
Logging to the Danger Zone: Race Condition Attacks and
Defenses on System Audit Frameworks

Riccardo Paccagnella
University of Illinois at Urbana-Champaign

rp8@illinois.edu

Kevin Liao
University of Illinois at Urbana-Champaign

kliao6@illinois.edu

Dave Tian
Purdue University
daveti@purdue.edu

Adam Bates
University of Illinois at Urbana-Champaign

batesa@illinois.edu

ABSTRACT

For system logs to aid in security investigations, they must be
beyond the reach of the adversary. Unfortunately, attackers that
have escalated privilege on a host are typically able to delete and
modify log events at will. In response to this threat, a variety of
secure logging systems have appeared over the years that attempt
to provide tamper-resistance (e.g., write once read many drives,
remote storage servers) or tamper-evidence (e.g., cryptographic
proofs) for system logs. These solutions expose an interface through
which events are committed to a secure log, at which point they
enjoy protection from future tampering. However, all proposals to
date have relied on the assumption that an event’s occurrence is
concomitant with its commitment to the secured log.

In this work, we challenge this assumption by presenting and
validating a race condition attack on the integrity of audit frame-
works. Our attack exploits the intrinsically asynchronous nature
of I/O and IPC activity, demonstrating that an attacker can snatch
events about their intrusion out of message buffers after they have
occurred but before they are committed to the log, thus bypass-
ing existing protections. We present a first step towards defending
against our attack by introducing KennyLoggings, the first kernel-
based tamper-evident logging system that satisfies the synchronous
integrity property, meaning that it guarantees tamper-evidence of
events upon their occurrence. We implement KennyLoggings on
top of the Linux kernel and show that it imposes between 8% and
11% overhead on log-intensive application workloads.

CCS CONCEPTS

• Security and privacy → Operating systems security; Mal-

ware and its mitigation.

KEYWORDS

system auditing; race conditions; operating systems; Linux kernel;
digital forensics; tamper-evident logs; forward security

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7089-9/20/11. . . $15.00
https://doi.org/10.1145/3372297.3417862

ACM Reference Format:

Riccardo Paccagnella, Kevin Liao, Dave Tian, and Adam Bates. 2020. Logging
to the Danger Zone: Race Condition Attacks and Defenses on System Audit
Frameworks. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’20), November 9–13, 2020, Virtual Event,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3372297.
3417862

1 INTRODUCTION

System auditing is an essential tool when responding to secu-
rity incidents. As cyber-attacks become increasingly sophisti-
cated and hard to defend against, auditing technology is expe-
riencing a renaissance, with defenders seeking out new means
(e.g., [42, 45, 59, 64, 68]) of investigating and recovering from po-
tential threats [13, 58, 74, 98, 125]. Indispensable to all of these
advancements are system logs, which record the history of system
execution. Recent reports reveal that 75% of incident response spe-
cialists consider logs to be themost valuable artifact during an inves-
tigation [115] and that the global log management software market
is a multi-billion dollar one, growing at a steady rate [48, 106].

Lost in this optimism is the reality that attackers have long
known the value of system logs, which contain highly-incriminating
evidence of their methods of intrusion, privilege escalation, and ul-
timate objectives within the system. Unsurprisingly, attackers regu-
larly engage in anti-forensic activities to cover their tracks, including
erasure and manipulation of system logs [112]. Such capabilities do
not exclusively belong to nation-state adversaries [14]; in fact, log
tampering is within reach for any would-be intruder that can read
an instructional blog post [9, 86], launch penetration testing tools
like Metasploit [96], or download a simple script [21, 36, 38, 71].
Case in point, log tampering is reported as the top evasion tactic
by an increasing 87% of incident response specialists [115].

To solve this problem, a variety of secure logging solutions have
appeared throughout the industry and the literature. Commercial
solutions typically rely on trusted storage devices, such as Write
Once Read Many drives [4, 47, 70, 83, 107] and centralized log
servers [19, 46, 55, 105, 110, 114]. State-of-the-art systems based on
cryptography generate tamper-evident proofs for the logs, protect-
ing the signing key through forward security [25, 73], or trusted
hardware [54, 89]. All of these solutions expose an interface through
which individual log events are at some point committed to a secure
log, at which point they enjoy protection from future tampering.
Such approaches raise the degree of difficulty of successfully launch-
ing a covert attack by guaranteeing that all events committed prior

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1551

https://doi.org/10.1145/3372297.3417862
https://doi.org/10.1145/3372297.3417862
https://doi.org/10.1145/3372297.3417862

to compromise cannot be undetectably tampered with by an ad-
versary. However, when considering a sophisticated adversary in
possession of valuable zero-day kernel exploits, are such counter-
measures truly sufficient to deter an anti-forensic attack?

In this paper, we answer this question in the negative. First, we
observe that there exists a window of time before commitment
during which log events are still vulnerable to tampering. The fun-
damental reason for this vulnerability is that existing proposals
operate asynchronously, making the implicit assumption that an
event’s occurrence is concomitant with its commitment to the se-
cured log. That is, these designs do not consider the window of time
in which an event (e.g., a system call) has been permitted to pro-
ceed but whose record has not yet been committed and is therefore
still vulnerable to tampering. In fact, due to the pervasive presence
of asynchronous message passing in software, such windows are
ubiquitous in commodity systems. We empirically validate the pres-
ence of this “Danger Zone” on Linux Audit and discover that the
time between an event’s occurrence and its commitment is often
non-negligible and grows with the system load.

Second, we discover that this vulnerability enables a race con-
dition attack that can be used by an adversary to undetectably
intercept and suppress “in-flight” log events, effectively concealing
all evidence of their intrusion before it is committed to the log. To
this end, we develop a log-interceptor tool that seizes control of the
kernel log buffer to remove compromise-related events after they
have occurred (granting root access to the adversary), but before
they are processed and committed by the logging framework. We
concretely validate the feasibility of this attack in both a local and
a remote adversarial setting. While the efficacy of our attack relies
on a small backlog of existing events in the kernel buffer, we find
that it is trivial for attackers to induce such load innocuously.

In contrast, defending against the race condition attack is nontriv-
ial. Retrofitting commercial solutions (i.e., writing events to trusted
storage devices) by ensuring that each event is stored before any
other events can occur would prevent our attacks. However, syn-
chronous storage of events to the log would lead to prohibitively
large latencies, especially on modern hosts which can generate mil-
lions of system calls per second [24]. As an alternative, we explore
the possibility of synchronous event commitment through crypto-
graphic schemes. That is, we set out to determine if it is practical
to cryptographically commit events as they occur in the kernel,
rather than when they are processed and stored by the user space
audit daemon [25, 54, 73, 89]. This comes with new challenges. First,
as multiple system calls can execute concurrently, ordering and
synchronization issues arise that existing buffered designs do not
have to deal with. Second, the performance requirements of such
a design are stricter, as adding operations to the critical path of
system call execution affects all applications running on the host.

We successfully address these challenges by presenting Ken-
nyLoggings, the first tamper-evident logging system that satis-
fies the synchronous integrity property, meaning that it guarantees
tamper-evidence of log events upon their occurrence. KennyLog-
gings solves the ordering issues by running its cryptographic com-
mitment operations within the existing critical section used by the
operating system to prevent concurrent access to the kernel log
buffer; it solves the performance issue by using an efficient forward
secure message authentication scheme, concretely instantiated with

 Application

User space

Kernel

kauditd

auditd Logs

netlink
syscall

audit filter

Syscall processing buffer

Figure 1: System-level architecture of Linux Audit. Audit fil-

ters hook syscalls and enqueue records of their execution to

a buffer. These records are then processed one at a time by

kauditd, which sends them from the kernel to user space,

where they are recorded to disk.

fast cryptographic primitives (SipHash [5] and BLAKE2 [6]). Our
design also includes an optimization that reduces logging latency by
precomputing signing keys in batches. As a result, our approach is
able to scale to meet the demands of commodity operating systems.

In summary, the contributions of this paper are as follows:
• We identify a design vulnerability overlooked by existing secure
logging systems that allows an attacker to bypass their safeguards.
We empirically validate the presence of this “Danger Zone” on
Linux Audit, finding that there exists a non-negligible window of
time between an event’s occurrence and its commitment during
which the event is vulnerable to tampering.

• We present a race condition attack on audit frameworks that
exploits the above vulnerability to snatch all evidence of an intru-
sion out of kernel memory before it is committed. Unlike existing
race condition attacks on audit systems [119], our attack can tam-
per with events that have already occurred and independently of
the presence of concurrency bugs. We implement our attack into
a log-interceptor tool and empirically demonstrate its practicality
both in a local and in a remote adversarial setting.

• We introduce KennyLoggings, the first kernel-based tamper-
evident logging system that provides the property of synchronous
integrity. Our system cryptographically commits events upon
their occurrence, guaranteeing tamper-evidence for all the events
that lead up to full system compromise. As such, KennyLoggings
can give investigators insight into the window of time during
which existing secure logging systems are vulnerable.

• We implementKennyLoggings on the Linux kernel1 and provide
an evaluation of its performance. Our results show that Kenny-
Loggings imposes 8% to 11% overhead on realistic application
workloads that generate large volumes of log events. We also
discuss how KennyLoggings can be extended to work in con-
junction with asynchronous secure logging systems and identify
directions for future performance improvements.

2 BACKGROUND

System Logging. This paper discusses anti-forensic strategies
to compromise a host without leaving traces in the system logs.
System logs, sometimes referred to as audit logs [81], provide a
chronological record of all the activities that have affected an op-
erating system (OS). Unlike application logs, which are generated
1Our prototype is publicly available at https://bitbucket.org/sts-lab/kennyloggings.

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1552

https://bitbucket.org/sts-lab/kennyloggings

Logging Latency of mi ()

Attack begins
with syscall x1

Attack-related syscall
 xi executes

Full System Compromised
marked by syscall xn Event mi is processed

mi is vulnerable

Figure 2: Audit records describing an attack are vulnerable due to the latency introduced by asynchronous logging. In this

timeline, the log recordmi is vulnerable because the time between xi ’s execution andmi ’s processing (δ (xi ,mi)) extends past

the moment that the attacker fully compromises the system.

by user space code, system logs are generated by the OS based on
customizable rules defined by a system administrator. They include
records at the granularity of system calls (which we will also refer
to as syscalls) and are thus capable of watching file access, recording
user commands, and monitoring security events and network ac-
cess. Several security-related certifications require storing system
logs for compliance [26, 49, 94]. For the Linux project, auditing
subsystems were originally introduced as part of broader efforts to
achieve certification under common criteria such as the Controlled
Access Protection Profile (CAPP) [82], leading to the introduction
of the Linux Audit Subsystem (LAuS) in Linux 2.6 [108].

Linux Audit. Linux Audit is Linux’s standard system log collec-
tion framework [94]. Its architecture (shown in Figure 1) consists of
two main parts: a kernel component (kauditd), and a user space
component (auditd). When Linux Audit is enabled, every syscall
passes through a kernel audit filter that decides if it needs to be
logged based on the Audit rule configuration. Then, if it needed
to be logged, a log event is created and enqueued to a buffer. The
kernel component kauditd dequeues events from such buffer and
sends them to the user space component auditd, which creates
entries in the log file. For performance reasons, kauditd processes
events asynchronously: in the kernel control path2 log messages
are only enqueued to the kernel buffer and then later processed, one
by one and in a first-in-first-out (FIFO) manner, by kauditd. When
this backlog of events (which is of configurable capacity) is full,
the kernel can be configured to drop new events until the buffer
has space (keeping a counter of the number of events lost) or to
handle the error by, for example, causing a kernel panic. Netlink is
used as the transmission channel between kauditd and auditd.
While this paper will be evaluated on Linux Audit, asynchronous
logging mechanisms are ubiquitous and apply to system logging
frameworks on both Linux [8, 69, 109] and Windows [66, 75, 76].

