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Bose-Einstein condensates in an atom-optomechanical system
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We consider a hybrid atom-optomechanical system consisting of a mechanical membrane inside an optical
cavity and an atomic Bose-Einstein condensate outside the cavity. The condensate is confined in an optical
lattice potential formed by a traveling laser beam reflected off one cavity mirror. We derive the cavity-mediated
effective atom-atom interaction potential and find that it is nonuniform, site-dependent, and does not decay as the
interatomic distance increases. We show that the presence of this effective interaction breaks the Z2 symmetry
of the system and gives rise to new quantum phases and phase transitions. When the long-range interaction
dominates, the condensate breaks the translation symmetry and turns into a novel self-organized latticelike
state with increasing particle densities for sites farther away from the cavity. We present the phase diagram
of the system and investigate the stabilities of different phases by calculating their respective excitation spectra.
The system can serve as a platform to explore various self-organized phenomena induced by the long-range
interactions.
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I. INTRODUCTION

Long-range interactions, such as the dipole-dipole interac-
tion, the Van der Waals forces, etc., play important roles in
cold atomic systems and can result in a variety of intrigu-
ing physical effects [1–9]. In recent years, photon-mediated
long-range interaction between atoms inside an optical cavity
has also received wide attentions as these systems provide an
opportunity to engineering atom-atom interaction in a highly
controllable manner [3,4,10–15], where both the range and
the strength of the interaction can be tailored [16–18]. For
instance, the cavity-mediated long-range spin-spin interac-
tion can be engineered to realize various frustrated models
[19,20]. The competition between the short- and long-range
interactions induced in cavity also greatly enriches the physics
of quantum phase transitions, which is unattainable in other
setups [3]. For fermions, such long-range interaction can also
result in exotic topological superfluids featuring Majorana
fermions [21].

Recently, a hybrid atom-optomechanical system made up
of a membrane inside a cavity and cold atoms residing in
an optical lattice outside the cavity has attracted wide atten-
tions [22–30]. This system can not only serve as a platform
to explore the coupling between the mechanical modes and
other physical systems [28], but also provide a toolbox to
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engineer the quantized lattice vibrations [29,31]. As the cav-
ity and the outside lattice are separate and can be placed in
different vacuum chambers, they can be manipulated almost
independently. For instance, the lattice potential can be highly
controlled by introducing additional lasers or other necessary
apparatus in the chamber. Compared to the scheme of inte-
grating atoms and mechanics in the same chamber or the same
cavity, this greatly reduce the difficulty of the experiment. For
Bose-Einstein condensates, it has been theoretically predicted
that the atomic cloud can experience a nonequilibrium quan-
tum phase transition from a localized symmetric state to a
shifted spontaneous-symmetry-broken state due to the pres-
ence of induced membrane-atom coupling [25,30]. Across
the transition, the lattice can be either left- or right- shifted
depending on the sign of the membrane displacement, which
reflects the breaking of the internal Z2 symmetry of the sys-
tem. The relevant steady-state many-body phase diagram and
nonequilibrium quantum phase transition for spinor system
have also been considered [30,32,33].

In all previous theoretical studies of the atom-
optomechanical system, the effect of cavity-mediated global
interaction among atoms has been neglected under the
assumption that such interaction is very weak. The validity
of this assumption, however, is not thoroughly investigated.
Usually, the cavity-mediated effective interaction between
atoms can result in various novel self-organized structures
[34–36] and strongly correlated phases [37,38]. A careful
study of this effect in the hybrid atom-optomechanical system
is thus highly desirable. This provides the main motivation of
the current work.
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In this work, we derive the explicit form of the cavity-
mediated effective atom-atom interaction in this hybrid
atom-optomechanical system. We show that this effective
interaction is qualitatively different from the one when the
atoms are inside the cavity [3,4,10–18]. In particular, the
effective interaction in the current situation is nonuniform
and site-dependent. With this effective interaction taken into
account, we consider the steady-state phase diagram of the
system in the mean-field level. We show that the intrinsic Z2-
type symmetry of the atom-membrane coupling is explicitly
broken by the induced global interaction, where a first-order
super-radiation phase transition of mechanical modes is fa-
vored for large membrane-atom coupling with the presence of
a right-moved lattice order (RLO). For even stronger effective
interaction, the condensate spontaneously breaks into peaks
with imbalanced onsite occupations. These peaks form an
approximate latticelike density-wave order (DWO) with, how-
ever, unequal spacing between adjacent peaks. Meanwhile,
the onsite occupation increases monotonously away from the
cavity, and the transition from the usual lattice order to the
DWO is of first-order. Finally, the stability and the excitation
spectra of relevant phases are also discussed.

The paper is organized as follows. In Sec. II, we present
a detailed derivation about the effective Hamiltonian of the
model, where the underlying physics about the induced inter-
action is discussed. In Sec. III, we introduced the mean-field
treatment of the system, where an effective Gross-Pitaevskii
(GP) equation of the condensate is obtained. In Sec. IV, we
consider the effects of the induced global nonlinear inter-
action, and the properties of the quasilattice like mode are
discussed in some details. We provide the phase diagram
of the system in Sec. V, where the relevant first-order and
second-order phase transitions are also discussed. We con-
clude the paper in Sec. VI. Much of the technical details can
be found in the appendices.

