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A B S T R A C T

Ecosystem service approaches to watershed management have grown quickly, increasing the importance of
understanding the streamflow response to realistic land-cover change. Previous work has investigated the re-
lationship between watershed characteristics and streamflow in catchments around the world, but little has
focused on systematic relationships between watershed characteristics and streamflow change after land-cover
restoration. To address this gap, we simulate streamflow responses to restoring 10% of watershed area from
agricultural land to forest and natural pasture in 29 watersheds around the world. This change is consistent with
that performed in watershed-service programs. We calculate the change in a broad array of streamflow indices
for each site and use a graph-connectedness approach to cluster the sites based on the sign of the index value
changes. We find three primary clusters with distinct responses to restoration. Permutation tests and effect sizes
demonstrate the difference in watershed characteristics and streamflow indices across clusters. The low-flow
intensifying sites have shallower soils and smaller saturated soil volumes. After restoration, simulated streamflow
in these sites increases during relatively dry periods and declines during high-flow periods. The high-flow in-
tensifying sites have larger saturated soil volumes. After restoration, simulated dry-season flow in these sites
decreases. The high-flow enhancing sites have larger soil hydraulic conductivities than the high-flow intensifying
sites. After restoration, simulated dry-season flow in these sites decreases less than in high-flow intensifying sites.
The soil depth and hydraulic conductivity appear to be the characteristics that determine clusters, as clusters are
not statistically related to climate, watershed location, proximity, size and shape, elevation, or pre-existing land
cover. This study provides valuable understanding of land-cover restoration and the watershed characteristics
that most impact streamflow change.

1. Introduction

Scientifically supported watershed management requires predicting
how changes in land cover will affect a watershed’s response to pre-
cipitation. Land-cover change may alter watershed discharge and water
balance and thus have significant consequences for cities, agriculture,
and the environment (Bennett and Ruef, 2016; Damania et al., 2017).
However, hydrologic science has not identified clear and simple rules
and hydrologic understanding to predict the impact of land-cover
change on streamflow in many important contexts (Dennedy-Frank
et al., 2016; Dennedy-Frank and Gorelick, 2019; Guswa et al., 2014;
Hamel et al., 2017). Site-specific models can estimate the hydrologic
response to land-cover changes (Khoi and Suetsugi, 2014a,b; Piniewski
et al., 2014; Strauch and Volk, 2013) but that approach is not easily
extended to regions where data, scientific capacity, and funding are
limited (Bremer et al., 2016; Daily et al., 2009; Guswa et al., 2014;

Naeem et al., 2015).
Scientifically supported watershed management is becoming parti-

cularly important as ecosystem services become a major conservation
driver and watershed services are widely recognized (Bennett and Ruef,
2016; Bremer et al., 2016; Vogl et al., 2016b; Vogl et al., 2017). It is
noteworthy that watershed service investments have often occurred
opportunistically, rather than by targeting areas where they provide the
most value. For example, early water funds in Colombia and Ecuador
have led to further such funds in Brazil and Mexico, but only recently
has work has tried to assess where such investments could provide the
most benefit to people (Chaplin-Kramer et al., 2019; Dennedy-Frank
and Gorelick, 2019).

Conservation planners and water managers would benefit from
better tools to understand and quantify how watershed characteristics
affect streamflow responses to land-cover change. There is a pressing
need for watershed service analyses that can support decisions about
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restoring land cover to conditions with less human impact by reliably
estimating the consequent changes in hydrologic behavior. Even simple
rules about the effects of land-cover change could help target more in-
depth analyses. For example, suppose land-cover restoration decreases
baseflow in sites where the warm and wet season are out of phase and
increases baseflow where these seasons are in phase. Then restoration
to enhance dry-season flow could be targeted to sites where the seasons
are in-phase. These would serve the same role as the Indicators of
Hydrologic Alteration have for many ecological stream integrity ana-
lyses (Kennen et al., 2007; Richter et al., 1996). Such analyses and rules
are needed particularly in arid and tropical regimes where watershed
services management approaches have seen the strongest adoption
(Bremer et al., 2016; LACC & TNC, 2013; Vogl et al., 2016b). These
needs are not well-addressed by classic hydrologic approaches to un-
derstanding watershed behavior that focus on: 1) predicting the dis-
charge response to precipitation, often without historical gauge records
(Brauman, 2015; Carrillo et al., 2011; Laaha et al., 2013; Sawicz et al.,
2011); and 2) temperate and cold climates (Duan et al., 2006; Newman
et al., 2014, 2015; Peel et al., 2000, 2010).

We present an analysis of predicted streamflow change after re-
storing land cover to pre-development conditions in 29 sites around the
world. Site hydrologic response to simulated restoration is represented
by the percent change in a broad set of streamflow indices, and a graph-
connectedness approach is employed to identify similarities and dif-
ferences in hydrologic responses across sites. Finally, we discuss how
the identified responses compare with those seen in paired catchment
and catchment classification studies. Although quantifying the effects of
land-cover change on streamflow is an important topic to science and
society, previous hydrologic studies have not systematically studied
such effects.

Scientists have used computational hydrologic models in a wide
variety of cases. The models have varied in complexity from very simple
(Hamel et al., 2017; Zhang et al., 2001) to very complex (Condon and
Maxwell, 2017; Moffett et al., 2012). Such models have been run at
spatial scales from local (Moffett et al., 2012; Van Liew et al., 2007) to
global (Döll et al., 2016; Wada et al., 2011) and at temporal scales from
sub-daily to multi-annual. These models have assessed land-cover
change with different levels of sophistication, from inspection of sce-
narios to trend analysis based on machine learning and cellular auto-
mata (Fisher et al., 2017; Kepner et al., 2012; Khoi and Suetsugi, 2014b;
Kim et al., 2017; Logsdon and Chaubey, 2013). Similarly, models have
integrated important socioeconomic elements with different levels of
complexity, from deeply interdisciplinary studies to watershed mod-
eling exercises (Akhavan et al., 2010; Suliman et al., 2015; Yoon, 2017).
Many hydrologic models have been effectively used for watershed
management and planning by reflecting human impacts on watersheds
(Ficklin et al., 2013; Kroeger et al., 2019; Zhang et al., 2015), but to our
knowledge no work has synthesized the results across such studies.

In particular, previous hydrologic simulations have not system-
atically identified the streamflow response to land-cover change,
though some studies have found important site-specific effects of land
cover on local water resources (Khoi and Suetsugi, 2014b; Kroeger
et al., 2017; Vogl et al., 2016b). Many land management studies rely on
computational hydrologic simulators to estimate the effects of land-
cover change, but they: 1) are strongly biased towards the cold and
temperate watersheds of the United States and Europe (e.g., in Gassman
et al., 2007), and 2) sometimes suffer from sufficient inaccuracies or
lack of robustness to make their use in decision-making questionable
(e.g., Zaherpour et al., 2018). The computational hydrologic simulators
used by academic researchers are more complex and more advanced
(Kollet and Maxwell, 2006; Strauch and Volk, 2013; Therrien and
Sudicky, 1996; White et al., 2011), but are not easily applied for
management. They have not led the way to simpler, broadly pertinent
rules that describe the hydrologic impacts of land-cover change.