3 THE DANGER ZONE: ASYNCHRONOUS

LOGGING

In this section, we present and characterize a race condition vul-
nerability on operating system logging frameworks. Let us assume
that an administrator has configured the logging framework to
record a variety of syscalls such as process exec and file open.
We consider an adversary that is capable of entering the machine,
escalating privilege, and ultimately engaging in anti-forensic mea-
sures to conceal evidence of the attack after fully compromising
2We refer to kernel control path as the code executed in kernel mode to handle a syscall.

the system. Wary of this threat, the administrator has taken the
precaution of using a tamper-evident or tamper-resistant logging
framework [25, 54, 73, 89]. Thus, the administrator believes that
critical records about the attack, from the initial intrusion up to
the privilege escalation, can be audited. To reflect that a secure
logging safeguard is in place, we will assume that a log event is
“safe” the moment it is ingested for processing by the user space
audit daemon. This assumption is conservative in that it does not
consider the overheads and latencies required to commit the event
to the log in a tamper-evident or tamper-resistant fashion. Thus, in
practice, the window for the vulnerability we describe is larger.

3.1 Race Condition Vulnerability

For performance reasons, asynchronousmessage passing paradigms
are pervasively used in operating systems, including their logging
frameworks. When a process invokes a syscall, the kernel control
path traverses an audit filter that creates a record of the syscall
and enqueues it to a buffer of log events. A separate kernel thread
is responsible for transmitting log events from the buffer to user
space for processing and storage. An example of this workflow is
given for Linux Audit in Figure 1. It is almost essential that this
workflow be asynchronous, as synchronous transmission of events
at a syscall-by-syscall granularity would be prohibitively expensive.

We observe that asynchronous logging creates a race condition
vulnerability—actions associated with an ongoing attack are per-
mitted to proceed before their events are securely processed by the
logging framework and recorded to the log. We formally define this
vulnerability with respect to the timeline illustrated in Figure 2. Let
us consider an individual attack-related action, the system call xi ,
which occurs at time ti . Syscall xi is just one action in a sequence
of attack-related actions between the beginning of the attack at t1
and the full compromise of the system at tn . The logging latency
for this system call, denoted δ (xi ,mi), is the time between action
xi and its log eventmi being ingested by the user space audit dae-
mon. If ti +δ (xi ,mi) exceeds tn (i.e., the time at whichmi is logged
comes after the time of full compromise), thenmi is vulnerable to
tampering. In fact, ifmi is vulnerable to tampering, then any events
generated from actions between time ti and tn are also vulnerable.

3.2 Vulnerability Characterization

A variety of factors might affect whether or not an attack trace (i.e.,
the sequence of log events recorded from t1 to tn) is vulnerable. It
may be that, in practice, the logging latency is so negligible that all
events in the attack trace are secure. This may be likely in the case

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1553

 0

 50

 100

 150

 200

 250

 300

0 50 100 250

Lo
gg

in
g

La
te

nc
y

[m
s]

Burst Size [number of syscalls]

Figure 3: Latency to log a single event under different system

loads. The results are computed over 200 repetitions. The

logging latency grows larger when the system load is larger.

that the machine is in a quiescent state. Alternatively, at the start of
the attack there may be unrelated log events in the kernel buffer due
to other system activity. Since the events in the buffer are processed
by the logging framework in a FIFO manner, these unrelated events
could create a backlog that increases the logging latency for events
in the attack trace. Among the factors that affect logging latency, we
hypothesize that system load is the most impactful; in this section,
we experimentally validate this hypothesis by characterizing how
the logging latency changes under different system loads.

3.2.1 Experimental Methodology. We perform our experiments on
Linux Audit, the standard system logging framework on Linux (cf.
Section 2). We instrument the Linux kernel to record the execution
time of each system call and auditd to record the time its associ-
ated log event is received for processing in user space, allowing us
to conservatively calculate δ (xi ,mi). We model the system load as
a burst of N system calls executed serially by a script with config-
urable N . We then measure the logging latency δ (xi ,mi) for events
executed after a burst. The purpose of the burst is to model the
fact that the logging buffer may be non-empty when the adversary
begins their attack. Because we are only interested in a snapshot of
the system state immediately before the attack, it is immaterial how
the buffer is filled (whether by a burst of system calls or by events
accumulated over time). To simplify our experimental design and
to better isolate our experiments from system factors we cannot
control, we thus choose to model the system load as a burst.

3.2.2 Experimental Setup. We run our experiments on a bare-metal
server with 8 logical CPU cores (4.20 GHz Intel Core i7-7700K) and
64 GB of RAM, running Ubuntu Server 16.04 64 bit (Linux 4.4.0-116).
We configure Linux Audit to log all forensically relevant system
calls (using the ruleset employed in [32, 60, 68, 89]), and use a
large buffer capacity of 220 events. For our burst implementation,
we use the system call getuid. We use getuid because it is a
low-latency syscall—it is non-blocking (i.e., it does not wait on
a response from the disk or network) and it also does not have
any arguments that need to be processed, minimizing the time
between the syscall invocation and a new log event being created.
Further, getuid generates short log records, making our analysis
of logging latency conservative for a given burst size.

3.2.3 Experimental Results. Our first experimentmeasuresδ (xi ,mi)

for a single system call xi after a burst of size N . We execute a burst

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

C
D

F
Lo

gg
in

g
La

te
nc

ie
s

Time since end of burst [ms]

N = 0
N = 50

N = 100
N = 250

Figure 4: Latency to log 100 events under different loads. The

results are aggregated over 200 repetitions. With a burst of

100 events, only 1% of the log trace was logged within 95 ms.

of N consecutive system calls followed by xi , and then measure
the latency δ (xi ,mi) of logging xi . The results are shown in Figure
3. In idle conditions (N = 0), the median logging latency is 25 ms.
After a burst of size N = 100, the median logging latency is 111
ms. Most notably, after a burst of size N = 250, the median logging
latency is 230 ms. These results confirm our hypothesis that the
logging latency grows with the system load.

Next, we measure δ (xi ,mi) for an attack trace of K system calls
executed after a burst of size N . That is, we execute a burst of N
consecutive system calls followed by K system calls ⟨x1, ..., xK ⟩,
and then measure the logging latency δ (xi ,mi) for each 1 ≤ i ≤ K .
In particular, we pick K = 100 to model an attack trace composed
of 100 system calls. Figure 4 reports the aggregated results over
200 runs. Under idle conditions (N = 0), 82% of the attack trace
was logged within 100 ms. Conversely, when the burst size was
N = 100, less than 2% of the attack trace was logged within 100 ms.

The cause of these behaviors is the larger backlog of events that
are queued in the buffer after a longer burst. That is, since the
events in the buffer are processed one by one and in a FIFO manner,
the latency of logging new events will be affected by the number
of events in the buffer. We established this by measuring the size of
the logging buffer immediately after executing bursts of different
sizes and observed that it was in fact larger when N was larger.
This means that the rate at which events are appended to the buffer
during a burst is larger than the rate at which auditd can process
them. We refer the reader to prior work for further explanation of
the performance bottlenecks in Linux Audit [67].

4 RACE CONDITION ATTACKS

Recall that the goal of our adversary is to leave no traces of their
intrusion in the system logs. In the previous section, we described
and characterized a race condition vulnerability on system logging
frameworks. We saw that if the system load is high enough, the
logging latency of individual log events and of attack traces of K
log events is non-negligible, which makes attack-related log events
vulnerable to tampering. However, we have not yet discussed how
the adversary can exploit this vulnerability in practice to intercept
and suppress log events before they are processed. This operation
is crucial to the intrusion and needs to be executed immediately
after achieving full system compromise, to prevent the logging
framework from processing any subset of the attack trace.

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1554

4.1 Intercepting a Vulnerable Attack Trace

Suppose that the adversary has just gained root access and that
the attack trace is still vulnerable (i.e., its events have not been
committed yet). One possible approach for the adversary to prevent
the vulnerable attack trace from being logged consists of force
killing the logger process immediately after full compromise. This
would successfully prevent events currently in the buffer from being
processed. However, previous work has shown that this type of
tampering can be detected because it will force the logger to skip its
shutdown routine and that will raise an alert [54, 89]. Furthermore,
killing the logger process would prevent benign events from being
logged as well, which would create a suspicious gap in the log file.

To remain stealthy and undetected, an astute adversary will in-
stead attempt to intercept only log events related to the intrusion
and their subsequent exfiltration, keeping the logging system run-
ning not to raise any alerts. An adversary could achieve these goals
by seizing control of the kernel buffer and preventing any events
describing their actions from being logged, while letting benign
events proceed as normal. In the next section, we will describe and
evaluate a proof-of-concept implementation of this approach.

4.2 Exploit Evaluation

We consider two attack scenarios of varying difficulty for the ad-
versary. The first is a local attacker who already has non-privileged
access to the system, reflecting an insider threat or an adversary
who has obtained out-of-band access to credentials. We intend for
this scenario to be more favorable to the adversary because the first
suspicious act they commit will be privilege escalation, reducing
the size (in log events) of the attack footprint. In addition, we also
consider a remote attacker who has no prior access to the system.
This attacker must establish a foothold on the machine by exploit-
ing an Internet-facing service (e.g., a web server) and dropping to
shell before escalating privilege, increasing the attack footprint.

4.2.1 Attack Implementation. We implement two existing exploits
on Linux and pair them up with a log-interceptor, a new tool which
seizes control of the kernel buffer to remove compromise-related
events before they are committed by the logging framework. For
the local privilege escalation, we use CVE-2017-16995 [2], which
allows an unprivileged user to run code as root on the machine. For
the remote code execution, we use CVE-2014-6271 [1] (also known
as “Shellshock”), a vulnerability of the Unix Bash Shell which can be
used to run arbitrary commands on a remote machine. The remote
adversary achieves privilege escalation by combining these two
exploits. That is, we let the remote exploit vector be an apache2 web
server that uses Common Gateway Interface (CGI) scripts written
in Bash to handle requests. The remote adversary will then issue a
curl command to the web server with the exploit payload (the code
for the local privilege escalation and the Bash commands to run
it) embedded in the User-Agent string. As in the prior section, we
model the load prior to an attack as a burst of N system calls.

We implement a proof-of-concept log-interceptor as a kernel
module targeted against Linux Audit. When this kernel module is
loaded, it performs the following operations: 1) retrieve the address
of kauditd’s events buffer queue (this can be done using the
lookup function kallsyms_lookup_name); and 2) empty the
kauditd buffer queue, discarding all the events contained in it. In

Table 1: Log-interceptor results. We report the median over

100 runs. In the local attack scenario, a burst of 100 syscalls

preceding the attack is always sufficient for log-interceptor

to conceal the entire attack trace. In the remote attack sce-

nario, a burst of 0 syscalls preceding the attack is nearly

enough for log-interceptor to conceal the entire attack trace.

Burst Size % Trace Intercepted
(Local Attack) SD % Trace Intercepted

(Remote Attack) SD

0 0% 10% 99% 23%
50 40% 18% 100% 5%
100 100% 0% 100% 1%
250 100% 0% 100% 0%

both of our attacks, we embed the compiled log interceptor kernel
module directly in the privilege escalation binary.

4.2.2 Experimental Setup. We use the same experimental setup of
Section 3.2 but replace the default Unix Bash Shell with version 4.2
(vulnerable to CVE-2014-6271) and introduce an apache2 web server
(version 2.4.18) using CGI to serve requests. We ensure that the
vulnerable system is idle prior to the execution of each experiment,
except for the artificial bursts discussed above. We also ensure
that the capacity of the kernel buffer is large enough not to fill
up during our experiments, causing kauditd–depending on its
configuration (cf. Section 2)–to drop events or to kernel panic.3 We
issue the remote attack request from a separate bare-metal server,
with an average latency of 452 µs between the two machines.

4.2.3 Experimental Results. First, wemeasure howmany log events
each attack generates under our logging configuration. We observe
that the local attack using CVE-2017-16995 consists of 25 forensi-
cally relevant syscalls, all generating relatively short log records
(averaging 182.6 bytes). In contrast, the remote attack that uses both
CVE-2017-16995 and CVE-2014-6271 consists of 176 forensically
relevant syscalls, the first of which generate large log records (up
to 7.6 kilobytes) related to the parsing of the User-Agent string. In
receiving a CGI request, the web server also generates 60 benign
syscalls prior to parsing the malicious User-Agent string. We do
not consider these syscalls as part of the attack trace because they
do not contain information incriminating the attacker. As a conse-
quence, the remote attack benefits from both an intrinsic benign
burst generated prior to attack execution and an increased logging
latency due to the larger size of the log events to process.