II. MODEL HAMILTONIAN

The hybrid atom-optomechanical system we consider here
consists of a membrane inside an optical cavity and an ensem-
ble of 87Rb Bose-Einstein condensate outside of the cavity
confined in an external optical lattice [22,24,25,27,30], as
schematically shown in Fig. 1(a). The lattice potential results
from a laser beam propagating towards left along the z axis,
and a counter-propagating reflected light beam from the cav-
ity mirror. The mechanical mode for the membrane can be
described as

Ĥm = h̄�mâ†â (1)

with a single mechanical frequency �m. The usual many-body
Hamiltonian for the condensate can be written as

Ĥa =
∫

dzψ̂†(z)H0ψ̂ (z) + g

2

∫
dzψ̂†ψ̂†ψ̂ψ̂ (2)

with bosonic field operator ψ̂ (z), s-wave interaction strength
g, and atom number N̂ = ∫

dz ψ̂†ψ̂ . The single-particle
Hamiltonian reads

H0 = −h̄ωR∂2/∂z2 + V sin2(z + φ) (3)

FIG. 1. (a) Schematic diagram of atom-Optomechanical system.
There exist two different paths (|z − z′|, z + z′) for intermediated
photons. The origin z = 0 is defined to be the position of the left
cavity mirror. (b) Effective interaction I(z, z′) with z = −π/4 and
π/8. For convenience, we have shifted the origin of the coordinate to
the middle of the lattice.

with recoil energy ωR = h̄k2
l /(2m), where m stands for the

mass of rubidium atom and kl represents wave number of
the laser field. V is the amplitude of the optical lattice, and
φ represents the phase shift of the standing wave outside the
cavity due to the presence of cavity mirrors and the membrane
[22]. For simplicity, here we choose φ = 0 without loss of
generality. In writing Ha and H0, we have used the dimension-
less coordinates z and set λl = 2π/kl as the units for length.

The condensate couples to the mechanical modes through
a broad-band laser modes b̂ω described as

Ĥl =
∫ ωl +θ

ωl −θ

dωh̄(ω − ωl )b̂
†
ωb̂ω (4)

with its central frequency ωl and spectral width 2θ . The band-
width 2θ of the field modes, namely the line-width of the
cavity, should be much larger than the recoil frequency ωR

and the characteristic frequency �m of the membrane. In our
case, the laser fields take the form

b̂ω → b̂ω + blδ(ω − ωl ). (5)

Physically the laser modes play two distinct roles. First, the
light mode 〈b̂ω〉 = blδ(ω − ωl ) has a strong field strength bl at
the central frequency ωl , which induces the external potential
VL = V sin2(z), together with an effective atom-laser coupling

Ĥal = λa

∫
dω√
2π

(b̂ω + b̂†
ω )

∫
ψ̂† sin(z) sin

(
ω

ωl
z

)
ψ̂dz.

(6)

Second, after entering into the cavity, these laser modes also
lead to membrane-light coupling described by the following
Hamiltonian:

Ĥml = λm(â + â†)
∫

dω (b̂ω + b̂†
ω )/

√
2π. (7)
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Here, λm and λa are the relevant coupling strengths.
In the case of a broad-band light field and in the bad-cavity

limit, we solve the Heisenberg equations of motion for opera-
tors â, b̂, and ψ̂ . After substituting the formal solution of b̂ω(t )
into the equations of motion for â and ψ̂ (see Appendix A for
details), we find

ih̄
∂

∂t
â = h̄�mâ − �

∫
dzψ̂†(z) sin(2z)ψ̂ (z), (8)

ih̄
∂

∂t
ψ̂ (z) =

{
H0 + gψ̂†ψ̂ − �(â + â†) sin(2z) − �

×
∫

dz′ψ̂†(z′)ψ̂ (z′)I (z, z′)

}
ψ̂ (z) (9)

with

� = λmλa/(2h̄), � = λ2
a/(2h̄), (10)

I (z, z′) = [sin(z′ + z) − sin |z′ − z|] sin(z′) sin(z), (11)

where we have omitted the Langevin noise terms for sim-
plicity. The above equations indicate that the effective
membrane-atom coupling Hamiltonian can be written as

Ĥma = −�(â + â†)
∫

dz ψ̂†(z) sin(2z)ψ̂ (z) . (12)

In addition, the system also gives rise to an effective cavity-
mediated global atom-atom interaction, described by the
Hamiltonian

Ĥlr = �

2

∫
dz

∫
dz′ψ̂†(z)ψ̂†(z′)I (z, z′)ψ̂ (z′)ψ̂ (z). (13)

Thus the total effective Hamiltonian, after eliminating the
laser modes, only contains the membrane and the atomic
degrees of freedom and reads

Ĥeff = Ĥm + Ĥa + Ĥma + Ĥlr. (14)

Equation (13), along with (11), represents one of the main re-
sults of the work. Physically, since all the atoms are coupled to
the same laser fields b̂ω(t ), these quantized modes can thus be
used as a bus for mediating the long-range interaction between
atoms. Here, the two atoms located at z and z′ can be linked
by the intermediating fields b̂ω(t ) through two different paths,
as shown in Fig. 1(a). The first path corresponds the shortest
distance |z − z′| between the two atoms. In the second path,
after leaving the first atom at z, the intermediating photon
is reflected back by the cavity mirror before it reaches the
second atoms located at z′. The total distance traced by the
photon is therefore z + z′. This explains the origin of the two
different sinusoidally modulated interaction terms contained
in the effective global interaction Ĥlr .

In the absence of the effective interaction Ĥlr , it has been
shown theoretically that the atoms experience a second-order
phase transition from a localized symmetric state with Xm =
〈a + a†〉 = 0 to a shifted symmetry-broken state with Xm �= 0
as the membrane-atom coupling � increases [25,27,30,32].
Compared with the usual case with the atoms inside the cavity,
here the lattice spacing is not changed before and after the
transition point [39–41].

The induced global interaction appeared in Ĥlr exhibits
interesting features. Specifically, if we focus on the atom fixed
at z, the effective interaction I (z, z′) reduces to

I (z, z′) =
{− sin 2z′ sin2 z, for z′ > z;
− sin 2z sin2 z′, for z′ < z.