The alternative catchment classification approach (Wagener et al.,
2007) has similarly failed to find strong relationships between
streamflow and watershed characteristics, and has often found that
such relationships cannot be extended beyond the study region (Hamel
et al., 2017). This approach seeks to statistically relate runoff char-
acteristics with watershed characteristics across a broad range of sites
(e.g., Carrillo et al., 2011; Laaha et al., 2013; Sawicz et al., 2011; Smith
et al., 2018). In doing so, it does not isolate the streamflow change after
shifts in land cover, instead looking solely at the relationships between
land cover—and many other variables—and streamflow before any
shift. These studies too are generally biased towards temperate and cold
climates.

This work addresses the gap between readily applicable rules
needed by land managers and the computationally intensive simula-
tions or sophisticated statistical investigations performed in research
settings that have not previously been simplified or generalized. Our
effort seeks to use moderately complex hydrologic simulations in many
sites to assess the effects of land-cover restoration on streamflow change
for a broad suite of environments, a novel approach in the hydrology
literature. This differs from the detailed computational simulations by
investigating many sites with a simpler model. It differs from the
catchment classification approach in focusing on streamflow change
after land-cover shifts and isolating these shifts in a more detailed
analysis of fewer catchments. Instead, by comparing changes across
many sites to understand hydrologic drivers, our approach combines
the ability of hydrologic simulation to isolate the effects of land-cover
shifts on streamflow change and the discriminatory power through
comparison of catchment classification. We search for simple rules that
describe the effects of land-cover restoration in these well-controlled
simulations to address this long-standing challenge.

2. Methods

We present a systematic study of the effects of land-cover restora-
tion on hydrologic behavior changes at 29 sites from around the world
and across climatic zones. From the peer-reviewed literature, we col-
lected site-specific watershed models, obtaining data and rigorously
recalibrating the simulations to improve their performance. We simu-
lated all site models under consistent and locally realistic scenarios of
restoring pre-development land cover. We then calculated the percent
change in 141 streamflow indices describing different aspects of the
hydrograph for each site. A graph-based clustering algorithm was used
to group sites with similar hydrologic responses based on a minimally-
correlated subset of streamflow indices; we call our algorithm a graph-
connectedness approach. Permutation tests were then used to relate
these clusters to the pre-restoration streamflow indices and watershed
characteristics.

2.1. Hydrologic modeling

The selected watersheds were simulated using the Soil and Water
Assessment Tool (SWAT), a model of moderate complexity often used to
quantify the hydrologic impacts of land-cover change (Arnold et al.,
1998; de Bressiani et al., 2015; Gassman et al., 2007). SWAT represents
many hydrologic processes, including splitting runoff and infiltration,
flow through many soil layers and an unsaturated zone, and baseflow
from a shallow aquifer as well as resource-responsive plant growth and
time-varying plant-water use. To do so, SWAT includes characteristics
such as the depth, hydraulic conductivity, and porosity of up to 10 soil
layers, a recession constant for a shallow aquifer, and plant growth and
leaf area parameters.

Our approach integrates local high-resolution data and hydrologic
understanding from carefully constructed site models across the globe
in a suite of geographic and climatic zones. SWAT was selected for this
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study because its widespread use for water resource and ecosystem
service assessment in many contexts (Francesconi et al., 2016; Gassman
et al., 2007) indicates acceptance by the water and land management
communities, and allows the collection of consistent simulations from
basins around the globe. SWAT includes two key features to investigate
land-cover change effects: explicit land-cover representation that can be
easily changed (Arnold et al., 2010) and a phenological vegetation
model that responds to both climate and nutrient stresses (Williams,
1995). The watersheds in this study cover a broad range of land cover
types, pedologic environments, and management contexts. This novel
use of existing local, high-resolution site models represents a middle-
way between poorly-constrained global hydrologic models (Döll et al.,
2016; Wada et al., 2011) and site-specific assessments that provide
strong conceptual understanding and predictive power for a single site
(Vogl et al., 2016b; Yoon, 2017). The watershed simulations allow us to
isolate the impacts of land-cover change on streamflow, while ac-
counting for differences in climate, soil properties, and topography.

The site models were obtained from the authors of peer-reviewed
studies, after selecting a subset from over 2500 site studies (Texas A&M;
USDA ARS, 2017) based on a number of key characteristics, discussed
here. Sites were chosen such that they cover Köppen-Geiger Climate
Zones (Peel et al., 2007) to avoid oversampling temperate and cold sites
in the US and Europe. The watersheds lie on 6 continents and in
11 second-order Köppen-Geiger Climate Zones (Fig. 1). Other simula-
tion criteria included an area between 50 km2 and 20,000 km2 and at
least five years of calibration data. A Nash-Sutcliffe efficiency (Nash
and Sutcliffe, 1970) of 0.5 for daily discharge data or 0.7 for monthly
discharge data, and a bias of <20% accounting for groundwater ab-
straction and known point sources ensured satisfactory model perfor-
mance per Moriasi et al. (2007). Most sites had significantly more than
5 years of data, and only 3 sites had solely monthly data, with the
others having daily calibration data available from the authors or
publicly-accessible government sites. Table 1 provides details about the
site models (for references see Supplement SI-1).

All watershed site models were rebuilt in SWAT2012 rev 637 to
eliminate differences in model structure. Calibration was performed via
a split-sample approach, with approximately half of the data being used
for simulation training and the other half reserved for verification. Re-
calibrations typically reduced over-parameterization of spatially vari-
able parameter values, while conforming to the hydrologic processes
formulated by the original site model authors. For sites for which ca-
libration was performed on a monthly basis but for which daily data
were available, the daily calibration statistics were checked, and these
models were re-calibrated to improve daily statistics. More detail on the

calibration statistics can be found in Supplement SI-1. We refer to these
re-calibrated models as baseline scenarios throughout the paper.

2.2. Restoration scenario representation

Land-cover change was simulated as restoration of 10% of the wa-
tershed area to pre-development conditions. Pre-development land
cover was selected based on known ecological suitability in the wa-
tershed from current land-cover and previous estimates (Ramankutty
and Foley, 1999). Land-cover change was restricted to increasing one
land cover and decreasing a second (see Supplement SI-2 for details). If
10% of the land cover could not be changed, index value changes were
linearly extrapolated to 10% from a baseline of 0% index change for 0%
land-cover change. The sites were required to have at least 4% land-
cover change to avoid over-interpreting this extrapolation.

2.3. Clustering with streamflow indices

We assess the similarities and differences between the watersheds’
responses to restoration using a graph-connectedness approach to de-
fine clusters of watersheds that respond in similar ways. To do so, we
build a graph that has watersheds as the nodes and defines these nodes’
distance from each other by the similarity of the change in numerous
streamflow index values after simulated restoration. In the resulting
graph, watersheds that are close to each other have a similar response
to restoration, and those far from each other different responses to re-
storation.

That graph-connectedness approach is detailed in the following
subsections. First, we define a broad set of streamflow indices and
calculate the index value changes between baseline and restoration
scenarios. We develop measures to reduce the effect of a small number
of anomalously large index value changes. Second, we use a dimension
reduction approach to select a set of minimally correlated index value
changes that still have clear meanings. Finally, we construct a graph
such that the watersheds with more similar responses to restoration are
closer to each other. We designate groups of close watersheds a cluster.

