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Abstract
Heterogeneity is a hallmark of cancer. For various cancer outcomes/phenotypes,
supervised heterogeneity analysis has been conducted, leading to a deeper under-
standing of disease biology and customized clinical decisions. In the literature,
such analysis has been oftentimes based on demographic, clinical, and omics
measurements. Recent studies have shown that high-dimensional histopatho-
logical imaging features contain valuable information on cancer outcomes. How-
ever, comparatively, heterogeneity analysis based on imaging features has been
very limited. In this article, we conduct supervised cancer heterogeneity anal-
ysis using histopathological imaging features. The penalized fusion technique,
which has notable advantages—such as greater flexibility—over the finite mix-
ture modeling and other techniques, is adopted. A sparse penalization is further
imposed to accommodate high dimensionality and select relevant imaging fea-
tures. To improve computational feasibility and generate more reliable estima-
tion, we employmodel averaging. Computational and statistical properties of the
proposed approach are carefully investigated. Simulation demonstrates its favor-
able performance. The analysis of The Cancer Genome Atlas (TCGA) data may
provide a new way of defining/examining breast cancer heterogeneity.
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1 INTRODUCTION

Heterogeneity is a hallmark of cancer. For many cancers,
heterogeneity analysis has been extensively conducted and
can be roughly classified as unsupervised and supervised.
Supervised heterogeneity analysis directly concerns with
outcomes/phenotypes and can be clinically more relevant.
Such analysis has led to a deeper understanding of dis-
ease biology, new ways of classifying/defining diseases,
andmore informed clinical decision-making (Dagogo-Jack
and Shaw, 2018). In “classic” studies, heterogeneity analy-
sis has oftentimes been based on clinical and demographic
features. Lately, there have also been many heterogene-
ity studies built on high-throughput omics data (Lawrence
et al., 2013).
Different from many existing studies, here we consider

cancer heterogeneity analysis based on histopathological
imaging data. Histopathological images are generated in
biopsy. They differ from radiological images (which con-
tain information on “macro” properties of tumors) and
describe “micro” properties. In particular, they contain
essential information on the histological organization and
morphological characteristics of tumor cells and their sur-
roundingmicroenvironment. They have been traditionally
used as the gold standard for definitive diagnosis/staging.
Recent studies have explored building imaging-basedmod-
els for cancer prognosis and other outcomes/phenotypes
(Wang et al., 2019; Zhong et al., 2019). There have also
been a handful of recent studies exploring heterogeneity
analysis based on histopathological imaging features (Bel-
homme et al., 2015; Luo et al., 2017). However, they are
oftentimes built on a small number of imaging features
(which are not sufficiently informative) and/or simple sta-
tistical techniques.
For supervised heterogeneity analysis, the most popular

technique is perhaps the finite mixture regression (FMR;
McLachlan and Peel, 2000). When the number of input
variables is large and/or noises are present, regulariza-
tion and other techniques have been coupled with the
FMR (Khalili and Chen, 2007; Städler et al., 2010). There
are also more recent developments. For example, Wager
and Athey (2018) develops a nonparametric causal forest
for estimating heterogeneous treatment effects. For binary
responses, Foster et al. (2011) develops a virtual twins
method. A recent technique, which has attracted extensive
attention and is advantageous inmultiple aspects, is penal-
ized fusion (Tibshirani et al., 2005; Ma and Huang, 2017).
Specifically, it has a more intuitive definition, more con-
veniently determines the number of subgroups, and can
in principle accommodate subgroups as small as size one.
On the negative side, it involves a much larger number of
parameters, which leads to challenging computation and
unreliable estimation.

In this article, we conduct histopathological imaging-
based cancer heterogeneity analysis. The significance of
cancer heterogeneity analysis does not need to be reiter-
ated, and the demand for more effective analysis methods
has been noted (Dagogo-Jack and Shaw, 2018). Compared
to some other types of measurements, histopathological
imaging features contain “more direct” information on
tumors and are much more cost-effective and simpler
to obtain. However, heterogeneity analysis built on such
features remains scarce. This study can complement
the existing literature by providing a new way of mod-
eling cancer heterogeneity and a new way of utilizing
histopathological imaging data. In addition, our data anal-
ysis can also provide a new way of looking at breast cancer
heterogeneity. The penalized fusion technique (Ma and
Huang, 2017; Zhu andQu, 2018) is adopted for determining
heterogeneity. Advancing from the “standard” penalized
fusion, sparse penalization is introduced to accommodate
high dimensionality and distinguish signals from noises.
Our preliminary examination (described later) suggests
that a direct application of double penalization—with
one for heterogeneity and the other for sparsity—leads to
significant computational challenges and unsatisfactory
estimation. To overcome this hurdle, we resort to model
averaging, divide a big analysis problem into multiple
small ones, tackle each separately, and ensemble results
to generate the final analysis. Although some compo-
nents of the proposed approach have been examined to
a certain extent, effectively “assembling” them in a novel
way to tackle the present challenging analysis is new
and demands extensive and challenging numerical and
theoretical investigations. Our numerical study suggests
favorable performance of the proposed approach. With
significant practical, methodological, computational, and
theoretical advancements, this study is warranted beyond
the existing literature.

2 METHODS

2.1 Penalized fusion with model
averaging

Denote 𝑦 as the response variable and x = (𝑥1, … , 𝑥𝑝)
T as

the 𝑝-dimensional imaging features. Consider a continu-
ous response. Discussions on other types of response are
provided later. Let {x𝑖 , 𝑦𝑖}𝑛𝑖=1 be 𝑛 independent copies of
{x, 𝑦}, and x𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)

T. Under the penalized fusion
framework, we consider the models

𝑦𝑖 = xT
𝑖
𝜽𝑖 + 𝜖𝑖, 𝑖 = 1, … , 𝑛, (1)

where 𝜽𝑖 = (𝜃𝑖1, … , 𝜃𝑖𝑝)
T is the vector of unknown regres-

sion coefficients, and 𝜖𝑖 is the random error with E(ϵi) = 0
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and Var(ϵi) = σ2. Here each subject has its own regression
model/coefficients, which renders the penalized fusion
technique greater flexibility than the FMR and some other
techniques. For example, the number of subgroups does
not need to be assumed a priori. In addition, penalized
fusion can potentially accommodate small subgroups (in
principle, as small as size one). The downside is that the
number of parameters, 𝑛 × 𝑝, is much higher than in an
ordinary regression.
In regression-based heterogeneity analysis, two sub-

jects belong to the same subgroup if and only if they
have the same regression model/coefficients. As such,
heterogeneity analysis amounts to determining which
𝜽𝑖 ’s are equal to each other. With low-dimensional
covariates, the “standard” penalized fusion has objective
function:

1

2

𝑛∑
𝑖=1

(
𝑦𝑖 − xT

𝑖
𝜽𝑖
)2

+
∑

1≤𝑖<𝑚≤𝑛

𝑝(‖𝜽𝑖 − 𝜽𝑚‖, 𝜆), (2)

where 𝑝(⋅, 𝜆) is a penalty function with tuning parameter
𝜆, and ‖ ⋅ ‖ is the 𝐿2 norm. Note that the penalty compo-
nent involves 𝑛(𝑛 − 1)∕2 terms. With proper penalization,
there is a nonzero probability 𝜽𝑖 = 𝜽𝑗 , and so subgrouping
can be realized.
When 𝑝 is large and there are noises in covariates, addi-

tional regularization needs to be imposed to (2). Although
seemingly straightforward, a direct application may lead
to challenging computation and unsatisfactory estimation.
For example, this may involve manipulating matrices with
size 𝑛(𝑛−1)𝑝