Next, we analyze what percentage of each attack trace can be
erased by log-interceptor under varying system loads. For the local
attack, we first run serially a burst of N syscalls, the privilege esca-
lation exploit and log-interceptor, then analyze how many of the
forensically relevant syscalls of the privilege escalation attack were
logged. For the remote attack, we additionally perform the remote
code execution attack, and analyze how many of the forensically
relevant syscalls of both the remote code execution and privilege
escalation attacks were logged. Table 1 reports the median results
over 100 runs for both attacks. As expected, the adversary has a
greater probability of intercepting the attack trace when the system

3This factor is not relevant in our scenario: given the relatively small size of our attack
traces (cf. Section 4.2.3), a system that is prone to filling up the kernel buffer would
likely incur event loss or trigger panics independently of the presence of an attack.

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1555

load (and thus the logging latency) is larger. In the local attack, we
observe that a burst of 100 syscalls is always enough for the adver-
sary to be able to intercept 100% of the attack trace. Surprisingly,
in the remote attack we find that a burst size of 0 (idle state) is
sufficient for the attacker to conceal 99% of the attack trace, and
a burst of 50 syscalls (which could be generated, for example, by
issuing a benign request just before the malicious one) is enough to
conceal 100% of the attack trace. This is because, as we noted above,
the web server generated an additional burst of benign syscalls
when processing web requests, further increasing logging latency.

Another way to evaluate the practicality of our attack is to ask
the question “Under what system load can an attacker compromise
a host without leaving any log record about the intrusion?” From
our results, we conclude that a remote attacker can succeed even
in the absence of additional system load. Contrary to our intuition,
this suggests that remote exploitation of this vulnerability is highly
practical due to logging noise generated by web servers.

5 DOES PRIORWORK OFFER A DEFENSE?

In this section, we discuss whether existing secure logging solutions
can be used to protect against the perils described above.

Commercial Solutions. In industry, log integrity is typically ad-
dressed by writing events to a trusted storage device [33]. This
could be local, such as a Write Once Read Many (WORM) drive [4,
47, 70, 83], or remote, such as a centralized log server [19, 46, 55, 105,
110, 114]. On Linux, these approaches are usually implemented in
user space by reconfiguring auditd to write events to a different
interface (through, e.g., auditspd or rsyslog). However, our
attack targets the kernel log event buffer and therefore preempts
these protections. To defend against our attack using commercial
solutions, loggingwould need to become a fully synchronous, proac-
tive operation. That is, any log eventmi related to syscall xi would
need to be stored onto the trusted storage device before any other
syscall x j (with tj > ti) is allowed to proceed. However, on hosts
that can produce millions of syscalls per second [24], even using
the fastest communication mechanisms between the kernel and
user space would cause impractically large system overheads.

Cryptographic Solutions. The literature features many crypto-
graphic solutions to the log integrity problem [10, 11, 40, 44, 65, 99,
100, 122, 123]. The idea of these schemes is to record log messages
together with integrity proofs so that any log tampering can be
subsequently detected by verifying the proofs. Some of these cryp-
tographic schemes have been deployed onto real-world logging sys-
tems such as the systemd journal [25] and syslog-ng [3, 73] (in use
at Airbus [72]). Systems that combine cryptographic schemes with
secure hardware have also been presented [54, 85, 89, 104]. How-
ever, to our knowledge, all these systems execute cryptographic
operations in user space, asynchronously with event occurrence.
As such, they are vulnerable to our race condition attack. To defend
against our attack using cryptographic solutions, event commit-
ment would instead need to become a fully synchronous, proactive
operation. The main performance consideration would then be-
come commitment speed, whose cost depends on the specific proof
generation scheme deployed. Schemes based on asymmetric cryp-
tography [40, 44, 65, 122, 123] are therefore not practical in this

domain. Cryptographic data structures such as history trees [20, 95]
and hash treaps [95], where insertion speed is a function of log size
(i.e., non-constant complexity), can be similarly dismissed. Themost
efficient approaches seem to be earlier schemes based on forward
secure symmetric cryptography, such as [10, 11, 44, 99, 100].

6 DEFENSE DESIGN

We now present the design of the first tamper-evident logging
system that protects the logs from our race condition attack.

6.1 Threat Model and Assumptions

The adversary we consider is akin to an Advanced Persistent
Threat [77]; namely, after some initial compromise or credential
theft grants non-privileged access to a host, the attacker will es-
tablish persistence and then escalate privilege, ultimately leading
to a full system compromise that grants privileged code execution.
We assume that each phase of this attack requires interaction with
the system’s relevant software layers; as a result, the “attack foot-
print” will include system calls that are being traced by the system’s
audit framework. However, after escalating privilege, the attacker
can engage in anti-forensic countermeasures such as log tamper-
ing [9, 38, 71, 86, 112, 115] to cover the tracks of their attack.

Analogous to prior work (cf. Sec. 11), we assume the presence of
a trusted auditor, who can verify the integrity of the log after its
commitment. Further, we assume that the machine under attack
is trusted prior to full system compromise; that is, the machine’s
software and hardware are distributed and configured in a correct
state. Physical attackers who tamper with the internal functionality
of the machine are considered out of scope. Similarly, side channel
attacks that may leak secrets about kernel memory (e.g., [62]) lie
outside our threat model. We also assume that erased keys cannot
be recovered after their deletion from the host’s memory [121].
Lastly, we make the standard cryptographic assumptions that it is
not feasible for an adversary to forge message authentication codes
(MACs) or find collisions in cryptographic hash functions.

6.2 Design Goals

We set out to design a solution that satisfies the following properties:

G1 - Tamper-Evident Logs. Our system must be able to record
logs with provable integrity such that forgeries, omissions, and
other forms of log tampering can be detected in an audit. Specifically,
if a messagemi was committed to the log at time ti , an audit should
be able to verify that no message was added, removed, or modified
between times 0 and ti . This goal is consistent with prior work,
assuring that our solution exposes the same basic functionality as
existing secure logging solutions.
G2 - Synchronous Integrity. Our system must assure that any
pre-compromise event (i.e., every event that occurs prior to the
moment of compromise) is associated with a tamper-evident log
record. Specifically, if tn is the moment of full system compromise
(when the attacker process elevates to root), audits must be able to
verify the integrity of all events xi with ti < tn . This goal is distinct
from prior work—in addition to guaranteeing the tamper-evidence
upon the commitment of messagemi to the log, our system must
guarantee the tamper-evidence ofmi upon the occurrence of xi .

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1556

G3 - Tamperproof Mechanism. Our system must be secure in
the face of the root-level adversary described in our threat model.
Goals G1 and G2 must hold for pre-compromise events against an
attacker that can gain unrestricted access to kernel memory.
G4 - Practical Deployability. Our system must be demonstrably
efficient under realistic deployments on top of commodity audit
frameworks. Further, our system must preserve compatibility with
upstream log analysis applications (e.g., [105]).

6.3 Design Challenges

Protecting against our adversary is challenging without trading off
performance. As we discussed above, to solve it with commercial
solutions based on trusted storage devices, logging would need to
become a synchronous, proactive operation. However, synchronous
processing of log events would be prohibitively expensive. In Sec-
tion 3.2, we measured that Linux Audit’s median logging latency for
a single log event is the order of milliseconds: incurring an overhead
of milliseconds on the execution of each syscall (whose latency is
in the order of microseconds, as we will see in Section 9) would not
satisfyG4. An alternative, more practical defense mechanism could
be to reduce the race condition rather than eliminate it. For example,
the logging latency could be reduced by having multiple threads
ingest logs in the user space audit daemon. However, while such
a solution would raise the bar for an adversary to carry out a suc-
cessful attack, it would still not fully satisfy G2; further, its security
guarantees would depend on additional system overheads, which
would not be practical for servers under high utilization, again
not satisfying G4. When considering cryptographic approaches, it
may be possible to synchronously commit events while still permit-
ting asynchronous transmission and storage, which would be much
more practical. However, implementing cryptographic proofs in
the kernel’s audit subsystem poses its own challenges. First, the
performance requirements of such a design are stricter, as adding
operations to the kernel control path affects the performance of
all applications running on the host. Second, modern operating
systems are multi-threaded, meaning that multiple syscalls can ex-
ecute concurrently. This introduces ordering and synchronization
issues that prior, buffered secure logging implementations did not
have to deal with. To our knowledge, we are the first to address
these challenges in the context of system logging.

6.4 In-Kernel Log Integrity

We now describe the design of KennyLoggings, the first tamper-
evident logging system that protects system logs from the race
condition attack described above. KennyLoggings satisfies our
design goals by introducing a tamper-evidence layer that operates
in the kernel control path, synchronously with syscall execution.

The key insight behind KennyLoggings is that past tamper-
evident logging system designs falter because they cryptographi-
cally commit events at the moment they are stored; referring back
to Figure 2, this means that commitment has traditionally occurred
on the far right of the timeline when eventmi is processed by the
user space audit daemon. KennyLoggings addresses this limita-
tion by decoupling commitment and storage, instead committing
events as they occur (e.g., when attack-related syscall xi executes).
Thus, while the logging latency δ (xi ,mi) remains unchanged, an

attacker attempting to exploit this race condition using the method
described above will be detected during an audit.

6.4.1 Tamper-Evident Logging Protocol. To satisfy G1, we first re-
quire a log commitment protocol that facilitates tamper-evident
audits. Because our threat model considers an adversary who can
fully compromise the system and hence read any keys from its
memory, we need a protocol that provides forward security. For-
ward security is the property that an adversary that gains access to
a cryptographic secret at time tn will be unable to forge integrity
proofs generated at times prior to tn , which in this case means
that the integrity proofs for pre-compromise log events withstand
forgery attempts after compromise. Recall that corruption of pre-
compromise log events is a central goal of the adversary, as these
events include vital forensic evidence pertaining to the intrusion.

As we mentioned in Section 5, there is expansive prior work on
the development of tamper-evident logging protocols. As our para-
mount consideration is the speed of cryptographic commitment,
we select the fastest of these schemes—forward secure message au-
thentication codes (MAC), previously used in [11, 44]. This scheme
lacks many of the advancements of subsequent work (e.g., public
verifiability, aggregate authentication), but its efficiency makes it
ideally-suited for our use case. The protocol begins with a shared
secret key, known to both the logger and the auditor. To achieve
forward security, the key used by the logger to generate integrity
proofs evolves over time and expired keys are securely deleted
from memory. Further, the key update mechanism is a one-way
function, so that an adversary who learns the current signing key
cannot recover past signing keys and forge proofs for past events.
Concretely, our protocol exposes the following four functions:

• KeyGen : 1λ → {0, 1}λ . Given security parameter 1λ , generate
an initial λ-bit signing key k1.

• KeyUpdate : {0, 1}λ → {0, 1}λ . Given the i-th signing key ki ,
generate the (i + 1)-th signing key ki+1 = H(ki), whereH is a
collision resistant one-way hash function.

• Sign : {0, 1}λ × {0, 1}∗ → {0, 1}l . Given a λ-bit key ki and an
arbitrary length messagem, compute a l-bit tag (integrity proof).
The tag is generated using as a standard MAC algorithm.

• Verify : {0, 1}λ × [(m1,p1), . . . , (mn,pn)] → {0, 1}. Given an ini-
tial signing key k1 and a list of message-tag pairs, first derive the
key sequence k1, . . . ,kn . If pi = Sign(ki ,mi) for each 1 ≤ i ≤ n,
then output 1. Otherwise, output 0.
Notice that, unlike [11], which permits several log entries to be

committed with the same signing key, our protocol updates the key
for each log event (this is necessary to achieve G2). Further, unlike
[44], our protocol does not encrypt the log. Our reason for avoiding
encryption is that it would break interoperability with upstream
applications that analyze log data (e.g., [105]), not satisfying G4.
With our solution, we are able to provide an identical external
interface as the original commodity audit framework.