2.3.1. Streamflow indices
A set of 141 streamflow indices is gathered from published litera-

ture that investigated changes in river discharge, tested the similarities
and differences in behavior across catchments, and assessed local water
resources for planning purposes. These indices include many of those
from the Indicators of Hydrologic Alteration (Richter et al., 1997;
Richter et al., 1996) and extensions to that work (Gao et al., 2009;

Fig. 1. 29 hydrologic simulations on 6 continents in 11 second-order Köppen-Geiger Climate Zones. The sites are mapped here against the Köppen-Geiger Climate Zone
map from Peel et al. (2007) with desatured colors for picture clarity. The names and numbers correspond to Table 1, and are color coded as the clusters in the rest of
the paper (low-flow intensifying in red, high-flow intensifying in brown, and high-flow enhancing in yellow).
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Kennen et al., 2007; Olden and Poff, 2003); catchment classification
work (Carrillo et al., 2011; Sawicz et al., 2011); and current guidance
that summarizes classic water resources approaches used by the USGS
and WMO (Hortness, 2006; Martin et al., 2016; Risley et al., 2008;
World Meteorological Organization, 2009; Ziegeweid et al., 2015).
These indices are selected because of their use in water resource
planning and in describing flow differences across watersheds. A full list
of the indices and their literature citations are presented in Supplement
SI-3.

For each site, the percent change in each of the 141 streamflow
index values is calculated after calculating the index for both the ex-
isting land-cover and the pre-development land-cover restoration

scenario. The percent change normalizes the effects of total discharge
magnitude and watershed size, and it readily permits statistical tests
and other simple analyses. Percent change is defined such that an in-
crease in the index value results in a positive percent change, and vice
versa.

Preliminary analyses with these index value changes found that a
small percentage (~0.5%) of them had anomalously large errors that
dominated regression or dimension reduction approaches. We address
this by adopting two measures that remove the effect of these anom-
alously large changes in index values. To build the graph (discussed
presently) we use the index sign change, is, which simply applies the
sign function (±) to the index value change, with a tolerance that sets

Table 1
List of the simulated watersheds, their basic characteristics, and simulation periods
Color coding and table grouping follows the scheme of Fig. 2 for easy reference.

P. James Dennedy-Frank and S.M. Gorelick Journal of Hydrology 589 (2020) 125121

4



very small values to 0 (see Supplement SI-4); hereafter, we simply re-
ference the sign of the index value change. For statistical tests of the
indices across different clusters in the graph, we use a truncated index
value change, it . it simply takes the percent change of the index value
and truncates it to ±25%, so that all index values are within the range
[−25%, 25%]. This approach reduces the magnitude of the ~0.5% of
anomalously large index value changes to reduce their influence.

2.3.2. Selecting a minimally correlated subset of indices
Many of the streamflow index values and their changes are strongly

correlated to one another (Gao et al., 2009; Olden and Poff, 2003).
Therefore we use principle component analysis (PCA) (Pedregosa et al.,
2011) on the index sign change, is, to avoid overweighting components
in the graph analysis. Components were selected to cover 99% of the
variance to ensure that important components are not ignored. The
principal components and their major contributing indices are shown in
SI-5.

Because the PCA components are linear combinations of the
streamflow index value changes, these components are difficult to in-
terpret. Thus, they do not provide useful guidance for predicting hy-
drologic response to land-cover change. To address the challenge of
interpreting the PCA components we use varimax rotation. Varimax
rotation finds the set of streamflow index value changes that maximizes
the sum of the variance of the square loadings. That is, it seeks to have
each component represented by one (or a few) very large loadings from
streamflow index value changes and no loadings from other streamflow
index value changes. These strongly loaded streamflow index value
changes, of the same dimension as the PCA, represent the set of index
value changes most similar to the purely orthogonal PCA components.
Varimax rotation is performed with Python’s factor-rotation package
(van der Schans, 2015). These index value changes represent the same
variance in the system as the PCA components but provide a clearer
interpretation at the cost of increased correlation between the indices.
Here, these reduced dimension index value changes are used to con-
struct the graph.

The 26 streamflow index value changes selected through PCA and
varimax rotation are shown in Table 2, along with basic definitions and
their primary source. We group them into 6 families: low flow, monthly
flow, monthly flow variance, integrated signal, daily flow, and high
flow. The low-flow family describes the changes in magnitude, fre-
quency, duration, and variability of low flows. “Low flow” here is de-
fined alternately as all flows less than: 1) the 75% exceedance flow, 2)
the minimum 30-day average flow, or 3) the minimum 7-day average
flow. In addition, a digital filter is run to estimate the baseflow reces-
sion (Arnold and Allen, 1999), and the resulting change in recession
constant is included. The monthly flow family describes the change in
maximum or minimum flow in a given month. The monthly flow var-
iance family describes the changes in variability in the monthly average
flow for a given month, or the variance among monthly flows. The
integrated signal family brings together multiple years of flow through
the flow duration curve. The daily flow family deals with either the
daily change of flow or with particular days when criteria are met. The
high-flow family describes the changes in the magnitude, timing, and
duration of high flow periods, defined as larger than 3× or 7× median,
25% exceedance, or the average maximum daily or 7-day flow.

2.3.3. Clustering approach
We use a graph-connectedness approach with a spring-based vi-

sualization (Kamada and Kawai, 1989) to cluster and investigate the
similarities and differences among the watersheds’ streamflow changes
after simulated land-cover restoration. The approach is then extended
to help identify watershed characteristics that cluster in the same
manner as the changes in streamflow index values, and thus are likely
related to the hydrologic responses to land-cover change. Although
graph-based clustering has been used in other fields (e.g., Hartuv et al.,
2000), to our knowledge our application of the graph-connectedness

approach in searching for watershed similarity is novel. As shown, it
yields useful multi-dimensional similarity in clusters based on relatively
few assumptions. We discuss the graph-connectedness approach to
clustering here, and statistical tests of features’ correlation with the
graph-based clusters in Section 2.4. Note that the term “features” as
used here refers to both streamflow index values (not their changes)
and watershed characteristics.

The graph-connectedness approach builds a network with each site
serving as a node. The distance between the nodes is set by a measure of
similarity between the change in streamflow index values at each site
and implemented as a graph link (sometime referred to as an “edge” in
other applications) between the nodes with a length proportional to this
distance. We define the similarity as =l r1 , where r is the correla-
tion of the signs of the observed change in streamflow index values,
discussed presently. Thus, smaller distances represent more similar sites
and larger distances less similar sites. The graph shape is determined by
a model that minimizes the “energy in a spring” (Kamada and Kawai,
1989). This model is analogous to a physical system in which springs
with different resting lengths are linked between nodes, with the energy
in each spring increasing as the square of the link’s length away from
the resting (0-energy) distance, consistent with a simple spring obeying
Hooke’s Law. Once all the springs are linked, the system is set free, and
it eventually comes to rest in a minimum energy state (Hagberg et al.,
2010). This enables easy visualization of the relationships between
nodes, and the delineation of clusters.

The graph is built using the sign-correlation as the similarity mea-
sure. This is the broadest measure of index value change similarity we
could determine, and was selected to reduce the effects of the ~0.5% of
anomalously large index value changes that otherwise dominate mea-
sures of similarity. The sign-correlation simply represents the percen-
tage of streamflow indices showing value changes of the same sign
between two sites under land-cover restoration. The sign-correlations
can take any value between 0% (no index value changes have the same
sign between two sites) to 100% (all index value changes have the same
sign between the two sites). Three signs are possible for each index
value change, 1 is an increase, −1 is a decrease, and 0 is no change (see
SI-4 for details). We assume that sites that have the same direction of
change of an index value are more likely to behave similarly.

A graph with links between each pair of nodes would include near-
random connections between many sites, which we address by in-
cluding only links that connect sites more strongly/weakly than would
be expected by chance. To determine the chance level of connection
between the streamflow index value changes for two watersheds we
develop a simple null model with the same structure, discussed in
Supplement SI-6.