(15)

Therefore, when z �= jπ , the effective long-range interaction
between atoms at z and z′ shows different site-dependent fea-
tures for z′ > z and z′ < z. In Fig. 1(b), we plot the effective
interaction I (z, z′) for fixed z = −π/4 and z = π/8. One can
see that when z = jπ + δz is slightly displaced from the local
minima jπ of the lattice potential VL, the mean effective in-
teraction I (z, z′) for z′ < z takes positive and negative values
depending on the sign of δz. We stress that this site-dependent
feature of the induced atom-atom interaction is very different
from those obtained for atoms inside the cavity [19,20], where
the interaction usually only depends on |z − z′|. The induced
global nonuniform interaction can affect the steady state of the
system significantly and lead to unexpected physics, which we
will focus in the following.

III. MEAN-FIELD APPROXIMATION

For condensate with large atomic number N and ne-
glectable quantum fluctuations, we can employ the mean-field
approximation, and replace the operators ψ̂ (z) and â with their
mean values. After making substitutions ψ̂ (z) → √

Nϕ(z)
and â → √

Nα, the Heisenberg equations of motion for op-
erators ψ̂ (z) and â can then be rewritten as

ih̄∂tα = h̄(�m − iγ )α − �
√

N
∫

dz|ϕ|2 sin(2z), (16)

ih̄∂tϕ(z) = {H0 − �
√

N (α + α†) sin(2z)

+ gN |ϕ(z)|2 + �Nχ [ϕ, z]}ϕ(z), (17)

with the functional

χ [ϕ, z] =
∫

dz′|ϕ(z′)|2I (z, z′). (18)

In Eq. (16), we have introduced a damping rate γ for the
mechanical mode, and the normalization condition for ϕ reads∫

dz |ϕ(z)|2 = 1.
To simplify the discussion, we further assume that the

membrane reaches its steady state very quickly due to its fast
damping rate, and hence we can take ∂tα = 0. This assump-
tion gives

α = �
√

N

h̄(�m − iγ )
κ[ϕ], (19)

with the functional

κ[ϕ] =
∫

dz′|ϕ(z′)|2 sin(2z′). (20)

After substituting this back to Eq. (17), we arrive at the effec-
tive GP equation for the condensate

ih̄∂tϕ(z) = {H0 − �̃κ[ϕ] sin(2z) + g̃|ϕ(z)|2

+ �̃χ [ϕ, z]}ϕ(z), (21)
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with the following interaction parameters:

�̃ = Nβ�2/(h̄�m), β = 2�2
m/

(
�2

m + γ 2
)
,

g̃ = Ng, �̃ = N�.

The relative strength between the induced long-range inter-
action �̃ and the effective atom-membrane coupling �̃ can
then be determined by λm, �m, and γ etc. In Appendix B,
we have provided an explicit estimation of these parameters
based on current experimental conditions, which also covers
the parameter ranges discussed in the following.

We solve Eq. (21) using the imaginary-time evolution
method to obtain the ground state. For a deep lattice potential
VL = V sin2(z) with V � {g̃, �̃, �̃}, the atoms mainly accu-
mulate around its local minima at z0

j = jπ and thus form a
lattice order. The presence of the effective membrane-atom
coupling Ĥma introduces an additional potential proportional
to Vma = −�Xm sin(2z). This additional potential Vma shares
the same period as VL ∝ cos(2z), but features a relative
phase shift. When the membrane-atoms coupling is weak,
VL dominates and the aforementioned lattice order remains
unchanged. However, for sufficiently large �, Vma can drive
the lattice to move to left or to right depending on the sign
of the membrane displacement Xm. The right- and left-moved
lattice orders are degenerate when the effective atom-atom
interaction is absent, i.e., Ĥlr = 0. Therefore, a second order
phase transition takes place in this process accompanied with
a spontaneous breaking of the Z2 symmetry. We stress that, for
atoms inside the cavity, similar super-radiant phase transition
has also been predicted and observed, which usually accom-
panies with a change of the periodicity of the lattice before
and after the transitions [5,10,39–41]. In this hybrid system,
by contrast, the lattice period can remain unchanged when the
transition occurs.

IV. EFFECTS OF THE GLOBAL
NONUNIFORM INTERACTION

When Ĥlr �= 0, the presence of the global atom-atom in-
teraction can result in many novel features, which will be the
focus of this section.

First, we note that the nonlinear interaction does not pre-
serve the Z2 symmetry. Since an arbitrarily weak long-range
interaction can break the Z2 symmetry of the system, the
lattice favors to move once the coupling � surpasses the
transition point �c. To show this, we consider a simplified
wave function for the condensate in the deep lattice limit as

ϕ(z) =
L∑

j=1

c j |z = z j〉, (22)

where
∑

j |c j |2 = 1 and z j represents the location of the jth
wave packet. The basis |z〉 satisfies 〈z|z′〉 = δ(z − z′). We also
assume z j = jπ + δz with δz the overall shift of the lattice or-
der. A simple algebra shows that the mean interaction energy
for an L-site lattice reads

Elr = 〈Ĥlr〉/L = �̃

2
εlr (23)

FIG. 2. (a) Density distribution n(z) (red line) of atoms due to
the presence of long-range interaction Hlr . Here we assume the
lattice is not presented (V = 0). Other parameters read: g = 0, N =
104, m = h̄ = ωR = 1, �m = 100, γ = 10, �̃ = 0, and �̃ = 625.
The two density peaks locates around za ≈ −0.58π and zb ≈ 0.29π

with na/nb ≈ 2/3. The dashed blue line shows the odd function
εlr = − sin2(δz) sin(2δz). (b) Contour plot of εlr for two-sites case
in za − zb plane with za < zb, na = 0.4 and nb = 0.6. The minimal
point is (za, zb) ≈ (−0.58, 0.29)π . For convenience, we have shifted
the origin of the coordinate to the middle of the lattice.

with

εlr = − sin2(δz) sin(2δz), (24)

which is an odd function of δz and reaches the minimum value
at δz = π/3, as depicted in Fig. 2(a). Therefore a right-moved
lattice is always favored which breaks the intrinsic Z2 symme-
try of the original model. In addition, such weak long-range
interaction also makes the phase transition to be of first order
(see analysis in Appendix C).

