s internal

anonymized individual identifier.

V. Measurement and Standardization
The development of clear standardized protocols for interviewers is critical for consistent
measurement across individuals. Similarly, good measurement is critically dependent on
developing consistent protocols for preprocessing the data so that measures can be
standardized across businesses. This is particularly important since each business will

have different shorthand to classify job titles. In this section, we will illustrate the
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challenges of standardizing data collected across multiple organizations with different
conventions. We will focus on the abbreviated nature of job titles, but we expect similar
challenges will arise in processing texts describing job responsibilities, salary grade,

retirement benefits, and other information that may be available.

To automate the classification process, we first need to convert job titles to numeric
values because most machine-learning algorithms accept only numeric inputs. For short
texts like job titles, the most common way of converting texts to numeric features
(equivalent of regressors in regression analysis) is to record the presence/absence of
keywords. For example, if we have job titles “research analyst” and “research support”,
the array of feature names is [“research”, “analyst”, “support”] and the text-to-feature
conversion would return the vector [1, 1, 0] for “research analyst” and [1, 0, 1] for

“research support”. These vectors will then be used as inputs for machine-learning

algorithms that predict occupations.

One problem with this approach is different abbreviations/synonyms in the job titles may
represent the same feature. For example, it is clear to humans that “assistant” and “asstnt”
both represent “assistant”, but machines treat them as different features. To avoid
creating separate features for different abbreviations of the same word, job titles need to

be normalized before being converted to numeric vectors.

Because creating a normalization mapping is labor intensive, one may be tempted to use

edit distance to determine whether a string of letters is an abbreviation of a word.
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However, generic edit distance fails to address challenges that are specific to
abbreviations: for instance, both “busin” and “buses” are formed by deleting three letters
from “business” and therefore have the same edit distance; however, the former is more
likely to be an abbreviation for “business”. Developing a set of rules for determining the
validity of abbreviation is not a trivial task. Though the disabbreviation algorithm we
developed is imperfect, we employed the algorithm for the subsequent analyses to reduce

noise in the data (see appendix I for details).

VI. Machine Learning

We first explored a wide range of classification algorithms, including linear regression.
We then selected a few algorithms that seemed to work well for our project and
conducted a preliminary analysis comparing their performance. The algorithms that made
our “short list” are Multinomial Naive Bayes, Bernoulli Naive Bayes, Random Forests,
and Extra Trees (Extremely Randomized Trees). We will briefly describe each algorithm

below, but interested readers may refer to, for example, James et al. (22) for more details.

The Naive Bayes classifiers compute the conditional probability of an observation falling
in a certain class (equivalent to discrete “y” variable in a regression) given features
(equivalent to covariates “x” in a regression) using Bayes rule. The Multinomial Naive
Bayes classifier assumes that the conditional probability that each feature appears given a
class follows a multinomial distribution. The Bernoulli Naive Bayes classifier assumes
that the conditional probability of the presence or absence of features given a class

follows a Bernoulli distribution. Because it is unlikely that the same word appears more

than once in a job title, the Bernoulli Naive Bayes classifier is more suitable for our
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purpose. The major disadvantage of either of the Naive Bayes classifiers is that they both
rely on the underlying assumption that the features are independent. This means, for
example, given that the job title belongs to a graduate student, the presence of the word
“research” cannot change the probability of also observing the word “assistant” in the job
title. Because the assumption of independent features is most likely violated for our case,

we rejected Naive Bayes classifiers.

Random Forest and Extra Trees are both tree-based algorithms. We begin by describing a
simple tree algorithm. Figure 2 shows part of a decision tree that classifies employees

into the main five classes from Figure 1 (faculty, postgraduate students, graduate students,
undergraduate students, and staff/other) based on their job titles. Each box contains (i)
branching rule; (ii) Gini impurity; (iii) number of observations contained in the node; (iv)
composition of observations; and (v) majority class.

FIGURE 2 GOES HERE

Branching rules specify the feature name and the cutoff value. For example, at the top
node, job titles that contain the word “graduate” less than or equal to 0.5 times follow the
left branch, while those that contain the word “graduate” more than 0.5 times follow the
right branch. Because feature values are integers, it is equivalent to the following: job
titles without the word “graduate” follow the left branch and those with the word
“graduate” follow the right branch. If “graduate” is not present, it next tests for “professor”
and if “graduate” is present, it tests for “post” (as in postgraduate). Note that the node at

the bottom right does not have the branching rule because it is a terminal node.
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“Samples” represents the number of observations in each node. “Value” lists the number
of faculty, postgraduate students, graduate students, undergraduate student, and other in

that order. “Class” is the mode of the class in each node.

Finally, “Gini” reports the Gini impurity. Notice that the Gini impurity decreases as one
goes down the tree and reaches 0 when a node consists of one class (bottom right node).

It is calculated as follows:

5
G = Z pc(l - pc):
c=1

where pc is the proportion of class ¢ observations at the node.

Although simple and easy to interpret, the Tree algorithm tends to overfit. That is, the
algorithm uses too much information that is idiosyncratic to the training set, and thus the
predictive accuracy tends to be lower. The Random Forest classifier is intended to
mitigate the issue of overfitting by forming a collection of trees. The trees in the forest
are slightly different from one another. The variation is generated by introducing
randomness to the algorithm. Specifically, each tree is created from different subsample
of training data (this is called bagging). Also, when branching, the algorithm does not
necessarily choose the feature that minimizes the Gini impurity. The final output (the

predicted class) is the class predicted by the greatest number of trees.