2.4. Permutation tests and effect size to identify watershed characteristics
related to clusters

Permutation tests are employed to investigate which features might
be associated with which clusters. Permutation tests are a non-para-
metric statistical test (Good, 2005). Consider a group of watershed
feature metric values, v, split into two clusters with sizes c1 and c2. The
difference between the mean value of the v in each cluster is calculated.
This difference is then checked against clusters of the same size created
from permutations of all of the values, v. From a large number of
permutations, we estimate the probability that the mean feature values
are statistically distinct across the observed clusters. We use the null
hypothesis that the means of the features in the two clusters are the
same. The test provides a probability that an observed difference of
feature metric values across clusters is statistically significant, sug-
gesting that the feature is related to the clusters.

Permutation tests are run on three different features against the
clusters determined through the graph-connectedness approach: 1) the
changes in streamflow index values as determined previously, the signs
of which are used to build the graph; 2) the watershed characteristics,
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and 3) the streamflow index values based on pre-restoration land-cover.
Permutation tests on the changes in streamflow index values help de-
termine which indices drive the clustering. The Python package per-
mute (Stark et al., 2015) is used for permutation tests.

The effect sizes of the feature differences across clusters indicate the
degree to which clusters are distinguishable by that feature.
Distinguishable features likely contribute to watershed responses to
land-cover change. We use Cohen’s d, a standard effect size metric
(Welkowitz et al., 2012) that reflects the difference in the means of the
clusters:

=d x x1 2

S (1)

with xc the mean of cluster c, and S the pooled standard deviation
between the two clusters.S is defined as:

= +
+

m s m s
m m

( 1) ( 1)
2

1 1
2

2 2
2

1 2
S

(2)

withmc the number of members of cluster c, and sc
2 the sample variance

for cluster c. We search for effect sizes greater than 1, so that the means
differ by more than the pooled standard deviation, which we expect
indicates that such a feature is substantially different and thus distinct
across the clusters. This indicates that the feature likely contributes to
differences in hydrologic behavior. Cohen’s d is similar to the inverse of
the coefficient of variation, seeking to make sure that the difference in

means is large relative to the standard deviation.

3. Results

We first discuss the graph and define the three identified clusters of
watershed response to land-cover change: the low-flow intensifying sites,
the high-flow intensifying sites, and the high-flow enhancing sites. Next,
permutation test results are presented for three categories: a) changes in
streamflow index values after land-cover change, b) watershed char-
acteristics, and c) pre-restoration streamflow index values. In the low-
flow intensifying sites, simulated streamflow increases during low-flow
periods and decreases during high-flow periods. The opposite occurs in
the high-flow intensifying sites. The low-flow intensifying sites contain
shallower soils and smaller soil water volumes than the high-flow in-
tensifying sites. The high-flow enhancing sites have soil depths similar to
the high-flow intensifying sites but also larger hydraulic conductivity. As
a result, the high-flow enhancing sites change in the same direction as the
high-flow intensifying sites, but with a smaller magnitude. Finally, we
explain additional features of different clusters of watersheds for which
streamflow responds similarly to land-cover change.

3.1. Graph-connectedness clustering

3.1.1. Sign-correlation of restoration scenario shows three coherent clusters
Fig. 2 shows the graph built from the sign-correlation of the changes

in streamflow index values for 10% restoration of pre-development

Table 2
Indices used for graph construction, along with a brief description and the source. * 1. Arnold and Allen, 1999; 2. Clausen and Biggs, 2000; 3. Haines et al., 1988; 4.
Hughes and James, 1989; 5. Poff, 1996; 6. Puckridge et al., 1998; 7. Richter et al., 1996; 8. Sawicz et al., 2011; 9. Wood et al., 2000; 10. New metric developed for
this project.

Index name Description Source*

Low-flow indices
Low flow pulse count Average annual number of pulses with flow below 75% exceedance flow 7
Variability in low flow pulse duration Standard deviation of average annual duration of flow pulses below 75% exceedance flow 7
Annual minima of 30-day discharge/median flow Average lowest 30-day flow for each year, divided by all-time median flow 2
Baseflow recession constant, β, from filter Baseflow recession constant estimate from automated digital filter 1
Variability in baseflow index 1 Standard deviation of annual 7-day minimum flow divided by that year’s mean flow (non-parametric skew) 7

Monthly flow
Mean of February maximum flow Mean value of maximum daily flow of each February in record 9
Mean of June minimum flow Mean value of minimum daily flow of each June in record 9

Monthly flow variability
CV of February, March, May, August, September,

December flow
Standard deviation of average monthly February, March, May, August, September, December flow divided
by mean February, March, May, August, September, December flow

7

Skewness of monthly flows Mean of average monthly flows minus median of average monthly flows divided by median of average
monthly flows (non-parametric skew)

6

Integrated flow measures
Concavity index Natural log of 33% exceedance flow - natural log of 66% exceedance flow divided by 0.33 8

Daily flow measures
Variability in annual reversals in flow direction Median number of days each year when the change in flow from one set of days is a different direction than

the preceding set of days
7

Variability in Julian date of annual minimum Coefficient of variation of Julian date of minimum flow each year, computed using circular components to
address cross-year transfer

7

Median difference in log10(flow) for two consecutive
days of increasing flow

Calculate difference in log10(flow) for each set of days, and take the median of all values that are positive 2

Peak flow
High peak flow at 3× median flow Average flow for all flow events greater than 3× full-record median flow divided by full-record median flow 2
High flow volume at 3× median flow Median volume of flow while flow is above 3× full-record median each year, divided by full-record median 2
Average duration of flow events above 7× median flow Median across years of total number of days flow is above 7× median flow divided by the total number of

such events
7

CV of magnitude of maximum annual flows at 7 days Standard deviation of mean average flow during annual maximum 7-day flow divided by mean of mean
average flow during annual maximum 7-day flow

7

CV of high flow pulse count at 25% exceedance flow Standard deviation of annual number of flow events above 25% exceedance flow divided by the mean
number of such flow events

4

Variability of high flow pulse duration Standard deviation across years of total number of days flow is above 75% exceedance flow divided by the
total number of such events divided by the mean of total number of days flow is above 75% exceedance flow
divided by the total number of such events

7

Categorization of discharge with strong peak months Fraction of flow that occurs in 3-month period with highest flow 3
% annual discharge in 30 days before peak flow 10
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land. There are three primary clusters, shown as red, brown, and
yellow. In addition, there are small clusters consisting of 2 or 3 sites,
and several sites that are not in a cluster with weak similarity to any
other site, which we designate in dark grey shades and light grey
shades, respectively.

We define the three primary clusters, apparent by visual inspection
(Fig. 2): low-flow intensifying, high-flow enhancing, and high-flow in-
tensifying. The clusters are named after the behavior of related sets of
indices, as shown in Fig. 3 and discussed below.

The clusters and graph shape are determined by the sign-correla-
tions, noted next to the links in Fig. 2, as discussed in the methods.
Clusters were identified as those watersheds showing sign-correlations
with a significance level, α, of <0.05 in the random null model. This
corresponds to a sign-correlation of >61%. Watersheds with sign-cor-
relations that were all <61% were set aside as outside the three pri-
mary clusters (see Supplement SI-6). There are 7, 9, and 5 sites in the

low-flow intensifying, high-flow intensifying and high-flow enhancing
clusters, respectively.

