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Characterizing people’s occupations is important for both policy and research. Because 

administrative records, rather than survey data, are increasingly being used to describe 

labor market activity, it will become important to find new low-cost approaches to 

describing occupations.  We apply new techniques—machine learning—to new sources 

of data to investigate the potential of using algorithms to classify occupations.  Our 

analysis of human resource data from large firms (universities) and the US Census 

Bureau shows that occupational classifications are inherently noisy; job titles by 

themselves have insufficient consistency across institutions to serve as the sole basis for 

the reliable assignment of occupations. We do find, however, that a large number of 

relatively sparsely populated job titles can be assigned algorithmically, which could 

greatly reduce cost with little impact on accuracy.  
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I. Introduction 

Characterizing the work that people do on their jobs is a long-standing and core issue in 

survey research. Traditionally, classification has been done manually, but there is an 

extensive body of literature on the associated challenges, well summarized in an 

influential paper by Mellow and Sider (1) and in a later paper by Mathiowetz (2). Many 

survey organizations are beginning to investigate the potential of using new 

computational tools to automatically classify workers’ occupations.  

At the same time, there has been a surge of interest in using administrative wage records 

to directly capture occupations in order to inform the design of training curricula and to 

permit deeper longitudinal analysis of career outcomes, the effects of training, and 

changes in inequality.  Senator Ronald Wyden’s amendment to the Border Security, 

Economic Opportunity, and Immigration Modernization Act (S.744, 113th Congress, 

2013) was supported by a broad range of unions and associations1. The Secretary of 

Labor’s congressionally mandated expert advisory group—the Workforce Information 

Advisory Council2—as well as its predecessor, the Workforce Information Council, 

produced reports in both 2018 and 2015 that strongly recommended the inclusion of 

occupations in wage records; the Secretary of Labor responded that was indeed a high 

priority (3,4).  In 2018, the United States Chamber of Commerce convened public and 

private organizations to report on ways to gather more granular job competency data 

from employers (5). 

                                                      

1 http://www.ifpte.org/downloads/news/manager/307c.pdf  

2 https://www.doleta.gov/wioa/wiac/  
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The potential is enormous. If it were possible to combine new computational tools and 

administrative wage records to generate an automated crosswalk between job titles and 

occupations, millions of dollars could be saved in labor costs, data processing could be 

sped up, data could become more consistent, and it might be possible to generate, without 

a lag, current information about the changing occupational composition of the labor 

market.   

This paper examines the potential to assign occupations to job titles contained in 

administrative data using automated, machine-learning approaches. Although there has 

been little research that directly ties firm-level human resource (HR) data on job titles to 

occupational classifications, there are intellectual foundations for occupational coding 

that are largely grounded in the survey world.  The first foundation is conceptual: to 

define each occupation.  The second is operational: to translate concepts to standardized 

protocols.  The third is statistical: to infer occupations from the information at hand.   The 

fourth pertains to resources: the implementation of such classifications on an extensive 

scale given the limited resources available.  More generally, we contribute to a much 

larger set of classification problems, which are increasing in salience with the availability 

of more transaction data.   It is important to understand which tools and approaches 

enable the new, rich, but unstructured data to be used, while minimizing the need for 

expensive and slow manual classification. For instance, our data also include information 

on the material, equipment, and supplies that are purchased on sponsored projects as well. 

We use a new extraordinarily rich and detailed set of data on transactional HR records of 

large firms (universities) in a relatively narrowly defined industry (public institutions of 

higher education) to identify the potential for machine-learning approaches to classify 



4 
 

occupations. This is, to our knowledge, the first large-scale dataset that draws from such 

HR records across multiple institutions.  These data have several advantages.  First, the 

institutions are relatively large and complex, and they use HR systems similar to those of 

other large and complex organizations in the rest of the economy. Second, the focus on 

one industry limits the number of possible occupational categories, permitting a targeted 

analysis.   Third, the focus on public universities is attractive because the HR descriptions 

associated with job titles are available online, and can be used to provide additional 

information for classification purposes. Finally, the industry is interesting in its own right. 

Indeed, the production of research often involves the use of intangible assets, particularly 

labor inputs, and accurate classification of those labor inputs is important for the 

measurement of scientific productivity. 

We build a training dataset from the HR records using human curation and additional rich 

data sources.  First, university staff and trained students manually assign occupations to 

job titles.  That manual curation is then enhanced with additional information from online 

job descriptions as well as Census Bureau micro-level information on demographic 

characteristics and earnings.  The data are then used to train machine learning models to 

predict occupations from job titles. Finally, the results are evaluated.  

While our results suggest that occupations can be assigned from job titles, they also point 

to real challenges. In particular, our analysis suggests that there are substantial limits to 

using machine learning to create discrete occupational categories, even with rich data 

sources.  There are two core problems.  The first is that occupational classifications are 

inherently noisy, so it is difficult to identify ground truth, particularly in a dynamic and 

changing economy.  The second is that job titles have insufficient consistency or detail 
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across institutions necessary for robust supervised machine learning.  We do find that a 

large number of relatively sparsely populated job titles—a quarter of the titles have only 

one employee, and over half have fewer than ten employees—could be assigned 

algorithmically, greatly reducing cost with little impact on accuracy.  

II. Background 

A major reason for developing occupational classifications is to provide an easy-to-

measure pathway from generally understood job activities to skill needs in the economy.  

The need to capture information on occupations to inform businesses, government 

agencies, students, and career counsellors about the levels, trends, and changes in skill 

needs is a continuing theme in national and local workforce policy (6). There are also 

academic reasons.  Occupational classification is deeply rooted in sociology (7), as 

intrinsic to the measurement of the sources of inequality, social stratification and class 

mobility. Occupational classification is also essential in economic analyses, describing 

structural changes caused by technological advancement, automation, globalization, and 

change in immigration laws (8).  

The current approach to occupational classifications is thorough and thoughtful, but quite 

costly.  In addition to cost, the measurement challenges of categorizing worker 

occupations on surveys are well known: they are notoriously noisy (2). In probably the 

best known analysis, Mellow and Sider find that only 83.3% of CPS respondents’ major 

(1-digit) occupations match their employer’s reports and that share falls to 59.7% for 

detailed (3-digit) occupations (these rates are considerably lower than those for industry 

of employment, at 93.1% and 85.4% for major and detailed industry) (1). Bound et al. 

find similar errors in their overview of measurement errors (9), as do Abraham and 
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Spletzer (10).  Fisher and Houseworth find that there is systematic inflation of 

occupations for lower-skilled individuals (11).   

As noted in the introduction, there has been high-level interest in requiring firms to report 

occupational data as part of their federal reporting requirements. Both the Workforce 

Information Advisory Council, an expert group formed to advise the Secretary of Labor, 

and its predecessor, the Workforce Information Council, recommended adding 

occupational classifications to unemployment insurance wage records (3,4). In the latter 

case the group surveyed forty-four states and territories, forty-seven national, state, and 

regional organizations (representing over 20 million data users in business, education, 

labor, policy development, economic research, and workforce preparation fields), and 

rated the need for capturing occupational information as one of the highest of their 

priorities.  The interest in using unemployment insurance wage records for decision-

making was also highlighted in the recent report by the Commission on Evidence Based 

Policy Making (12), and is certainly part of the focus of implementing the legislation that 

resulted from their recommendations (13). 

However, the cost of collecting occupational data manually might well be prohibitive—

the state of Texas surveyed businesses and estimated “that the initial cost to employers 

could range from $478 million to $1.2 billion, with annual recurring costs of $342 million 

to $715 million. Costs to the Texas Work Commission were estimated at $3.1 million in 

the first year, and a total five-year cost of $7.9 million to collect this data” (Texas 

Workforce Commission 2016, p. 17). 
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Machine learning has become part of the analytical toolkit used by social scientists to 

automate both classification and prediction tasks (15,16); it “develops algorithms 

designed to be applied to datasets, with the main areas of focus being prediction 

(regression), classification, and clustering or grouping tasks” (15).  A good overview can 

be found in the machine learning chapter by Rayid Ghani and Maltz Schierholz in our 

recent book (17).  In the particular context of occupational classifications, there have 

been  attempts to incorporate machine-learning methods by using open-ended survey 

questions to inform classifications (18, 19). These works found that automated coding 

was feasible if there is sufficient training data.  They emphasized the importance of data 

preprocessing, algorithmic quality, and thoughtful use of distance metrics in improving 

occupational prediction. They also suggested that machine learning might also have value 

by providing responders with candidate occupations as part of a learned cluster, rather 

than as part of a constructed and hierarchical decision tree. This approach, which is very 

different from ours, places a higher burden on respondents. In contrast, we use 

administrative information on job titles, rather than survey responses. We provide more 

detail in the technical discussion below.  