The Extra Tree classifier uses the entire training set to create each tree, but introduces

randomness by randomly choosing the cut point when branching rather than choosing the
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optimal cut point that minimizes the Gini impurity. The random cut point is useful for a
continuous feature such as age. For example, it may be that 22 is the optimal cut point for
distinguishing undergraduate students from everyone else. However, the Extra Tree may
choose a different cut point, say, 20. The Extra Tree can then use other features such as
the absence of the word “graduate” to identify undergraduate students who are over 20.
Since our feature, the number of times each keyword appears in a job title, is mostly
binary (because it is unlikely that the same word appears more than once in a job title),
the random cut point would not create much variation: The branching rule “The word
‘research’ appears more than 0.3 times in the job title” is the same as “The word
‘research’ appears more than 0.6 times in the job title”. For this reason, we concluded that
there is little gain from using Extra Tree classifier, and decided to use Random Forest

classifier.

Our preferred random forest approach (along with the others) is a supervised machine
learning algorithm. Thus, it requires a “gold standard” to train the algorithm. Once
trained, the algorithm can generate estimates for other samples. In our case, our “gold
standard” comes from occupations that have been manually assigned for each university.
Although we recognize the potential for human error, we refer to these as the “true”
classes. Because we have data on eight institutions, throughout our analysis we estimate
our models eight times—holding out data from one university, one at a time, for testing—
and use data from the remaining seven universities for training. Thus, for a given set of

tuning parameters (discussed below), we grow eight separate random forests, each using
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data from one university for testing the accuracy of the forest and using data from the

other seven universities for training the random forest.

In our analysis, we used the predictive accuracy as a measure of performance. Formally,

the accuracy is defined as

#(predicted class = true class)

Accuracy =
Y # total observations

Random forests have three main tuning parameters: 1) the total number of features
supplied to the random forest, 2) the number of features to be considered at each node of
the tree, and 3) the number of trees grown in the forest (i.e., the number of samples
randomly selected to build a decision tree). The tradeoff of including more features
overall is between having more features to improve prediction and overfitting because of
idiosyncratic relationships that may be present in the data. We filter out noise in the
sample by pre-selecting the features to avoid overfitting idiosyncratic relationships that
may be present in the sample. The total number of features used in the random forest
controls the amount of noise to avoid overfitting. The number of features that the random
forest can choose between at each stage controls the variability of the trees: the smaller
the set of features to be considered, the more variable the trees become because there is
more randomness in the selection of the feature. In the extreme case where only one
feature is considered at each split, the selection of feature is totally random (i.e.,

whichever feature is selected becomes the one used for branching).
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All analyses were done in Python and the construction of random forests was done using
the Scikit-learn package (23).® The package is heavily used by social scientists because,
as the authors note, it is a Python module that integrates

“a wide range of state-of-the-art machine learning algorithms for medium-scale
supervised and unsupervised problems. This package focuses on bringing machine
learning to non-specialists using a general-purpose high-level language. Emphasis is

put on ease of use, performance, documentation, and API consistency. It has minimal
dependencies and is distributed under the simplified BSD license, encouraging its use in
both academic and commercial settings. Source code, binaries, and documentation can be

downloaded from http://scikit-learn.sourceforge.net” (p2826 (23)).

The RandomForestClassifier module of the Scikit-learn package allows the users to
change the parameters mentioned above. To determine the total number of features
supplied to the random forest, we fit a decision tree, for each training set, using all 1-
grams and 2-grams that appeared in the job titles. Then, the feature importance score was
calculated, and the features with the highest importance scores were selected, varying the
score cutoff. The total number of features that were fed into the model varied depending
on which university was reserved for testing, but was roughly 50, 100, 200, 500, and
7000, where 7000 is the total number of 1-grams and 2-grams appearing in the job titles

in the training set and 500 is the number of features that had a strictly positive importance

8 The work was performed at the UCLA Federal Statistical Research Data Center (RDC). The RDC
compute nodes were IBM HS22V blade servers. Each had 12 CPU cores (24 with hyper-threading enabled)
and 288GB of memory. The version of Scikit-learn that is used in the Census Bureau’s researchl machine
is 0.18.1; we believe that is the same version that was used for this work.
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score. We also varied the number of features considered at each split (default is the
square root of the total number of features supplied to the random forest). Finally, we
varied the number of trees grown in the forest, in increments of 100, between 100 and

1,000.

In determining the optimal parameter setting, we considered both unweighted and
weighted accuracy. The unweighted accuracy was computed treating each job title as one
observation — no matter how many employees have that job title, the title receives a
weight of 1. The weighted accuracy was computed treating each individual as one
observation; equivalently, job titles were assigned a weight equal to the number of
employees that have that job title. The most important tuning parameter for determining
classification accuracy was the total number of features provided to the random forest
(which is implicitly determined by the importance score cutoff). The fraction of features
to be considered at each node and the number of trees grown had a minimal effect on the
accuracy. Based on the overall weighted and unweighted accuracy, the optimal parameter
setting limits the number of features supplied to the random forest to about 200 and uses
the default setting of the square root of the total number of features to be considered at

each node.

FIGURE 3 GOES HERE

Figure 3 shows the accuracy (proportion of correct prediction) for each level of predicted

probability (the probability share of the predicted occupation indicated by the posterior
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distribution returned by the algorithm). The overall accuracy varied from 60% to nearly
100% regardless of whether the data are weighted by number of job titles or individuals’.
Although random forests can potentially increase the efficiency of occupational
classification, an average accuracy of about 80% may not be high enough to justify a total
replacement of manual classification by automated machine-learning algorithms. These
results reinforce our belief that the predicted probability and the number of individuals

that hold a job title should be jointly used to identify job titles for manual review.

We see two (potentially complementary) roles for machine learning in occupation coding
and other similar bucketing tasks. One approach is to use an algorithmic approach to
classify uncommon job titles. Such cases are (by construction) plentiful and have a
relatively small effect on the overall accuracy of the classification. The second role is to
accept only predictions with concentrated probability mass at one class. In other words,
to adopt the prediction only when the random forest classifier is “confident”. Obviously,
these two approaches could be combined—defining “isoquants” over the size and
accuracy to trigger manual review. In this approach only relatively large, uncertain job

titles would be reviewed manually.