Second, for stronger interaction strength �, the nonlinear
interaction can induce an effective lattice potential, which can
change both the density distribution of the condensate and
the lattice pattern of the ground state. In the case of very
strong long-range interaction, the original periodic lattice pat-
tern of the condensate induced by VL becomes unstable. The
system supports a series of isolated Gaussian wave packets.
These isolated packets exist even when the lattice potential
VL ∝ sin2(z) become negligible compared with the nonlinear
interactions. The spacings between adjacent packets are not
constant. Hence we call this a quasi latticelike pattern. In
addition, the peak values of these wave packets are also not
uniform and increase as their distance away from the cavity
increases. The presence of the self-adapted latticelike density
wave order (DWO) represents another key feature induced by
the effective global nonlinear interaction.

We stress that the presence of such quasi-lattice-like pat-
tern can be completely attributed to the interaction Hlr , as
this pattern exists even when the lattice trap is absent V = 0.
Physically, the lattice potential can be tuned by introducing
another laser which is slightly misaligned with the former
one and generates a lattice with the same lattice spacing. To
present a simple picture of the emergence of the DWO order,
let us consider the simplest case with two Gaussian wave
packets localized within the regime

−π � za < zb � π. (25)

The condensate wave function reads

ϕ(z) = ca|z = za〉 + cb|z = zb〉 (26)
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with |ca|2 + |cb|2 = 1. The intersite part of the interaction can
be simplified as

E int
lr = −�̃nanb sin2(za) sin(2zb) (27)

with na,b = |ca,b|2. It is easy to check that to minimize the
interaction energy Elr shown in Eq. (23), we should set
z0

a = −2π/3 and z0
b = π/3, as shown in Fig. 2(a). Around

(za, zb) = (−2π/3, π/3), we have

∂E int
lr

∂za
|(za,zb)=(− 2π

3 , π
3 ) = −3

4
�̃nanb < 0, (28)

∂E int
lr

∂zb
|(za,zb)=(− 2π

3 , π
3 ) = 3

4
�̃nanb > 0. (29)

Therefore the interaction E int
lr can be further reduced if we

choose a modified configuration with

−2π/3 < z′
a < z′

b < π/3 (30)

such that z′
b − z′

a < π . Similar analysis also indicates that
na < nb is favored to obtain an overall lower energy

Elr = − �̃

2

[
n2

a sin2(za) sin(2zb) + n2
b sin2(zb) sin(2za)

]
+ E int

lr . (31)

This is also verified numerically, where Elr is minimized when
na � 0.4, nb � 0.6, za ≈ −0.58π and zb ≈ 0.29π , as shown
in Fig. 2(b).

The above discussion can also be generalized to L-site
case. As in the two-site case discussed above, the calculation
indicates that these wave packets tend to be localized at po-
sitions with intervals less than π . Furthermore, the spacings
between adjacent wave packets are not constant. To illustrate
this, we consider the simplified condensate wave function
shown in Eq. (22). The corresponding interaction energy can
be written as

Elr = E−
lr + E+

lr (32)

with

E−
lr = �̃

2

L∑
j=1

n j sin2(z j )

[∑
i< j

ni sin(2z j ) −
L∑

i> j

ni sin(2z j )

]
,

E+
lr = − �̃

2

L∑
j=1

n j sin2(z j )
L∑

i=1

ni sin2(zi ),

where we have set n j = |c j |2, and E−
lr and E+

lr correspond to
two different terms in Eq. (13) depending on sin(|z − z′|) and
sin(z + z′), respectively. This leads to

Elr = −�̃

L∑
j=1

n j sin2(z j )

[
1

2
n j sin(2z j ) +

L∑
k> j

nk sin(2zk )

]
.

(33)

The first term corresponds to on-site interaction which is min-
imized when z j = jπ + π/3 with the lattice interval � = π .
The last term describes the long-range interaction between
different sites, and depends closely on the index order j along
the z axis. Therefore the effective potential at position z j due

to Elr reads

V (z j ) = ∂

∂n j
Elr = −�̃

[
sin2(z j )

L∑
k= j

nk sin(2zk )

+
j−1∑
k=1

nk sin2(zk ) sin(2z j )

]
. (34)

Usually, the interaction energy Elr is minimized when the
effective potential V (z j ) is also minimized as far as possible.
Using this simple observation, we can then estimate the mean
distance of these wave packets. For the leftmost wave packet,
we have

V (z1) ∝ −2 sin2(z1)
L∑

j=1

n j sin(2z j ) (35)

and for the rightmost one, we have

V (zL ) ∝ −2 sin(2zL )
L∑

j=1

n j sin2(z j ). (36)

It is easy to check that these two potentials reach their respec-
tive minimum when z1 = z̄1 and zL = z̄L where

sin2(z̄1) = 1, and sin(2z̄L ) = 1. (37)

Here, without loss of generality, we assume z j � 0 for all j ∈
{1, . . . , L}. In this case, we have

z̄1 = π

2
and z̄L = (L − 1)π + π

4
. (38)

Therefore, if these L wave packets are equally spaced with the
shortened interval

�̄ = z̄L − z̄1

L − 1
= π − π

4(L − 1)
< π, (39)

then the position of the jth wave packet is estimated as

z̄ j = z̄1 + ( j − 1)�̄. (40)

The above analysis is also verified numerically using
imaginary-time evolution method. Fig. 3(a) shows the vari-
ance of the estimated z̄ j with respective to the exact z j of the
jth wave packet as

D2 = 1

L − 1

L∑
j=2

|z̄ j − z j |2. (41)

Here the numerically obtained z j is defined as

z j =
∫

z j

z|ϕ(z)|2dz/
∫

z j

|ϕ(z)|2dz (42)

and the integration is performed around the jth Gaussian wave
packet [see Eq. (45)]. The result shows that D2 tends to zero
quickly for stronger interaction strength �̃ and longer lattice
site L.