The graph as shown uses a stronger significance level, α = 0.025,
for clarity. Links stronger than the random null model with significance
level α = 0.025, a sign-correlation >63%, are shown as solid black
lines. Links with a sign-correlation <63% but still included per the
methods section criteria are noted with dotted grey lines. In addition,
sign-correlations weaker than the random null model with α = 0.025,
<22%, push away dissimilar watersheds in the graph, but are not
shown for clarity. They are included in Supplement SI-7, which lists all
sign-correlations used to construct the graph.

Sites falling in between clusters that met the 61% sign-correlation
threshold were assigned to only one of the clusters based on their
highest sign-correlation to all members of the competing clusters. We
identified the Yass River Catchment, in Australia, as a member of the
low-flow intensifying cluster based on its status as a hub with the

Fig. 2. Three primary clusters are apparent using the graph-connectedness approach to cluster the sites in this study with the sign-correlation of changes in
streamflow indices after restoration to pre-development land cover as the distance metric (described in methods). The abbreviations used here are noted in Table 1.

Fig. 3. The watersheds in the three clusters show distinctly different responses to land-cover change. Radar graphs plot the rank of a set of streamflow indices, with
the outermost line the largest increase (smallest decrease), the inner line the second-largest increase (second-smallest decrease), and the center point the smallest
increase (largest decrease).
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strongest connection for many sites. The Reda Catchment in Poland was
identified as a member of the high-flow intensifying cluster based on its
links to two high-flow intensifying cluster members of about the same
strength as its connection to the Yass. The Nam Ou, in Laos, was
identified as a member of the high-flow intensifying cluster because of
its stronger link to the Po Ko in Vietnam than the Shibetsu in Japan. The
Shibetsu was selected as a member of the high-flow enhancing cluster
because of its stronger connections to the Upper Upatoi in Georgia, US
and the S. Fork of the Cour d’Alene in Idaho, US.

3.1.2. Cluster similarities and membership
The differences in the clusters are fundamentally multivariate, and

there is no single streamflow index that individually defines them.
However, there are a number of consistent streamflow responses that
vary across clusters. Table 3 shows the mean change of a set of
streamflow index values that are statistically different across clusters.

Fig. 3 shows that the watersheds in each cluster have different re-
sponses to land-cover change. The figure shows the rank order of values
for a subset (8 of 10) of the indices from Table 3, including the median
flow value, as radar plots. The signs of the index values were reversed
for low-flow occurrence and monthly flow variability because a reduction
in these index values leads to increasing low-flow. The values were
ranked from smallest to largest as 1 to 3. The outer rim of the radar plot
axis is 3, and the center point is 1. Ties resulted in repeated rank values.
The baseflow recession and high-flow volume were omitted because they
are unintuitive and do not change the results. The median flow is one of
the 141 pre-dimension reduction indices, and was included because it
provides a simple measure of central tendency.

Comparing the pre-restoration simulation to the restoration land-
cover simulation, the low-flow intensifying cluster generally sees a rise
in the flow during relatively dry and average periods, and a decline in
the discharge during high-flow periods. This is a regulating behavior
that is typically desired for watershed services, shifting discharge from
high-flow periods to low-flow periods, both to reduce the chance of
flood damage and to provide consistent dry season flow. This can be
seen clearly by the largest rank in low-flow index value changes in-
cluding low-flow occurrence and increase in low summer flow, and the
smallest rank in high-flow indices such as high-flow seasonality.

The high-flow intensifying cluster, in contrast, sees a decrease in
discharge during low-flow periods and an increase in the relative high
flows as well as flow variability. The high-flow value changes show a
large rank, including the largest rank for high-flow magnitude and high-

flow seasonality, and the second largest for pre-peak flow. This cluster
generally has the smallest rank in the low-flow and intermediate flow
indices, including 10% more low-flow occurrences and 8% less low
summer flow. This reduction in low-flow is sometimes a concern when
considering the hydrologic effects of restoration.

The high-flow enhancing cluster sees similar responses to the high-
flow intensifying cluster, but the magnitudes are smaller so the en-
hancing cluster generally has the middle rank. It does have the largest
value change for pre-peak flow, and is the only cluster that has a positive
mean value change for that index. However, it has the middle rank for
high-flow magnitude, high-flow seasonality, and low-flow occurrence.

3.1.3. Indices across clusters
The clusters are further distinguishable by their marked differences

in mean value changes of specific indices. First, consider the high-flow
magnitude response to land-cover restoration. The low-flow intensifying
cluster has a decline of 6% of the high flow magnitude (see Table 3),
which is statistically different (α = 0.05) from the high-flow in-
tensifying and high-flow enhancing clusters that show rises of 5% and
1%, respectively. The permutation tests show particularly low p-values
(p < 0.0025; see methods section for null hypothesis), as well as effect
sizes of 2.4 and 1.7 for the low-flow intensifying cluster compared to
the high-flow intensifying and high-flow enhancing clusters. Since the
difference between the rise in the high-flow magnitude in the high-flow
intensifying and low-flow intensifying clusters is more than twice their
variability, we argue they represent fundamentally different responses.

Second, changes in the average flow also highlights the hydrologic
response differences of the three clusters resulting from restoration
land-cover change. Consider the median flow, or 50% exceedance flow,
of the sites within each cluster (from the list of 141 indices). The median
flow value in the high-flow intensifying and high-flow enhancing clus-
ters show a decline of 6% and 2%, respectively, while the low-flow
intensifying cluster shows a rise of 4%. The high-flow intensifying and
low-flow intensifying clusters have statistically different means with
p = 0.0003, and the high-flow intensifying and high-flow enhancing
clusters have different means with p = 0.008. These clusters have effect
sizes of 1.7 and 1.5, respectively. It is noteworthy that the change in
median flow is found to be statistically different across the three clus-
ters, but was not selected by the dimension reduction approach.

Third, index value changes reflecting land-cover restoration impact
on low flow show statistically significant differences across clusters (see
Table 3). Specifically, comparing to the pre-restoration case, the low-

Table 3
Mean changes in streamflow for specific indices that show significant differences across clusters from pre-restoration to restoration land-cover change. 1See Table 2
for details on index calculation; 2Negative values for these indices are good for regulating flow; 3These indices are not included in Fig. 3; 4Digital filter used for
automatic baseflow separation from Arnold and Allen (1999); 5Median flow is not selected by varimax rotation, but is included because it is useful to understand the
clusters.

Generalized index name Index name1 Low-flow intensifying High-flow
enhancing

High-flow intensifying

Low-flow indices
Low-flow occurrence2 Low-flow pulse count −4% +2% +10%
Baseflow recession3,4 Baseflow recession constant, β, from digital filter +2% −5% −5%

Monthly flow
Low summer flow Mean minimum June flow +1% -<1% −8%

Monthly flow variability
Monthly flow variability2 CV of monthly flow: February, March, May, August, September, December −1% ~0% +1%

Integrated flow measures
Median flow5 Median flow5 +4% −2% −6%
Average flow variability Concavity index +2% -<1% -<1%

High flow measures
High-flow magnitude2 Average flow above 3x median flow −6% +1% +5%
Pre-peak flow2 Percent discharge in 30 days before peak flow −3% +<1% −1%
High-flow seasonality2 Percent flow in highest-flow 3 months −1% +<1% +1%
High-flow volume2,3 Volume of flow above 3x median flow −6% −1% −5%
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flow intensifying cluster has reduced mean of low-flow occurrences ra-
ther than the increased mean of low-flow occurrences in the high-flow
intensifying cluster, with p-value = 0.0026 and effect size 1.9. The
high-flow enhancing cluster has a mean change that differs from the
high-flow intensifying cluster with a p-value of 0.03 and effect size of
1.2.