Robustness
We explored a wide range of modifications of our basic approach to try to obtain
performance improvements. Here, we outline the analyses we performed and their main

results. Appendix II provides details on both the analyses and their results.

° Unweighted accuracy is the proportion of job titles whose predicted class matched the true class. For
weighted accuracy, the number of employees for the job title is used as a weight.
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For the eight universities used in the above analyses, the number of employees ranged
roughly from 5,000 to 20,000. When we train the random forest classifier on seven
universities, it is possible that the shape of a tree is heavily influenced by a few
universities in the training set with a large number of employees. To investigate this
possibility, the training set was modified so that universities in the training set have
roughly equal numbers of employees. The modifications were made in two ways:
inflating and deflating. As Section A in Appendix II shows, there was no significant

change in the accuracy with these modifications.

The number of employees per job title ranged from 1 to nearly 10,000 for the eight
universities, with the average being 24.4 employees per title. Concerned that the titles in
the training set are “too noisy”, we investigated the effect of dropping thin titles (varying
the threshold at which a title is flagged as “thin” from 5 to 50 employees) from the
training set. We recorded the average predictive accuracy for titles with different
numbers of employees. Again, there was no significant change in the accuracy with these

modifications. These results are discussed in Section B of Appendix II.

We observed that some titles that could be easily classified manually like “Graduate
Assistant” are not always correctly classified by our random forest. This appears to be
caused by the existence of “extraneous” information in some job titles. To address this
issue, we applied partially unsupervised learning. In particular, titles that (after applying

the job cleaning algorithm outlined in the appendix) contain the words “faculty”,



26

Y13 b AN1Y

“professor”, “postgraduate”, “graduate” or “undergraduate” were classified first and then
the random forest classifier was applied to the remaining titles (both the training set and
the test set consist of titles that do not contain any of the words listed above). The effect
of this partially unsupervised learning on the predictive accuracy is small, with our
classification for some universities improving and others degrading. See Section C of

Appendix II for details.

Census Bureau links permitted us to examine whether having information on individuals’
age and earnings increased the quality of prediction. These variables would appear to be
valuable predictors, especially in this context because of the large differences in ages and
earning across occupations. As shown in Table A4, there is some gain, but it is not
extraordinarily high across the board. The largest gains, by far, are for undergraduates

when occupations are weighted by the number of people in them. '’

As indicated in the previous sections, people can hold multiple titles at a point in time (or
in close succession) and can transition between titles. As some transitions are more
common than others (i.e., transitions from undergraduate to graduate and/or from
graduate to postgraduate and/or from postgraduate to faculty are more common than the
reverse transitions), it is possible to use transitions between titles and concurrent titles
(more precisely, occupational classes that are associated with these titles) as predictors in

the random forest classifier to improve predictive accuracy. Transitional and concurrent

10 Because there are considerably more staff members than undergraduates overall, there is a tendency for
the random forest to misclassify undergraduates as staff.
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titles can also be used to identify unlikely transitions in the “ground-truth” data,
providing an opportunity for a revision. Beyond improving the accuracy of the data,
exploring concurrent positions and transitions can add to the richness of our data by
providing information on career paths. Section D of Appendix II provides details of this

analysis.

Using concurrent job titles and the transitions between job titles involves some form of
iterative procedure. Appendix II details a number of issues related to using transitions and
concurrent titles. As a first step toward incorporating transitional and concurrent classes
into the random forest classifiers, we included the manually classified transitional and
concurrent classes in our training data in the model rather than predicted occupations.

The resulting predictive accuracy is expected to provide an upper bound for the accuracy
obtained from the iterated procedure described in Appendix II. Overall, the use of
concurrent titles and transitions across titles has little effect on overall accuracy. In our
analysis, no university exhibited a clear pattern on the effect of including

transitional/concurrent class as predictors.

Limitation of Machine-Learning Algorithms

Laying aside the issue of developing a classification system, we have discussed four
challenges to manual classification. Beyond these issues associated with manually
classifying occupations, comparing the predictions made by the random forest and the
true class pointed to two possible causes of misclassification. One is unavoidable

misclassification, which results from variation in the training data. The other is avoidable
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misclassification, which results from the inherent limitations of the random forest

classifier.

The first type of misclassification is unavoidable because it arises from the limits of
manual classification already discussed, such as job titles that have multiple
classifications over universities. This type of inaccuracy cannot be overcome by any
classifier: resolution of misclassification requires familiarity with job titling convention at
each university. It should also be noted that modifiers can change the classification of a
job title within a university. For example, “director” and “associate director” may not

belong to the same category within a university.

The second type of misclassification is avoidable. Avoidable misclassifications are due to
the limitations of the random forest classifier. Below are examples of misclassified job
titles along with the prediction made by the random forest, followed by the true class in
parentheses.

e Undergraduate fellow = graduate (undergraduate)

e Temporary visiting faculty = staff/other (faculty)

e Teaching assistant = staff/other (graduate)

e Summer term ra (w/o tuit ben) > staff/other (graduate)

e GR AST % > staff/other (graduate)

The first two examples illustrate the tendency of the random forest classifier to rely too
much on certain words. The word “fellow” is strongly associated with graduate student.

Thus, if “fellow” is selected as a branching rule before “undergraduate”, the job title
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“undergraduate fellow” will be buried in a node that is predominantly graduate students.
Similarly, the word “temporary” is often associated with a staff member and almost never
used for faculty. The partially supervised machine learning algorithm described in the

previous section is intended to address these issues.