III. Data	and	Framework	

The administrative data we use are derived from the UMETRICS project, which builds 

on and extends the federal STAR METRICS effort (20).  These data are maintained by 

the Institute for Research on Innovation and Science (IRIS) at the University of Michigan 

and currently contain record-level information on all wage payments made to individuals 



8 
 

through research grants at 26 participating research universities (20,21).  In the interest of 

homogeneity, for our analysis, we chose large public research universities in the Big 10.3 

Although multiple files are provided by the universities, we focus on the employee file, 

which for each federally funded project, contains all payroll charges for all pay periods 

(period start date to period end date) with links to both the federal award ID (unique 

award number) and the internal university ID number (recipient account number). Also 

available from the payroll records are the employees’ internal de-identified employee 

number, the job title, their Full Time Equivalent (FTE) status, and the proportion of 

earnings allocated to the award. In addition, the UMETRICS program has incorporated 

additional fields (notably, the name and date of birth of those supported on federally 

funded projects) to enable data linkage, and has enhanced the core data with additional 

information on grants derived from public sources. 

We view these data as a valuable laboratory for quantifying the prospects for a machine-

learning approach to occupation classification. In some ways these universities are well-

suited to a machine-learning approach—they are large, generally similar, and highly 

structured. Thus, we can identify many different categories of workers and assess our 

ability to identify similar workers at other institutions. On the other hand, the uniformity 

of these institutions makes our task somewhat more challenging in that we need to make 

relatively fine distinctions (e.g. a dataset comprised of longshoremen and financial 

analysts would have more variability than our data).  

                                                      

3 The universities are Indiana, Wisconsin, Iowa, Michigan, Minnesota, Penn State, Rutgers, and Ohio State 
University. 
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In determining occupational classifications, we drew heavily on standard principles.  We 

were particularly interested in building a classification system that described the way 

people are used in the production of research. Our classification system benefited from 

extensive consultation with universities, which identified five core characteristics that 

distinguish personnel employed on research projects: (i) Permanence in their position (ii) 

Research Role, (iii) Professorial Track, (iv) Scientific Training, and (v) Clinical 

Association.  These core characteristics are similar to ones used in Standard Occupational 

Classification (SOC) system: classification principle #2 reads “Occupations are classified 

based on work performed and, in some cases, on the skills, education, and/or training 

needed to perform the work at a competent level.” 

Based on this input, we iteratively developed a hierarchical occupation classification 

system. In the end, we identified a two-level classification system. The first level is based 

on a person’s relationship to the university – faculty, undergraduate, graduate student, 

postdoc, or staff/other. In the second level, we subdivide staff/other based on function. 

Figure 1 lays out our classification system and Appendix I provides illustrative job titles 

for the occupations. 

As we discuss in detail in the following sections, we manually assigned an occupation 

from our classification system to job titles from the eight universities. Then we used this 

manually curated data linking job titles to occupations as a training dataset for a 
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supervised machine learning approach that algorithmically assigns occupations to job 

titles.4    

FIGURE 1 GOES HERE 

IV. Creating a Training Dataset from HR Records 

The first step was to manually classify occupations based on job titles, which points to 

the scale of the problem and hence the value of an automated approach. First, the total 

number of job titles varied from the low hundreds to low thousands across universities—

it is likely that similar variation occurs in firms in other sectors of the economy. 

The composition of the research personnel by occupation is shown in Table 1.5  Also 

shown in Table 1 is the average number of person-years by occupation for the four 

largest and four smallest universities (i.e., those universities whose total number of 

person-year counts is above or below the median). Big universities have, on average, 

twice as many research personnel paid by research grants, and the share of graduate and 

undergraduate students is somewhat larger for the big universities. 

TABLE 1 GOES HERE 

                                                      

4 Our sample consists of individuals appearing in the UMETRICS employee file between 2012 and 2014. 
Universities that are missing records in any year between 2012 and 2014 were dropped. Universities that 
had fewer than 100 employees in any occupational class were also dropped because the accuracy of 
classification algorithms may not be reliably calculated. Eight universities satisfied these sample 
restrictions. 
5 The occupations Staff and Others were combined into a single category because the distinction between 
the two classes is somewhat ambiguous and less important.   The unit of observation is a person-year. That 
is, an individual can be counted up to three times, once per calendar year. Because career transitions can 
happen within a calendar year (e.g., an individual changing his or her occupation from graduate student to 
postdoctoral researcher over the summer), only individuals who appeared in the employee table under the 
same job title both before July 1 and after September 30 were included in our sample. 
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It is also worth noting that there is substantial variation in the number of people with each 

job title, as reflected in the average number of people per job title and the fractions of job 

titles that contain different numbers of people. We divide universities into two groups—

the four with the “coarsest” and the four with the most “detailed” job titles. As shown in 

Table 2, for the universities that use more detailed job titles, as many as 30% of job titles 

had only one employee. For the universities that use coarse job titles, the proportion 

occupied by the job titles with more than 100 employees is nontrivial, and job titles with 

more than 1000 employees were not uncommon. This has important implications for our 

work—the handling of some job titles has a much greater effect on accuracy of the entire 

occupation classification than others. 

 TABLE 2 GOES HERE 

Even using the relatively straightforward categorization depicted in Figure 1, we 

identified three separate measurement challenges that will almost surely be manifested in 

other firms across the economy. Each results in issues that affect the quality of the 

training data. 

First, when different employees with the same job title perform different tasks, the same 

job title can map to two distinct occupations. For instance, consider employees with the 

job title of “program coordinator”. In some cases, these employees may be managing the 

business operations of a scientific research program at a university center and should thus 

be assigned the occupation “Research Facilitation Staff”. In other cases, these employees 

may be involved in educational or student experiences and should thus be assigned the 

occupation “Instructional Staff”. In this case, different people with the same job title 
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perform different tasks and should thus be assigned to different occupations. This implies 

that a full classification must operate at the level of individuals rather than job titles. 

Second, some job titles are at the margins of categories. For instance, consider employees 

with the job title “laboratory supervisor”. In many cases, these employees appeared to 

perform some tasks that would suggest assigning them the occupation “Research 

Facilitation Staff” and other tasks that would suggest assigning them the occupation of 

“Research Staff”. For instance, a laboratory supervisor may serve as an administrator for 

a university research lab and also conduct research within the lab. Because such 

employees’ work encompasses the responsibilities of two occupations, it can be argued 

that they fall at the margin of the occupational categories, which points to the value of a 

task/skill-based classification versus a categorical classification. This measurement 

challenge is conceptually distinct from the first insofar as a single individual performs 

functions that cross categories, rather than two separate people with the same job title 

performing different functions.6 

The third measurement challenge is ambiguity: vague titles limited our ability to 

confidently assign occupations to job titles. “Administrative support”, “coordinator”, and 

“professional aide” are examples of unclear job titles. Some employees with these titles 

work in human resources, undergraduate admissions, or a wide range of offices 

supporting general university functions, while other employees with these titles are 
                                                      

6 Although jobs at the margins of categories are not limited to managerial jobs (and our categories are 

carefully chosen to minimize such uncertainty), managerial jobs often lie at the margins of categories 

because they require expertise in different kinds of skillsets. One way to address this issue is to create 

management occupations. For our data, the number of job titles at the margins of categories is relatively 

small; therefore, we proceeded without creating managerial occupations. 
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directly involved in supporting or conducting scientific research. To a large extent, this 

ambiguity reflects a fundamental noisiness in occupational classifications in their own 

right.7 When dealing with ambiguous titles, researchers should be aware that it could 

influence the learning process of machine-learning algorithms if manually classified 

occupations were subsequently used for training. For example, the job title “Student help” 

can belong to either a student who provides help or a staff member who helps students. If 

we assign this title to a student occupation, we implicitly reinforce the association 

between the word “student” in the job title and the title belonging to a student occupation, 

potentially increasing the chance of misclassification for job titles such as “Student 

learning center coordinator”. Another example of this type is “Fellowship”, which may 

be intended to mean “fellow”, usually a graduate student, or a staff member who handles 

administrative work involving fellowship. Addressing title ambiguity is conceptually 

straightforward, but it requires a great degree of cooperation from data-submitting 

organizations.    