2
× 𝑛𝑝 (details in Section 2.2.1). Each term in the

fusion penalty involves 𝑝-dimensional vectors, and a small
change of tuning may cause a big change of the objective
function, leading to instability. We adopt model averaging
to tackle computational challenges. Overall, the proposed
approach involves the following steps:

Step 1: Partition {1, … , 𝑝} into 𝐵𝑛 nonoverlapping sets
with equal sizes. More information on the partition
is provided below in the theoretical development.
Denote 𝐴𝑏 as the 𝑏th index set and |𝐴𝑏| as its size.
For the simplicity of notation, assume 𝑝 = 𝐵𝑛 ×|𝐴𝑏|. For a 𝑝-dimensional vector a = (𝑎1, … , 𝑎𝑝)

T,
denote a(𝑏) as its subvector indexed by 𝐴𝑏. Accord-
ing to 𝐴𝑏’s, partition {x𝑖 , 𝑦𝑖}𝑛𝑖=1 into 𝐵𝑛 subsets
{(x𝑖(1), 𝑦𝑖)𝑛𝑖=1}, … , {(x𝑖(𝐵𝑛), 𝑦𝑖)

𝑛
𝑖=1

}.
Step 2:For data subset 𝑏(= 1,… , 𝐵𝑛), conduct the dou-
ble penalized fusion analysis. Denote the estimate
as {𝜽1(𝑏), … , 𝜽𝑛(𝑏)}.

Step 3: With {(xT
𝑖(1)

𝜽𝑖(1), 𝑦𝑖)
𝑛
𝑖=1

, … , (xT
𝑖(𝐵𝑛)

𝜽𝑖(𝐵𝑛), 𝑦𝑖)
𝑛
𝑖=1

},
minimize the prediction error, and obtain the opti-
mal weight 𝝎 = (𝜔1, … , 𝜔𝐵𝑛)

T.

Step 4: For 𝑖 = 1, … , 𝑛, compute the model-averaged
estimate 𝜽𝑖𝝎 =

∑𝐵𝑛
𝑏=1

𝜔𝑏𝝅
T
𝑏
𝜽𝑖(𝑏), where 𝝅𝑏 is the

matrix (I|𝐴𝑏|, 𝟎|𝐴𝑏|×(𝑝−|𝐴𝑏|)) column permutation
correspond to 𝐴𝑏. Based on {𝜽𝑖𝝎}

𝑛
𝑖=1
, conduct sub-

grouping, and identify the heterogeneity structure.

In some model averaging studies, random sampling is
adopted. In Step 1, we use partition (Ando and Li, 2017),
which has a lower computational cost. Our numerical
exploration described below suggests that the ordering of
variables in the partition is not critical, as long as certain
conditions are satisfied. Step 2 can be conducted on multi-
ple CPUs in a highly parallel manner to reduce computer
time. More details of Steps 2-4 are as follows.

2.1.1 Details of Step 2

Consider the 𝑏th data subset, which contains all 𝑛 samples
and |𝐴𝑏| covariates. Consider the submodel:

𝑦𝑖 = xT
𝑖(𝑏)

𝜽𝑖(𝑏) + 𝜖𝑖(𝑏), (3)

where 𝜽𝑖(𝑏) = (𝜃1
𝑖(𝑏)

, … , 𝜃
|𝐴𝑏|
𝑖(𝑏)

)T is the |𝐴𝑏|-vector of
unknown coefficients. As 𝑝 → ∞, both |𝐴𝑏| and 𝐵𝑛 can
go to infinity (details provided in the theoretical develop-
ment). When applying penalized fusion to submodel (3),
we note that |𝐴𝑏|may still be moderate to large compared
to 𝑛, and there may be noises in the |𝐴𝑏| covariates. As
such, we propose additionally applying a sparsity penalty.
Specifically, consider the objective function:

𝑄𝑛({𝜽𝑖(𝑏)}, 𝜆1, 𝜆2) =
1

2

𝑛∑
𝑖=1

(
𝑦𝑖 − xT

𝑖(𝑏)
𝜽𝑖(𝑏)

)2

+

𝑛∑
𝑖=1

|𝐴𝑏|∑
𝑗=1

𝑝1(|𝜃𝑗𝑖(𝑏)|, 𝜆1)
+

∑
1≤𝑖<𝑚≤𝑛

𝑝2(‖𝜽𝑖(𝑏) − 𝜽𝑚(𝑏)‖, 𝜆2),
(4)

where 𝑝1(⋅, ⋅) and 𝑝2(⋅, ⋅) are two penalties, and 𝜆1 and
𝜆2 are (vectors of) tunings. In our implementation, we
take 𝑝1 and 𝑝2 as SCAD (which also involves a regular-
ization parameter 𝛾) and note that some alternatives may
be equally applicable. Loosely speaking, the two penalties
in (4) share similar spirit as those in fused penalization,
with the first for sparsity and the second for equality. Key
differences are: the proposed approach involves a much
larger number of parameters, all pair-wise (as opposed to
the adjacent) differences are taken in the second penalty,
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and different 𝜽’s correspond to different subjects. The 𝐵𝑛

sets of estimates, as opposed to the individual subgrouping
results, will be used in downstream analysis.

2.1.2 Details of Step 3

Step 2 generates {𝜽1(𝑏), … , 𝜽𝑛(𝑏)}
𝐵𝑛
𝑏=1

. Denote 𝑦𝑖(𝑏) =

xT
𝑖(𝑏)

𝜽𝑖(𝑏) and ŷ𝑖 = (𝑦𝑖(1), … , 𝑦𝑖(𝐵𝑛))
T. Consider the weight

vector 𝝎 = (𝜔1, … , 𝜔𝐵𝑛)
T with 0 ≤ 𝜔𝑏 ≤ 1 and

∑
𝑏
𝜔𝑏 = 1.

Here 𝜔𝑏 is the weight of the 𝑏th submodel. For a given
𝝎, let 𝑦𝑖(𝝎) = 𝝎Tŷ𝑖 . For choosing 𝝎, consider the loss
function:

𝑛(𝝎) =

𝑛∑
𝑖=1

{𝑦𝑖 − 𝑦𝑖(𝝎)}
2
.

When𝐵𝑛 is large, this functionmaynot have a unique solu-
tion. In addition, directly optimizing it leads to a dense esti-
mate. In Section 2.2.2, we adopt a greedy optimization algo-
rithm that leads to a unique and sparse estimate. Denote 𝝎
as the estimated weight vector and 𝜽𝑖𝝎 =

∑𝐵𝑛
𝑏=1 𝜔𝑏𝝅

T
𝑏
𝜽𝑖(𝑏)

as the corresponding estimate.

2.1.3 Details of Step 4

With the estimates, the heterogeneity structure can be
determined following the standard penalized fusion strat-
egy and examining the equality of estimates (Ma and
Huang, 2017). In practice, as the computation is terminated
when the adjacent estimates are close enough (details
below), thresholding may be needed to conclude equality
when two estimates are close enough.