The third example illustrates failure to utilize very informative words or phrases. The
presence of the phrase “teaching assistant” in a job title is a good indicator of the
employee being a graduate student. However, the absence of the phrase “teaching
assistant” in the job title is not a good indicator of the employee not being a graduate
student (i.e., there are many graduate students who are not teaching assistants). Thus,
when the phrase “teaching assistant” is used for branching, the resulting decrease in the
impurity of the succeeding node is negligible. Since the random forest classifier selects
the feature that minimizes the weighted average of impurities at succeeding nodes, the

phrase “teaching assistant” is unlikely to be selected.

The last two examples illustrate inability of the random forest classifier to use outside
knowledge. A human classifier can infer “w/o tuit ben” means “without tuition benefit”
and conclude that the job title is associated with a student. Similarly, “1/2” suggests that
the person has a half-time appointment, and therefore is likely to be a student. Thus, one
may infer that “gr ast” means “graduate assistant”. As seen in the previous example, these
phrases are extremely informative; however, because of their rare occurrence and
applicability to only a small fraction of employees, these pieces of information tend to be

overlooked by the random forest classifier.
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In theory, the misclassifications described above might be reduced by providing more
training data, adjusting parameters, appealing to other machine-learning algorithms, or

reverting to manual classification.

VII.  Conclusions

This paper used a rich dataset—to our knowledge, the first dataset with detailed job titles
drawn from HR systems from multiple organizations, combined with job descriptions and
information about the characteristics of workers—to examine the potential to use
machine-learning techniques for occupational classification. We followed the same
conceptual framework as that applied by survey methodologists: to define each
occupation, to translate concepts to standardized protocols, and to build an approach that
would infer occupations from the information at hand. Even though the data were drawn
from very similar organizations, with very similar production functions, we found that

machine-learning approaches were not substantially better than manual classifications.

However, we do see the analysis as showing real promise for identifying occupations
from job titles combined with a machine-learning approach. The most promising use of
the machine learning is that it is an inexpensive way of assigning occupations for job
titles that have relatively few people in them and/or for which the algorithm imputes a
high degree of accuracy. Because many job titles have only a few people in them, this
approach could yield substantial cost savings (almost 80% of job titles have 10 or fewer
people). At the same time, an entirely algorithmic approach would be unwarranted in our

case.
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We also believe that a deeper text analysis of the job descriptions associated with job
titles might prove to be a promising approach. Job descriptions typically include
information about necessary experience, skills, and education, which is not only of

interest in its own right but could be very useful for classification purposes.

We note that the focus on universities as a subject of analysis has weaknesses and
strengths. Major research universities are very large and complicated institutions. There
may be other industries in which it might be easier to apply machine learning to job titles.
At the same time, the institutions in our sample all come from one narrow sector of the
economy; they are relatively homogeneous and the data are based on a very specific set
of activities (research). We speculate that any classification system for the broader

economy would have to be specific to an individual sector or set of sectors.
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X. Tables

Table 1. Number of employees paid by research grant by occupation.

All universities Big universities Small universities
Occupation
Total Average Average

Faculty 16,000 2,600 1,500
Graduate 17,000 3,100 1,200
Staff / Other 29,000 4,700 2,600
Postdoc 6,900 1,100 650
Undergrad 9,700 2,000 450
Total 79,000 13,000 6,400

Note. The table shows the number of employees paid by research grants at all

36

universities in our data and those with more than and fewer than the median number of

person-year pairs. Numbers are rounded for disclosure protection reasons.
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Table 2. Variation in the volume and size of job titles across universities.

All Universities with | Universities with

universities | coarse job titles detailed job titles
Total number of job titles
(across universities) 3,200 1,100 2,200
Total number of employees
(across universities) 79,000 48,000 31,000
Average # employees per
title (at each university) 24.4 44 .4 14.5
1 employee 25% 16% 30%
2-10 employees 54% 52% 55%
11-100 employees 17% 26% 13%
>100 employees 4% 7% 2%

Note. The table shows the distribution of the number of employees per title at all

universities in our data, the four universities with the smallest, and the four universities

with the largest numbers of employees per job title.
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XI. Figure Captions

Figure 1. Classification System.

Figure 2. Example of a decision tree. Each node has a keyword indicated at the top of the
box. All observations that have the keyword in their job titles follow the right branch,
while observations without the keyword follow the left branch. When an observation
reaches a terminal node like the one at the bottom right, the class of the node becomes the

predicted class for the observation.

Figure 3: Classification Accuracy relative to Predicted Probability. The figure shows the
probability that an occupation was correctly coded as a function of the probability that the
algorithm predicts it was correctly coded. The unweighted series treats job titles as the

unit of observation. The weighted series treats individuals as the unit of observation.
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Appendix I

1. Detailed Description of Occupations
This section lays out the occupation categories that we use, their conceptual definition,
and some illustrative job titles. The aggregate occupations are listed first. Staff are

subdivided into additional categories, which are laid out below.

1. Faculty
All advanced academic employees who are directly involved in scientific research and/or
scientific instruction. These included Deans, Provosts, Tenure/tenure track, Clinical,

Research, Visiting Professors, Academic specialists, Center directors.

2. Post Graduate Research
All individuals holding terminal degrees (PhD, MD) who are in temporary training status.
These included Postdoctoral, Medical residents/interns/fellows, Clinical fellowships,

Research Associates (depends on the university).

3. Graduate Student
Students earning advanced degrees: Graduate students (part time, full time),

Medical/dental/nursing/students, Research Assistants.

4. Undergraduate
Students earning baccalaureate/other degrees including full time, part time, summer

research assistants, work study; includes high school students who would likely be acting
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in a similar capacity. These included Undergraduate students, High school students,

Interns/student workers, Nursing students in BA programs.