It is worth noting that the same person can have multiple relationships to a university. For 

instance, a student may hold a staff position or a staff member can become a student to 

take advantage of a discount on tuition. In this case, the person would be both a staff 

member and a student. Such multiple relationships pose a challenge, but also present an 

opportunity for obtaining unique data on career paths. The ideal handling of such cases 

                                                      

7 We benefited tremendously from input from member universities that provided extensive input on our 

classification approach up front, provided a wealth of data, and that have, in many cases, provided 

extensive feedback on our classification of their employees, especially to address the issues above. 
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depends on the intended use of the data. If one wants to measure the inputs to a 

production function, then the preferred approach would likely be to assign the person to 

the staff title (i.e., to the role that he or she is playing on the sponsored project in 

question). If the goal is to identify people who have studied at the university, the 

preferred approach would be to assign the person to the appropriate student occupation. 

Our data tend to favor the first approach because the primary classification is based on 

the job title. 

Another issue that generates a challenge, but also has the potential to enrich the data 

greatly, is that people’s relationship to a university may change over time. An 

undergraduate may graduate and enter a graduate program at the same school or take a 

job as a staff member. A graduate student may take a staff, faculty, or postdoc position 

upon completion of his or her degree. Obviously, some such pathways are more likely 

than others. These transitions potentially provide additional leverage on the classification 

of specific job titles and also provide rich data on career paths. 

 

Incorporating additional external information  

We use several different sources of external information, including online job 

descriptions, publicly available electronic salary databases, university and professional 

networking websites, and historical administrative earnings and employment data. 

Many firms will have HR descriptions that map directly onto job titles.   This information 

could, in principle, provide substantial external information that can be leveraged for 

occupational classification. In our case, the eight universities had searchable databases 
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for employment and job postings on university HR websites.  These typically provided 

detailed descriptions of specific job titles to confirm the nature of an employee’s work. 

When these descriptions failed to provide the necessary information to correctly classify 

a position, electronic salary databases for public universities proved to be particularly 

helpful sources of information on employee names. Using names and job titles enabled us 

to examine individual profiles on university and professional networking websites, both 

of which offered detailed explanations of employees’ work. Specific information on 

actual employees rather than just their titles enabled a more careful classification of 

similarly related positions in some cases.  

Placement and earnings are obtained by linking UMETRICS data to data at the U.S. 

Census Bureau. Given large differences in age and earnings between various occupations 

in our data, information on an individual’s age and earnings can provide valuable 

information about that individual’s occupation. Employees in the UMETRICS data are 

linked to Census data using a Protected Identification Key (PIK), Census’s internal 

anonymized individual identifier. 

 

V. Measurement and Standardization 

The development of clear standardized protocols for interviewers is critical for consistent 

measurement across individuals.   Similarly, good measurement is critically dependent on 

developing consistent protocols for preprocessing the data so that measures can be 

standardized across businesses. This is particularly important since each business will 

have different shorthand to classify job titles. In this section, we will illustrate the 
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challenges of standardizing data collected across multiple organizations with different 

conventions. We will focus on the abbreviated nature of job titles, but we expect similar 

challenges will arise in processing texts describing job responsibilities, salary grade, 

retirement benefits, and other information that may be available.    

 

To automate the classification process, we first need to convert job titles to numeric 

values because most machine-learning algorithms accept only numeric inputs. For short 

texts like job titles, the most common way of converting texts to numeric features 

(equivalent of regressors in regression analysis) is to record the presence/absence of 

keywords. For example, if we have job titles “research analyst” and “research support”, 

the array of feature names is [“research”, “analyst”, “support”] and the text-to-feature 

conversion would return the vector [1, 1, 0] for “research analyst” and [1, 0, 1] for 

“research support”. These vectors will then be used as inputs for machine-learning 

algorithms that predict occupations. 

 

One problem with this approach is different abbreviations/synonyms in the job titles may 

represent the same feature. For example, it is clear to humans that “assistant” and “asstnt” 

both represent “assistant”, but machines treat them as different features. To avoid 

creating separate features for different abbreviations of the same word, job titles need to 

be normalized before being converted to numeric vectors. 

 

Because creating a normalization mapping is labor intensive, one may be tempted to use 

edit distance to determine whether a string of letters is an abbreviation of a word. 
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However, generic edit distance fails to address challenges that are specific to 

abbreviations: for instance, both “busin” and “buses” are formed by deleting three letters 

from “business” and therefore have the same edit distance; however, the former is more 

likely to be an abbreviation for “business”. Developing a set of rules for determining the 

validity of abbreviation is not a trivial task. Though the disabbreviation algorithm we 

developed is imperfect, we employed the algorithm for the subsequent analyses to reduce 

noise in the data (see appendix I for details). 

VI. Machine Learning  

We first explored a wide range of classification algorithms, including linear regression. 

We then selected a few algorithms that seemed to work well for our project and 

conducted a preliminary analysis comparing their performance. The algorithms that made 

our “short list” are Multinomial Naïve Bayes, Bernoulli Naïve Bayes, Random Forests, 

and Extra Trees (Extremely Randomized Trees). We will briefly describe each algorithm 

below, but interested readers may refer to, for example, James et al. (22) for more details. 

 

The Naïve Bayes classifiers compute the conditional probability of an observation falling 

in a certain class (equivalent to discrete “y” variable in a regression) given features 

(equivalent to covariates “x” in a regression) using Bayes rule. The Multinomial Naïve 

Bayes classifier assumes that the conditional probability that each feature appears given a 

class follows a multinomial distribution. The Bernoulli Naïve Bayes classifier assumes 

that the conditional probability of the presence or absence of features given a class 

follows a Bernoulli distribution. Because it is unlikely that the same word appears more 

than once in a job title, the Bernoulli Naïve Bayes classifier is more suitable for our 
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purpose. The major disadvantage of either of the Naïve Bayes classifiers is that they both 

rely on the underlying assumption that the features are independent. This means, for 

example, given that the job title belongs to a graduate student, the presence of the word 

“research” cannot change the probability of also observing the word “assistant” in the job 

title. Because the assumption of independent features is most likely violated for our case, 

we rejected Naïve Bayes classifiers. 

  

Random Forest and Extra Trees are both tree-based algorithms. We begin by describing a 

simple tree algorithm. Figure 2 shows part of a decision tree that classifies employees 

into the main five classes from Figure 1 (faculty, postgraduate students, graduate students, 

undergraduate students, and staff/other) based on their job titles. Each box contains (i) 

branching rule; (ii) Gini impurity; (iii) number of observations contained in the node; (iv) 

composition of observations; and (v) majority class. 

FIGURE 2 GOES HERE 

Branching rules specify the feature name and the cutoff value. For example, at the top 

node, job titles that contain the word “graduate” less than or equal to 0.5 times follow the 

left branch, while those that contain the word “graduate” more than 0.5 times follow the 

right branch. Because feature values are integers, it is equivalent to the following: job 

titles without the word “graduate” follow the left branch and those with the word 

“graduate” follow the right branch. If “graduate” is not present, it next tests for “professor” 

and if “graduate” is present, it tests for “post” (as in postgraduate). Note that the node at 

the bottom right does not have the branching rule because it is a terminal node. 
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“Samples” represents the number of observations in each node. “Value” lists the number 

of faculty, postgraduate students, graduate students, undergraduate student, and other in 

that order. “Class” is the mode of the class in each node.  

 

Finally, “Gini” reports the Gini impurity. Notice that the Gini impurity decreases as one 

goes down the tree and reaches 0 when a node consists of one class (bottom right node). 

It is calculated as follows: 

𝐺 ൌ ෍ 𝑝௖ሺ1 െ 𝑝௖ሻ
ହ

௖ୀଵ

, 

where pc is the proportion of class c observations at the node.  

 

Although simple and easy to interpret, the Tree algorithm tends to overfit. That is, the 

algorithm uses too much information that is idiosyncratic to the training set, and thus the 

predictive accuracy tends to be lower. The Random Forest classifier is intended to 

mitigate the issue of overfitting by forming a collection of trees. The trees in the forest 

are slightly different from one another. The variation is generated by introducing 

randomness to the algorithm. Specifically, each tree is created from different subsample 

of training data (this is called bagging). Also, when branching, the algorithm does not 

necessarily choose the feature that minimizes the Gini impurity. The final output (the 

predicted class) is the class predicted by the greatest number of trees. 

 

The Extra Tree classifier uses the entire training set to create each tree, but introduces 

randomness by randomly choosing the cut point when branching rather than choosing the 



20 
 

optimal cut point that minimizes the Gini impurity. The random cut point is useful for a 

continuous feature such as age. For example, it may be that 22 is the optimal cut point for 

distinguishing undergraduate students from everyone else. However, the Extra Tree may 

choose a different cut point, say, 20. The Extra Tree can then use other features such as 

the absence of the word “graduate” to identify undergraduate students who are over 20. 