We also stress that the occupation number n j is site-
dependent, and increases monotonically along with z j . This is
evident if we turn the summation in Eq. (34) into an integral
in the limit L → ∞. A simple algebra gives (see Appendix B
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FIG. 3. (a) Variance D2 as a function of the total lattice site L
with �̃/(h̄�m ) = 12.5 (blue line) and �̃/(h̄�m ) with L = 11 (red
line). (b) Numerically obtained density distributions n(z) with L =
11, �̃/(h̄�m ) = 12.5. Red line represents the scaled optical lattice.
In both figures we set ωR = 1, V = 200, �m = 100, γ = 10, g̃ = 10,
N = 104, m = h̄ = 1, and �̃/(h̄�m ) = 0.495. For convenience, we
have shifted the origin of the coordinate to the middle of the lattice.

for details)

V (z j ) ∼ − �̃

2π
(cos η j + η j sin η j ), (43)

with η j = ( j − 1)π/[2(L − 1)]. Since V (z j ) decreases as z j

increases, in order to obtain a lower interaction energy Elr ,
the occupation number also increase away from the cavity, as
numerically verified in Fig. 3(b).

To show the varied density of these sites, we introduce the
population imbalance N defined as

N = 1

L − 1

L∑
j=2

|c j |2/|c j−1|2. (44)

which quantifies the mean population difference between ad-
jacent sites. Figure 4(a) shows the population imbalance N as
a function of the interaction strength �̃ with all other parame-
ters fixed. When the induced interaction becomes dominant
at large �̃, N becomes larger than 1, which indicates that
the occupation number nj increases at points farther away
from the cavity. We note that for parameters shown Fig. 4(a),
the imbalance N also exhibits a discontinuous jump as �̃

increases. This indicates that the system supports a first-order
phase transition from a homogeneous lattice pattern to a pop-
ulation imbalance phase, which will be the main topic of the
next section.

The site-dependent feature of n j can be understood as the
competition between the two interaction terms E−

lr and E+
lr .

In Fig. 4(b), we have also plotted n j as a function of the
lattice site z j when only the long-range interaction E−

lr (or
E+

lr ) is considered. The result indicates that the occupation
n j favors an approximated central symmetric pattern with
modified lattice spacing for E−

lr . When only E+
lr is involved,

the lattice pattern of the condensate exhibits an overall shift

FIG. 4. (a) Population imbalance N along with interaction
strength �̃ in case of �̃/(h̄�m ) = 0.1. The plot also shows that
the system supports a first-order phase transition. See Sec. V and
Fig. 6 for more details. (b) Density distributions n(z) in case of
only E−

lr (blue line) and only E+
lr (green line) with �̃/(h̄�m ) = 0.1,

�̃/(h̄�m ) = 5. Red line represents the scaled optical lattice. For
convenience, we have shifted the origin of the coordinate to the
middle of the lattice. We set other parameters as: ωR = 1, V = 200,
�m = 100, γ = 10, g̃ = 10, N = 104, m = h̄ = 1, and L = 11.

without changing the spacing �̄ = π . It is the competition
of these two different mechanisms that leads to the unique
distribution of the n j in this hybrid system. We also note that
for condensate inside the cavity, both the positions of the sites
and the period of the lattice are fixed by cavity parameters
and mode functions. Therefore the quasilattice like order with
unequal lattice spacing cannot be supported.

V. PHASE DIAGRAM

Based on above discussions, we are now ready to discuss
the phase diagram of the system. For general �̃ and �̃, the
system supports various lattice patterns. In the deep lattice
limit, these patterns can be described using the variational
wave functions

ϕ(z) =
∑

j

c jψg(z, z j, σ ),
∑

j

|c j |2 = 1 (45)

with z j the center of each wave packet and the Gaussian
function reads

ψg(z, z j, σ ) =
( 1

πσ 2

)1/4
exp

[
− (z − z j )2

2σ 2

]
, (46)

where parameters c j , z j , and σ are determined by minimizing
total energy corresponding to this wave function.
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FIG. 5. (a). Phase diagram in �̃-�̃ plane. “LO” and “DWO”
represent “lattice order” and “density-wave order,” respectively. The
transition between LO phase and DWO phase is of first-order.
[(b) and (c)] Representative density distributions at points in the
phase diagram marked by five-pointed stars. Here red lines are the
scaled optical lattices. The dash lines represent the density of a
LO state with parameters �̃ = 0.5h̄�m and �̃ = 0.1h̄�m. The two
representative densities of DWO states are plotted with �̃ = 2h̄�m,
�̃ = 0.1h̄�m (b) and �̃ = 0.5h̄�m, �̃ = 6h̄�m (c). Other parameters
are set as L = 11, m = h̄ = 1, ωR = 1, V = 200, �m = 100, γ = 10,
g̃ = 10, and N = 104. In (a), the dashed lines represent the parame-
ters selected for Fig. 6. In (b) and (c), we have shifted the origin of
the coordinate to the middle of the lattice.

Figure 5 shows the obtained phase diagram in the �̃-�̃
plane using the imaginary-time evolution method. The result
is also checked and confirmed using the variational wave
functions. The phase diagram shows novel features which are
summarized in the following.

In the absence of the induced global interaction �̃ = 0,
the system possesses Z2 symmetry. Membrane-atom coupling
gives rise to a second-order phase transition from LO to the
left- or right-moved LO when �̃ exceeds the critical value �̃c.