5. Staff / Other (Not Elsewhere Classified)
Positions that support general university functions such as undergraduate education and
student activities. Employees whose titles cannot be attributed to the scientific research
enterprise. These included at the aggregate level: Staff Instructional, Research, Research
Facilitation, Technician, Clinical, Other Staff. The disaggregated staff categories include

the following:

5.1 Clinical Staff: All non-faculty health care professionals, Nurses (non-faculty),
Dieticians (non-faculty), Nutritionists, Social workers, Physical therapists, Clinical
psychologists, Dental hygienists, Genetics counselors.

5.2 Instructional Academic Specialists: Lecturers, Instructors, Adjunct Professors.

5.3 Research Facilitation: Non-faculty, high level administrators — asst. dean/asst.
provost, associate or assistant center director, Operations managers/managing
directors, Administrative/clerical staff — any kind, Finance staff, Regulatory staff,
Clinical or clinical research support staff, Laboratory aide, Data
collection/interviewer, Media jobs: Graphics/writer/editor/communications, Grants
management & administration, Individuals who serve as managers/
coordinators/facilitators for laboratory studies/clinical trials/large facilities/research
programs (they direct and influence scientific research activity from the level of the

laboratory up to the level of the university/research center), Research
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dean/provost/administrator, Facility director/administrator, Clinical research
administrator, Study coordinators, [ACUC coordinators, Clinical trials/research
coordinator, Project/Program manager/coordinator, Lab coordinator (not lab
manager), Facility/repository manager/coordinator.

5.4 Research Staff: Work likely focuses on scientific aspects of research. All advanced
degree qualified, non-faculty scientists and engineers; Research specialist/engineer:
Work likely focuses on advanced research analysis; Research professional/specialist;
Statistician, bioinformaticist; Research associate (depends on the university); Skilled
and specialized employees who have been specifically trained in some area of science
& technology; Science Technicians: All technical staff including animal technicians,
machinists, mechanics (the category usually includes some reference to a research
facility along with the title ‘technician’); Lab manager ; Medical or clinical
technician; Research data technician; Regulatory officer (environmental, chemical
safety, industrial hygienist); Technical engineer.

5.5 Technician: Administrative and technical employees who are not specifically
employed for scientific research purposes but perform job tasks that support the
research enterprise; Information technology managers & staff; Software engineer;
Data entry/data analyst; Network and systems support.

5.6 Staff Other All other research staff that do not clearly fall into another category.

2. Normalization
We developed a rule-based job title cleaning algorithm. In particular, we created a

mapping from abbreviation to normalized word. For example, “grad” is mapped to
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“graduate” and “mngr” is mapped to “manager”. The list of abbreviations and possible
normalized words were obtained from job titles from eight universities in the

UMETRICS dataset, and mappings were created manually.

Abbreviations with multiple possible normalizations were noted (e.g., “res” can be an
abbreviation for “research” or “respiratory’; “ast” can be an abbreviation for “assistant”
or “astronomy”’). Then context-specific normalization (i.e., normalization of phrases) was
attempted. For example, both “res” and “ast” are ambiguous abbreviations; however,
when they are combined, one can infer “res ast” is an abbreviation for “research

assistant”. Normalizing rules for phrases were manually generalized using regular

expressions.

When an abbreviation could represent either a person or a field (or an object) that are
closely related, we chose the field in general. For example, “scien”, “enginee”, and
“crimnl” were normalized to science, engineering, and criminology, instead of scientist,
engineer, and criminologist, respectively. The reason is that it seems more harmful to
label non-engineers in engineering departments an “engineer” than to label an engineer
“engineering”. When an abbreviation is strongly associated with an occupation, however,
we normalized it to represent a person. For example, “lect” and “consul” were
normalized to lecturer and consultant instead of lecture and consulting, respectively.

These are somewhat ad-hoc rules, but these abbreviations are few, and we expect they

have a negligible effect on the performance of machine learning algorithms.
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When creating the normalization mapping, we preserved common acronyms such as
“CSE” for Computer Science and Engineering and “MRI” for magnetic resonance
imaging. We expect normalizing these terms has a minimal impact on the predictive
accuracy because they identify the fields employees work in but contain little information

on tasks they perform.

At the same time the mapping was created, omissions of spaces were noted and a
decomposition mapping was created. For example, we encountered job titles such as
“rsrchanalyst”, which was added to the decomposition mapping along with the correction
“rsrch analyst”. Common stems in compounds, such as bio in biochemistry and neuro in

neurosurgery, were not decomposed and compounds were treated like words.

Finally, on the normalization list, we had some abbreviations that are only two letters
long. For example, we left “IT” as it is, assuming that it represents Information
Technology. However, these could be an abbreviation of some other words or phrases. In
our data, we did not find any instances where there was a more suitable normalization,
but researchers should be aware that too much guessing when standardizing could

introduce more noise than it eliminates.

Aside from working out the details, the major problem with the above described
normalization algorithm is that the mapping is not comprehensive. For example,

“research” may be mapped from “resear”, “rsrch”, and “resch”, but if there is no mapping

from “resech” to “research”, “resech” will remain abbreviated. By comparing manually
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normalized job titles and normalization returned by the algorithm, we identified
normalizations that were not captured by the normalization mapping, and iteratively
revised our normalization mapping. We also wrote regular expressions to normalize
words that frequently appear in our data such as “research”, “postdoctoral”, and

“administrator”.

3. Coding decisions
There are also some methodological issues of interest. First, we designed our
classification to increase certainty: grouping workers whose jobs were so similar that it
would be hard to separate them based on job titles (and for whom the value of
distinguishing occupations has the least value). Second, we employed a two-level system,
where the first-level occupation can frequently be assigned with a high degree of
certainty, and much of the uncertainty appears at the second level. Third, we assigned up
to two occupations to each job title to allow researchers to probe the sensitivity of results.
Fourth, we rated job titles based on the degree of certainty that they were correctly

classified on a scale of 1-5. Our coding system was:

(5) The job title serves as an immediate identifier into this classification category
or, through research, it is almost certain that it belongs in this category: e.g. Post Doctoral

Researcher; Computer Technician.