6.4.2 Integration into the Operating System. The use of forward
security for tamper-evident logging is not a new idea. What makes
KennyLoggings different from prior work is that KennyLoggings
instantiates its tamper-evident logging protocol in the kernel, syn-
chronously committing log events as they occur. The general work-
flow for our solution is given in Figure 5, which we describe here

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1557

User space

Kernel

 Application executes system call xi

Syscall xi
is executed

Log event mi
is generated

An integrity proof is
appended to mi

mi is enqueued to
the logging buffer

2 3 4 5

1

Figure 5: KennyLoggings’ workflow for committing log

events, with the novel component shaded in yellow. In-

tegrity proofs are generated in the kernel control path.

with respect to our implementation on Linux Audit: an application
first invokes an (audited) syscall xi , prompting a control transfer to
kernel space (1○); the kernel control path executes the syscall (2○)
and passes through an audit_filter hook (see Figure 1), creat-
ing an eventmi (3○); within the audit subsystem beneath the hook,
we generate a cryptographic commitment ofmi and append it to
mi (4○); the extended messagemi is enqueued to the log buffer to
be later consumed by the kauditd thread (5○). Finally, the syscall
returns control to the application, which is allowed to proceed.

Deploying KennyLoggings in a multi-threaded environment
requires additional consideration. Since KennyLoggings’ tamper-
evident logging protocol uses a new signing key for each log event,
we must enforce that each key is used only once. Further, we must
ensure that the logger and the verifier agree on the ordering of
signing keys and respective log events. If this property did not hold
and log events were received by the verifier in an order different
from the one at which they were signed, the verifier would not
be able to match the key sequence and verification would fail. To
ensure that each key is used only once, KennyLoggings runs its
commitment operations in a critical section that assures mutual
exclusion for event commitment. This critical section envelopes the
existing critical section used by kauditd to prevent concurrent
access to the log buffer and is thus a natural extension to existing
audit frameworks. The advantage of this synchronization approach
is that the order at which events are signed is the same as the order
at which events are enqueued to the log buffer, thus serializing
concurrent activity in the system. However, this approach also
has potential performance challenges, as it increases the latency
required for the kernel to enqueue an event to the log buffer; we will
evaluate the overhead of extending this critical section in Section 9.

6.4.3 Optimization: Precomputation of Signing Keys. Forward se-
cure message authentication codes (MAC) allow for highly efficient
implementations of the Sign and KeyUpdate functions, which are
crucial given that KennyLoggings inserts these into the critical
section of the auditing subsystem. Nonetheless, these functions
introduce non-negligible latency to log event generation, which is
concerning in light of the fact that thousands of events per second
can be generated during bursts of system activity. To reduce the
overhead of KennyLoggings, we identify the following opportu-
nity to optimize its performance—signing keysmay be precomputed
as long as they are securely deleted after use.

We extend KennyLoggings to support precomputation of keys
as follows. In place of a single signing key, we introduce two sets
of signing keys that are populated during system initialization. At

1 void audit_log_end(struct audit_buffer ∗ab) {
2 struct sk_buff ∗skb;
3 struct nlmsghdr ∗nlh ;
4 char ∗log_msg;
5 u64 integrity_proof ;
6
7 if (! ab) return;
8 if (audit_rate_check ()) {
9 nlh = nlmsg_hdr(ab−>skb);
10 log_msg = nlmsg_data(nlh) ;
11
12 /∗ Enter critical section ∗/
13 spin_lock_irqsave (&(&audit_queue)−>lock, flags) ;
14
15 /∗ Compute proof and append it to the log event ∗/
16 integrity_proof = siphash(log_msg, strlen (log_msg), &curr_key);
17 audit_log_format (ab, " p=%llx" , integrity_proof) ;
18
19 /∗ Update the key ∗/
20 blake2b ((uint8_t ∗)&curr_key, sizeof (siphash_key_t) ,
21 (uint8_t ∗)&curr_key, sizeof (siphash_key_t) , NULL, 0);
22
23 skb = ab−>skb;
24 ab−>skb = NULL;
25 nlh−>nlmsg_len = skb−>len − NLMSG_HDRLEN;
26
27 /∗ Enqueue the event to the logging buffer ∗/
28 __skb_queue_tail(&audit_queue, skb) ;
29
30 /∗ Exit critical section ∗/
31 spin_unlock_irqrestore (&(&audit_queue)−>lock, flags) ;
32 wake_up_interruptible(&kauditd_wait) ;
33 } else

34 audit_log_lost (" rate limit exceeded") ;
35
36 audit_buffer_free (ab) ;
37 }

Listing 1: KennyLoggings’ changes to the audit_log_
end function in kernel/audit.c. This code enqueues

the syscall’s log event to kauditd’s buffer (audit_queue).
Blue lines were previously sequentially executed in a nested

function but were moved to support the addition of the new

code (in red). Error checks are omitted for brevity.

runtime, when the first set is exhausted, KennyLoggings imme-
diately rotates to the second and requests a background thread to
repopulate the empty set. The size of each set is parameterizable;
in our implementation, we store 100,000 keys per set at a time.
The background thread is able to execute asynchronously and does
not require access to the critical section from Step 4○ above in
order to operate. Because in practice the precomputation of keys
is much faster than KennyLoggings’s consumption of keys, this
optimization effectively eliminates the cost of KeyUpdate from the
kernel control path.We argue for the security of this optimization in
Section 8 and quantify its effect on system performance in Section 9.

6.4.4 Initialization, Verification and Shutdown. The deployment
and usage models for KennyLoggings are similar to past tamper-
evident logging systems. At initialization, a system administra-
tor configures the machine with a shared secret, generated using
KeyGen, that is used as the initial signing key. This secret is securely
kept by the system administrator, who can later use it to perform
a tamper-evident audit of the logs. During an audit, the auditor
receives the sequence of signed log entries from the KennyLog-
gings-enabled host and uses them as input to the Verify function
together with the initial shared secret. Upon system shutdown,
the current signing key is sealed to the host configuration using
standard TPM functionalities [104], allowing the host to unseal the

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1558

key following a correct boot sequence. After the key is unsealed
and loaded into kernel memory the sealed key is deleted.

7 IMPLEMENTATION

We implement KennyLoggings on the Linux kernel, version 4.15.0-
47, using the Audit subsystem [94] (cf. Section 2). We concretely
instantiate the tamper-evident logging protocol with fast symmet-
ric primitives, namely the BLAKE2 cryptographic hash function [6]
for KeyUpdate and the SipHash pseudorandom function [5] (specif-
ically, SipHash-2-4, which uses 128-bit keys) for Sign. The KeyGen
operation is implemented using the get_random_bytes func-
tion (a cryptographically secure source of randomness), and keys are
securely erased by overwriting (or zeroizing, in case of precomputed
keys [121]) their data structures in memory after use. Of the ex-
isting kernel source code, we modify the functions audit_init,
which initializes the kernel components of Linux Audit at system
startup, and audit_log_end, which is executed at the end of
the kernel control path to enqueue the log event to kauditd’s
kernel buffer if the syscall needs to be logged. The code of the mod-
ified audit_log_end function (without the key precomputation
optimization) is shown in Listing 1. Its existing critical section,
implemented using a spinlock, is extended to include the critical
section of KennyLoggings. We implement the precomputation of
signing keys as a separate kernel task, scheduled using a wait queue.

8 SECURITY ANALYSIS

Wenow consider howKennyLoggings’ design and implementation
assure the intended security and design goals. With respect to G1,
observe that our signing mechanism (SipHash) is a secure message
authentication code. The only way an adversary can forge integrity
proofs for pre-compromise log events is to recover expired keys.
However, because used keys are securely deleted from the system,
and because the chosen key update function is a collision (and
preimage) resistant hash function (BLAKE2), a signing key residing
on the system when compromised cannot be used to recover prior
keys. We consider the feasibility of log tampering attacks below:
• Log Modification. An adversary may not modify log entries with-
out being detected in an audit. Any modification would cause
Verify to fail for the tampered entry.

• Log Deletion. An adversary cannot delete log events. Removing
any subset of events from a stream would cause the ordered
sequence of keys used to commit the events not to match the
ordered sequence of signed events, causing Verify to fail.

• Log Insertion/Reordering. Similarly, an adversary cannot insert
events or reorder log entries, as this would invalidate the ordering
between signing and verification of entries, causing Verify to fail.

• Log Truncation. Truncation attacks can be detected by checking
for a known message at the end of the log, which the admin-
istrator can achieve by having live hosts sign a new message
immediately prior to an audit.
The novel security property in our design is G2, which assures

synchronous integrity for all the events that occur before full system
compromise. KennyLoggings achieves this goal through instru-
menting the audit_log_end function in the audit subsystem.
This function is invoked in the kernel control path before the in-
voking process is allowed to proceed; the process is thus unable

Table 2: Microbenchmarks results. Operations in the kernel

control path are denoted by
∗
. For the Sign/Verify operation,

we use as input a log record of length 366 (average length

in the remote attack). For the KeyUpdate operation, we start

from a random key k1 and compute all keys up to k1000.

Operation KennyLoggings

KeyGen 262 ns
Sign/Verify∗ 164 ns
KeyUpdate 218 ns
Erase the current key∗ 73 ns
Append proof to log event∗ 103 ns

to violate the integrity of the event. This property also holds in
an attack featuring multiple processes/threads; if a malicious run-
ning kernel thread is able to modify or erase the eventmi before it
reaches the critical section of audit_log_end, this implies that
the system has already been compromised and thus the property
holds for all events occurring prior to the time tn of full system
compromise. This remains a significant security guarantee because
all events describing how the first malicious thread violated kernel
integrity will be committed. Further, G2 is preserved when keys for
future events are precomputed because each key is deleted imme-
diately after use. Even with our optimization enabled, an attacker
will only be able to access keys for events that occur after tn .

KennyLoggings provides a tamperproof security mechanism
(G3) because its runtime trusted computing base resides entirely in
kernel memory; the attacker must compromise the system before
they can disable KennyLoggings or forge future events, but by that
point all events prior to tn are committed. During initialization, we
make the reasonable assumption that the host is configured in a
secure environment (e.g., not yet connected to the Internet), and
thus deployment does not expose an additional attack surface.

Finally, we will show that KennyLoggings satisfies G4 by eval-
uating its performance overheads in Section 9.

9 EVALUATION

Experimental Setup. We use the same experimental setup of Sec-
tion 3.2, with the unmodified kernel 4.15.0-47 as baseline for our
comparisons. We configure KennyLoggings to store two sets of
100,000 precomputed keys, which occupy a total of 3.2 MB.

Microbenchmarks. We start with microbenchmarks that capture
the application-independent, raw cost of KennyLoggings’ base
functionality. In particular, we measure the time that our imple-
mentation takes to perform each of the operations described in
Sections 6.4.1 and 6.4.2, excluding from the measurement the time
spent spinning (waiting to acquire the synchronization lock). We do
so by manually invoking each operation in the kernel 1,000 times
and report the median execution times in Table 2. The operations
we care about the most are the ones executed synchronously, in the
kernel control path. For the Sign routine, we observe an average
performance of 164 ns per proof, making it the most expensive
among the operations we introduce to the kernel control path. Our
implementation additionally incurs the synchronous costs of ap-
pending the proof to each event, which takes 103 ns, and erasing
the used key, which takes 73 ns. For the KeyUpdate routine, we

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1559

 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4 5 6 7 8

Sy
sc

al
l L

at
en

cy
 (µ

s) KennyLoggings

20.0% 26.7%
37.3%

52.8%

Vanilla Linux

(a) getpid

 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4 5 6 7 8

KennyLoggings

20.3% 25.3%
40.1%

47.9%

Vanilla Linux

(b) read

 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4 5 6 7 8

KennyLoggings

19.3% 24.1%
37.0%

49.5%

Vanilla Linux

(c) write

 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4 5 6 7 8

Sy
sc

al
l L

at
en

cy
 (µ

s)

Thread Count

KennyLoggings

20.0% 25.8%
46.9%

48.6%

Vanilla Linux

(d) fstat

 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4 5 6 7 8
Thread Count

KennyLoggings

21.8% 24.4% 30.8%

41.4%
Vanilla Linux

(e) stat

 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4 5 6 7 8
Thread Count

KennyLoggings

18.1% 21.5%
24.3%

35.9%
Vanilla Linux

(f) open

Figure 6: Microbenchmarks on system call latency. We report the median overhead over 100,000 iterations ran on the number

of threads reported on the x axis. Due to spin lock contention, the overhead increases when the thread count increases.

Table 3: Application benchmarks results. We report the me-

dian values across 20 runs, together with the average num-

ber of log events generated per second by each benchmark.