Together, the differences and similarities across clusters reveal a
consistent set of themes, as shown in Fig. 3. In the low-flow intensifying
cluster, the high-flow decreases, while in the high-flow intensifying
cluster, and less so in the high-flow enhancing cluster, high flow in-
creases relative to the median flow in each watershed. In the low-flow
intensifying cluster watersheds, the water that went to high flow in the
pre-restoration land-cover case, is instead stored and released during
low flow periods. In the high-flow intensifying and high-flow enhancing
clusters, restoration affects the modeled flow in one of two ways: 1) the
water that comprises low flow and average flow are each diminished
because that water is routed more quickly to the high-flow regime, and
2) greater evapotranspiration lowers both high flow and median flow.
In both of these cases, there is a higher proportion of high flow to
median flow.

3.2. Soil characteristics and slope of flow duration curve are strongly
related to clusters

We explored which watershed characteristics and streamflow index
values based on pre-restoration land-cover are most strongly related to
the three clusters as determined by permutation tests. The most obvious
characteristics, such as geographic location and climate zone, do not
show strong relationships to the clusters, as shown in Fig. 1. For ex-
ample, the high-flow intensifying cluster includes sites from Vietnam,
Iran, Brazil, Poland, and Indiana. The high-flow enhancing cluster in-
cludes sites from Brazil, Japan, Idaho, and Georgia, USA.

Fig. 4 shows the values of watershed characteristics and streamflow
indices for each site, while Table 4 presents the results of statistical tests

and effect sizes. In each section of Fig. 4, each column represents a site,
and the columns are grouped according to the clusters. Each box shows
the value of the feature, defined on the left, at that site through both
color and the printing of the value in the box. The color scale on the
right side of the boxes corresponds to these values. These color scales
are sometimes truncated to better represent the distribution. Table 4
provides the permutation test p-value and the effect size across clusters.

3.2.1. Importance of soil depth, hydraulic conductivity, and water content
Soil characteristics are the only watershed characteristics that pre-

dict cluster membership (Fig. 4a). The soil depth and saturated water
content are both significantly smaller (α = 0.05) in the low-flow in-
tensifying sites than in either the high-flow intensifying or high-flow
enhancing sites, with effect sizes greater than 1. These results show that
in our simulations high flow is reduced and low-flow increased in only
those sites that have relatively thin soils, which might be improved
through restoration of land cover. Soil clay percentage and sand per-
centage differ statistically (α = 0.05) between the low-flow in-
tensifying and high-flow enhancing clusters. The high-flow enhancing
cluster has sandier soils and the low-flow intensifying cluster has more
clay-rich soils. This suggests that in our simulations increasing in-
filtration in low-flow intensifying cluster sites may lead to a diminution
in high flow and rise in low-flow under land-cover restoration. These
soil characteristics are not independent, but all are presented here to
show the differences and similarities.

Soil hydraulic conductivity, in contrast, is significantly smaller
(α = 0.05) in the high-flow intensifying cluster than the high-flow
enhancing cluster, and is the only physical characteristic that separates
these two clusters. This suggests that the primary difference between
the sets of watersheds in their respective clusters is simply how fast
water moves through the soils. In the high-flow enhancing cluster sites,
the water moves quickly through the soil and recharges groundwater,
so the response to land-cover restoration is lower than that in the high-
flow intensifying cluster sites. The high-flow intensifying cluster sites,

Fig. 4. The clusters show differences across watersheds in a few features: a) soil depth and saturated water content; b) pre-restoration average- and high-flow
variability index values; and c) pre-restoration baseflow index values. These differences are significant and substantial (Table 4). Each box represents a watershed
feature (listed on the left, with appropriate units) at a site included in the clusters, with the feature’s color scale to the right. The color scales provide a realistic sense
of the distribution of features across clusters; in some cases, feature values extend beyond the color-bar limits to visually emphasize the distribution. Note that the site
ordering in the columns is not the same in the three figure sections.
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in contrast, have slower flow through the soil, which leads to a larger
low-flow decrease and smaller high-flow decline as the restored land
cover can transpire water that has a longer soil residence time. Many
other characteristics were tested, including watershed shape, elevation
and slope, climate, and pre-restoration land cover, but none of these
showed a significant difference among the clusters.

3.2.2. Hydrologic behavior under pre-restoration land-cover shows strong
relationships to restored watershed response

In addition to the watershed characteristics, we also analyzed pre-
restoration streamflow index values to determine which indices might
correlate with the graph-based clusters and thus provide useful in-
formation about the similarities and differences in watershed behavior
across these clusters.

Fig. 4b and c show the pre-restoration streamflow index values,
arranged by cluster, and Table 4 the results of permutation tests and
effect sizes across the clusters. There are significant differences between
clusters in the hydrologic response as measured by the flow duration
curve (“duration curve”), which shows how often flow exceeds any
given value and thus serves as an integrated measure of the likelihood
of experiencing flow conditions in the long-term. Here we represent the
duration curve by the average flow variability (technically the concavity
index, which is the slope of the line connecting the 33% and 66% ex-
ceedance daily flows) and the slope of the duration curve in the range
from 1% to 10% exceedance (high-flow duration index). A high value of
average flow variability means that there is large mid-range flow varia-
bility of the duration curve. A duration curve with a large high-flow
duration index has a smaller number of extremely large events and fewer
moderately large events.

We found that average flow variability in the low-flow intensifying
cluster is significantly smaller than in the high-flow intensifying cluster
(Fig. 4b, Table 4b). There are 11,440 possible combinations of the 16
average flow variability samples comprised by the seven watersheds in
the low-flow intensifying cluster and the nine watersheds in the high-
flow intensifying cluster. We found a perfect sorting with the high-flow
intensifying cluster having the largest values of average flow variability
and the low-flow intensifying cluster having the smallest values, and an

effect size of 2.6 between the two. This perfect sorting is one of the two
most extreme cases of the 11,440 combinations. The average flow
variability value does not have the same perfect sorting between the
low-flow intensifying and high-flow enhancing clusters, but the differ-
ence is still significant (α = 0.05) with effect size 1.8.

Regarding the high-flow duration index, there were extreme differ-
ences between the low-flow intensifying and high-flow intensifying
clusters, again with perfect sorting. The effect size for the high-flow
duration index is slightly smaller than that for the average flow varia-
bility, but it is still above 2. The low-flow intensifying cluster’s steeper
slope indicates that the streams are flashier, as there is a larger range
between the few extreme flows and the moderately large events. The
high-flow intensifying cluster’s smaller slope indicates more consistent
values between extreme and more common high flows, or less flashy
behavior. The low-flow intensifying and high-flow enhancing clusters
also show a significant difference (α = 0.05) in this high-flow duration
index and have an effect size of 1.5, but lack perfect sorting.

Further results also suggests that the low-flow intensifying cluster
sites are predominately governed by a few very large flows and have
more constant low-flows during the rest of the year when compared to
the high-flow intensifying and high-flow enhancing cluster sites.
Specifically, we found that mean daily flow/median daily flow index
values have a structure similar to that of the high-flow duration index
values, with the low-flow intensifying cluster sites having large values
and the high-flow intensifying and high-flow enhancing cluster sites
having smaller values. The difference is significant (α = 0.05), but the
effect size is only 1.