(4) The job title probably belongs in the category indicated, as supplemented by

research on university website.
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(3) The job title belongs in the category (either aggregate or disaggregate) with

moderate certainty (either very indicative job title or research result, but not both).

(2) The job title is vague and/or ambiguous, but there is some indication that the

position belongs in this category.

(1) The job title may belong in this category, but there is little certainty, and the

classification cannot be verified through research.

After manual classification, universities were given the opportunity to review and
comment on the classification, with their attention drawn to the largest and most

ambiguous titles.

Appendix 11

A. Different Numbers of Employees
For the eight universities used in the above analyses, the number of employees ranged
roughly from 5,000 to 20,000. When we train the random forest classifier on seven
universities, it is possible that the shape of a tree is heavily influenced by a few
universities in the training set with a large number of employees. To investigate this
possibility, the training set was modified so that universities in the training set have
roughly equal numbers of employees. The modifications were made in two ways:

inflating and deflating.

(1) Inflating
Let

Nu:=number of employees at university u for job title ¢, and
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N. = number of employees at university u.
Then the modified number of employees is

max{N,,}
v

N, '’

Nu,t = Nu,t X

rounded to the nearest integer. For example, if university X has a total of 16,000
employees and if the largest university in the training set has a total of 20,000 employees,
the number of employees for each title at university X is multiplied by 1.25 and rounded
to the nearest integer. If a title has 3 employees, the inflated number of employees is

1.25 x 3 =3.75, so it will be rounded to 4.

(2) Deflating

Instead of scaling up the number of employees to the level of the largest university in the
training set, deflating scales down the number of employees to the level of the smallest
university:

min{N,}
v
Ny

Nu,t = Nu,t X

For example, if university X has a total of 20,000 employees and if the smallest
university in the training set has a total of 5,000 employees, the number of employees for
each title at university X is multiplied by 0.25 and rounded to the nearest integer. If a title
has 10 employees, the deflated number of employees is 10 x 0.25 = 2.5, so it will be
rounded to 3. If a title has 1 employee, the deflated number of employees is

1 X 0.25 =0.25, so it will be rounded to 0. In other words, the title will be dropped from

the training set.



Results

As evident in Table A1, inflating and deflating the number of employees in the training
set has no meaningful effect on the unweighted accuracy. There is a little improvement in
the weighted accuracy for big universities when the number of employees in the training
set is deflated. One possible explanation is that deflating reduces the noise in the training

data because uncommon job titles are dropped from the training set due to rounding if the

deflated number of employees is less than 0.5.

Table Al. Accuracy when total weight is balanced across universities

Size of university Weight | Benchmark | Inflating | Deflating

All universities unweighted 0.83 0.83 0.82
Big universities unweighted 0.87 0.86 0.86
Small universities unweighted 0.80 0.80 0.79
All universities weighted 0.84 0.82 0.85
Big universities weighted 0.83 0.82 0.86
Small universities weighted 0.84 0.82 0.82

B. Discarding Thin Titles

The number of employees per job title ranged from 1 to nearly 10,000 for the eight

universities, with the average being 24.4 employees per title. Concerned that the sparsely

populated titles in the training set are particularly “noisy”, we investigated the effect of

dropping thin titles from the training set. The question we tried to answer is “Do thin
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titles negatively affect the learning and consequently degrade the performance of

predicting for heavily populated titles?”

For each university, we used the remaining seven universities for training and discarded
the titles with fewer than a certain number of employees in them from the training set.
We used the threshold of 5, 25, and 50 employees per title. Then we recorded the average
predictive accuracy for titles grouped by the number of employees per title: 1-4
employees, 5-24 employees, 25-49 employees, 50-99 employees, 100499 employees,
500-999 employees, and 1000+ employees. The idea is that dropping titles that have
fewer than a certain number of employees from the training set may have different effects

on the prediction accuracy for thin titles and for heavily populated titles.

Results

The resulting prediction accuracies are shown in Table A2. Cutoff = 0 corresponds to the
benchmark, where all job titles are included in the training set. As the cutoff value
increases, more and more job titles are excluded from the training data. There is a small
decrease in accuracy caused by discarding uncommon titles for job titles that are
relatively thin. In contrast, the accuracy improves as the cutoff increases for job titles
with 1000 or more employees. This is expected because highly populated job titles tend
to have simple, straightforward descriptions and therefore do not benefit from
infrequently used features brought to the training set by uncommon job titles. Indeed,

excluding uncommon job titles from the training set makes the training set less noisy,



allowing the random forest classifier to construct better decision trees with a high

predictive accuracy.

Table A2. Accuracy when thin titles are discarded from the training set

Size of Cutoff = Cutoff =
Title Weight Cutoff=0 Cutoff=15 25 50

<5 unweighted 0.81 0.81 0.82 0.80
5-24 unweighted 0.84 0.84 0.84 0.82
25-49 unweighted 0.91 0.91 0.91 0.89
50-99 unweighted 0.88 0.87 0.86 0.84
100-499 unweighted 0.82 0.82 0.85 0.82
500-999 unweighted 0.88 0.88 0.88 0.88
>=1000 unweighted 0.75 0.83 0.92 0.92
<5 weighted 0.82 0.82 0.83 0.81
5-24 weighted 0.83 0.83 0.83 0.81
25-49 weighted 0.92 0.91 0.92 0.89
50-99 weighted 0.88 0.87 0.86 0.84
100-499 weighted 0.80 0.79 0.82 0.80
500-999 weighted 0.90 0.90 0.90 0.90
>=1000 weighted 0.79 0.85 0.93 0.93

C. Partially Unsupervised Learning
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After observing that titles like “Graduate Assistant” are not always correctly classified,
we applied partially unsupervised learning. The incorrect classification appears to happen
because of “extraneous” information in some job titles. In particular, titles that contain

P19

the word (after applying the job cleaning algorithm) “faculty”, “professor”,
“postgraduate”, “postdoctoral”, “graduate” or “undergraduate” were classified first and

then the random forest was applied to the remaining titles (both the training set and the

test set consist of titles that do not contain any of the words listed above).