Besides 7-zip, smaller numbers are better.

Test Type Vanilla KennyLoggings Overhead Events/s

nginx 62.5 µs 67.5 µs 8.00% 21,211
apache2 60 µs 65 µs 8.33% 22,621
redis 20.5 µs 22.3 µs 9.12% 44,403
postmark 48 ms 53 ms 10.42% 96,732

7-zip 27,881 MIPS 27,743 MIPS 0.49% 12
openssl 743 µs 743 µs 0.00% 14
blast 968.160 s 973.199 s 0.52% 40
blake2 3.315 cy/B 3.315 cy/B 0.00% 282

observe an average performance of 218 ns. Our optimization allows
us to execute this operation asynchronously. That means that the
task responsible for key precomputation will take 21.8ms to refill a
set of keys when it is woken up in our experimental configuration.

System Call Benchmarks. Next, we measure how KennyLog-
gings affects the time required to execute individual system calls
when logging is enabled. We first perform this test while running
system calls on a single thread. Next, we run system calls on mul-
tiple threads, to catch the effect of the spinlock contention. The
results are presented in Figure 6. Without additional contention,
KennyLoggings average overhead on an individual system call is
below 20%. However, even when we use all the CPU cores, max-
imizing contention, KennyLoggings’ overhead on an individual
system call remains below 53%. In practice, this overhead could be
reduced by using per-core evolving key sequences and spinlocks.

Application Workloads. To evaluate the system-wide impact of
KennyLoggings on realistic workloads, we compare our perfor-
mance to the (insecure) Vanilla kernel on a series of application
benchmarks. These benchmarks can be divided into two categories:
the first category of applications are I/O-intensive benchmarks,

Table 4: Application benchmarks with and without key pre-

computation. The overheads over Vanilla (median of 20

runs) are in parentheses. Smaller numbers are better.

Test Type Unoptimized Optimized Improvement

nginx 73.5 µs (17.60%) 67.5 µs (8.00%) 9.60%
apache2 70 µs (16.67%) 65 µs (8.33%) 8.34%
redis 23.8 µs (16.29%) 22.3 µs (9.12%) 7.17%
postmark 57.5 ms (19.79%) 53 ms (10.42%) 9.37%

namely NGINX [84], apache2 [111], redis [97], and postmark [56];
the second category are CPU-intensive benchmarks, namely 7-
zip [88], openssl [113], blast [27] and blake2 [16]. For apache2,
NGINX and Redis, we use the apache bench and redis-benchmark
tools, configured to send 30,000 serial requests and measure the
average latency per request. For postmark, we use the built-in
benchmark with its default configuration and measure its runtime.
For 7-zip, we use the built-in benchmark configured to use all CPU
cores available and measure the LZMA compression speed (in MIPS,
Million Instructions Per Second). For openssl, we use the built-in
“speed” benchmark configured to use all CPU cores available and
measure the time to compute an rsa4096 signature. For blake2 and
blast, we use the built-in single-threaded benchmarks that measure
the median performance (in cycles/byte) and runtime, respectively.

Table 3 shows the results. The I/O-intensive benchmarks have
the largest overheads at up to 10.42%. This result is unsurprising
in that I/O-based workloads generate more system calls, leading
to the creation of thousands of log events per second. This over-
head is large but manageable, especially when considering that log
integrity is achieved at the application layer at the cost of just 2
to 5 µs per request to nginx, apache2, and redis, and that most ap-
plications perform additional work that amortizes these costs. The
CPU-intensive benchmarks enjoy near-zero overheads due to their
limited system call activity, which generates small amounts of log
events per second. This result demonstrates that our modifications
impose negligible overhead on unrelated kernel functionality.

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1560

Key Precomputation. Next, we report on the concrete improve-
ment that precomputing keys allowed us to achieve by measuring
the performance of the application benchmarks without the opti-
mization. Table 4 reports the results. We exclude the CPU-intensive
benchmarks because we did not observe any significant difference
in their results. That is, precomputing keys does not incur an ob-
servable overhead on the CPU utilization. On the other hand, the
I/O-intensive benchmarks perform on average 8.62% better when
KennyLoggings is configured to precompute keys.

Storage Cost. The storage overhead of KennyLoggings is fixed at
19 bytes per log event. These bytes are used for the proof of integrity
of 16 hexadecimal characters along with a 3-byte label which is
necessary to preserve the semantics of Linux Audit records. In this
way, we preserve compatibility with applications that analyze log
records; they simply ignore the KennyLoggings-specific field. To
put this per-event cost in context, let us consider that Ma et al.
[69] profile a web server under realistic conditions and observe an
average daily rate of 2.76 million Linux Audit events, yielding a
log of size 1.02 GB. From a back-of-the-envelope calculation, we
extrapolate that the storage cost with KennyLoggings enabled
would add just 52 MB, an overhead of only 5.14%.

10 DISCUSSION AND FUTURE WORK

Protocol Enhancements. KennyLoggings’s tamper-evident log-
ging protocol is optimized for concrete log commitment (signing)
cost. As a trade-off, it lacks some of the benefits of other crypto-
graphic schemes, such as public verifiability and aggregate authen-
tication. Public verifiability is a desirable property because it can be
used to allow third-parties (e.g. Court agents [34, 50, 51]) to verify
the authenticity of a given set of logs without needing access to any
secret key. Aggregate authentication is useful because it provides
constant time verification costs for the auditor, independently of the
number of log events in an audit. These techniques are prohibitively
costly for synchronous deployment in the kernel control path; how-
ever, KennyLoggings can be extended to achieve these properties
through the introduction of an intermediate trusted verifier that
operates in the typical asynchronous event commitment model
used in prior work (e.g., [89]). In such a deployment, KennyLog-
gings could send log events and MACs to the intermediate verifier,
which could verify that no “in-flight” log tampering has occurred.
The intermediary could then produce an aggregate signature over
the log stream to make subsequent audits faster and verifiable by
untrusted third parties. Thus, even when more advanced features
are required, KennyLoggings still plays an important role in es-
tablishing a secure chain of custody for audit logs.

Performance Improvements. We identify two directions towards
improving the performance of KennyLoggings. The first direction
is utilizing faster primitives for Sign and KeyUpdate. KennyLog-
gings currently uses SipHash-2-4 for the Sign function, which, at
the time of writing, is arguably the fastest 128-bit secure pseudo-
random function that, importantly, has withstood cryptanalysis by
experts (e.g., [22]) and is widely deployed in practice (e.g., in the
Linux kernel). However, faster pseudorandom functions, such as the
nascent, less well-studied HighwayHash [118], or hardware accel-
eration may be deployed in the future and could be used to reduce

the overhead of KennyLoggings. Similarly, faster cryptographic
hash functions, such as the recently presented BLAKE3 [17], could
be used to speed up KennyLoggings’ KeyUpdate phase.

The second direction towards reducing the overheads of Ken-
nyLoggings is to explore security-performance trade-offs. Recall
that in KennyLoggings, each integrity proof is generated using a
unique key. In contrast, the original forward secure message authen-
tication scheme introduced by Bellare and Yee [11] proposed that
keys should evolve over time intervals called epochs (sometimes
referred to as stages). That is, in [11], integrity proofs belonging to
the same epoch are generated using the same key, which is only
updated for subsequent epochs. This reduces the number of key
updates required, which can promise gains in performance. One
could even imagine generating integrity proofs for a “batch” of log
events, further squeezing performance out of the scheme. Observe
that these optimizations trade-off security for performance. Sup-
pose an attacker compromises a machine at a time nearing the end
of an epoch. Then, the attacker can still forge false integrity proofs
for the current epoch, since the corresponding signing key has not
yet been securely erased from memory. Should the entire attack
trace reside within a single epoch, the attacker could undetectably
conceal any forensic evidence of their intrusion. Thus, a one-to-one
correspondence between log events, keys, and integrity proofs, as
we have implemented in KennyLoggings, provides the strongest
security guarantees, satisfying G2. Nevertheless, future work could
implement an epoch-based scheme by setting appropriate parame-
ters (depending on how fast an attacker can intercept log events
in practice) while still maintaining security. Our empirical study
of the race condition vulnerability serves as a first step towards
understanding this security-performance trade-off in practice.

Applicability to Other Frameworks. KennyLoggings is designed
to be generic with respect to the logging framework. In this work,
we have only evaluated our attack and defense on Linux Audit.
Nevertheless, asynchronous logging mechanisms are ubiquitous
and apply to all kernel logging frameworks we are aware of (e.g., [8,
66, 69, 75, 76, 109]). In fact, block-based I/O operations are always
asynchronous within operating system kernels unless explicitly
configured for synchrony. For example, Event Tracing for Windows
(ETW), which is the standard kernel logging facility on Windows,
also uses kernel buffering and delegates “a separate thread” to “flush
the buffer data to the ETW log file” [75]. Still, future work is needed
to investigate our attack and defense methodologies on Windows.

Alternative Attack Strategies. The attack we presented in this pa-
per targets the kernel log buffer to undetectably remove compromise-
related events before they are logged. Other attacks to asynchro-
nous audit frameworks are possible. For example, a viable attack
towards Linux Audit could be for the attacker to generate a burst to
fill up the kernel buffer to its maximum capacity, effectively caus-
ing kauditd—depending on its configuration (cf. Section 2)—to
either drop the subsequent events related to the attack (e.g., hiding
the privilege escalation methods from the log) or to kernel panic
(causing a denial of service). However, neither of these strategies is
stealthy. The denial of service scenario can be detected by existing
systems (e.g., [54, 89]) at the next startup, and, importantly, is not in
an APT attacker’s interests as it will cause the system administrator
to intervene and effectively prevent them from completing their

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1561

mission [77]. The log loss scenario not only leaves a suspicious
gap in the log (due to benign events being dropped too) but is also
easily detectable by checking the lost record counter of kauditd,
which is included in all audit reports. There may also exist variants
of our race condition attack that target other buffers of the logging
pipeline, such as user space queues and I/O queues at the storage
or network interface. Future work is needed to explore if these or
other variants of our attack are feasible.

11 RELATED WORK

Cryptographic Approaches. The first formalization of the secure
logging problem dates to 1997, when Bellare and Yee [10, 11] de-
fined the notion of forward integrity (later called forward security)
for audit logs, which KennyLoggings’ tamper-evidence protocol
builds on. Forward integrity schemes that use symmetric primi-
tives [10, 11, 99, 100, 104] offer efficient proof generation costs, but
need to rely on a trusted verifier sharing a secret with the logger. In
contrast, schemes that rely on asymmetric primitives [44] achieve
public verifiability at the cost of larger overheads both to gener-
ate and to verify proofs. Subsequent works focused on reducing
the overhead of the verifier through the use of sequential aggre-
gate signatures [65, 123], but have later been broken [39]. Yavuz
et al. [122] further presented an optimized signing protocol which
relies on a large public key size (linear with the number of sup-
ported log entries). Most recently, Hartung et al. [40] presented a
scheme that combines forward-secure sequential aggregate signa-
tures with forward-secure signatures. However, their work it still
incurs impractically large computational costs to generate proofs.

The use of append-only data structures has also been proposed
for storing logs in a tamper-evident fashion. These solutions include
hash-based history trees [20] and authenticated schemes such as
Balloon [95]. These schemes call for log events generated by a
trusted host to be stored in a remote untrusted server (referred to
as “logger”), and their data structures provide an efficient interactive
protocol to verify that an event was correctly recorded by the logger.

In our system, we chose to use a simple, non-interactive scheme
using only symmetric cryptographic primitives, since our chief
concerns are synchronous integrity (G2) and performance (G4).
The more sophisticated schemes described here are interoperable
with our system design, but careful vetting is required to ensure that
their added overheads do not prohibitively degrade performance.

Hardware Approaches. Beyond cryptographic-only approaches,
prior work has proposed to solve the secure logging problem using
trusted hardware [54, 85, 89, 103]. One of the benefits of these
approaches is their ability to protect the secrecy of signing keys
even after full system compromise—this property allows them to
avoid frequent and costly key updates. However, because the TEEs
they are based on support only Ring 3 execution, none of these
designs is able to defend against our in-kernel race condition attack.
Nevertheless, as we discussed in Section 10, KennyLoggings could
be extended to work in conjunction with these systems to achieve
properties such as public verifiability.