2.1.4 Remarks

With other models and other types of response, the first
term in the objective function can be replaced by a general
lack-of-fit measure, and the proposed approach can then
be applied. When the lack-of-fit measure is continuously
differentiable, the computational algorithm described
below can be applied by invoking Taylor expansion.
Theoretical investigation may need further data/model-
specific adjustments.

2.2 Computation

2.2.1 Computation of Step 2

We reparameterize by introducing 𝜼𝑖𝑚(𝑏) = 𝜽𝑖(𝑏) − 𝜽𝑚(𝑏)

and 𝜇
𝑗

𝑖(𝑏)
= 𝜃

𝑗

𝑖(𝑏)
. Then minimizing (4) is equivalent to the

constrained optimization problem:

𝑆𝑛({𝜽𝑖(𝑏)}, {𝝁𝑖(𝑏)}, {𝜼𝑖𝑚(𝑏)}) =
1

2

𝑛∑
𝑖=1

(
𝑦𝑖 − xT

𝑖(𝑏)
𝜽𝑖(𝑏)

)2

+

𝑛∑
𝑖=1

|𝐴𝑏|∑
𝑗=1

𝑝1(|𝜇𝑗

𝑖(𝑏)
|, 𝜆1)

+
∑
𝑖<𝑚

𝑝2(‖𝜼𝑖𝑚(𝑏)‖, 𝜆2), (5)

subject to 𝝁𝑖(𝑏) = 𝜽𝑖(𝑏), 𝜼𝑖𝑚(𝑏) = 𝜽𝑖(𝑏) − 𝜽𝑚(𝑏),

where 𝝁𝑖(𝑏) = (𝜇1
𝑖(𝑏)

, … , 𝜇
|𝐴𝑏|
𝑖(𝑏)

)T. The augmented
Lagrangian function is

𝑇𝑛({𝜽𝑖(𝑏)}, 𝝁(𝑏), {𝜼𝑖𝑚(𝑏)}, {v𝑖(𝑏)}, v̄(𝑏))

= 𝑆𝑛({𝜽𝑖(𝑏)}, 𝝁(𝑏), {𝜼𝑖𝑚(𝑏)}) +
∑
𝑖<𝑚

vT
𝑖𝑚(𝑏)

{𝜽𝑖(𝑏) − 𝜽𝑚(𝑏) − 𝜼𝑖𝑚(𝑏)}

+ v̄T
(𝑏)
{𝜽(𝑏) − 𝝁(𝑏)} +

𝜅

2

∑
𝑖<𝑚

‖𝜽𝑖(𝑏) − 𝜽𝑚(𝑏) − 𝜼𝑖𝑚(𝑏)‖2
+

𝜅

2
‖𝜽(𝑏) − 𝝁(𝑏)‖2, (6)

where 𝝁(𝑏) = (𝝁T
1(𝑏)

, … , 𝝁T
𝑛(𝑏)

)T, {v𝑖𝑚(𝑏)} and v̄(𝑏) =

{(𝑣1
𝑖(𝑏)

, … , 𝑣
|𝐴𝑏|
𝑖(𝑏)

), 𝑖 = 1, … , 𝑛}T are the Lagrange
multipliers, and 𝜅 is the penalty parameter. Let
X(𝑏) = diag(xT

1(𝑏)
, … , xT

𝑛(𝑏)
), 𝜼(𝑏) = (𝜼T

𝑖𝑚(𝑏)
, 𝑖 < 𝑚)T, v(𝑏) =

(vT
𝑖𝑚(𝑏)

, 𝑖 < 𝑚)T, Δ = {(e𝑖 − e𝑗), 𝑖 < 𝑚}T, A = Δ⊗ I|𝐴𝑏|, e𝑖
be the 𝑖th canonical basis of ℝ|𝐴𝑏|, I|𝐴𝑏| be the |𝐴𝑏| × |𝐴𝑏|
identity matrix, and ⊗ denote the Kronecker product.
Then (6) can be rewritten as

𝐿𝑛(𝜽(𝑏), 𝝁(𝑏), 𝜼(𝑏), v(𝑏), v̄(𝑏)) =
1

2
‖‖y − X(𝑏)𝜽(𝑏)‖‖2

+

𝑛∑
𝑖=1

|𝐴𝑏|∑
𝑗=1

𝑝1(|𝜇𝑗

𝑖(𝑏)
|, 𝜆1) + ∑

𝑖<𝑚

𝑝2(‖𝜼𝑖𝑚(𝑏)‖, 𝜆2)
+
𝜅

2

[‖‖‖‖A𝜽(𝑏) − 𝜼(𝑏) +
v(𝑏)
𝜅

‖‖‖‖
2

+
‖‖‖‖𝜽(𝑏) − 𝝁(𝑏) +

v̄(𝑏)
𝜅

‖‖‖‖
2
]
+𝐶.

(7)

We adopt the alternating direction method of multipliers
technique and provide additional details in the Support-
ing Information. Note that here A is a 𝑛(𝑛−1)|𝐴𝑏|

2
× 𝑛|𝐴𝑏|

matrix. As such, without model averaging, the dimension
of A would be 𝑛(𝑛−1)𝑝

2
× 𝑛𝑝, which can lead to challeng-

ing computation.
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Given the estimate ({𝜽(𝓁−1)
𝑖(𝑏)

}, 𝝁
(𝓁−1)

(𝑏)
, 𝜼

(𝓁−1)

(𝑏)
, {v(𝓁−1)

𝑖𝑚(𝑏)
}, v̄(𝓁−1)

(𝑏)
)

at the 𝓁 − 1th iteration, the 𝓁th iteration estimates are

𝜼
(𝓁)

𝑖𝑚(𝑏)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑆(𝜹
(𝓁)

𝑖𝑚(𝑏)
, 𝜆2∕𝜅) if ‖𝜹(𝓁)

𝑖𝑚(𝑏)
‖ ≤ 𝜆2

+𝜆2∕𝜅

𝑆
(
𝜹
(𝓁)

𝑖𝑚(𝑏)
, 𝛾𝜆2∕((𝛾 − 1)𝜅)

)
1 − 1∕((𝛾 − 1)𝜅)

if 𝜆2 + 𝜆2∕𝜅

< ‖𝜹(𝓁)
𝑖𝑚(𝑏)

‖ ≤ 𝛾𝜆2

𝜹
(𝓁)

𝑖𝑚(𝑏)
if ‖𝜹(𝓁)

𝑖𝑚(𝑏)
‖ > 𝛾𝜆2,

(8)

where 𝜹
(𝓁)

𝑖𝑚(𝑏)
= 𝜽

(𝓁−1)

𝑖(𝑏)
− 𝜽

(𝓁−1)

𝑚(𝑏)
+

1

𝜅
v(𝓁−1)
𝑖𝑚(𝑏)

and 𝑆(𝑡, 𝜆) =

(1 − 𝜆∕‖𝑡‖)+𝑡,
𝜽
(𝓁)

(𝑏)
=

(
XT
(𝑏)X(𝑏) + 𝜅ATA + 𝜅I𝑛|𝐴𝑏|)−1

×
{
XT
(𝑏)y + 𝜅AT

(
𝜼
(𝓁)