The resulting accuracies are shown in Table A3. There is no real difference in the
unweighted accuracy between the supervised learning benchmark and partially
unsupervised learning. Contrary to our expectation, the weighted accuracy deteriorated
for the universities with granular job titles, while it improved for the universities with
coarse job titles. This suggests a possibility of overfitting; in the absence of very
important features such as “faculty” and “undergraduate”, less important features appear
to be more important than they actually are. One possible solution is to recalibrate the

parameters to filter out marginally informative features.

Table A3. Accuracy using Partially Supervised Learning

University weight benchmark | partially unsupervised
all universities unweighted 0.83 0.83
universities with coarse job titles | unweighted 0.90 0.91

universities with granular job titles | unweighted 0.79 0.79
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all universities weighted 0.83 0.84
universities with coarse job titles | weighted 0.82 0.86
universities with granular job titles | weighted 0.84 0.81

D. Using Age and Wage Data

Census Bureau links permitted us to examine whether or not having information on
individuals’ age and earnings increased the quality of prediction. These variables would
appear to be valuable predictors, especially in this context because of the large
differences in ages and earning across occupations. As shown in Table A4, there is some
gain, but it is not extraordinarily high across the board. The largest gains, by far, are for
undergraduates when occupations are weighted by the number of people in them. The
benchmark analysis shows the predictive accuracy for all individuals whose true
occupation falls in the occupation indicated in the row heading. The column headed “age
and wage” shows the predictive accuracy for individuals for whom we have age and
wage information (i.e., subset of the benchmark population). For this subset of population,
the “age” column shows the accuracy when age is used along with job title for prediction;
the “wage” column shows the accuracy when wage is used along with job title for
prediction; the “age and wage” column shows the accuracy when both age and wage are

used along with job titles for prediction.

One interesting observation is that the predictive accuracy increases drastically for
graduate students with age and wage information. This may be because common jobs
titles like teaching assistant are associated with more standardized hiring procedures that

increase the chance of students’ information being stored in a more organized way on the
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university system. This effect, however, disappears when the job titles are not weighted

by the number of employees associated with that job title (the bottom half of the table).

This could be due to idiosyncratic job titles and associated non-standardized hiring

Processces.

The table also shows that correctly classifying undergraduate students is particularly

difficult even with the information on age and wage. This is probably due to

heterogeneity within the undergraduate researcher body: there are traditional students

straight out of high school as well as adult students, who are often employed.

Table A4. Accuracy using age and wage data

Fraction of individuals whose predicted class matches the true class by true class

Actual Benchmark | Sample with | Using Age Using Wage Using Age and
Occupation Age & Wage | Data Data Wage Data
Data

Faculty 0.81 0.87 0.88 0.88 0.89
Graduate 0.09 0.73 0.73 0.73 0.73
Staft / Other 0.97 0.96 0.96 0.94 0.94
Postdoc 0.87 0.57 0.63 0.70 0.63
Undergrad 0.23 0.17 0.36 0.39 0.37
Overall 0.65 0.82 0.84 0.84 0.84

Fraction of job titles whose

mode of predicted classes matches the true class by true class

Faculty

0.81

0.90

0.90

0.92

0.92

Graduate

0.09

0.13

0.12

0.12

0.12
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Staft / Other 0.97 0.95 0.97 0.95 0.96
Postdoc 0.87 0.85 0.87 0.86 0.86
Undergrad 0.23 0.10 0.08 0.10 0.09
Overall 0.65 0.78 0.79 0.79 0.79

E. Transitional and Concurrent Titles

As indicated, people can hold multiple titles at a point in time (or in close succession) and
can transition between titles. As some transitions are more common than others (i.e., a
transition from undergraduate to graduate to postgraduate to faculty is more common

than the reverse set of transitions), it is possible to use transitions between titles and
concurrent titles (more precisely, occupational classes that are associated with these titles)
as predictors in the random forest classifier to improve predictive accuracy. Transitional
and concurrent titles can also be used to identify unlikely transitions in the “ground-truth”
data, providing an opportunity for a revision. Beyond improving the accuracy of the data,
exploring concurrent positions and transitions can add to the richness of our data by

providing information on career paths.

Using concurrent job titles and the transitions between job titles requires some form of
iterative procedure. Obviously, the complete mapping between the set of job titles to
itself is too high dimensional to be of any practical use. Thus, we use the following
approach. In the first iteration, we predict occupational class using only job titles as

predictors. In the second iteration, the predicted classes of the transitional/concurrent
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titles from the first iteration are used as predictors, along with the job titles. In principle,

this process could be iterated until the prediction converges according to some criterion.

The example below, where an individual held three job titles in sequence, illustrates our

approach.

Table A6. Illustration of iterative procedure using transitions

First [teration:

Job Title Preceding Concurrent Succeeding
Prediction
Class Class Class
Student Help - Staff
Research Assistant - - Undergraduate
Postdoctoral
- Postgraduate
Researcher
Second Iteration:
Job Title Preceding Concurrent Succeeding New
Class Class Class Prediction
Student Help Undergraduate | Undergraduate
Research
Staff Postgraduate Graduate
Assistant
Postdoctoral
Undergraduate Postgraduate

Researcher
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Third Iteration:
Job Title Preceding Concurrent Succeeding New
Class Class Class Prediction
Student Help Graduate Undergraduate
Research
Undergraduate Postgraduate Graduate
Assistant
Postdoctoral
Graduate Postgraduate
Researcher

In this example, “postdoctoral researcher” is pivotal. Because the job title is so
informative, its predicted class during the second iteration is not affected by the wrong
prediction for the preceding title (i.e., it is unlikely to transition directly from
undergraduate to postgraduate, but it is even more unlikely for a non-postgraduate

student to have a job title “postdoctoral researcher”).