The presence of finite �̃ �= 0 breaks the Z2 symmetry. Our
calculation shows that the critical �̃c decreases monotonously
and eventually reaches 0 as we increase the interaction
strength �̃/(h̄�m). To show the influence of the global in-
teraction on the transitions, in Fig. 6(a) and 6(c), we plot
the order parameters 〈z〉com, 〈Xm〉, and N as functions of
�̃/h̄ωm for fixed �̃ = 0.25h̄�m and 2.0h̄�m, respectively.
Here, 〈z〉com is defined as the overall center-of-mass shift

FIG. 6. Order parameters 〈z〉com, Xm [(a) and (b)], and N [(c) and
(d)] along the dashed line shown in Fig. 5(a) as functions of the
interaction strength �̃ and �̃. In all figures we set other parameters as
L = 11, m = h̄ = 1, ωR = 1, V = 200, �m = 100, γ = 10, g̃ = 10,
and N = 104.

of the condensate. The calculation shows that all of these
parameters jump discontinuously around �̃ = �̃c. Especially,
for �̃/(h̄�m) ∼ 1, these jumps becomes more apparent, as
shown in Figs. 6(a) and 6(c). This observation indicates that
the transition between the LO phase and the quasilattice-like
DWO is of first order, which is very different from the former
case with �̃ = 0. In the DWO regime, the condensate shows
an occupation imbalance N > 1 when �̃ > �̃c. In addition,
N also becomes smaller for stronger interaction strength �̃

as the effect of the induced nonlinear interaction becomes
smaller comparatively in this case.

We stress that the presence of the induced nonlinear in-
teraction leads to the change in the order of the transition
from LO phase to DWO phase. To make this point more
clear, we assume that when the interaction �̃/(h̄�m) � 1 is
weak, the periodicity of the system still holds. In this case, the
approximate density distribution of the wave function reads

|ϕ(z)|2 �
L∑

j=1

|c j |2δ(z − z j ) (47)

with |c j | = 1/
√

L, and z j = jπ + δz, and its corresponding
energy functional is given by (see Appendix C for details)

E (δz) ∼ V sin2(δz) − �̃

2
sin2(2δz) − �̃

2
sin2(δz) sin(2δz).

(48)

Around the phase boundary �̃ = �̃c, the overall shift satisfies
δz ∼ 0 and we have

E (δz) = pδz2 − �̃δz3 + qδz4 + O(δz5), (49)

with

p = V − 2�̃, q = 8�̃ − V

3
. (50)

For weak interaction �̃/(h̄�m) � 1, the overall center-of-
mass shift 〈z〉com of the condensate jumps from 0 to δz after p
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FIG. 7. The lowest three collective excitations across different
phase boundaries indicated in Fig. 4 with �̃ = 0.5h̄�m (a), �̃ =
2h̄�m (b) and �̃ = 0.25h̄�m (c), respectively.

sweeps across the critical point p = 0 and can be estimated as

〈z〉com = δz = 3�̃/4q. (51)

Since δz > 0, this corresponds to a right-moved lattice order
(RLO). Therefore, within this mean-field treatment, the rele-
vant phase transition is of first order.

The above transition between different phases are also
verified by considering 〈z〉com, 〈Xm〉, and N as functions of
�̃/h̄ωm for fixed �̃ = 0.25h̄�m and 2.0h̄�m, respectively, as
shown in Fig. 6(b) and 6(d). For small �̃ = 0.25h̄�m, the
system supports the LO state until the global nonlinear inter-
action �̃ increases and surpasses a critical value �̃c, where
the latticelike state is favored with nonzero 〈z〉com, 〈Xm〉, and
imbalanced on-site occupations N . For larger �̃ = 2.0h̄�m >

�̃c, the calculation indicates that the initial RLO states at
�̃ � 1 changes continuously towards the latticelike DWO
states when �̃ increases, and the occupation imbalance N also
increases gradually, as shown in Fig. 6(d).

The stability of different phases can be illustrated from
their typical excitation spectra. Fig. 7 depicts the lowest three
collective excitations across the phase boundaries (detailed
derivation can be found in Appendix D). The spectra exhibit
nonanalytical behaviors when �̃ or �̃ sweep across the tran-
sition points, as shown in Figs. 7(a) and 7(c), which indicates
the onset of the phase transitions. By contrast, for �̃ > �̃c,
the crossover from a periodic LO to a quasiperiodic lattice like
DWO is characterized by continuous changes of these excita-
tions, which is also consistent with the previous discussions,
as shown in Fig. 7(b).

VI. EXPERIMENTAL CONSIDERATION
AND CONCLUSION

We note that the considered steady state of the condensates
has the potential to be observable within current experimental
setup. As an example, we calculate the relevant parameters
for 87Rb condensate. For laser beam with the wavelength λl =
780nm, the recoil energy can be estimated as

h̄ωR = h̄2k2
l

2m
= h̄ × 2π × 3.77 kHz. (52)

Here m is the mass of the atom, kl = 2π/λl . The coupling
λm depends closely on the laser power and the cavity finesse,
and λa is determined by the atom-laser coupling strength and
detuning (see Appendix E for details). For typical parameters
used in Ref. [28], the relative strength between � and � is
estimated as �/� = λa/λm ≈ 3.4 × 10−3. At first glance, it
seems that we can safely ignore the effects of Ĥlr for short-
time dynamics. However, in the steady state case, the system is
determined by the effective membrane-atom coupling �̃ and
atom-atom interaction �̃ with

�̃ = βλ2
mλ2

a

4h̄2h̄�m
N, and �̃ = λ2

a

2h̄
N. (53)

The relative strength between �̃ and �̃ is then determined by
λm, β, and �m, respectively. If we set β = 2�2

m/(�2
m + γ 2) =

200/101 and the total particle number N = 106. The above
parameters can then be estimated as

�̃ ≈ 0.06h̄ωR, �̃ ≈ 4.95h̄ωR, �̃/�̃ ≈ 87.87. (54)

Therefore the induced effective interaction �̂ can be much
larger than �̂. In addition, the lattice potential VL outside the
cavity can also be tuned almost independently. This can be
achieved, for example, by introducing another laser which is
slightly misaligned with the former one. The two lasers share
the same frequency but their relative strengths and phases can
be tuned at will. Therefore VL can be changed in a wide range
of parameters, as required. This indicates that the predict
phase transition should be attainable within current setup.