(𝑏)
− v(𝓁−1)

(𝑏)
∕𝜅

)
+𝜅

(
𝝁
(𝓁−1)

(𝑏)
− v̄(𝓁−1)

(𝑏)
∕𝜅

)}
, (9)

𝜇
𝑗(𝓁)

𝑖(𝑏)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑆𝑇(𝜉
𝑗(𝓁)

𝑖(𝑏)
, 𝜆1∕𝜅) |𝜉𝑗(𝓁)

𝑖(𝑏)
| ≤ 𝜆1 + 𝜆1∕𝜅

𝑆𝑇(𝜉
𝑗(𝓁)

𝑖(𝑏)
, 𝛾𝜆1∕((𝛾 − 1)𝜅))

1 − 1∕((𝛾 − 1)𝜅)
𝜆1 + 𝜆1∕𝜅 < |𝜉𝑗(𝓁)

𝑖(𝑏)
|

≤ 𝛾𝜆1,

𝜉
𝑗(𝓁)

𝑖(𝑏)
|𝜉𝑗(𝓁)

𝑖(𝑏)
| > 𝛾𝜆1

(10)

v(𝓁)
(𝑏)

= v(𝓁−1)
(𝑏)

+ 𝜅(A𝜽(𝓁)
(𝑏)

− 𝜼
(𝓁)

(𝑏)
),

v̄(𝓁)
(𝑏)

= v̄(𝓁−1)
(𝑏)

+ 𝜅(𝜽
(𝓁)

(𝑏)
− 𝝁

(𝓁)

(𝑏)
), (11)

where 𝜉
𝑗(𝓁)

𝑖(𝑏)
= 𝜃

𝑗(𝓁)

𝑖(𝑏)
+ 𝑣

𝑗(𝓁−1)

𝑖(𝑏)
∕𝜅 and 𝑆𝑇(𝑡, 𝜆) =

sign(𝑡)(|𝑡| − 𝜆)+.
Overall, we propose the following algorithm: (a) Ini-

tialization: 𝓁 = 0, 𝝁(0)

(𝑏)
= 𝜽

(0)

(𝑏)
, 𝜼

(0)

(𝑏)
= A𝜽(0)

(𝑏)
, v(0)

(𝑏)
= 0, v̄(0)

(𝑏)
=

0. In numerical study, we use estimates from an FMR
(with the number of subgroups determined by Bayesian
information criterion (BIC)) as the initial 𝜽(0)

(𝑏)
. Our explo-

ration suggests that the estimates are not too sensitive
to the initial values as long as they are not “too off.”
(b) Update 𝓁 = 𝓁 + 1, 𝜼(𝓁)

(𝑏)
via (8), 𝜽(𝓁)

(𝑏)
via (9), 𝝁(𝓁)

(𝑏)
via

(10), v(𝓁)
(𝑏)

and v̄(𝓁)
(𝑏)

via (11). We set 𝜅 = 1 and 𝛾 = 3. (c)
Repeat Step (b) until convergence, which is concluded if

‖r̃(𝓁∗)
(𝑏)

‖ ≤ 𝜀 with 𝜀 = 0.001. Here r̃(𝓁)
(𝑏)

= ((r(𝓁)
(𝑏)

)T, (r̄(𝓁)
(𝑏)

)T)T,

r(𝓁)
(𝑏)

= A𝜽(𝓁)
(𝑏)

− 𝜼
(𝓁)

(𝑏)
, and r̄(𝓁)

(𝑏)
= 𝜽

(𝓁)

(𝑏)
− 𝝁

(𝓁)

(𝑏)
. The following

convergence result is proved in the Supporting Informa-
tion.

Corollary 1. Let {𝜽
(𝓁)

(𝑏)
, 𝝁

(𝓁)

(𝑏)
, 𝜼

(𝓁)

(𝑏)
, v(𝓁)

(𝑏)
, v̄(𝓁)

(𝑏)
}∞
𝓁=1

be the

sequence of estimates. If {𝝁
(𝓁)

(𝑏)
, 𝜼

(𝓁)

(𝑏)
}∞
𝓁=1

are bounded

and ‖v(𝓁)
(𝑏)

− v(𝓁−1)
(𝑏)

‖ + ‖v̄(𝓁)
(𝑏)

− v̄(𝓁−1)
(𝑏)

‖ → 0, then

{𝜽
(𝓁)

(𝑏)
, 𝝁

(𝓁)

(𝑏)
, 𝜼

(𝓁)

(𝑏)
, v(𝓁)

(𝑏)
, v̄(𝓁)

(𝑏)
}∞
𝓁=1

is bounded. Furthermore,

there exists a sequence {𝜽
(𝓁𝑗)

(𝑏)
, 𝝁

(𝓁𝑗)

(𝑏)
, 𝜼

(𝓁𝑗)

(𝑏)
, v

(𝓁𝑗)

(𝑏)
, v̄

(𝓁𝑗)

(𝑏)
}∞
𝓁𝑗=1

such that

‖𝜽(𝓁𝑗)
(𝑏)

− 𝜽
(𝓁𝑗−1)

(𝑏)
‖ + ‖𝝁(𝓁𝑗)

(𝑏)
− 𝝁

(𝓁𝑗−1)

(𝑏)
‖ + ‖𝜼(𝓁𝑗)

(𝑏)
− 𝜼

(𝓁𝑗−1)

(𝑏)
‖

+ ‖v(𝓁𝑗)
(𝑏)

− v
(𝓁𝑗−1)

(𝑏)
‖ + ‖v̄(𝓁𝑗)

(𝑏)
− v̄

(𝓁𝑗−1)

(𝑏)
‖ → 0

as 𝓁𝑗 → ∞. Thus {𝜽
(𝓁)

(𝑏)
, 𝝁

(𝓁)

(𝑏)
, 𝜼

(𝓁)

(𝑏)
, v(𝓁)

(𝑏)
, v̄(𝓁)

(𝑏)
}∞
𝓁=1

has
a sequence that converges to the stationary point
{𝜽#

(𝑏)
, 𝝁#

(𝑏)
, 𝜼#

(𝑏)
, v#

(𝑏)
, v̄#

(𝑏)
} that satisfies the first-order

conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

XT
(𝑏)(−y + X(𝑏)𝜽

#
(𝑏)
) +ATv#

(𝑏)
+ v̄#

(𝑏)
= 𝟎

0 ∈ −𝑣
𝑗#

𝑖(𝑏)
+

𝜕𝑝1(|𝜇𝑗

𝑖(𝑏)
|, 𝜆1)

𝜕𝜇
𝑗

𝑖(𝑏)

|
𝜇
𝑗

𝑖(𝑏)
=𝜇

𝑗#

𝑖(𝑏)

, 𝑗 = 1, … , |𝐴𝑏|,
𝑖 = 1, … , 𝑛

𝟎 ∈ −v#
𝑖𝑚(𝑏)

+
𝜕𝑝2(‖𝜼𝑖𝑚(𝑏)‖, 𝜆2)

𝜕𝜼𝑖𝑚(𝑏)
|𝜼𝑖𝑚(𝑏)=𝜼

#
𝑖𝑚(𝑏)

, 𝑖 < 𝑚

A𝜽#
(𝑏)

− 𝜼#
(𝑏)

= 𝟎

𝜽#
(𝑏)

− 𝝁#
(𝑏)

= 𝟎.