Of course, the time gap between the consecutive titles should also be taken into account.
For the above example, if the time gap between “research assistant” and “postdoctoral
researcher” is more than several years, the initial prediction of undergraduate for the job
title “research assistant” may be more appropriate than the revised prediction of graduate.
Here, we do not leverage the time gap between job titles in the model, but do include age,

which contains somewhat similar information regarding the timing of job titles.
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One issue with the iterated prediction procedure is that the convergence is not guaranteed,

especially when there is no pivotal job title. For example, consider the following

individual who held two job titles simultaneously.

Table A7 — Illustration of iterative procedure to use concurrent titles

First [teration:

Job Title Preceding Concurrent Succeeding
Prediction
Class Class Class
Tutor - Graduate
Grader - Undergraduate
Second Iteration:
Job Title Preceding Concurrent Succeeding
Prediction
Class Class Class
Tutor Undergraduate Undergraduate
Grader Graduate Graduate
Third Iteration:
Job Title Preceding Concurrent Succeeding
Prediction
Class Class Class
Tutor Graduate Graduate
Grader Undergraduate Undergraduate
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Because we cannot say whether a tutor or a grader is definitely an undergraduate or
graduate, it is possible that, when making a revised prediction, the random forest
classifier will simply adopt the classification for the concurrent title predicted in the
previous iteration. As a result, the prediction will flip-flop and the algorithm will never
stop. Of course, the presence of other people in these occupations mitigates this problem

at least to some extent.

Data Construction

As a first step toward incorporating transitional and concurrent classes in the random
forest classifiers, we included the manually classified transitional and concurrent classes
in our training data in the model rather than predicted occupations. The resulting
predictive accuracy is expected to provide an upper bound for the accuracy obtained from

the iterated procedure described above.

To construct our sample, the monthly transaction records were collapsed at the
individual-title-year level. That is, for each individual, for each calendar year, for each
job title held during the year, we kept the individual-title-year record if the individual
appeared in the transaction record both before July 1 and after September 30 with the job
title. This is to avoid potential noise in the data when annual income is merged. Suppose
an undergraduate student held a research assistant position from January through June.
Then he or she graduated and obtained a full-time job. If the individual was included in
our sample, it would appear that the annual income of the individual is too high to be an

undergraduate, and it can potentially mislead the random forest classifier.
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The concurrent job titles are defined to be a group of job titles that were held by an
individual within a year. When there were multiple concurrent job titles, we selected the
one for which the individual was paid the longest. The preceding job title is defined to be
a job title held by an individual in the years preceding the current year. When there were
multiple preceding job titles, we selected the most recent one. The succeeding job title is
defined to be a job title held by an individual in the years succeeding the current year.
When there were multiple succeeding job titles, we selected the one that immediately
followed the current job title. Because we restricted our sample to individuals appearing
in the transaction data between 2012 and 2014, the occurrence of multiple concurrent or

transitional job titles was rare.

Before fitting the random forest classifier, transitional and concurrent classes were
binarized because the random forest classifier cannot process categorical data. Each of
preceding, concurrent, and succeeding class variables was decomposed into five indicator

variables (faculty, postgraduate, graduate, undergraduate, and staff/other).

Methodology

To properly measure the effect of including transitional/concurrent classes on the
predictive accuracy, we created the following subsets of observations:
e Everyone: Every observation

e None: Observations without any transitional or concurrent titles
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e Prec: Observations with preceding title (may or may not have succeeding or
concurrent titles)

e Succ: Observations with succeeding title (may or may not have preceding or
concurrent titles)

e Conc: Observations with concurrent title (may or may not have preceding or
succeeding titles)

e Any: Observations with at least one of preceding, succeeding, or concurrent title

(can have multiple)

We expect that inclusion of transitional/concurrent classes have no effect on occupations
where no observations have any transitional/concurrent classes while it will have the
largest effect on occupations with many cases with all of the three classes. Each of the six
subsets listed above served as a test set, and the random forest classifier was fitted with

and without transitional/concurrent classes as predictors.

Regarding the training set, it is unclear whether the set should be restricted in the same
way as the test set. Consider the test set “Prec”. On the one hand, it seems reasonable to
restrict the training set to only observations with preceding titles. This is because if
observations without preceding title were to be included in the training set, the
importance of the preceding class in predicting the current class may be discounted. On
the other hand, requiring observations in the training set to have preceding titles greatly

reduces the number of qualified observations, possibly leading to overfitting. Since the
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effect of restricting the training set is unclear, we fitted the random forest classifier with

and without restriction on the training set.

As shown in Table A8, including the concurrent and transitional occupation has minimal
effect on the predictive accuracy. This is most likely due to the limited number of
relevant observations in the training set; therefore, as more universities participate in the
IRIS project and provide data over a longer time period, the concurrent and transitional

occupation may become a useful predictor.



Table A8

Features Training Set Everyone | None | Prec | Succ | Conc | Any
Job title Unrestricted 0.83 0.83 0.82| 0.84| 0.83] 0.83
Job title and occupation | Unrestricted 0.82 0.82 0.83 | 0.85| 0.82| 0.84
Job title Restricted to relevant group 0.83 0.82 0.83 | 0.82| 0.86| 0.83
Job title and occupation | Restricted to relevant group 0.82 0.83 0.83 ] 0.85| 0.78| 0.83
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