To summarize, we have derived explicitly the cavity-
mediated nonuniform global atom-atom interaction potential,
and studied its effect in a hybrid atom-optomechanical sys-
tem. In the steady-state approximation and deep lattice limit,
the presence of such global interaction breaks the intrinsic
Z2 symmetry induced by membrane-atom coupling, where a
right-moved lattice states is favored. In addition, the nonlocal
properties of such atom-atom interaction can also lead to the
breakdown of lattice order, where a self-organized latticelike
state with modified on-site occupations is featured. The sta-
bilities of these phases are also investigated by solving their
Bogoliubov excitations. The predicted phases provide new
possibilities of exploring novel symmetry-breaking physics in
this hybrid atom-optomechanical system, and also open up
new avenues of research for various exotic quantum states
induced by the long-range atom-atom interactions.
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APPENDIX A: DERIVATION OF THE EFFECTIVE HAMILTONIAN CARRYING NONUNIFORM GLOBAL INTERACTION

In this section, we derive the effective Hamiltonian from original Hamiltonian in the main-text. Following [22,24,25,27,30],
the total Hamiltonian can be written as

Ĥtot = Ĥm + Ĥa + Ĥl + Ĥal + Ĥml, (A1)

where Ĥm, Ĥa, and Ĥl represent the Hamiltonian of membrane, atomic condensate, and lasers, respectively. Ĥal is interaction of
atoms with laser beams, and Ĥml describes coupling of mechanical modes with laser fields. The explicit form of these interactions
are listed as follows:

Ĥm = h̄�mâ†â,

Ĥa =
∫

dzψ̂†(z)H0ψ̂ (z) + g

2

∫
dzψ̂†ψ̂†ψ̂ψ̂,

Ĥl =
∫ ωl +θ

ωl −θ

dωh̄(ω − ωl )b̂
†
ωb̂ω,

Ĥal = λa

∫
dω√
2π

(b̂ω + b̂†
ω )

∫
ψ̂† sin(z) sin

( ω

ωl
z
)
ψ̂dz,

Ĥml = λm(â + â†)
∫

dω√
2π

(b̂ω + b̂†
ω ).

According to Heisenberg equation, evolutions of operators a, ψ (z) and bω read

ih̄ ˙̂a = [â, Ĥtot] = h̄�mâ + λm

∫ ωl +θ

ωl −θ

dω√
2π

(b̂ω + b̂†
ω ), (A2)

ih̄ ˙̂ψ (z) = [ψ̂ (z), Ĥtot] = [H0 + gψ̂†(z)ψ̂ (z)]ψ̂ (z) + λa

∫ ωl +θ

ωl −θ

dω√
2π

(b̂ω + b̂†
ω ) sin(z) sin

( ω

ωl
z
)
ψ̂ (z), (A3)

ih̄ ˙̂bω = [b̂ω, Ĥtot] = h̄�ωb̂ω + λm√
2π

(â + â†) + λa√
2π

∫
dzψ̂†(z) sin(z) sin

( ω

ωl
z
)
ψ̂ (z) (A4)

with �ω = ω − ωl , spectra width θ of input pulse. The formal solution of b̂ω(t ) can be written as

b̂ω(t ) = b̂ω(0)e−i�ωt +
∫ t

0
dτe−i�ω (t−τ ) −i

h̄
√

2π

{
λm

(
â + â†

)
τ
+ λa

[∫
dzψ̂†(z) sin(z) sin

( ω

ωl
z
)
ψ̂ (z)

]
τ

}
, (A5)

where subscription τ indicates that the relevant operators is time-dependent. The first term in Eq. (A5) depends on initial
condition and can be regarded as a noise. We substitute Eq. (A5) into Eq. (A2) and obtain that

ih̄ ˙̂a = h̄�mâ + λm

∫ ωl +θ

ωl −θ

dω√
2π

{
[b̂ω(0)e−i�ωt + b̂†

ω(0)ei�ωt ] +
∫ t

0
dτ

i

h̄
√

2π
λm(â + â†)τ [ei�ω (t−τ ) − e−i�ω (t−τ )]

}

+ i

h̄
λmλa

∫ t

0
dτ

∫
dz ψ̂†(z)ψ̂ (z) sin(z)

∫ ω+θ

ω−θ

dω

2π
sin

(
ω

z

ωl

)
[ei�ω (t−τ ) − e−i�ω (t−τ )]. (A6)

Since we have θ � �m, it is safe to expand the limits of integration ωl ± θ to ±∞. The second term relating to b̂ω(0) depends
on the initial conditions and is known as quantum noises

F̂a =
∫ +∞

−∞

dω√
2π

[
b̂ω(0)e−i�ωt + b̂†

ω(0)ei�ωt
]

with 〈F̂a〉 = 0.
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Using
∫ +∞
−∞ eiωt dω = 2πδ(t ), Heinsenberg equation of the membrane operator a turns into

ih̄ ˙̂a = h̄�mâ + 1

2h̄
λmλa

∫
dz ψ̂†(z)ψ̂ (z) sin(z)

∫ t

0
dτ

∫ +∞

−∞

dω

2π

[
eiω(t−τ+ z

ωl
)e−iωl (t−τ ) − e−iω(t−τ− z

ωl
)eiωl (t−τ ) + c.c.