(12)

2.2.2 Computation of Step 3

We adopt a greedy algorithm to generate a
unique and sparse estimate: (a) Initialize 𝓁 = 0

and 𝝎(0) = 𝟎; (b) update 𝓁 = 𝓁 + 1, 𝜆(𝓁) =
2

𝓁+1
,

𝜸(𝓁) ∈ argmin𝜸∈𝛀𝑛
{𝜸T∇𝑛(𝝎

(𝓁−1))}, and 𝝎(𝓁) =

𝝎(𝓁−1) + 𝜆(𝓁)(𝜸(𝓁) − 𝝎(𝓁−1)); and (c) repeat step (b)
until (𝝎(𝓁−1) − 𝜸(𝓁−1))T∇𝑛(𝝎

(𝓁)) ≤ 𝜀, where 𝜀 = 0.001 in
our numerical study. Properties such as convergence can
be established following Dai et al. (2012).

2.2.3 Remarks

With the convergence properties of steps 2 and 3, the over-
all convergence property can be established. In all of our
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numerical studies, convergence is achieved within a mod-
erate number of iterations. Following Wang et al. (2009)
and Ma and Huang (2017), we choose the tuning parame-
ters by minimizing a modified BIC:

BIC(𝜆1, 𝜆2) = log

{
1

𝑛

𝑛∑
𝑖=1

(𝑦𝑖 − xT
𝑖
𝜽𝑖𝝎(𝜆1, 𝜆2))

2

}

+𝐶𝑛
log 𝑛

𝑛
𝑆,

where 𝐶𝑛 = log(𝑛𝑝) and 𝑆 is the number of nonzero
coefficients in 𝜶𝝎 = (𝜶T

1𝝎
, … , 𝜶T

𝑛𝝎
)T. We acknowledge the

importance of tuning parameter selection (eg, optimality).
As BIC has been extensively adopted in the literature,
we choose not to discuss further. When 𝐵𝑛 is too large,
computational difficulty may arise. When 𝐵𝑛 is too small,
conditions specified in the following subsection may be
violated. On the other hand, our numerical study below
suggests that when 𝐵𝑛 is in a reasonable range, its value is
not critical.

2.3 Statistical properties

Assume 𝐾 subgroups, and denote  = (1, … ,𝐾) as
the subgroup set. Denote 𝜶𝑘 as the shared regression
coefficient vector for all subjects in 𝑘. Let G̃ = {𝑔𝑖𝑘}

be the 𝑛 × 𝐾 matrix with 𝑔𝑖𝑘 = 1 for 𝑖 ∈ 𝑘 and
𝑔𝑖𝑘 = 0 otherwise, and G𝑏 = G̃⊗ I|𝐴𝑏|. Let 𝑏


= {𝜽(𝑏) ∈

ℝ𝑛|𝐴𝑏|, 𝜽𝑖(𝑏) = 𝜽𝑚(𝑏), for any 𝑖, 𝑚 ∈ 𝑘, 1 ≤ 𝑘 ≤ 𝐾}. For
each 𝜽 ∈ 𝑏


, it can be written as 𝜽(𝑏) = G𝑏𝜶(𝑏), where

𝜶(𝑏) = (𝜶T
1(𝑏)

, … , 𝜶T
𝐾(𝑏)

)T and 𝜶𝑘(𝑏) = (𝛼1
𝑘(𝑏)

, … , 𝛼
|𝐴𝑏|
𝑘(𝑏)

)T is
a |𝐴𝑏| × 1 vector of the 𝑘th subgroup-specific param-
eter for 𝑘 = 1,… , 𝐾. Denote |min| = min𝑘 |𝑘| and|max| = max𝑘 |𝑘|. Further denote the scaled penalty
functions as 𝑝1(𝑡) = 𝜆−11 𝑝1(𝑡, 𝜆1) and 𝑝2(𝑡) = 𝜆−12 𝑝2(𝑡, 𝜆2).
When a model includes all and only covariates with
nonzero coefficients, we call it the true model. When
a model omits at least one covariate with a nonzero
coefficient, we call it an underfitted model, and denote
the set of underfitted models as . When a model is not
underfitted, we call it fitted. With respect to the partition,
we require that at least one submodel is fitted. This
requirement has been extensively imposed in the model
averaging literature (Zhang et al., 2020).
For the 𝑘th subgroup, consider

𝜶∗
𝑘(𝑏)

= argmin𝐸{(𝑦 − xT
(𝑏)
𝜶𝑘(𝑏))

2}.

When subject 𝑖 belongs to the 𝑘th subgroup, 𝜽∗
𝑖(𝑏)

= 𝜶∗
𝑘(𝑏)

.
So the underlying submodel for the 𝑘th subgroup is

𝑦𝑖 = xT
𝑖(𝑏)

𝜽∗
𝑖(𝑏)

+ 𝜖𝑖(𝑏), 𝑖 ∈ 𝑘.

When the submodel corresponding to data subset 𝑏 does
not belong to , 𝜶∗

𝑘(𝑏)
equals 𝜶0

𝑘(𝑏)
, where 𝜶0

𝑘(𝑏)
contains

the corresponding elements of the true coefficient 𝜶0
𝑘
. Let

𝑏𝑛 = min𝑏 min𝑘≠𝑘′ ‖𝜶∗
𝑘(𝑏)

− 𝜶∗
𝑘′(𝑏)

‖.
Denote𝒀 = (𝑦1, … , 𝑦𝑛)

T andX(𝑏) = diag{xT
1(𝑏)

, … , xT
𝑛(𝑏)

}.
If the underlying subgroups 1, … ,𝐾 are known, the ora-
cle estimator 𝜶(𝑏) can be defined as

𝜶or
(𝑏)

= arg min
𝜶(𝑏)∈ℝ

𝐾𝐴𝑏

{
1

2
‖𝒀 − X(𝑏)G𝑏𝜶(𝑏)‖2

+ 𝜆1

𝐾∑
𝑘=1

|𝐴𝑏|∑
𝑗=1

|𝑘|𝑝1(|𝛼𝑗

𝑘(𝑏)
|)}. (13)

Then 𝜽or
(𝑏)

= G𝑏𝜶
or
(𝑏)
.

We assume several mild and sensible conditions, which
are described in detail in the Supporting Information. We
then can establish the following consistency results.

Theorem 1. Under Conditions C1-C4 and C6 (Support-
ing Information), if 𝑏𝑛 > 𝑎𝜆2 for some constant 𝑎 > 0, then
there exists a local minimizer 𝜽(𝑏) of objective function (4)
satisfying:

𝑃
(
𝜽(𝑏) = 𝜽or

(𝑏)

)
→ 1 and sup

𝑖
‖𝜽𝑖(𝑏) − 𝜽∗

𝑖(𝑏)
‖

= 𝑂𝑝(
√|𝐴1|∕|min|).