Since our feature, the number of times each keyword appears in a job title, is mostly 

binary (because it is unlikely that the same word appears more than once in a job title), 

the random cut point would not create much variation: The branching rule “The word 

‘research’ appears more than 0.3 times in the job title” is the same as “The word 

‘research’ appears more than 0.6 times in the job title”. For this reason, we concluded that 

there is little gain from using Extra Tree classifier, and decided to use Random Forest 

classifier. 

  

Our preferred random forest approach (along with the others) is a supervised machine 

learning algorithm. Thus, it requires a “gold standard” to train the algorithm. Once 

trained, the algorithm can generate estimates for other samples. In our case, our “gold 

standard” comes from occupations that have been manually assigned for each university. 

Although we recognize the potential for human error, we refer to these as the “true” 

classes. Because we have data on eight institutions, throughout our analysis we estimate 

our models eight times—holding out data from one university, one at a time, for testing—

and use data from the remaining seven universities for training. Thus, for a given set of 

tuning parameters (discussed below), we grow eight separate random forests, each using 
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data from one university for testing the accuracy of the forest and using data from the 

other seven universities for training the random forest.  

 

In our analysis, we used the predictive accuracy as a measure of performance. Formally, 

the accuracy is defined as  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
#ሺ𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑐𝑙𝑎𝑠𝑠 ൌ 𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠ሻ

# 𝑡𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
. 

 

Random forests have three main tuning parameters: 1) the total number of features 

supplied to the random forest, 2) the number of features to be considered at each node of 

the tree, and 3) the number of trees grown in the forest (i.e., the number of samples 

randomly selected to build a decision tree).  The tradeoff of including more features 

overall is between having more features to improve prediction and overfitting because of 

idiosyncratic relationships that may be present in the data. We filter out noise in the 

sample by pre-selecting the features to avoid overfitting idiosyncratic relationships that 

may be present in the sample. The total number of features used in the random forest 

controls the amount of noise to avoid overfitting. The number of features that the random 

forest can choose between at each stage controls the variability of the trees: the smaller 

the set of features to be considered, the more variable the trees become because there is 

more randomness in the selection of the feature. In the extreme case where only one 

feature is considered at each split, the selection of feature is totally random (i.e., 

whichever feature is selected becomes the one used for branching). 
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All analyses were done in Python and the construction of random forests was done using 

the Scikit-learn package (23).8  The package is heavily used by social scientists because, 

as the authors note, it is a Python module that integrates 

“a wide range of state-of-the-art machine learning algorithms for medium-scale 

supervised and unsupervised problems. This package focuses on bringing machine 

learning to non-specialists using a general-purpose high-level language. Emphasis is 

put on ease of use, performance, documentation, and API consistency. It has minimal 

dependencies and is distributed under the simplified BSD license, encouraging its use in 

both academic and commercial settings. Source code, binaries, and documentation can be 

downloaded from http://scikit-learn.sourceforge.net” (p2826 (23)). 

 

The RandomForestClassifier module of the Scikit-learn package allows the users to 

change the parameters mentioned above. To determine the total number of features 

supplied to the random forest, we fit a decision tree, for each training set, using all 1-

grams and 2-grams that appeared in the job titles. Then, the feature importance score was 

calculated, and the features with the highest importance scores were selected, varying the 

score cutoff. The total number of features that were fed into the model varied depending 

on which university was reserved for testing, but was roughly 50, 100, 200, 500, and 

7000, where 7000 is the total number of 1-grams and 2-grams appearing in the job titles 

in the training set and 500 is the number of features that had a strictly positive importance 

                                                      

8 The work was performed at the UCLA Federal Statistical Research Data Center (RDC).  The RDC 
compute nodes were IBM HS22V blade servers. Each had 12 CPU cores (24 with hyper-threading enabled) 
and 288GB of memory.  The version of Scikit-learn that is used in the Census Bureau’s research1 machine 
is 0.18.1; we believe that is the same version that was used for this work. 
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score. We also varied the number of features considered at each split (default is the 

square root of the total number of features supplied to the random forest). Finally, we 

varied the number of trees grown in the forest, in increments of 100, between 100 and 

1,000. 

 

In determining the optimal parameter setting, we considered both unweighted and 

weighted accuracy. The unweighted accuracy was computed treating each job title as one 

observation – no matter how many employees have that job title, the title receives a 

weight of 1. The weighted accuracy was computed treating each individual as one 

observation; equivalently, job titles were assigned a weight equal to the number of 

employees that have that job title. The most important tuning parameter for determining 

classification accuracy was the total number of features provided to the random forest 

(which is implicitly determined by the importance score cutoff). The fraction of features 

to be considered at each node and the number of trees grown had a minimal effect on the 

accuracy. Based on the overall weighted and unweighted accuracy, the optimal parameter 

setting limits the number of features supplied to the random forest to about 200 and uses 

the default setting of the square root of the total number of features to be considered at 

each node.  

 

FIGURE 3 GOES HERE 

 

Figure 3 shows the accuracy (proportion of correct prediction) for each level of predicted 

probability (the probability share of the predicted occupation indicated by the posterior 
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distribution returned by the algorithm). The overall accuracy varied from 60% to nearly 

100% regardless of whether the data are weighted by number of job titles or individuals9. 

Although random forests can potentially increase the efficiency of occupational 

classification, an average accuracy of about 80% may not be high enough to justify a total 

replacement of manual classification by automated machine-learning algorithms.  These 

results reinforce our belief that the predicted probability and the number of individuals 

that hold a job title should be jointly used to identify job titles for manual review. 

 

We see two (potentially complementary) roles for machine learning in occupation coding 

and other similar bucketing tasks. One approach is to use an algorithmic approach to 

classify uncommon job titles. Such cases are (by construction) plentiful and have a 

relatively small effect on the overall accuracy of the classification. The second role is to 

accept only predictions with concentrated probability mass at one class. In other words, 

to adopt the prediction only when the random forest classifier is “confident”. Obviously, 

these two approaches could be combined—defining “isoquants” over the size and 

accuracy to trigger manual review. In this approach only relatively large, uncertain job 

titles would be reviewed manually. 

 

Robustness 

We explored a wide range of modifications of our basic approach to try to obtain 

performance improvements. Here, we outline the analyses we performed and their main 

results. Appendix II provides details on both the analyses and their results. 
                                                      

9 Unweighted accuracy is the proportion of job titles whose predicted class matched the true class. For 
weighted accuracy, the number of employees for the job title is used as a weight. 



25 
 

 

For the eight universities used in the above analyses, the number of employees ranged 

roughly from 5,000 to 20,000. When we train the random forest classifier on seven 

universities, it is possible that the shape of a tree is heavily influenced by a few 

universities in the training set with a large number of employees. To investigate this 

possibility, the training set was modified so that universities in the training set have 

roughly equal numbers of employees. The modifications were made in two ways: 

inflating and deflating. As Section A in Appendix II shows, there was no significant 

change in the accuracy with these modifications.  

 

The number of employees per job title ranged from 1 to nearly 10,000 for the eight 

universities, with the average being 24.4 employees per title. Concerned that the titles in 

the training set are “too noisy”, we investigated the effect of dropping thin titles (varying 

the threshold at which a title is flagged as “thin” from 5 to 50 employees) from the 

training set. We recorded the average predictive accuracy for titles with different 

numbers of employees. Again, there was no significant change in the accuracy with these 

modifications. These results are discussed in Section B of Appendix II. 

 

We observed that some titles that could be easily classified manually like “Graduate 

Assistant” are not always correctly classified by our random forest. This appears to be 

caused by the existence of “extraneous” information in some job titles. To address this 

issue, we applied partially unsupervised learning. In particular, titles that (after applying 

the job cleaning algorithm outlined in the appendix) contain the words “faculty”, 
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“professor”, “postgraduate”, “graduate” or “undergraduate” were classified first and then 

the random forest classifier was applied to the remaining titles (both the training set and 

the test set consist of titles that do not contain any of the words listed above). The effect 

of this partially unsupervised learning on the predictive accuracy is small, with our 

classification for some universities improving and others degrading. See Section C of 

Appendix II for details. 