A few additional indices that describe flow variability show dis-
tinctions between the clusters, though not as strongly as duration curve
indices, which describe long-term integrated watershed response. These
daily flow variability indices are also shown in Fig. 4b and Table 4b.
The coefficient of variation (CV) of daily flow has perfect sorting between
the low-flow intensifying and high-flow intensifying clusters, with an
effect size of 1.7. The low-flow intensifying cluster watersheds have a
larger CV. Only one site in the high-flow enhancing cluster has a CV of
daily flow value larger than any site in the low-flow intensifying cluster.
The low-flow intensifying cluster sites also have a more variable number

Table 4
Results of statistical tests for discriminating watershed features across clusters.1p-value for the two-sample permutation test with null hypothesis that feature’s mean
value across clusters is the same; 2Effect size (Cohen’s d) for the difference between the means; Statistically significant p-values (α = 0.05) and substantial effect sizes
(>1) bolded for emphasis.

Low-flow intensifying vs.
High-flow intensifying

Low-flow intensifying vs.
High-flow enhancing

High-flow intensifying vs.
High-flow enhancing

p-value1 Effect size2 p-value1 Effect size2 p-value1 Effect size2

a) Soil characteristics
Soil depth [mm] 0.02 1.32 0.007 2.06 0.55 0.36
Soil average water content [mm] 0.01 1.17 0.05 1.22 0.32 0.79
Soil saturated water content [mm] 0.04 1.05 0.005 2.90 0.23 0.78
Saturated hydraulic conductivity [mm/hr] 0.28 0.62 0.11 1.11 0.03 1.75
Soil clay percentage 0.67 0.23 0.03 1.55 0.09 1.06
Soil sand percentage 0.06 1.50 0.01 2.36 0.11 1.04

b) Flow duration curve and daily flow
Average flow variability (Concavity index) 0 2.64 0.03 1.77 0.81 0.15
High flow variability (FDC slope, 1%-10%) 0.0001 2.19 0.03 1.49 0.61 0.32
Mean daily Q/median daily Q 0.04 0.98 0.05 0.83 0.93 0.06
CV of daily Q 0 1.70 0.005 1.41 0.85 0.12
CV in number of annual flow direction

reversals
0.03 1.06 0.07 0.91 0.99 0.02

CV in rate of Q change on increasing Q days 0.91 0.04 0.05 1.24 0.14 0.53
Log(Median dQ for consecutive increasing Q

days)
0.07 1.06 0.88 0.12 0.03 1.29

c) Baseflow
Baseflow fraction 0.002 2.15 0.04 1.46 0.39 0.59
Variance in baseflow based on digital filter 0.0008 1.23 0.005 1.00 0.69 0.23
CV of Julian date of annual minimum 0.007 1.66 0.02 1.52 0.99 0.04
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of flow reversals across years than the high-flow intensifying cluster
sites, with effect size 1, though they are not distinguishable from the
high-flow enhancing cluster sites due to one highly variable site in the
latter cluster. The CV in the rate of flow change during periods of increasing
flow is larger in the low-flow intensifying cluster watersheds than the
high-flow intensifying cluster watersheds. Finally, the median flow
change for consecutive days of increasing flow is significantly larger in the
high-flow enhancing cluster than the high-flow intensifying cluster.
This suggests that discharge increases more quickly in the watersheds in
the high-flow enhancing cluster than those in the high-flow intensifying
cluster, consistent with the former cluster’s larger hydraulic con-
ductivity.

The low-flow intensifying cluster has smaller and relatively more
variable pre-restoration low-flow than the high-flow enhancing or high-
flow intensifying clusters, as shown in Fig. 4c and Table 4c. The base-
flow fraction index value is larger in both the high-flow intensifying and
the high-flow enhancing clusters than in the low-flow intensifying
cluster (α = 0.05), with effect sizes 2.2 and 1.5, respectively. The high-
flow intensifying cluster only has one out of nine values that are lower
than any in the low-flow intensifying cluster. Associated with its lower
baseflow fraction, the low-flow intensifying cluster has a larger variance
in the daily baseflow estimated using a digital filter (Arnold and Allen,
1999) and a larger CV in the date of the annual minimum flow.
Supplement SI-8 shows that there is a similar difference across clusters
in a number of high flow index values calculated for the pre-restoration
simulation.

Other indices did not show significant differences between clusters.
These similarities may also be important for interpreting the similarities
and differences in watershed response to land-cover change, and are
discussed in Supplement SI-9. These indices include the average flow
change during periods of rising flow and the slope of the duration curve from
75% to 99% exceedance.

4. Discussion

4.1. Indicators of watershed response

We employed 29 hydrologic site models to investigate the change in
a variety of streamflow indices after simulated land-cover restoration.
These results provide useful information about the types of watersheds
where watershed service investments in land-cover restoration might
provide valuable water resource improvements, and where they might

instead disrupt local flow benefits. In particular, sites in the low-flow
intensifying cluster display the behavior desired from watershed service
investment for land-cover restoration: spreading stream discharge over
time even if the penalty is a loss of annual water yield. Sites in the high-
flow intensifying cluster instead see a decline in water yield, with a
particularly notable decline during low-flow periods. Sites in the high-
flow enhancing cluster show the same basic responses as those in the
high-flow intensifying cluster, but less so, to the point that declines in
water yield and particularly low-flow might not be noticed.

Our analysis is distinct from the spatial targeting of land-cover
change inside a watershed, which has been the focus of other work
(Guswa et al., 2014; Jackson et al., 2013; Vogl et al., 2016a,b). Instead
we investigate the general conditions under which land-cover change
might provide tangible watershed services.

4.1.1. Watershed characteristics
Soil depth, saturated water content, and hydraulic conductivity

have significantly different values across the delineated clusters. This
suggests that watersheds with relatively thin soils that cannot hold
significant amounts of water may be more likely to transfer water from
high flow to low-flow regimes upon land-cover restoration. This out-
come could be beneficial even though it is likely to also produce a re-
duction in total water yield. Among sites with thicker soils and higher
saturated water contents, those sites with relatively high hydraulic
conductivities may be likely to see smaller reductions in low flow and
smaller relative increases in high flow as the water can flow quickly
through the soil profile and thus is affected less by vegetation. In con-
trast, similar sites but having low hydraulic conductivity soils may be
likely to see a decrease in low flow as well as a relative rise in high flow,
representing a significant water resource cost to land-cover restoration.

4.1.2. Flow duration curve:
The average flow variability and the high-flow duration indices based

on the flow duration curve for the pre-restoration case also showed
significant differences across clusters. This led us to further investigate
the features of the flow duration curves for sites in each cluster. In Fig. 5
we plot the 29 duration curves where flow (y-axis) is normalized by the
maximum flow for each site. Lines are color-coded by the clusters
identified in Fig. 2. The inset panel provides a simple summary by
displaying the median curves for all sites in each cluster. There are 8
sites that are not in the three primary clusters, which are colored light
grey.

There is a clear difference in the nature of the duration curves for
each cluster. The watersheds in the low-flow intensifying cluster tend to
have much more concave duration curves than those in the high-flow
intensifying or high-flow enhancing clusters, as seen in Fig. 5. This is
consistent with the observations above, wherein the watersheds with
more concave normalized pre-restoration duration curves shift more
water from the high-flow period to low-flow periods after restoration.
In contrast, the watersheds with less concave normalized pre-restora-
tion duration curves transfer water to low-flow periods efficiently before
restoration. After restoration, these watersheds experience increased
evapotranspiration and consequently provide less discharge during low-
flow periods. Overall, those watersheds with stronger variability in flow
are more likely to have restoration of pre-development land cover in-
crease low flows, while those with a smoother distribution of flows are
not.