Theorem 2. Denote Ω∗ = {𝝎 ∶
∑

𝑏∉
𝜔𝑏 = 1}. Under

Conditions C1-C6 (Supporting Information),

lim
𝑛→∞

𝑃(𝝎 ∈ Ω∗) → 1. (14)

With these two theorems, 𝜽𝝎 converges to 𝜽0 in prob-
ability, where 𝜽𝝎 = (𝜽T

1𝝎
, … , 𝜽T

𝑛𝝎
)T, 𝜽0 = {(𝜽01)

T, … , (𝜽0𝑛)
T}T,

and 𝜽0
𝑖
is the true coefficient. The proofs and additional dis-

cussions are provided in the Supporting Information.

3 SIMULATION

For 𝑛 = 100 independent samples, we generate 𝑝 = 100

dimensional x𝑖 ’s from a multivariate normal distribution
with marginal means 0 and marginal variances 1. For
covariance, we consider an auto-regressive structure with
parameter 𝜌 = 0, 0.3, and 0.7. The random errors are gen-
erated from𝑁(0, 0.5). The response 𝑦𝑖 ’s are generated from
the linear regression models. The first four covariates have
nonzero coefficients. To examine the “robustness” of par-
titioning, we randomly shuffle the unimportant covariates
so that different subsets can be correlated. We consider
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multiple values of 𝐵𝑛. The following simulation settings
have been partly motivated by Liu et al. (2020) and Städler
et al. (2010).

Simulation 1 There are two subgroups with coefficients
(−𝛽,−𝛽,−𝛽,−𝛽, 𝟎𝑝−𝑠) and (𝛽, 𝛽, 𝛽, 𝛽, 𝟎𝑝−𝑠). We use the
vector pr to denote the proportions of subjects in differ-
ent subgroups and consider both balanced and unbalanced
designs. Specifically, we consider all combinations by 𝛽 =

1 and 2, pr = (0.5, 0.5) and (0.3, 0.7), and 𝐵𝑛 = 10 and 5.

Simulation 2 There are three subgroups with coeffi-
cients (−𝛽,−𝛽,−𝛽,−𝛽, 𝟎𝑝−𝑠), (𝛽, 𝛽, 𝛽, 𝛽, 𝟎𝑝−𝑠), and
(2𝛽, 2𝛽, 2𝛽, 2𝛽, 𝟎𝑝−𝑠), where 𝛽 = 2. For their relative
proportions, we consider pr = (1∕3, 1∕3, 1∕3) and
(0.3,0.3,0.4). Set 𝐵𝑛 = 10.

Simulation 3 There are two subgroups with coefficients
(−𝛽,−𝛽,−𝛽,−𝛽, 𝟎𝑝−𝑠) and (𝛽, 𝛽, 0, 0, 𝛽, 𝛽, 𝟎𝑝−𝑠−2). pr =

(0.5, 0.5) and (0.3, 0.7), 𝛽 = 1 and 2, and 𝐵𝑛 = 10.

To assess subgrouping performance, we examine the
number of identified subgroups and accuracy of subject
subgrouping results (Accuracy). To assess variable selec-
tion performance, we consider the rates of TP (true posi-
tive) and FP (false positive). In addition, estimation perfor-
mance is evaluated using the MSE (mean squared error).
We consider the following alternatives: (a) The FMR

approach developed in Khalili and Chen (2007) (referred
to as “KC”), where Lasso is applied for accommodating
high dimensionality and selecting relevant variables. It is
realized using the R package fmrs. This is the most rele-
vant competitor and represents sparse FMR approaches.
(b) We consider three low-dimensional FMR approaches,
which apply the FMR technique without sparsity. First,
we consider the “True” approach, under which the truly
important covariates are known, and only such covariates
are used (but the subgrouping structure needs to be deter-
mined). Second, we consider a model with 𝑝∕𝐵𝑛 covari-
ates, which contain all the important covariates along with
a few unimportant ones. As this is a fitted model, this
approach is referred to as “Fitted.” Third, this approach is
similar to the above one, with the difference that it con-
tains half of the important covariates. As this is an under-
fitted model, this approach is referred to as “Underfitted.”
(c)We consider a partially “oracle” approach, under which
the subgrouping structure is known (as such, penalty 𝑃2
is not needed), and a model averaging approach simi-
lar to the proposed is adopted for estimation. The FMR-
based approaches, both high- and low-dimensional, need
to determine the number of subgroups. We set the num-
ber of subgroups as the true value, which leads to favorable
performance. Note that this is not needed with the pro-
posed approach and not practical in practice. We have also

experimented with the sparse Kmeans and other sparse
clustering methods but found unacceptable results. Such
methods are omitted from our reporting.
For each setting, we simulate 100 replicates. In Table 1,

we examine the number of identified subgroups using
mean, median, standard deviation, and percentage of
correct identification. Across the whole spectrum, the
proposed approach can satisfactorily identify the number
of true subgroups. Quite a few scenarios have 100% correct
identification. In contrast, literature suggests that, with the
FMR and many other heterogeneity analysis techniques,
it is extremely difficult to determine the number of sub-
groups. We further examine three representative settings
with 𝜌 = 0, 𝛽 = 1, and (𝐾, 𝐵𝑛) = (2, 10) and (2, 5), as well as
with 𝜌 = 0, 𝛽 = 2, and (𝐾, 𝐵𝑛) = (3, 10). In Figure A1 (Sup-
porting Information), we plot the average weights of the
𝐵𝑛 candidate models. Note that to improve presentation,
we always keep the first submodel as the one that includes
all of the important covariates. In all plots, a spike of the
first submodel is observed. The rest of the submodels have
almost or exactly zero weights. Results in Table 1 clearly
demonstrate the superiority of penalized fusion in this
aspect. Subgrouping, estimation, and variable selection
accuracy results are summarized in Table 2 for Simulation
1 and Table A1 (Supporting Information) for Simulation
2 and 3. With the complexity brought by heterogeneity,
the proposed approach behaves inferior to the oracle
as expected. It has significant advantages over the KC
approach. Consider, for example, Simulation 1, 𝐵𝑛 = 5,
𝜌 = 0, and 𝛼 = 1. The proposed approach has (Accuracy,
MSE, TP, FP) equal to (0.781, 0.785, 0.962, 0.010), com-
pared to (0.500, 7.483, 0.331, 0.223) for the KC approach.
Compared to the True approach (which is oracle in terms
of variable selection), it has slightly inferior Accuracy and
much inferior MSE. But it has advantageous performance
over the Fitted and Underfitted approaches. Table 2 also
suggests that the value of 𝐵𝑛 does not have a substantial
impact. Simulation 2 and 3 lead to similar findings.
With the proposed approach, partition of variables is

needed. In our implementation, we partition consecu-
tively. Different orderings of the variables can lead to
different partitions. To examine the impact of order-
ing/partition, we consider Simulation 1 with 𝐾 = 2, 𝐵𝑛 =

5,𝜌 = 0,𝛽 = 1, and pr= (0.5, 0.5). For each simulated repli-
cate, we permute the variables 10 times. With each permu-
tation, the proposed approach is applied. Then the mean
and standard deviation of the summary statistics consid-
ered in Tables 1 and 2 are computed. We further compute
the averages of such mean and standard deviation values
across 100 replicates. For the mean, median, SD, and per
values as considered in Table 1, the average mean (stan-
dard deviation) values are 1.942 (0.018), 2 (0), 0.243 (0.021),
and 0.938 (0.011), respectively. For the Accuracy, MSE, TP,
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TABLE 1 Simulation: mean, median, standard deviation (SD) of 𝐾, and percentage (per) of 𝐾 equal to the true number of subgroups