 

Census Bureau links permitted us to examine whether having information on individuals’ 

age and earnings increased the quality of prediction.  These variables would appear to be 

valuable predictors, especially in this context because of the large differences in ages and 

earning across occupations. As shown in Table A4, there is some gain, but it is not 

extraordinarily high across the board.  The largest gains, by far, are for undergraduates 

when occupations are weighted by the number of people in them.10  

 

As indicated in the previous sections, people can hold multiple titles at a point in time (or 

in close succession) and can transition between titles. As some transitions are more 

common than others (i.e., transitions from undergraduate to graduate and/or from 

graduate to postgraduate and/or from postgraduate to faculty are more common than the 

reverse transitions), it is possible to use transitions between titles and concurrent titles 

(more precisely, occupational classes that are associated with these titles) as predictors in 

the random forest classifier to improve predictive accuracy. Transitional and concurrent 
                                                      

10 Because there are considerably more staff members than undergraduates overall, there is a tendency for 
the random forest to misclassify undergraduates as staff. 
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titles can also be used to identify unlikely transitions in the “ground-truth” data, 

providing an opportunity for a revision. Beyond improving the accuracy of the data, 

exploring concurrent positions and transitions can add to the richness of our data by 

providing information on career paths. Section D of Appendix II provides details of this 

analysis. 

 

Using concurrent job titles and the transitions between job titles involves some form of 

iterative procedure. Appendix II details a number of issues related to using transitions and 

concurrent titles. As a first step toward incorporating transitional and concurrent classes 

into the random forest classifiers, we included the manually classified transitional and 

concurrent classes in our training data in the model rather than predicted occupations. 

The resulting predictive accuracy is expected to provide an upper bound for the accuracy 

obtained from the iterated procedure described in Appendix II.  Overall, the use of 

concurrent titles and transitions across titles has little effect on overall accuracy. In our 

analysis, no university exhibited a clear pattern on the effect of including 

transitional/concurrent class as predictors.  

 

Limitation of Machine-Learning Algorithms 

Laying aside the issue of developing a classification system, we have discussed four 

challenges to manual classification. Beyond these issues associated with manually 

classifying occupations, comparing the predictions made by the random forest and the 

true class pointed to two possible causes of misclassification. One is unavoidable 

misclassification, which results from variation in the training data. The other is avoidable 
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misclassification, which results from the inherent limitations of the random forest 

classifier.  

The first type of misclassification is unavoidable because it arises from the limits of 

manual classification already discussed, such as job titles that have multiple 

classifications over universities. This type of inaccuracy cannot be overcome by any 

classifier: resolution of misclassification requires familiarity with job titling convention at 

each university. It should also be noted that modifiers can change the classification of a 

job title within a university. For example, “director” and “associate director” may not 

belong to the same category within a university.  

 

The second type of misclassification is avoidable. Avoidable misclassifications are due to 

the limitations of the random forest classifier. Below are examples of misclassified job 

titles along with the prediction made by the random forest, followed by the true class in 

parentheses. 

 Undergraduate fellow  graduate (undergraduate) 

 Temporary visiting faculty  staff/other (faculty) 

 Teaching assistant  staff/other (graduate) 

 Summer term ra (w/o tuit ben)  staff/other (graduate) 

 GR AST ½  staff/other (graduate) 

 

The first two examples illustrate the tendency of the random forest classifier to rely too 

much on certain words. The word “fellow” is strongly associated with graduate student. 

Thus, if “fellow” is selected as a branching rule before “undergraduate”, the job title 
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“undergraduate fellow” will be buried in a node that is predominantly graduate students. 

Similarly, the word “temporary” is often associated with a staff member and almost never 

used for faculty. The partially supervised machine learning algorithm described in the 

previous section is intended to address these issues. 

 

The third example illustrates failure to utilize very informative words or phrases. The 

presence of the phrase “teaching assistant” in a job title is a good indicator of the 

employee being a graduate student. However, the absence of the phrase “teaching 

assistant” in the job title is not a good indicator of the employee not being a graduate 

student (i.e., there are many graduate students who are not teaching assistants). Thus, 

when the phrase “teaching assistant” is used for branching, the resulting decrease in the 

impurity of the succeeding node is negligible. Since the random forest classifier selects 

the feature that minimizes the weighted average of impurities at succeeding nodes, the 

phrase “teaching assistant” is unlikely to be selected. 

 

The last two examples illustrate inability of the random forest classifier to use outside 

knowledge. A human classifier can infer “w/o tuit ben” means “without tuition benefit” 

and conclude that the job title is associated with a student. Similarly, “1/2” suggests that 

the person has a half-time appointment, and therefore is likely to be a student. Thus, one 

may infer that “gr ast” means “graduate assistant”. As seen in the previous example, these 

phrases are extremely informative; however, because of their rare occurrence and 

applicability to only a small fraction of employees, these pieces of information tend to be 

overlooked by the random forest classifier. 
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In theory, the misclassifications described above might be reduced by providing more 

training data, adjusting parameters, appealing to other machine-learning algorithms, or 

reverting to manual classification. 

VII. Conclusions 

This paper used a rich dataset—to our knowledge, the first dataset with detailed job titles 

drawn from HR systems from multiple organizations, combined with job descriptions and 

information about the characteristics of workers—to examine the potential to use 

machine-learning techniques for occupational classification.   We followed the same 

conceptual framework as that applied by survey methodologists: to define each 

occupation, to translate concepts to standardized protocols, and to build an approach that 

would infer occupations from the information at hand.  Even though the data were drawn 

from very similar organizations, with very similar production functions, we found that 

machine-learning approaches were not substantially better than manual classifications.  

However, we do see the analysis as showing real promise for identifying occupations 

from job titles combined with a machine-learning approach.  The most promising use of 

the machine learning is that it is an inexpensive way of assigning occupations for job 

titles that have relatively few people in them and/or for which the algorithm imputes a 

high degree of accuracy. Because many job titles have only a few people in them, this 

approach could yield substantial cost savings (almost 80% of job titles have 10 or fewer 

people).  At the same time, an entirely algorithmic approach would be unwarranted in our 

case.    
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We also believe that a deeper text analysis of the job descriptions associated with job 

titles might prove to be a promising approach.   Job descriptions typically include 

information about necessary experience, skills, and education, which is not only of 

interest in its own right but could be very useful for classification purposes. 

We note that the focus on universities as a subject of analysis has weaknesses and 

strengths. Major research universities are very large and complicated institutions.  There 

may be other industries in which it might be easier to apply machine learning to job titles. 

At the same time, the institutions in our sample all come from one narrow sector of the 

economy; they are relatively homogeneous and the data are based on a very specific set 

of activities (research). We speculate that any classification system for the broader 

economy would have to be specific to an individual sector or set of sectors. 
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X. Tables	

 

 

Table 1. Number of employees paid by research grant by occupation. 

 

Occupation 
All universities Big universities Small universities 

Total Average Average 

Faculty 16,000 2,600 1,500 

Graduate 17,000 3,100 1,200 

Staff / Other 29,000 4,700 2,600 

Postdoc 6,900 1,100 650 

Undergrad 9,700 2,000 450 

Total 79,000 13,000 6,400 

Note. The table shows the number of employees paid by research grants at all 

universities in our data and those with more than and fewer than the median number of 

person-year pairs. Numbers are rounded for disclosure protection reasons. 
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Table 2. Variation in the volume and size of job titles across universities. 

  

All 

universities 

Universities with Universities with 

coarse job titles detailed job titles 

Total number of job titles 

(across universities) 3,200 1,100 2,200

Total number of employees 

(across universities) 79,000 48,000 31,000

Average # employees per 

title (at each university) 24.4 44.4 14.5

1 employee 25% 16% 30%

2-10 employees 54% 52% 55%

11-100 employees 17% 26% 13%

>100 employees 4% 7% 2%

Note. The table shows the distribution of the number of employees per title at all 

universities in our data, the four universities with the smallest, and the four universities 

with the largest numbers of employees per job title. 
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XI. Figure	Captions	

 

Figure 1. Classification System.  

Figure 2. Example of a decision tree. Each node has a keyword indicated at the top of the 

box. All observations that have the keyword in their job titles follow the right branch, 

while observations without the keyword follow the left branch. When an observation 

reaches a terminal node like the one at the bottom right, the class of the node becomes the 

predicted class for the observation. 

 

Figure 3: Classification Accuracy relative to Predicted Probability. The figure shows the 

probability that an occupation was correctly coded as a function of the probability that the 

algorithm predicts it was correctly coded. The unweighted series treats job titles as the 

unit of observation. The weighted series treats individuals as the unit of observation. 
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XII. Figures	
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Appendix I  

1. Detailed Description of Occupations 

This section lays out the occupation categories that we use, their conceptual definition, 

and some illustrative job titles. The aggregate occupations are listed first. Staff are 

subdivided into additional categories, which are laid out below. 