Race Conditions. There exist decades of research on highlighting
and protecting from the dangers of race conditions in operating
systems [15, 30, 31, 79, 116, 119]. These works investigate a type

of race condition commonly referred to as time-of-check/time-of-
use (TOCTOU) bug, which exists due to lack of synchronization
between the enforcement of a security policy for an event (at time-
of-check) and its occurrence (at time-of-use > time-of-check). In
contrast, our attack exploits an intrinsic design flaw of audit frame-
works to tamper with events that have already occurred (i.e., after
time-of-use), independently of the presence of concurrency bugs.

Closely related to our work is also PillarBox [18], which is the
first work to describe the goal of securing log events before an
attacker can intercept them. Our work departs from [18] in several
ways. In [18], the race condition occurs at the network level, in
which a security analytics source (SAS) transmits logs to a remote
server for analysis. In our work, however, the race condition occurs
at the OS level, in which log events generated after a syscall travel
through an in-kernel buffer to the logging daemon. Because the race
condition of [18] sits at a higher level of abstraction, PillarBox is still
vulnerable to the attack we described. Another difference is that, in
addition to log integrity, PillarBox is designed to provide a stealth
property, which conceals when the SAS has generated compromise-
related alerts. In our work, we only consider log integrity, which
allows us to arrive at a more efficient and modular solution that is
interoperable with existing logging frameworks.

Attack Investigation. Related to system auditing are also several
attack investigation works that derive insights from audit logs by
parsing events into dependency (or provenance) graphs [8, 32, 57,
69, 90, 93]. Various methods have been proposed to automatically
identify security insights [12, 23, 35, 37, 41, 45, 63, 77, 78, 87, 92,
101, 102, 117, 124], interpret the event stream in a way that more
accurately explains application-layer semantics [7, 43, 59, 61, 66,
68, 80, 120], or to more quickly and expressively process queries
on dependency graphs [28, 29, 52, 53, 64, 91]. All of the above
work fully trusts the integrity of the audit logs used as inputs to
their systems. KennyLoggings complements this line of work by
providing log integrity for all events as they occur on the system.

12 CONCLUSION

Existing secure logging systems operate asynchronously—actions
associated with an ongoing attack are permitted to proceed before
their events are securely committed to the system log. In this work,
we empirically demonstrated a race condition attack that exploits
this vulnerability to tamper with compromise-related events before
their commitment, thus bypassing all existing protections. We pro-
posed a solution, KennyLoggings, that overcomes this limitation
by decoupling an event’s commitment from its storage, guaran-
teeing synchronous integrity for attack-related events upon their
occurrence. KennyLoggings can thus give investigators insight
into the window of time during which existing secure logging sys-
tems are vulnerable. We implemented our solution on the Linux
kernel, and demonstrated that it introduces between 7% and 11%
overhead on log-intensive application workloads.

ACKNOWLEDGMENTS

This work was funded in part by NSF award #1750024.We thank our
shepherd Venkat Venkatakrishnan aswell as the anonymous review-
ers for their constructive feedback. We also thank Joshua Reynolds
for his very useful suggestions on previous drafts of this paper.

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1562

REFERENCES

[1] 2014. CVE-2014-6271. Vulnerability reference: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-6271. Accessed on 08.17.2020.

[2] 2017. CVE-2017-16995. Vulnerability reference: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-16995. Accessed on 08.17.2020.

[3] Airbus Commercial Aircraft. 2020. Forward integrity and confidentiality of
logs - syslog-ng/syslog-ng. https://github.com/syslog-ng/syslog-ng/pull/3121.
Accessed on 08.17.2020.

[4] AT&T Cybersecurity. [n.d.]. PCI DSS log management & monitoring. https:
//cybersecurity.att.com/solutions/pci-dss-log-management-monitoring. Ac-
cessed on 08.17.2020.

[5] Jean-Philippe Aumasson and Daniel J. Bernstein. 2012. SipHash: a fast short-
input PRF. In Proc. of the International Conference on Cryptology in India (IN-
DOCRYPT).

[6] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Chris-
tian Winnerlein. 2013. BLAKE2: simpler, smaller, fast as MD5. In Proc. of the
International Conference on Applied Cryptography and Network Security (ACNS).

[7] Adam Bates, Wajih Ul Hassan, Kevin R.B. Butler, Alin Dobra, Bradley Reaves,
Patrick Cable, Thomas Moyer, and Nabil Schear. 2017. Transparent Web Service
Auditing via Network Provenance Functions. In Proc. of the International World
Wide Web Conference (WWW).

[8] Adam Bates, Dave Tian, Kevin R.B. Butler, and Thomas Moyer. 2015. Trust-
worthy Whole-System Provenance for the Linux Kernel. In Proc. of the USENIX
Security Symposium (USENIX).

[9] Greg Belding. [n.d.]. Ethical Hacking: Log Tampering 101. https:
//resources.infosecinstitute.com/category/certifications-training/ethical-
hacking/covering-tracks/log-tampering-101/. Accessed on 08.17.2020.

[10] Mihir Bellare and Bennet Yee. 1997. Forward Integrity For Secure Audit Logs.
Technical Report. Computer Science and Engineering Department, University
of California at San Diego.

[11] Mihir Bellare and Bennet Yee. 2003. Forward-Security in Private-Key Cryp-
tography. In Proc. of the Cryptographers’ Track at the RSA Conference (CT-RSA).
Springer.

[12] Konstantin Berlin, David Slater, and Joshua Saxe. 2015. Malicious Behavior
Detection using Windows Audit Logs. In Proc. of the ACMWorkshop on Artificial
Intelligence and Security (AISec).

[13] Tara Siegel Bernard, Tiffany Hsu, Nicole Perlroth, and Ron Lieber. 2017. Equifax
Says Cyberattack May Have Affected 143 Million in the U.S. https://www.nytimes.
com/2017/09/07/business/equifax-cyberattack.html

[14] Chris Bing. 2017. Shadow Brokers’ latest leak could have come from beyond NSA
staging servers. https://www.cyberscoop.com/shadow-brokers-nsa-microsoft-
windows-exploits-2017/. Accessed on 08.17.2020.

[15] Matt Bishop and Michael Dilger. 1996. Checking for Race Conditions in File
Accesses. Computing systems 9, 2 (1996), 131–152.

[16] BLAKE2. [n.d.]. BLAKE2 – fast secure hashing. https://blake2.net/. Accessed
on 08.17.2020.

[17] BLAKE3. [n.d.]. BLAKE3: official implementations of the BLAKE3 cryptographic
hash function. https://github.com/BLAKE3-team/BLAKE3/. Accessed on
08.17.2020.

[18] Kevin D. Bowers, Catherine Hart, Ari Juels, and Nikos Triandopoulos. 2014.
PillarBox: Combating Next-Generation Malware with Fast Forward-Secure
Logging. In Proc. of the International Symposium on Recent Advances in Intrusion
Detection (RAID).

[19] Armando Ortiz Cornet and Joan Miquel Bardera Bosch. 2013. Method and
system of generating immutable audit logs. US Patent 8,422,682.

[20] Scott A. Crosby and Dan S. Wallach. 2009. Efficient Data Structures For Tamper-
Evident Logging. In Proc. of the USENIX Security Symposium (USENIX).

[21] dark laboratorys. [n.d.]. A better generation of logcleaners. https:
//web.archive.org/web/20070218231819/http://darklab.org/~jot/logclean-
ng/logcleaner-ng_1.0_lib.html. Accessed on 08.17.2020.

[22] Christoph Dobraunig, Florian Mendel, and Martin Schläffer. 2014. Differential
Cryptanalysis of SipHash. In Proc. of the International Conference on Selected
Areas in Cryptography (SAC).

[23] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning. In Proc. of
the ACM Conference on Computer and Communications Security (CCS).

[24] Michael Dymshits, BenjaminMyara, and David Tolpin. 2017. ProcessMonitoring
on Sequences of SystemCall Count Vectors. In Proc. of the International Carnahan
Conference on Security Technology (ICCST).

[25] Jake Edge. [n.d.]. Forward secure sealing. https://lwn.net/Articles/512895/.
Accessed on 08.17.2020.

[26] European Parliament and of the Council. 2016. Regulation (EU) 2016/679 on the
protection of natural persons with regard to the processing of personal data and
on the free movement of such data, and repealing Directive 95/46/EC (General
Data Protection Regulation). Official Journal of the European Union L119 (2016).

[27] Fiehn Lab. [n.d.]. blast 2.7.1. http://fiehnlab.ucdavis.edu/staff/kind/collector/
benchmark/blast-benchmark. Accessed on 08.17.2020.

[28] Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu Wu,
Chung Hwan Kim, Sanjeev R. Kulkarni, and Prateek Mittal. 2018. SAQL: A
Stream-based Query System for Real-Time Abnormal System Behavior Detec-
tion. In Proc. of the USENIX Security Symposium (USENIX).

[29] Peng Gao, Xusheng Xiao, Zhichun Li, Fengyuan Xu, Sanjeev R Kulkarni, and
Prateek Mittal. 2018. AIQL: Enabling Efficient Attack Investigation from System
Monitoring Data. In Proc. of the USENIX Security Symposium (USENIX).

[30] Tal Garfinkel. 2003. Traps and Pitfalls: Practical Problems in System Call In-
terposition Based Security Tools. In Proc. of the Symposium on Network and
Distributed System Security (NDSS).

[31] Tal Garfinkel, Ben Pfaff, and Mendel Rosenblum. 2004. Ostia: A Delegating
Architecture for Secure System Call Interposition. In Proc. of the Symposium on
Network and Distributed System Security (NDSS).

[32] Ashish Gehani and Dawood Tariq. 2012. SPADE: Support for Provenance
Auditing in Distributed Environments. In Proc. of the International Middleware
Conference (Middleware).

[33] Peter H. Gregory. 2015. CISSP Guide to Security Essentials (2nd ed.). Course
Technology Press.

[34] Roger A. Grimes. 2016. Why it’s so hard to prosecute cyber criminals.
https://www.csoonline.com/article/3147398/why-its-so-hard-to-prosecute-
cyber-criminals.html. Accessed on 08.17.2020.

[35] Zhongshu Gu, Kexin Pei, Qifan Wang, Luo Si, Xiangyu Zhang, and Dongyan
Xu. 2015. LEAPS: Detecting Camouflaged Attacks with Statistical Learning
Guided by Program Analysis. In Proc. of the Conference on Dependable Systems
and Networks (DSN).

[36] Steve Hales. [n.d.]. Last Door Log Wiper. https://packetstormsecurity.com/files/
118922/LastDoor.tar. Accessed on 08.17.2020.

[37] Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer.
2020. UNICORN: Runtime Provenance-Based Detector for Advanced Persistent
Threats. Proc. of the Symposium on Network and Distributed System Security
(NDSS) (2020).

[38] Kabot Haniradi. [n.d.]. mig-logcleaner-resurrected. https://github.com/Kabot/
mig-logcleaner-resurrected. Accessed on 08.17.2020.

[39] Gunnar Hartung. 2017. Attacks on Secure Logging Schemes. In Proc. of the
International Conference on Financial Cryptography and Data Security (FC).

[40] Gunnar Hartung, Björn Kaidel, Alexander Koch, Jessica Koch, and Dominik
Hartmann. 2017. Practical and Robust Secure Logging from Fault-Tolerant
Sequential Aggregate Signatures. In Proc. of the International Conference on
Provable Security (ProvSec).

[41] Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,
Zhichun Li, and Adam Bates. 2019. NoDoze: Combatting Threat Alert Fatigue
with Automated Provenance Triage. In Proc. of the Symposium on Network and
Distributed System Security (NDSS).

[42] Wajih Ul Hassan, Mark Lemay, Nuraini Aguse, Adam Bates, and Thomas Moyer.
2018. Towards Scalable Cluster Auditing through Grammatical Inference over
Provenance Graphs. In Proc. of the Symposium on Network and Distributed System
Security (NDSS).

[43] Wajih Ul Hassan, Mohammad A Noureddine, Pubali Datta, and Adam Bates.
2020. OmegaLog: High-Fidelity Attack Investigation via Transparent Multi-
layer Log Analysis. In Proc. of the Symposium on Network and Distributed System
Security (NDSS).