𝑲 𝑩𝒏 𝝆 𝜷 Mean Median SD per Mean Median SD per
Simulation 1 pr = (0.5, 0.5) pr = (0.3, 0.7)

2 10 0 1 2 2 0 1 1.74 2 0.443 0.74
2 2.02 2 0.141 0.98 2.04 2 0.198 0.96

0.3 1 2 2 0 1 1.96 2 0.198 0.96
2 2 2 0 1 2.04 2 0.198 0.96

0.7 1 1.98 2 0.141 0.98 1.98 2 0.141 0.98
2 2 2 0 1 2 2 0 1

5 0 1 1.95 2 0.221 0.95 1.82 2 0.388 0.82
2 2 2 0 1 2 2 0 1

0.3 1 2 2 0 1 1.96 2 0.198 0.96
2 2 2 0 1 2 2 0 1

0.7 1 2 2 0 1 1.94 2 0.24 0.94
2 2 2 0 1 2 2 0 1

Simulation 2 pr = (
1

3
,
1

3
,
1

3
) pr = (0.3, 0.3, 0.4)

3 10 0 2 2.84 3 0.468 0.82 2.98 3 0.589 0.88
0.3 2 3 3 0 1 3 3 0 1
0.7 2 3.02 3 0.141 0.98 3.62 3 3.276 0.88

Simulation 3 pr = (0.5, 0.5) pr = (0.3, 0.7)

2 10 0 1 1.88 2 0.328 0.88 1.68 2 0.471 0.68
2 2 2 0 1 2 2 0 1

0.3 1 1.96 2 0.198 0.96 1.82 2 0.388 0.82
2 2 2 0 1 2.02 2 0.141 0.98

0.7 1 1.82 2 0.431 0.783 1.78 2 0.465 0.74
2 2 2 0 1 2 2 0 1

and FP values as considered in Table 2, the average mean
(standard deviation) values are 0.813 (0.005), 0.800 (0.058),
0.956 (0.017), and 0.005 (0.001), respectively. The average
means are very close to their counterparts in Tables 1 and
2, and the small standard deviations suggest the stability
of results. This analysis suggests that the ordering of the
variables is not critical.
In the Supporting Information, we additionally (a)

examine a sequence of 𝑃-values, compare with the direct
application of double penalization, and “re-establish”
the advantage of model averaging, (b) consider higher
dimensionality and show that the proposed approach still
has advantageous performance, (c) examine performance
when the sub-Gaussian assumption is not satisfied, and
(d) evaluate the sensitivity of the analysis results to tun-
ing parameter selection. Overall, satisfactory performance
is observed.

4 DATA ANALYSIS

The Cancer Genome Atlas (TCGA) is a collective effort
organized by the NIH and has published high-quality

clinical, omics, and imaging data on multiple cancer
types. Compared to the clinical and omics data, the TCGA
imaging data have been much less analyzed. However,
several recent publications have shown that the analysis
of TCGA histopathological imaging data can lead to
important insights on disease classification, prognosis,
and other outcomes (Noorbakhsh et al., 2019). Here we
consider the breast cancer (BRCA) data. The response
variable of interest is the ratio between “Positive Finding
Lymph Node Hematoxylin and Eosin StainingMicroscopy
Count” and “Lymph Node(s) Examined Number”. It
reflects the degree of treatment. In the literature, it
has been suggested that treatment decisions depend on
tumor properties, which are reflected in histopathological
images, and the heterogeneity in breast cancer treatment
has been observed. As such, it is biologically sensible to
conduct heterogeneity analysis based on imaging features
for this specific outcome. We focus on “nontrivial” ratios,
which fall between 0 and 1, and conduct the transfor-
mation log(

ratio

1−ratio
). The histopathological images are

downloaded from the TCGA website. The pipeline for
extracting imaging features has been implemented in
recent studies (Zhong et al., 2019) and briefly summarized
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TABLE 2 Simulation 1: accuracy rate of correctly identifying subgroup memberships (accuracy), mean squared error, TP, and FP rates
pr = (𝟎.𝟓, 𝟎.𝟓) pr= (𝟎.𝟑, 𝟎.𝟕)

𝑲 𝑩𝒏 𝝆 𝜷 Index Proposed Oracle KC True Fitted Underfitted Proposed Oracle KC True Fitted Underfitted
2 10 0 1 Accuracy 0.826 0.498 0.837 0.777 0.514 0.798 0.551 0.872 0.839 0.546

MSE 0.541 0.054 7.563 1.206 2.185 6.605 2.318 0.068 6.757 0.059 1.676 7.061
TP 1 1 0.260 0.960 1 0.408
FP 0.004 0.014 0.202 0.007 0.023 0.187

2 Accuracy 0.914 0.503 0.910 0.828 0.519 0.939 0.549 0.942 0.908 0.561
MSE 0.525 0.074 29.675 1.618 6.879 24.996 0.684 0.088 26.868 0.064 36.437 25.509
TP 1 1 0.288 1 1 0.490
FP 0.002 0.014 0.206 0.005 0.014 0.211

0.3 1 Accuracy 0.868 0.499 0.863 0.815 0.541 0.879 0.553 0.901 0.858 0.578
MSE 0.293 0.056 7.804 1.451 2.149 7.069 0.655 0.057 6.803 0.064 1.764 7.013
TP 1 1 0.205 1 1 0.390
FP 0.001 0.014 0.208 0.005 0.014 0.209

2 Accuracy 0.914 0.495 0.922 0.886 0.495 0.951 0.537 0.952 0.935 0.591
MSE 0.577 0.026 31.438 0.035 1.054 28.642 0.x326 0.106 27.596 0.071 2.191 30.680
TP 1 1 0.375 1 1 0.510
FP 0.003 0.010 0.427 0.004 0.013 0.249

0.7 1 Accuracy 0.864 0.513 0.901 0.836 0.627 0.904 0.594 0.921 0.852 0.676
MSE 0.613 0.109 7.687 0.114 10.881 9.202 0.560 0.149 7.421 0.134 12.588 10.278
TP 0.940 1 0.272 0.970 0.998 0.410
FP 0.008 0.017 0.232 0.010 0.020 0.200

2 Accuracy 0.940 0.500 0.951 0.899 0.655 0.960 0.531 0.959 0.930 0.699
MSE 0.262 0.131 30.561 0.107 12.624 30.766 0.315 0.177 32.172 0.128 40.788 43.618
TP 1 1 0.348 1 1 0.415
FP 0.027 0.016 0.349 0.009 0.017 0.312

5 0 1 Accuracy 0.781 0.500 0.853 0.577 0.503 0.781 0.558 0.880 0.671 0.526
MSE 0.785 0.047 7.483 0.048 5.053 6.705 1.951 0.055 6.534 0.062 2.928 6.753
TP 0.962 1 0.331 0.998 1 0.395
FP 0.010 0.020 0.223 0.013 0.020 0.208

2 Accuracy 0.906 0.503 0.922 0.675 0.506 0.895 0.542 0.924 0.753 0.516
MSE 0.592 0.071 29.489 0.05 15.422 26.435 0.781 0.080 26.542 0.056 9.353 30.065
TP 1 1 0.292 1 1 0.445
FP 0.002 0.009 0.204 0.008 0.017 0.187