 

1. Faculty 

All advanced academic employees who are directly involved in scientific research and/or 

scientific instruction.  These included  Deans, Provosts, Tenure/tenure track, Clinical, 

Research, Visiting Professors, Academic specialists, Center directors. 

  

2. Post Graduate Research 

All individuals holding terminal degrees (PhD, MD) who are in temporary training status.  

These included Postdoctoral, Medical residents/interns/fellows, Clinical fellowships, 

Research Associates (depends on the university). 

  

3. Graduate Student 

Students earning advanced degrees: Graduate students (part time, full time), 

Medical/dental/nursing/students, Research Assistants. 

  

4. Undergraduate 

Students earning baccalaureate/other degrees including full time, part time, summer 

research assistants, work study; includes high school students who would likely be acting 
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in a similar capacity.  These included Undergraduate students, High school students, 

Interns/student workers, Nursing students in BA programs. 

  

5. Staff / Other (Not Elsewhere Classified) 

Positions that support general university functions such as undergraduate education and 

student activities. Employees whose titles cannot be attributed to the scientific research 

enterprise. These included at the aggregate level: Staff  Instructional, Research, Research 

Facilitation, Technician, Clinical, Other Staff.  The disaggregated staff categories include 

the following: 

  

5.1 Clinical Staff: All non-faculty health care professionals, Nurses (non-faculty), 

Dieticians (non-faculty), Nutritionists, Social workers, Physical therapists, Clinical 

psychologists, Dental hygienists, Genetics counselors. 

5.2 Instructional Academic Specialists: Lecturers, Instructors, Adjunct Professors. 

5.3 Research Facilitation: Non-faculty, high level administrators – asst. dean/asst. 

provost, associate or assistant center director, Operations managers/managing 

directors, Administrative/clerical staff – any kind, Finance staff, Regulatory staff, 

Clinical or clinical research support staff, Laboratory aide, Data 

collection/interviewer, Media jobs: Graphics/writer/editor/communications, Grants 

management & administration, Individuals who serve as managers/ 

coordinators/facilitators for laboratory studies/clinical trials/large facilities/research 

programs (they direct and influence scientific research activity from the level of the 

laboratory up to the level of the university/research center), Research 
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dean/provost/administrator, Facility director/administrator, Clinical research 

administrator, Study coordinators, IACUC coordinators, Clinical trials/research 

coordinator, Project/Program manager/coordinator, Lab coordinator (not lab 

manager), Facility/repository manager/coordinator. 

5.4 Research Staff: Work likely focuses on scientific aspects of research. All advanced 

degree qualified, non-faculty scientists and engineers; Research specialist/engineer:  

Work likely focuses on advanced research analysis; Research professional/specialist; 

Statistician, bioinformaticist; Research associate (depends on the university); Skilled 

and specialized employees who have been specifically trained in some area of science 

& technology; Science Technicians: All technical staff including animal technicians, 

machinists, mechanics (the category usually includes some reference to a research 

facility along with the title ‘technician’); Lab manager ; Medical or clinical 

technician; Research data technician; Regulatory officer (environmental, chemical 

safety, industrial hygienist); Technical engineer. 

5.5 Technician: Administrative and technical employees who are not specifically 

employed for scientific research purposes but perform job tasks that support the 

research enterprise; Information technology managers & staff; Software engineer; 

Data entry/data analyst; Network and systems support. 

5.6 Staff Other All other research staff that do not clearly fall into another category.  

 

2. Normalization 

We developed a rule-based job title cleaning algorithm. In particular, we created a 

mapping from abbreviation to normalized word. For example, “grad” is mapped to 
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“graduate” and “mngr” is mapped to “manager”. The list of abbreviations and possible 

normalized words were obtained from job titles from eight universities in the 

UMETRICS dataset, and mappings were created manually. 

 

Abbreviations with multiple possible normalizations were noted (e.g., “res” can be an 

abbreviation for “research” or “respiratory”; “ast” can be an abbreviation for “assistant” 

or “astronomy”). Then context-specific normalization (i.e., normalization of phrases) was 

attempted. For example, both “res” and “ast” are ambiguous abbreviations; however, 

when they are combined, one can infer “res ast” is an abbreviation for “research 

assistant”. Normalizing rules for phrases were manually generalized using regular 

expressions.  

 

When an abbreviation could represent either a person or a field (or an object) that are 

closely related, we chose the field in general. For example, “scien”, “enginee”, and 

“crimnl” were normalized to science, engineering, and criminology, instead of scientist, 

engineer, and criminologist, respectively. The reason is that it seems more harmful to 

label non-engineers in engineering departments an “engineer” than to label an engineer 

“engineering”. When an abbreviation is strongly associated with an occupation, however, 

we normalized it to represent a person. For example, “lect” and “consul” were 

normalized to lecturer and consultant instead of lecture and consulting, respectively. 

These are somewhat ad-hoc rules, but these abbreviations are few, and we expect they 

have a negligible effect on the performance of machine learning algorithms. 
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When creating the normalization mapping, we preserved common acronyms such as 

“CSE” for Computer Science and Engineering and “MRI” for magnetic resonance 

imaging. We expect normalizing these terms has a minimal impact on the predictive 

accuracy because they identify the fields employees work in but contain little information 

on tasks they perform. 

 

At the same time the mapping was created, omissions of spaces were noted and a 

decomposition mapping was created. For example, we encountered job titles such as 

“rsrchanalyst”, which was added to the decomposition mapping along with the correction 

“rsrch analyst”. Common stems in compounds, such as bio in biochemistry and neuro in 

neurosurgery, were not decomposed and compounds were treated like words. 

 

Finally, on the normalization list, we had some abbreviations that are only two letters 

long. For example, we left “IT” as it is, assuming that it represents Information 

Technology. However, these could be an abbreviation of some other words or phrases. In 

our data, we did not find any instances where there was a more suitable normalization, 

but researchers should be aware that too much guessing when standardizing could 

introduce more noise than it eliminates. 

 

Aside from working out the details, the major problem with the above described 

normalization algorithm is that the mapping is not comprehensive. For example, 

“research” may be mapped from “resear”, “rsrch”, and “resch”, but if there is no mapping 

from “resech” to “research”, “resech” will remain abbreviated. By comparing manually 
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normalized job titles and normalization returned by the algorithm, we identified 

normalizations that were not captured by the normalization mapping, and iteratively 

revised our normalization mapping. We also wrote regular expressions to normalize 

words that frequently appear in our data such as “research”, “postdoctoral”, and 

“administrator”.  

 

3. Coding decisions 

There are also some methodological issues of interest. First, we designed our 

classification to increase certainty: grouping workers whose jobs were so similar that it 

would be hard to separate them based on job titles (and for whom the value of 

distinguishing occupations has the least value). Second, we employed a two-level system, 

where the first-level occupation can frequently be assigned with a high degree of 

certainty, and much of the uncertainty appears at the second level. Third, we assigned up 

to two occupations to each job title to allow researchers to probe the sensitivity of results. 

Fourth, we rated job titles based on the degree of certainty that they were correctly 

classified on a scale of 1-5. Our coding system was: 

(5) The job title serves as an immediate identifier into this classification category 

or, through research, it is almost certain that it belongs in this category: e.g. Post Doctoral 

Researcher; Computer Technician. 

(4) The job title probably belongs in the category indicated, as supplemented by 

research on university website. 
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(3) The job title belongs in the category (either aggregate or disaggregate) with 

moderate certainty (either very indicative job title or research result, but not both).  

(2) The job title is vague and/or ambiguous, but there is some indication that the 

position belongs in this category. 

(1) The job title may belong in this category, but there is little certainty, and the 

classification cannot be verified through research. 

  After manual classification, universities were given the opportunity to review and 

comment on the classification, with their attention drawn to the largest and most 

ambiguous titles. 

Appendix II 

A. Different Numbers of Employees 

For the eight universities used in the above analyses, the number of employees ranged 

roughly from 5,000 to 20,000. When we train the random forest classifier on seven 

universities, it is possible that the shape of a tree is heavily influenced by a few 

universities in the training set with a large number of employees. To investigate this 

possibility, the training set was modified so that universities in the training set have 

roughly equal numbers of employees. The modifications were made in two ways: 

inflating and deflating. 

 

(1) Inflating 

Let   

Nu,t = number of employees at university u for job title t, and 
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 Nu = number of employees at university u. 