4.2. Field studies

Despite significant effort by many hydrologists, a clear under-
standing of the factors that drive the hydrologic response to land-cover
change remains elusive. Field studies remain key constraints on such
understanding, and our results are consistent with a number of field
studies. However, many field studies have focused on land-cover
changes that are not directly applicable to watershed service

Fig. 5. Pre-restoration flow duration curves for watersheds in the low-flow
intensifying cluster tend to be more concave (steeper near 0%, and less steep
across larger exceedances) than those from the high-flow enhancing and high-
flow intensifying clusters. The inset panel shows the median for each cluster.
Lines are colored as in the rest of the paper, with the remaining watersheds
shown as thin grey lines.
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investment for several reasons: 1) many investigate annual water yield,
which is not the most relevant measure for most water resource con-
siderations; 2) many focus on small-scale experimental catchments of
1–1000 ha with extreme land-cover change, often approaching 100%,
to achieve statistical power, but which are not necessarily realistic for
watershed investments that change smaller fractions of larger water-
sheds with areas in the 100s-1000s km2; 3) others address differences in
hydrologic response with land-cover across catchments, but do not
provide clear guidance for the response to change; and 4) many studies
have a strong bias towards temperate and cold climates where most
data are available (Bosch and Hewlett, 1982; Brown et al., 2005, 2013;
Carrillo et al., 2011; Hamel et al., 2017; Ogden et al., 2013; Price et al.,
2011; Sahin and Hall, 1996; Sawicz et al., 2011; Scott and Lesch, 1997;
Stednick, 1996; Wagener et al., 2007; Whitehead and Robinson, 1993;
Yadav et al., 2007).

The broad paired catchment literature is consistent with our results,
showing a reduction in annual water yield under afforestation (Brown
et al., 2005; Farley et al., 2005; Filoso et al., 2017). Previous work has
suggested that changes in water yield cannot be detected experimen-
tally with changes of <20% of the watershed because of the natural
variability (Bosch and Hewlett, 1982; Stednick, 1996). However, Brown
et al. (2005) suggest it is still possible to predict the response of smaller
land-cover changes. Such prediction is consistent with the small re-
ductions in water yield for almost all sites, and in all three clusters, that
are apparent because the watershed simulations hold all conditions
identical except for land cover.

Studies of low-flow changes due to land-cover change find more
variability than those of annual water yield, consistent with our results.
Paired catchment studies have found that afforestation decreases low
flow (Farley et al., 2005), particularly that forested catchments had
90% exceedance flows that were 10–90% lower than the 90% ex-
ceedance flows of non-forested catchments (Brown et al., 2013; Scott
and Lesch, 1997). This result is similar to that from our high-flow in-
tensifying and high-flow enhancing clusters, though stronger because
they often represent the watershed response to much larger land-cover
change than the 10% we simulated. Other work has found that forested
watersheds had larger low-flows from 1 to 50% (Ogden et al., 2013)
and 6–24% (Price et al., 2011), which could be consistent with our low-
flow intensifying cluster. Note that these were not, however, experi-
mental land-cover changes, but rather comparisons across paired wa-
tersheds with different amounts of forest from previous disturbance.
Price et al. (2011) tested the effect of the percent area of colluvium on
baseflow in the presence of different amounts of forest cover, and found
that increased colluvium and forest cover were positively related to
increases in baseflow metrics. If we assume that increased colluvium
corresponds with decreased soil depth, this is consistent with our
findings that sites with smaller soil depth were in the low-flow in-
tensifying cluster. The variable low-flow effects of land cover are con-
sistent with the distinct, and differing-direction responses seen in the
watersheds in the low-flow intensifying versus high-flow intensifying
clusters. However, it is not possible to draw robust links between these
field studies and our models because of the lack of data on the field
study conditions. None of the sites in this study have significant fog
capture, so we do not see the potential increased low flow because of
increased water input from forests in these uncommon circumstances
(Bruijnzeel et al., 2011; Ellison et al., 2012).

4.3. Analysis caveats

As a moderate-complexity model, SWAT includes structural limita-
tions that may affect the results of this work. Most importantly, SWAT’s
hydrologic response units (HRUs) are not fully spatially connected.
Within subbasins the HRUs are spatially discontiguous units that con-
nect to the stream, and subbasins are connected through the stream
network. The lack of connectivity may be particularly important for
land-cover change in riparian zones, where tree removal may have

large effects on streamflow (Everson et al., 2007; Scott, 1999; Scott
et al., 2004).

Our analysis assumed a uniform land-cover restoration across the
watershed with shifts from a single land-cover to another. Sensitivity
analyses assessed the effects of both localized restoration and more
complex land-cover shifts, and showed that the differences were small
(Dennedy-Frank and Gorelick, 2019, Appendices A.7 & A.8). However,
the lack of full spatial connectivity does mean that riparian zones, in
particular, may not be appropriately sensitive to these changes. There
was no relationship between the streamflow changes after restoration
and either the size or number of either HRUs or subbasins across sites.

5. Conclusions

We investigated the similarities and differences of streamflow
changes after the restoration of pre-development land cover in 29 sites
around the world. The sites represent a novel database of previously
peer-reviewed hydrologic models simulated using SWAT, a tool used
extensively by the land and water management communities. We find
three primary clusters sharing common hydrologic responses to re-
storation: 1) low-flow intensifying cluster, 2) high-flow intensifying
cluster, and 3) high-flow enhancing cluster.

Under restoration, the low-flow intensifying cluster sites show en-
hanced discharge during low flow periods and a decline in discharge
during high-flow periods. Shifting discharge from high-flow to low-flow
periods is typically a desired outcome for watershed services. In con-
trast, the high-flow intensifying cluster is characterized by sites in
which there is a decrease in discharge during low-flow periods and an
increased variability of discharge in the near-average flow regime.
Similarly the high-flow enhancing cluster sites exhibit a decrease in
discharge during the low-flow periods, though of smaller magnitude
than the high-flow intensifying cluster.

Among watershed characteristics, soil depth and saturated soil
water content show statistically significant differences across these
clusters. Our results suggest that these soil properties may be a primary
driver in watershed response to land-cover restoration. No non-soil
watershed characteristics showed a statistically significant difference
across the three clusters. In sites where the soils are relatively thin,
restoration results in watershed responses that generate a more even
temporal distribution of flow, which is often desired. In contrast, where
soils are thick and hydraulic conductivity is low there may instead be a
loss of watershed service because of the increased opportunity for
evapotranspiration. Soil depth and hydraulic properties serve as ag-
gregate indicators of effects such as land cover, climate and source
material, and may serve as a particularly valuable indicator of coevo-
lution state (Troch et al., 2015).

We show that several flow indices, particularly those describing
attributes of the flow duration curve, have statistically significant dif-
ferences across clusters. The average flow variability index and the high-
flow duration index are most important. The flow duration curves for
sites in the low-flow intensifying cluster are generally more concave
than those in the high-flow intensifying and high-flow enhancing
clusters, which indicates that under land-cover restoration the water in
the high-flow periods of the low-flow intensifying cluster sites is shifted
to low flow periods. In the high-flow intensifying and high-flow en-
hancing clusters, land-cover restoration does not transfer additional
water to low flow, instead increasing water loss to evapotranspiration.
These results provide a key step in the systematic understanding of how
land-cover shifts change streamflow and watershed services, and inform
better prediction of sites where restoration will add value as natural
capital.
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