0.3 1 Accuracy 0.848 0.503 0.885 0.627 0.509 0.826 0.562 0.903 0.699 0.524
MSE 0.295 0.057 7.475 0.060 5.829 7.500 0.938 0.125 6.397 0.075 4.557 8.343
TP 1 1 0.238 1 0.998 0.430
FP 0.002 0.011 0.231 0.008 0.015 0.212

2 Accuracy 0.923 0.501 0.935 0.695 0.509 0.922 0.527 0.943 0.823 0.528
MSE 0.291 0.071 29.631 0.051 20.094 37.952 2.721 0.072 26.921 0.070 7.417 29.544
TP 1 1 0.264 0.986 1 0.500
FP 0.001 0.011 0.261 0.020 0.013 0.299

0.7 1 Accuracy 0.864 0.525 0.911 0.660 0.545 0.859 0.586 0.918 0.744 0.556
MSE 0.295 0.084 7.958 0.102 8.008 10.778 1.079 0.348 7.122 0.173 15.904 10.603
TP 1 1 0.293 0.982 0.980 0.388
FP 0.003 0.013 0.233 0.012 0.026 0.216

2 Accuracy 0.934 0.509 0.931 0.702 0.537 0.911 0.536 0.941 0.751 0.560
MSE 0.307 0.135 32.608 8.184 93.655 51.923 1.255 0.188 34.588 0.141 38.747 62.379
TP 1 1 0.338 1 1 0.533
FP 0.026 0.015 0.312 0.138 0.016 0.361
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TABLE 3 Data analysis using the proposed approach: identified imaging features for the three subgroups

Imaging feature Group 1 Group 2 Group 3
Texture-AngularSecondMoment-ImageAfterMath-3-01 5.620 7.587
Texture-SumAverage-ImageAfterMath-3-03 −5.473 −3.318
Texture-SumVariance-ImageAfterMath-3-02 −0.047 2.873 2.873
AreaShape-Zernike-7-3 4.988 −0.098
Granularity-10-ImageAfterMath.1 −1.579 −1.048
Granularity-15-ImageAfterMath.1 −1.278 0.028
Threshold-WeightedVariance-Identifyhemasub2 −0.114 −0.245
AreaShape-Zernike-5-5 −0.259
Location-Center-Y.3 −0.099 −0.099
AreaShape-Zernike-4-2 0.168
Texture-Entropy-ImageAfterMath-3-02 0.039
AreaShape-Zernike-4-0 −0.622 −0.622 0.047
Texture-InfoMeas1-maskosingray-3-00 −0.384 −0.384
Granularity-1-ImageAfterMath 0.815 0.958
Texture-SumVariance-maskosingray-3-03 0.059 0.069
AreaShape-FormFactor 0.059 0.059 0.059
AreaShape-Zernike-3-3 0.038 0.038 −0.011
Granularity-1-ImageAfterMath.1 −0.012 −0.054
Texture-InfoMeas2-ImageAfterMath-3-00 0.062
Granularity-4-ImageAfterMath.1 −0.016 −0.016 0.017
Texture-SumVariance-ImageAfterMath-3-00 −0.017 −0.017 0.011
Texture-SumEntropy-maskosingray-3-01 −0.014
Texture-InverseDifferenceMoment-ImageAfterMath-3-03 −0.011

in Figure A2 (Supporting Information). It includes four
main steps, namely image chopping, subimage selection,
feature extraction, and feature averaging. We refer to
Zhong et al. (2019) for more details on each step and
quality control. The final analyzed data set contains mea-
surements on 139 subjects and 248 imaging features, which
describe tumor properties including texture, granularity,
size and shape, neighbor distribution, occupation, and
areafraction.
Three distinct subgroups are identified, with sizes 49,

35, and 55. The identified imaging features and their esti-
mates are shown in Table 3. Among the identified features,
10 are related to texture, six are related to area shape, and
five are related to granularity. Overall, the three subgroups
have significantly different models. It is also noted that
some features have identical estimates in different sub-
groups, which can be caused by the promotion of equal-
ity by 𝑃2 and termination of calculation when two con-
secutive estimates are close enough. Compared to clinical
and molecular data, the biological implications of high-
dimensional imaging features are still largely unclear (Luo
et al., 2017). As such, we defer biological interpretations to
future research.

We consider the following alternatives: KC, Alt.1 which
uses the 23 selected imaging features and applies penal-
ized fusion for subgrouping, Alt.2 that uses the 23 selected
imaging features and applies FMR for subgrouping, sparse
Kmeans, and sparse hierarchical clustering. To make
different approaches comparable, we fix the number of
subgroups as three with the alternatives. We compute a
subgrouping similarity measure, with range [0,1] and a
larger value indicating a higher degree of similarity, and
find that the proposed approach has moderate similarity
with the alternatives: 0.495 (KC), 0.621 (Alt.1), 0.604
(Alt.2), 0.556 (sparse Kmeans), and 0.465 (sparse hierar-
chical clustering). The KC approach identifies 29 features,
which have three overlapping with the proposed. Alt.1
and Alt.2 use the same set of 23 imaging features as the
proposed approach. With the sparse Kmeans and hierar-
chical clusterings, tiny subgroups are generated, making
the assessment of variable selection unreliable. We eval-
uate prediction using a random splitting approach (with
training: testing= 3:1 and 100 splits). The predictionMSEs
are 0.804 (proposed), 1.076 (KC), 1.082 (Alt.1), and 1.181
(Alt.2). Prediction with the sparse clustering approaches
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is not possible as estimation cannot be reliably conducted.
Overall, the proposed approach makes different sub-
grouping and identification, with improved prediction
performance.

5 DISCUSSION

We have conducted cancer heterogeneity analysis using
high-dimensional imaging features and the penalized
fusion technique. We have applied additional penaliza-
tion to accommodate high data dimension and screen out
noises. Another significant advancement is the adoption
of model averaging to tackle computational challenges.
Beyond providing a solid ground, the theoretical inves-
tigation can also shed light on high-dimensional penal-
ized fusion andmodel averaging in general. Simulation has
demonstrated competitive performance. In the analysis of
TCGA data, findings different from the alternatives have
been made, and improved prediction is observed. Overall,
this study has delivered an alternative technique for super-
vised heterogeneity analysis and a new venue formodeling
cancer heterogeneity.
Beyond imaging features, the proposed analysis can also

be conducted with other high-dimensional variables. It
will also be of interest to adapt the proposed technique
and apply to other data distributions/models, which can
be achieved by replacing the lack-of-fit measure. The pro-
posed computational algorithm will be applicable with
minor revisions, but additional theoretical developments
may be needed. In data analysis, we have identified three
subgroups with significantly different regression models.
In the literature, there is still a lack of commonly accepted
approaches for validating heterogeneity analysis results
under the mixture regression framework. It is noted that
the identified subgroups differ in the relationship between
imaging features and a clinical outcome. However, they
may or may not differ in other clinical aspects. As the
functional implications of imaging features have not been
well examined, we are unable to make further biological
interpretations. Nevertheless, the satisfactory simulation
results and improved prediction can support the validity of
our findings to a great extent. Further analysis and valida-
tion will be needed prior to any application of the findings.
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