Then the modified number of employees is 

𝑁෩௨,௧ ൌ 𝑁௨,௧ ൈ
max

௩
ሼ𝑁௩ሽ

𝑁௨
, 

rounded to the nearest integer. For example, if university X has a total of 16,000 

employees and if the largest university in the training set has a total of 20,000 employees, 

the number of employees for each title at university X is multiplied by 1.25 and rounded 

to the nearest integer. If a title has 3 employees, the inflated number of employees is 

1.25 × 3 = 3.75, so it will be rounded to 4. 

 

(2) Deflating 

Instead of scaling up the number of employees to the level of the largest university in the 

training set, deflating scales down the number of employees to the level of the smallest 

university: 

𝑁෩௨,௧ ൌ 𝑁௨,௧ ൈ
min

௩
ሼ𝑁௩ሽ

𝑁௨
. 

For example, if university X has a total of 20,000 employees and if the smallest 

university in the training set has a total of 5,000 employees, the number of employees for 

each title at university X is multiplied by 0.25 and rounded to the nearest integer. If a title 

has 10 employees, the deflated number of employees is 10 × 0.25 = 2.5, so it will be 

rounded to 3. If a title has 1 employee, the deflated number of employees is 

1 × 0.25 = 0.25, so it will be rounded to 0. In other words, the title will be dropped from 

the training set. 
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Results 

As evident in Table A1, inflating and deflating the number of employees in the training 

set has no meaningful effect on the unweighted accuracy. There is a little improvement in 

the weighted accuracy for big universities when the number of employees in the training 

set is deflated. One possible explanation is that deflating reduces the noise in the training 

data because uncommon job titles are dropped from the training set due to rounding if the 

deflated number of employees is less than 0.5. 

 

Table A1. Accuracy when total weight is balanced across universities 

Size of university Weight Benchmark Inflating Deflating 

All universities unweighted 0.83 0.83 0.82

Big universities unweighted 0.87 0.86 0.86

Small universities unweighted 0.80 0.80 0.79

All universities weighted 0.84 0.82 0.85

Big universities weighted 0.83 0.82 0.86

Small universities weighted 0.84 0.82 0.82

 

B. Discarding Thin Titles 

The number of employees per job title ranged from 1 to nearly 10,000 for the eight 

universities, with the average being 24.4 employees per title. Concerned that the sparsely 

populated titles in the training set are particularly “noisy”, we investigated the effect of 

dropping thin titles from the training set. The question we tried to answer is “Do thin 
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titles negatively affect the learning and consequently degrade the performance of 

predicting for heavily populated titles?” 

 

For each university, we used the remaining seven universities for training and discarded 

the titles with fewer than a certain number of employees in them from the training set. 

We used the threshold of 5, 25, and 50 employees per title. Then we recorded the average 

predictive accuracy for titles grouped by the number of employees per title: 1–4 

employees, 5–24 employees, 25–49 employees, 50–99 employees, 100–499 employees, 

500–999 employees, and 1000+ employees. The idea is that dropping titles that have 

fewer than a certain number of employees from the training set may have different effects 

on the prediction accuracy for thin titles and for heavily populated titles. 

 

Results 

The resulting prediction accuracies are shown in Table A2. Cutoff = 0 corresponds to the 

benchmark, where all job titles are included in the training set. As the cutoff value 

increases, more and more job titles are excluded from the training data. There is a small 

decrease in accuracy caused by discarding uncommon titles for job titles that are 

relatively thin. In contrast, the accuracy improves as the cutoff increases for job titles 

with 1000 or more employees. This is expected because highly populated job titles tend 

to have simple, straightforward descriptions and therefore do not benefit from 

infrequently used features brought to the training set by uncommon job titles. Indeed, 

excluding uncommon job titles from the training set makes the training set less noisy, 
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allowing the random forest classifier to construct better decision trees with a high 

predictive accuracy. 

 

Table A2. Accuracy when thin titles are discarded from the training set 

Size of 

Title Weight Cutoff = 0 Cutoff = 5 

Cutoff = 

25 

Cutoff = 

50 

<5 unweighted 0.81 0.81 0.82 0.80 

5-24 unweighted 0.84 0.84 0.84 0.82 

25-49 unweighted 0.91 0.91 0.91 0.89 

50-99 unweighted 0.88 0.87 0.86 0.84 

100-499 unweighted 0.82 0.82 0.85 0.82 

500-999 unweighted 0.88 0.88 0.88 0.88 

>=1000 unweighted 0.75 0.83 0.92 0.92 

<5 weighted 0.82 0.82 0.83 0.81 

5-24 weighted 0.83 0.83 0.83 0.81 

25-49 weighted 0.92 0.91 0.92 0.89 

50-99 weighted 0.88 0.87 0.86 0.84 

100-499 weighted 0.80 0.79 0.82 0.80 

500-999 weighted 0.90 0.90 0.90 0.90 

>=1000 weighted 0.79 0.85 0.93 0.93 

 

 

C. Partially Unsupervised Learning 
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After observing that titles like “Graduate Assistant” are not always correctly classified, 

we applied partially unsupervised learning. The incorrect classification appears to happen 

because of “extraneous” information in some job titles. In particular, titles that contain 

the word (after applying the job cleaning algorithm) “faculty”, “professor”, 

“postgraduate”, “postdoctoral”, “graduate” or “undergraduate” were classified first and 

then the random forest was applied to the remaining titles (both the training set and the 

test set consist of titles that do not contain any of the words listed above). 

 

The resulting accuracies are shown in Table A3. There is no real difference in the 

unweighted accuracy between the supervised learning benchmark and partially 

unsupervised learning. Contrary to our expectation, the weighted accuracy deteriorated 

for the universities with granular job titles, while it improved for the universities with 

coarse job titles. This suggests a possibility of overfitting; in the absence of very 

important features such as “faculty” and “undergraduate”, less important features appear 

to be more important than they actually are. One possible solution is to recalibrate the 

parameters to filter out marginally informative features. 

 

 

Table A3. Accuracy using Partially Supervised Learning 

University weight benchmark partially unsupervised 

all universities unweighted 0.83 0.83

universities with coarse job titles unweighted 0.90 0.91

universities with granular job titles unweighted 0.79 0.79
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all universities weighted 0.83 0.84

universities with coarse job titles weighted 0.82 0.86

universities with granular job titles weighted 0.84 0.81

 

D. Using Age and Wage Data 

Census Bureau links permitted us to examine whether or not having information on 

individuals’ age and earnings increased the quality of prediction.  These variables would 

appear to be valuable predictors, especially in this context because of the large 

differences in ages and earning across occupations. As shown in Table A4, there is some 

gain, but it is not extraordinarily high across the board.  The largest gains, by far, are for 

undergraduates when occupations are weighted by the number of people in them.  The 

benchmark analysis shows the predictive accuracy for all individuals whose true 

occupation falls in the occupation indicated in the row heading. The column headed “age 

and wage” shows the predictive accuracy for individuals for whom we have age and 

wage information (i.e., subset of the benchmark population). For this subset of population, 

the “age” column shows the accuracy when age is used along with job title for prediction; 

the “wage” column shows the accuracy when wage is used along with job title for 

prediction; the “age and wage” column shows the accuracy when both age and wage are 

used along with job titles for prediction. 

One interesting observation is that the predictive accuracy increases drastically for 

graduate students with age and wage information. This may be because common jobs 

titles like teaching assistant are associated with more standardized hiring procedures that 

increase the chance of students’ information being stored in a more organized way on the 
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university system. This effect, however, disappears when the job titles are not weighted 

by the number of employees associated with that job title (the bottom half of the table). 

This could be due to idiosyncratic job titles and associated non-standardized hiring 

processes. 

The table also shows that correctly classifying undergraduate students is particularly 

difficult even with the information on age and wage. This is probably due to 

heterogeneity within the undergraduate researcher body: there are traditional students 

straight out of high school as well as adult students, who are often employed. 