[44] Jason E. Holt. 2006. Logcrypt: Forward Security and Public Verification for
Secure Audit Logs. In Proc. of the Australasian Information Security Workshop
(AISW-NetSec).

[45] Md Nahid Hossain, Sadegh M. Milajerdi, Junao Wang, Birhanu Eshete, Rigel
Gjomemo, R. Sekar, Scott Stoller, and V.N. Venkatakrishnan. 2017. SLEUTH:
Real-time Attack Scenario Reconstruction from COTS Audit Data. In Proc. of
the USENIX Security Symposium (USENIX).

[46] Ryan Huber. 2016. Syscall Auditing at Scale—The Slack Engineering Blog.
https://slack.engineering/syscall-auditing-at-scale-e6a3ca8ac1b8. Accessed on
08.17.2020.

[47] IBM Knowledge Center. [n.d.]. Storage and analysis of audit logs.
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.
db2.luw.admin.sec.doc/doc/c0052328.html. Accessed on 08.17.2020.

[48] IDC. 2019. Worldwide IT Operations Management Software Forecast, 2019–2023.
https://www.idc.com/getdoc.jsp?containerId=US44896118. Accessed on
08.17.2020.

[49] (ISC)2 . [n.d.]. Cybersecurity Certification - CISSP, Certified Information Systems
Security Professional. https://www.isc2.org/Certifications/CISSP. Accessed on
08.17.2020.

[50] Marshall Jarrett, M Bailie, E Hagen, and E Etringham. 2010. Prosecuting Com-
puter Crimes. United States. Department of Justice. Office of Legal Education
(2010).

[51] Marshall Jarrett, M Bailie, E Hagen, and N Judish. 2009. Searching and Seizing
Computers andObtaining Electronic Evidence in Criminal Investigations. United
States. Department of Justice. Office of Legal Education (2009).

[52] Yang Ji, Sangho Lee, Evan Downing, Weiren Wang, Mattia Fazzini, Taesoo Kim,
Alessandro Orso, and Wenke Lee. 2017. RAIN: Refinable Attack Investigation

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1563

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-16995
https://github.com/syslog-ng/syslog-ng/pull/3121
https://cybersecurity.att.com/solutions/pci-dss-log-management-monitoring
https://cybersecurity.att.com/solutions/pci-dss-log-management-monitoring
https://resources.infosecinstitute.com/category/certifications-training/ethical-hacking/covering-tracks/log-tampering-101/
https://resources.infosecinstitute.com/category/certifications-training/ethical-hacking/covering-tracks/log-tampering-101/
https://resources.infosecinstitute.com/category/certifications-training/ethical-hacking/covering-tracks/log-tampering-101/
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://www.nytimes.com/2017/09/07/business/equifax-cyberattack.html
https://www.cyberscoop.com/shadow-brokers-nsa-microsoft-windows-exploits-2017/
https://www.cyberscoop.com/shadow-brokers-nsa-microsoft-windows-exploits-2017/
https://blake2.net/
https://github.com/BLAKE3-team/BLAKE3/
https://web.archive.org/web/20070218231819/http://darklab.org/~jot/logclean-ng/logcleaner-ng_1.0_lib.html
https://web.archive.org/web/20070218231819/http://darklab.org/~jot/logclean-ng/logcleaner-ng_1.0_lib.html
https://web.archive.org/web/20070218231819/http://darklab.org/~jot/logclean-ng/logcleaner-ng_1.0_lib.html
https://lwn.net/Articles/512895/
http://fiehnlab.ucdavis.edu/staff/kind/collector/benchmark/blast-benchmark
http://fiehnlab.ucdavis.edu/staff/kind/collector/benchmark/blast-benchmark
https://www.csoonline.com/article/3147398/why-its-so-hard-to-prosecute-cyber-criminals.html
https://www.csoonline.com/article/3147398/why-its-so-hard-to-prosecute-cyber-criminals.html
https://packetstormsecurity.com/files/118922/LastDoor.tar
https://packetstormsecurity.com/files/118922/LastDoor.tar
https://github.com/Kabot/mig-logcleaner-resurrected
https://github.com/Kabot/mig-logcleaner-resurrected
https://slack.engineering/syscall-auditing-at-scale-e6a3ca8ac1b8
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.sec.doc/doc/c0052328.html
https://www.ibm.com/support/knowledgecenter/en/SSEPGG_11.1.0/com.ibm.db2.luw.admin.sec.doc/doc/c0052328.html
https://www.idc.com/getdoc.jsp?containerId=US44896118
https://www.isc2.org/Certifications/CISSP

with On-demand Inter-Process Information Flow Tracking. In Proc. of the ACM
Conference on Computer and Communications Security (CCS).

[53] Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing, Taesoo Kim,
Alessandro Orso, and Wenke Lee. 2018. Enabling refinable cross-host attack
investigation with efficient data flow tagging and tracking. In Proc. of the USENIX
Security Symposium (USENIX).

[54] Vishal Karande, Erick Bauman, Zhiqiang Lin, and Latifur Khan. 2017. SGX-Log:
Securing System Logs With SGX.

[55] Kent Karen and Souppaya Murugiah. 2006. NIST Special Publication 800-92,
Guide to Computer Security Log Management.

[56] Jeffrey Katcher. 1997. Postmark: A new file system benchmark. Technical Report.
[57] Samuel T. King and Peter M. Chen. 2003. Backtracking Intrusions. In Proc. of

the ACM Symposium on Operating Systems Principles (SOSP).
[58] Brendan I. Koerner. 2016. Inside the Cyberattack That Shocked the US

Government. https://www.wired.com/2016/10/inside-cyberattack-shocked-us-
government/. Accessed on 08.17.2020.

[59] Yonghwi Kwon, Fei Wang, Weihang Wang, Kyu Hyung Lee, Wen-Chuan Lee,
Shiqing Ma, Xiangyu Zhang, Dongyan Xu, Somesh Jha, Gabriela Ciocarlie,
Ashish Gehani, and Vinod Yegneswaran. 2018. MCI: Modeling-based Causality
Inference in Audit Logging for Attack Investigation. In Proc. of the Symposium
on Network and Distributed System Security (NDSS).

[60] Kyu Hyung Lee. [n.d.]. Ubsi. https://github.com/kyuhlee/UBSI. Accessed on
08.17.2020.

[61] Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. High Accuracy Attack
Provenance via Binary-based Execution Partition. In Proc. of the Symposium on
Network and Distributed System Security (NDSS).

[62] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In Proc. of the USENIX Security Symposium (USENIX).

[63] Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and Dan Meng.
2019. Log2vec: A Heterogeneous Graph Embedding Based Approach for De-
tecting Cyber Threats within Enterprise. In Proc. of the ACM Conference on
Computer and Communications Security (CCS).

[64] Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-
wan Rhee, and Prateek Mittal. 2018. Towards a Timely Causality Analysis for
Enterprise Security. In Proc. of the Symposium on Network and Distributed System
Security (NDSS).

[65] Di Ma and Gene Tsudik. 2009. A New Approach to Secure Logging. ACM
Transactions on Storage (TOS) 5, 1 (2009).

[66] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu
Zhang, and Dongyan Xu. 2015. Accurate, Low Cost and Instrumentation-Free
Security Audit Logging for Windows. In Proc. of the Annual Computer Security
Applications Conference (ACSAC).

[67] Shiqing Ma, Juan Zhai, Yonghwi Kwon, Kyu Hyung Lee, Xiangyu Zhang,
Gabriela Ciocarlie, Ashish Gehani, Vinod Yegneswaran, Dongyan Xu, and
Somesh Jha. 2018. Kernel-Supported Cost-Effective Audit Logging for Causality
Tracking. In Proc. of the USENIX Annual Technical Conference (ATC).

[68] ShiqingMa, Juan Zhai, Fei Wang, Kyu Hyung Lee, Xiangyu Zhang, and Dongyan
Xu. 2017. MPI: Multiple Perspective Attack Investigation with Semantics Aware
Execution Partitioning. In Proc. of the USENIX Security Symposium (USENIX).

[69] Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. ProTracer: Towards
Practical Provenance Tracing by Alternating Between Logging and Tainting. In
Proc. of the Symposium on Network and Distributed System Security (NDSS).

[70] Gregory Machler. [n.d.]. Protecting data with WORM drives. https://www.
csoonline.com/article/2131925/protecting-data-with-worm-drives.html. Ac-
cessed on 08.17.2020.

[71] maldevel. [n.d.]. ClearLogs. https://sourceforge.net/projects/clearlogs/. Ac-
cessed on 08.17.2020.

[72] Stephan Marwedel. 2020. Protecting log records at 35,000 feet - APNIC Blog.
https://blog.apnic.net/2020/03/27/protecting-log-records-at-35000-feet/. Ac-
cessed on 08.17.2020.

[73] Stephan Marwedel. 2020. Secure logging with syslog-ng. https://fosdem.org/
2020/schedule/event/security_secure_logging_with_syslog_ng/. Accessed on
08.17.2020.

[74] Kayle Matthews. 2019. Incident Of The Week: Historic Capital One
Hack Reaches 100 Million Customers Affected By Breach. https:
//www.cshub.com/attacks/articles/incident-of-the-week-historic-capital-one-
hack-reaches-100-million-customers-affected-by-breach

[75] Microsoft. [n.d.]. ETW Framework Conceptual Tutorial. https://docs.microsoft.
com/en-us/message-analyzer/etw-framework-conceptual-tutorial. Accessed
on 08.17.2020.

[76] Microsoft. [n.d.]. Process Monitor v3.50. https://docs.microsoft.com/en-us/
sysinternals/downloads/procmon. Accessed on 08.17.2020.

[77] Sadegh Milajerdi, Rigel Gjomemo, Birhanu Eshete, Ramachandran Sekar, and
V. N. Venkatakrishnan. 2019. HOLMES: Real-Time APT Detection through
Correlation of Suspicious Information Flows. In Proc. of the IEEE Symposium on
Security and Privacy (S&P).

[78] Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan.
2019. Poirot: Aligning Attack Behavior with Kernel Audit Records for Cyber
Threat Hunting. In Proc. of the ACM Conference on Computer and Communica-
tions Security (CCS).

[79] James Morris, Stephen Smalley, and Greg Kroah-Hartman. 2002. Linux Security
Modules: General Security Support for the Linux Kernel. In Proc. of the USENIX
Security Symposium (USENIX).

[80] Kiran-Kumar Muniswamy-Reddy, David A. Holland, Uri Braun, and Margo
Seltzer. 2006. Provenance-Aware Storage Systems. In Proc. of the USENIX Annual
Technical Conference (ATC).

[81] National Institute of Standards and Technology. 2013. NIST Special Publica-
tion 800-53 (Rev. 4), Security Controls and Assessment Procedures for Federal
Information Systems and Organizations.

[82] National Security Agency. 1999. Controlled Access Protection Profile, Version
1.d. https://www.niap-ccevs.org/Profile/Info.cfm?PPID=14&id=14.

[83] NetApp. [n.d.]. SnapLock:WORMCompliance – Data Compliance. https://www.
netapp.com/us/products/backup-recovery/snaplock-compliance.aspx. Accessed
on 08.17.2020.

[84] NGINX Inc. [n.d.]. NGINX 1.10.3. https://www.nginx.com/. Accessed on
08.17.2020.

[85] Hung Nguyen, Bipeen Acharya, Radoslav Ivanov, Andreas Haeberlen, Linh T.X.
Phan, Oleg Sokolsky, Jesse Walker, James Weimer, William Hanson, and Insup
Lee. 2016. Cloud-Based Secure Logger for Medical Devices. In Proc. of the
IEEE International Conference on Connected Health: Applications, Systems and
Engineering Technologies (CHASE).

[86] OccupytheWeb. 2013. How to Cover Your Tracks & Leave No Trace Behind on
the Target System. https://null-byte.wonderhowto.com/how-to/hack-like-pro-
cover-your-tracks-leave-no-trace-behind-target-system-0148123/. Accessed
on 08.17.2020.

[87] Alina Oprea, Zhou Li, Ting-Fang Yen, Sang H. Chin, and Sumayah Alrwais. 2015.
Detection of Early-Stage Enterprise Infection by Mining Large-Scale Log Data.
In Proc. of the Conference on Dependable Systems and Networks (DSN).

[88] p7zip. [n.d.]. p7zip 16.02. https://sourceforge.net/projects/p7zip/. Accessed on
08.17.2020.

[89] Riccardo Paccagnella, Pubali Datta, Wajih Ul Hassan, Christopher W. Fletcher,
Adam Bates, Andrew Miller, and Dave Tian. 2020. Custos: Practical Tamper-
Evident Auditing of Operating Systems Using Trusted Execution. In Proc. of the
Symposium on Network and Distributed System Security (NDSS).

[90] Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers,
Margo Seltzer, and Jean Bacon. 2017. Practical Whole-system Provenance
Capture. In Proceedings of the ACM Symposium on Cloud Computing (SoCC).

[91] Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier Her-
mant, David Eyers, Jean Bacon, , and Margo Seltzer. 2018. Runtime Analysis
of Whole-System Provenance. In Proc. of the ACM Conference on Computer and
Communications Security (CCS).

[92] Kexin Pei, Zhongshu Gu, Brendan Saltaformaggio, ShiqingMa, FeiWang, Zhiwei
Zhang, Luo Si, Xiangyu Zhang, and Dongyan Xu. 2016. HERCULE: Attack Story
Reconstruction via Community Discovery on Correlated Log Graph. In Proc. of
the Annual Computer Security Applications Conference (ACSAC).

[93] Devin J. Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler. 2012.
Hi-Fi: Collecting High-FidelityWhole-System Provenance. In Proc. of the Annual
Computer Security Applications Conference (ACSAC).

[94] Red Hat Customer Portal. [n.d.]. System Auditing. https://access.redhat.com/
documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-
system_auditing. Accessed on 08.17.2020.

[95] Tobias Pulls and Roel Peeters. 2015. Balloon: A Forward-Secure Append-Only
Persistent Authenticated Data Structure. In Proc. of the European Symposium on
Research in Computer Security (ESORICS).

[96] Rapid7. [n.d.]. Metasploit, the world’s most used penetration testing framework.
https://www.metasploit.com/. Accessed on 08.17.2020.

[97] Redis Labs. [n.d.]. Redis 3.0.6. https://redis.io/. Accessed on 08.17.2020.
[98] Michael Riley, Ben Elgin, Dune Lawrence, and Carol Matlack. 2014. Missed

Alarms and 40 Million Stolen Credit Card Numbers: How Target Blew
It. https://www.bloomberg.com/news/articles/2014-03-13/target-missed-
warnings-in-epic-hack-of-credit-card-data. Accessed on 08.17.2020.

[99] Bruce Schneier and John Kelsey. 1998. Cryptographic Support for Secure Logs
on Untrusted Machines. In Proc. of the USENIX Security Symposium (USENIX).

[100] Bruce Schneier and John Kelsey. 1999. Secure Audit Logs to Support Computer
Forensics. ACM Transactions on Information and System Security (TISSEC) 2, 2
(1999), 159–176.

[101] Yun Shen, Enrico Mariconti, Pierre Antoine Vervier, and Gianluca Stringhini.
2018. Tiresias: Predicting Security Events Through Deep Learning: Template
Based Efficient Data Reduction For Big-Data Causality Analysis. In Proc. of the
ACM Conference on Computer and Communications Security (CCS).

[102] Yun Shen and Gianluca Stringhini. 2019. Attack2vec: Leveraging Temporal
Word Embeddings to Understand the Evolution of Cyberattacks. In Proc. of the
USENIX Security Symposium (USENIX).

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1564

https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://github.com/kyuhlee/UBSI
https://www.csoonline.com/article/2131925/protecting-data-with-worm-drives.html
https://www.csoonline.com/article/2131925/protecting-data-with-worm-drives.html
https://sourceforge.net/projects/clearlogs/
https://blog.apnic.net/2020/03/27/protecting-log-records-at-35000-feet/
https://fosdem.org/2020/schedule/event/security_secure_logging_with_syslog_ng/
https://fosdem.org/2020/schedule/event/security_secure_logging_with_syslog_ng/
https://www.cshub.com/attacks/articles/incident-of-the-week-historic-capital-one-hack-reaches-100-million-customers-affected-by-breach
https://www.cshub.com/attacks/articles/incident-of-the-week-historic-capital-one-hack-reaches-100-million-customers-affected-by-breach
https://www.cshub.com/attacks/articles/incident-of-the-week-historic-capital-one-hack-reaches-100-million-customers-affected-by-breach
https://docs.microsoft.com/en-us/message-analyzer/etw-framework-conceptual-tutorial
https://docs.microsoft.com/en-us/message-analyzer/etw-framework-conceptual-tutorial
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://docs.microsoft.com/en-us/sysinternals/downloads/procmon
https://www.niap-ccevs.org/Profile/Info.cfm?PPID=14&id=14
https://www.netapp.com/us/products/backup-recovery/snaplock-compliance.aspx
https://www.netapp.com/us/products/backup-recovery/snaplock-compliance.aspx
https://www.nginx.com/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-cover-your-tracks-leave-no-trace-behind-target-system-0148123/
https://null-byte.wonderhowto.com/how-to/hack-like-pro-cover-your-tracks-leave-no-trace-behind-target-system-0148123/
https://sourceforge.net/projects/p7zip/
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/chap-system_auditing
https://www.metasploit.com/
https://redis.io/
https://www.bloomberg.com/news/articles/2014-03-13/target-missed-warnings-in-epic-hack-of-credit-card-data
https://www.bloomberg.com/news/articles/2014-03-13/target-missed-warnings-in-epic-hack-of-credit-card-data

[103] Carlton Shepherd, Raja Naeem Akram, and Konstantinos Markantonakis. 2017.
EmLog: Tamper-Resistant System Logging for Constrained Devices with TEEs.
In Proc. of the International Conference on Information Security Theory and Prac-
tice (WISTP).

[104] Arunesh Sinha, Limin Jia, Paul England, and Jacob R Lorch. 2014. Continuous
Tamper-Proof Logging Using TPM 2.0. In Proc. of the International Conference
on Trust and Trustworthy Computing (TRUST).

[105] Splunk Inc. [n.d.]. Splunk. https://www.splunk.com. Accessed on 08.17.2020.
[106] Splunk Inc. 2018. Splunk Ranked No. 1 in IDC Worldwide SIEM Market

Share 2018. https://www.splunk.com/en_us/form/splunk-ranked-no1-in-idc-
worldwide-siem-market-share-2018.html. Accessed on 08.17.2020.

[107] Swaminathan Sundararaman, Gopalan Sivathanu, and Erez Zadok. 2008. Se-
lective Versioning in a Secure Disk System. In Proc. of the USENIX Security
Symposium (USENIX).

[108] SUSE Linux AG. 2004. Linux Audit-Subsystem Design Documentation for
Linux Kernel 2.6, v0.1. http://uniforum.chi.il.us/slides/HardeningLinux/LAuS-
Design.pdf.

[109] Sysdig. [n.d.]. Sysdig – Open Source System Capturing. https://sysdig.com/
opensource/inspect/. Accessed on 08.17.2020.

[110] syslog-ng. [n.d.]. Log Management Solutions. https://www.syslog-ng.com/.
Accessed on 08.17.2020.

[111] The Apache Software Foundation. [n.d.]. httpd 2.4.18. https://httpd.apache.org/.
Accessed on 08.17.2020.

[112] The MITRE Corporation. [n.d.]. CAPEC-268: Audit Log Manipulation. https:
//capec.mitre.org/data/definitions/268.html. Accessed on 08.17.2020.

[113] The OpenSSL Project. [n.d.]. OpenSSL 1.1.1. https://www.openssl.org/. Accessed
on 08.17.2020.

[114] Tripwire. [n.d.]. Log Management. https://www.tripwire.com/solutions/log-
management/. Accessed on 08.17.2020.

[115] VMware Carbon Black. 2019. Global Incident Response Threat Report - The Omi-
nous Rise of “Island Hopping” & Counter Incident Response Continues. Technical
Report. Accessed on 08.17.2020.

[116] David A. Wagner. 1999. Janus: an Approach for Confinement of Untrusted Appli-
cations. Master’s thesis. University of California, Berkeley.

[117] Qi Wang, Wajih Ul Hassan, Ding Li, Kangkook Jee, Xiao Yu, Kexuan Zou,
Junghwan Rhee, Zhengzhang Chen, Wei Cheng, C Gunter, et al. 2020. You Are
What You Do: Hunting Stealthy Malware via Data Provenance Analysis. In Proc.
of the Symposium on Network and Distributed System Security (NDSS).

[118] Jan Wassenberg and Jyrki Alakuijala. [n.d.]. HighwayHash. https://github.com/
google/highwayhash. Accessed on 08.17.2020.

[119] Robert N. M. Watson. 2007. Exploiting Concurrency Vulnerabilities in Sys-
tem Call Wrappers. In Proc. of the USENIX Workshop on Offensive Technologies
(WOOT).

[120] Runqing Yang, Shiqing Ma, Haitao Xu, Xiangyu Zhang, and Yan Chen. 2020.
UIScope: Accurate, Instrumentation-free, and Visible Attack Investigation for
GUI Applications. (2020).

[121] Zhaomo Yang, Brian Johannesmeyer, Anders Trier Olesen, Sorin Lerner, and
Kirill Levchenko. 2017. Dead Store Elimination (Still) Considered Harmful. In
Proc. of the USENIX Security Symposium (USENIX).

[122] Attila A. Yavuz and Peng Ning. 2009. BAF: An Efficient Publicly Verifiable
Secure Audit Logging Scheme for Distributed Systems. In Proc. of the Annual
Computer Security Applications Conference (ACSAC).

[123] Attila A. Yavuz, Peng Ning, and Michael K. Reiter. 2012. Efficient, Compromise
Resilient and Append-only Cryptographic Schemes for Secure Audit Logging. In
Proc. of the International Conference on Financial Cryptography and Data Security
(FC).

[124] Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William Robert-
son, Ari Juels, and Engin Kirda. 2013. Beehive: Large-Scale Log Analysis for
Detecting Suspicious Activity in Enterprise Networks. In Proc. of the Annual
Computer Security Applications Conference (ACSAC).

[125] Kim Zetter. 2015. Health Insurer Anthem Is Hacked, Exposing Millions of
Patients’ Data. https://www.wired.com/2015/02/breach-health-insurer-exposes-
sensitive-data-millions-patients/. Accessed on 08.17.2020.

Session 5C: Forensics CCS '20, November 9–13, 2020, Virtual Event, USA

1565

https://www.splunk.com
https://www.splunk.com/en_us/form/splunk-ranked-no1-in-idc-worldwide-siem-market-share-2018.html
https://www.splunk.com/en_us/form/splunk-ranked-no1-in-idc-worldwide-siem-market-share-2018.html
http://uniforum.chi.il.us/slides/HardeningLinux/LAuS-Design.pdf
http://uniforum.chi.il.us/slides/HardeningLinux/LAuS-Design.pdf
https://sysdig.com/opensource/inspect/
https://sysdig.com/opensource/inspect/
https://www.syslog-ng.com/
https://httpd.apache.org/
https://capec.mitre.org/data/definitions/268.html
https://capec.mitre.org/data/definitions/268.html
https://www.openssl.org/
https://www.tripwire.com/solutions/log-management/
https://www.tripwire.com/solutions/log-management/
https://github.com/google/highwayhash
https://github.com/google/highwayhash
https://www.wired.com/2015/02/breach-health-insurer-exposes-sensitive-data-millions-patients/
https://www.wired.com/2015/02/breach-health-insurer-exposes-sensitive-data-millions-patients/

	Abstract
	1 Introduction
	2 Background
	3 The Danger Zone: Asynchronous Logging
	3.1 Race Condition Vulnerability
	3.2 Vulnerability Characterization

	4 Race Condition Attacks
	4.1 Intercepting a Vulnerable Attack Trace
	4.2 Exploit Evaluation

	5 Does Prior Work Offer a Defense?
	6 Defense Design
	6.1 Threat Model and Assumptions
	6.2 Design Goals
	6.3 Design Challenges
	6.4 In-Kernel Log Integrity

	7 Implementation
	8 Security Analysis
	9 Evaluation
	10 Discussion and Future Work
	11 Related Work
	12 Conclusion
	Acknowledgments
	References