Table A4. Accuracy using age and wage data 

Fraction of individuals whose predicted class matches the true class by true class 

Actual 

Occupation 

Benchmark Sample with 

Age & Wage 

Data 

Using Age 

Data 

Using Wage 

Data 

Using Age and 

Wage Data 

Faculty 0.81 0.87 0.88 0.88 0.89

Graduate 0.09 0.73 0.73 0.73 0.73

Staff / Other 0.97 0.96 0.96 0.94 0.94

Postdoc 0.87 0.57 0.63 0.70 0.63

Undergrad 0.23 0.17 0.36 0.39 0.37

Overall 0.65 0.82 0.84 0.84 0.84

Fraction of job titles whose mode of predicted classes matches the true class by true class 

Faculty 0.81 0.90 0.90 0.92 0.92

Graduate 0.09 0.13 0.12 0.12 0.12
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Staff / Other 0.97 0.95 0.97 0.95 0.96

Postdoc 0.87 0.85 0.87 0.86 0.86

Undergrad 0.23 0.10 0.08 0.10 0.09

Overall 0.65 0.78 0.79 0.79 0.79

 

 

E. Transitional and Concurrent Titles 

As indicated, people can hold multiple titles at a point in time (or in close succession) and 

can transition between titles. As some transitions are more common than others (i.e., a 

transition from undergraduate to graduate to postgraduate to faculty is more common 

than the reverse set of transitions), it is possible to use transitions between titles and 

concurrent titles (more precisely, occupational classes that are associated with these titles) 

as predictors in the random forest classifier to improve predictive accuracy. Transitional 

and concurrent titles can also be used to identify unlikely transitions in the “ground-truth” 

data, providing an opportunity for a revision. Beyond improving the accuracy of the data, 

exploring concurrent positions and transitions can add to the richness of our data by 

providing information on career paths.  

 

Using concurrent job titles and the transitions between job titles requires some form of 

iterative procedure. Obviously, the complete mapping between the set of job titles to 

itself is too high dimensional to be of any practical use. Thus, we use the following 

approach. In the first iteration, we predict occupational class using only job titles as 

predictors. In the second iteration, the predicted classes of the transitional/concurrent 
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titles from the first iteration are used as predictors, along with the job titles. In principle, 

this process could be iterated until the prediction converges according to some criterion. 

The example below, where an individual held three job titles in sequence, illustrates our 

approach. 

 

Table A6. Illustration of iterative procedure using transitions 

First Iteration: 

Job Title Preceding 

Class 

Concurrent 

Class 

Succeeding 

Class 
Prediction 

Student Help   - Staff 

Research Assistant -  - Undergraduate 

Postdoctoral 

Researcher 
-   Postgraduate 

 

Second Iteration: 

Job Title Preceding 

Class 

Concurrent 

Class 

Succeeding 

Class 

New 

Prediction 

Student Help   Undergraduate Undergraduate 

Research 

Assistant 
Staff  Postgraduate Graduate 

Postdoctoral 

Researcher 
Undergraduate   Postgraduate 
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Third Iteration: 

Job Title Preceding 

Class 

Concurrent 

Class 

Succeeding 

Class 

New 

Prediction 

Student Help   Graduate Undergraduate 

Research 

Assistant 
Undergraduate  Postgraduate Graduate 

Postdoctoral 

Researcher 
Graduate   Postgraduate 

 

In this example, “postdoctoral researcher” is pivotal. Because the job title is so 

informative, its predicted class during the second iteration is not affected by the wrong 

prediction for the preceding title (i.e., it is unlikely to transition directly from 

undergraduate to postgraduate, but it is even more unlikely for a non-postgraduate 

student to have a job title “postdoctoral researcher”). 

 

Of course, the time gap between the consecutive titles should also be taken into account. 

For the above example, if the time gap between “research assistant” and “postdoctoral 

researcher” is more than several years, the initial prediction of undergraduate for the job 

title “research assistant” may be more appropriate than the revised prediction of graduate. 

Here, we do not leverage the time gap between job titles in the model, but do include age, 

which contains somewhat similar information regarding the timing of job titles. 
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One issue with the iterated prediction procedure is that the convergence is not guaranteed, 

especially when there is no pivotal job title. For example, consider the following 

individual who held two job titles simultaneously. 

 

Table A7 – Illustration of iterative procedure to use concurrent titles 

First Iteration: 

Job Title Preceding 

Class 

Concurrent 

Class 

Succeeding 

Class 
Prediction 

Tutor  -  Graduate 

Grader  -  Undergraduate 

 

Second Iteration: 

Job Title Preceding 

Class 

Concurrent 

Class 

Succeeding 

Class 
Prediction 

Tutor  Undergraduate  Undergraduate 

Grader  Graduate  Graduate 

 

Third Iteration: 

Job Title Preceding 

Class 

Concurrent 

Class 

Succeeding 

Class 
Prediction 

Tutor  Graduate  Graduate 

Grader  Undergraduate  Undergraduate 
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Because we cannot say whether a tutor or a grader is definitely an undergraduate or 

graduate, it is possible that, when making a revised prediction, the random forest 

classifier will simply adopt the classification for the concurrent title predicted in the 

previous iteration. As a result, the prediction will flip-flop and the algorithm will never 

stop. Of course, the presence of other people in these occupations mitigates this problem 

at least to some extent. 

 

Data Construction 

As a first step toward incorporating transitional and concurrent classes in the random 

forest classifiers, we included the manually classified transitional and concurrent classes 

in our training data in the model rather than predicted occupations. The resulting 

predictive accuracy is expected to provide an upper bound for the accuracy obtained from 

the iterated procedure described above. 

 

To construct our sample, the monthly transaction records were collapsed at the 

individual-title-year level. That is, for each individual, for each calendar year, for each 

job title held during the year, we kept the individual-title-year record if the individual 

appeared in the transaction record both before July 1 and after September 30 with the job 

title. This is to avoid potential noise in the data when annual income is merged. Suppose 

an undergraduate student held a research assistant position from January through June. 

Then he or she graduated and obtained a full-time job. If the individual was included in 

our sample, it would appear that the annual income of the individual is too high to be an 

undergraduate, and it can potentially mislead the random forest classifier. 
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The concurrent job titles are defined to be a group of job titles that were held by an 

individual within a year. When there were multiple concurrent job titles, we selected the 

one for which the individual was paid the longest. The preceding job title is defined to be 

a job title held by an individual in the years preceding the current year. When there were 

multiple preceding job titles, we selected the most recent one. The succeeding job title is 

defined to be a job title held by an individual in the years succeeding the current year. 

When there were multiple succeeding job titles, we selected the one that immediately 

followed the current job title. Because we restricted our sample to individuals appearing 

in the transaction data between 2012 and 2014, the occurrence of multiple concurrent or 

transitional job titles was rare. 

 

Before fitting the random forest classifier, transitional and concurrent classes were 

binarized because the random forest classifier cannot process categorical data. Each of 

preceding, concurrent, and succeeding class variables was decomposed into five indicator 

variables (faculty, postgraduate, graduate, undergraduate, and staff/other). 

 

Methodology 

To properly measure the effect of including transitional/concurrent classes on the 

predictive accuracy, we created the following subsets of observations: 

 Everyone: Every observation 

 None: Observations without any transitional or concurrent titles 
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 Prec: Observations with preceding title (may or may not have succeeding or 

concurrent titles) 

 Succ: Observations with succeeding title (may or may not have preceding or 

concurrent titles) 

 Conc: Observations with concurrent title (may or may not have preceding or 

succeeding titles) 

 Any: Observations with at least one of preceding, succeeding, or concurrent title 

(can have multiple) 

 

We expect that inclusion of transitional/concurrent classes have no effect on occupations 

where no observations have any transitional/concurrent classes while it will have the 

largest effect on occupations with many cases with all of the three classes. Each of the six 

subsets listed above served as a test set, and the random forest classifier was fitted with 

and without transitional/concurrent classes as predictors. 

 

Regarding the training set, it is unclear whether the set should be restricted in the same 

way as the test set. Consider the test set “Prec”. On the one hand, it seems reasonable to 

restrict the training set to only observations with preceding titles. This is because if 

observations without preceding title were to be included in the training set, the 

importance of the preceding class in predicting the current class may be discounted. On 

the other hand, requiring observations in the training set to have preceding titles greatly 

reduces the number of qualified observations, possibly leading to overfitting. Since the 
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effect of restricting the training set is unclear, we fitted the random forest classifier with 

and without restriction on the training set.  

 

As shown in Table A8, including the concurrent and transitional occupation has minimal 

effect on the predictive accuracy. This is most likely due to the limited number of 

relevant observations in the training set; therefore, as more universities participate in the 

IRIS project and provide data over a longer time period, the concurrent and transitional 

occupation may become a useful predictor.
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Table A8 

Features Training Set Everyone None Prec Succ Conc Any 

Job title Unrestricted 0.83 0.83 0.82 0.84 0.83 0.83

Job title and occupation Unrestricted 0.82 0.82 0.83 0.85 0.82 0.84

Job title Restricted to relevant group 0.83 0.82 0.83 0.82 0.86 0.83

Job title and occupation Restricted to relevant group 0.82 0.83 0.83 0.85 0.78 0.83

 

 

 