]

= h̄�mâ + 1

2h̄
λmλa

∫
dz ψ̂†(z)ψ̂ (z) sin(z)

∫ t

0
dτ

[
δ
(

t − τ + z

ωl

)
e−iωl (t−τ ) − δ

(
t − τ − z

ωl

)
eiωl (t−τ ) + c.c.

]

= h̄�mâ − �

∫
dz ψ̂†(z) sin(2z)ψ̂ (z) (A7)

with � = λmλa/(2h̄), where we have neglected the noise term and assumed z > 0. Similarly, after substituting Eq. (A5) into
Eq. (A3), we obtain that

ih̄ ˙̂ψ (z) = [H0 + gψ̂†(z)ψ̂ (z)]ψ̂ (z) + i

h̄

∫ t

0
dτ

∫ +∞

−∞

dω

2π
(ei�ω (t−τ ) − e−i�ω (t−τ ) )

{
λaλm(â + â†)τ

+ λ2
a

[ ∫
dz′ψ̂†(z′) sin(z′) sin

( ω

ωl
z′
)
ψ̂ (z′)

]
τ

}
sin(z) sin

( ω

ωl
z
)
ψ̂ (z). (A8)

Following the same steps in Eq. (A7), we can easily see that for membrane-atom coupling

i
∫ t

0
dτ

∫ +∞

−∞

dω

2π
[ei�ω (t−τ ) − e−i�ω (t−τ )](â + â†)τ sin(

ω

ωl
z) = cos(z)(â + â†), (A9)

and for atom-atom coupling∫ t

0
dτ

∫ +∞

−∞

dω

2π
[ei�ω (t−τ ) − e−i�ω (t−τ )] sin

( ω

ωl
z
)

sin
( ω

ωl
z′
)

= −1

4

∫ t

0
dτ

∫ +∞

−∞

dω

2π
[ei(ω−ωl )(t−τ ) − e−i(ω−ωl )(t−τ )](eiω z

ωl − eiω z
ωl )(eiω z′

ωl − eiω z′
ωl )

= −1

4

∫ t

0
dτ

∫ +∞

−∞

dω

2π
{[eiω(t−τ+ z

ωl
+ z′

ωl
) − eiω(t−τ− z

ωl
+ z′

ωl
) + eiω(t−τ− z

ωl
− z′

ωl
) − eiω(t−τ+ z

ωl
− z′

ωl
)]e−iωl (t−τ ) − c.c.}

= −1

4

∫ t

0
dτ

{[
δ

(
t − τ − z′ + z

ωl

)
− δ

(
t − τ − |z′ − z|

ωl

)]
e−iωl (t−τ ) − c.c.

}

= i

2
(sin(z′ + z) − sin |z′ − z|), (A10)

in which we have assumed that z, z′ > 0. Combining the above two equations gives that

ih̄ ˙̂ψ (z) =
{
H0 + gψ̂†ψ̂ − �(â + â†) sin(2z) − �

∫
dz′ψ̂†(z′) sin(z′)ψ̂ (z′)[sin(z′ + z) − sin |z′ − z|] sin(z)

}
ψ̂ (z) (A11)

with � = λ2
a/(2h̄). These two equations Eqs. (A7) and (A11) allow us to write down the effective Hamiltonian Heff in the main

text.

APPENDIX B: EFFECTIVE CHEMICAL POTENTIAL IN THE SELF-ORGANIZED LATTICELIKE PHASE

The effective potential at position z j reads

V (z j ) = ∂

∂n j
Elr = −�̃

[
sin2(z j )

L∑
k= j

nk sin(2zk ) +
j−1∑
k=1

nk sin2(zk ) sin(2z j )

]
. (B1)

To show the site-dependent feature of V (z j ), we assume an homogeneous density distribution with nj = 1/L for all j = 1, . . . , L.
Therefore V (z j ) can be recast into

V (z j ) � −�̃
1

2L

[
(1 − cos ξ j ) sin ξ j + (1 − cos ξ j )

L∑
k= j+1

sin ξk + sin ξ j

j−1∑
k=1

(1 − cos ξk )

]
, (B2)

where we have set

ξk = 2z̄k = 2[z̄1 + (k − 1)�z̄] = 2

[
π

2
+ (k − 1)

(
π − 1

L − 1

π

4

)]
= π + 2(k − 1)π − ηk (B3)
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with ηk = (k − 1)π/2(L − 1). Since ηk ∈ (0, π/2), when L → ∞, we can approximate the above summation into integral

V (z j ) � − �̃

2L

[
(1 + cos η j ) sin η j + (1 + cos η j )

L∑
k= j+1

sin ηk + sin η j

j−1∑
k=1

(1 + cos ηk )

]

� − �̃

2L

[
(1 + cos η j ) sin η j + (1 + cos η j )

1

�η

∫ π/2

η j

dη sin η + sin η j
1

�η

∫ η j

0
dη(1 + cos η)

]

= − �̃

2L

[
(1 + cos η j ) sin η j + cos η j + η j sin η j + 1

�η

]
(B4)

with �η = π/2(L − 1). This results in

V (z j )
L→∞−→ − �̃

π
(cos η j + η j sin η j + 1). (B5)

Since the function f (η) = cos η + η sin η increase monotonically as

∂ f

∂η
= − sin η + sin η + η cos η = η cos η > 0 (B6)

when η ∈ (0, π/2), we conclude that the effective potential decreases along with the increase of lattice indices j.

APPENDIX C: FIRST-ORDER PHASE TRANSITIONS INDUCED BY GLOBAL NONUNIFORM INTERACTION

The presence of weak long-range interaction �̃ not only breaks the intrinsic Z2 symmetry but also makes the transition from a
lattice order and a right-moved lattice order to be of first order. To show this, we consider the simplified variational wave-function
ϕ(z) = ∑

j c j |z = z0
j 〉 with z0

j = jπ + δz and |c j | = 1/
√

L for all j ∈ [1, L] (L is the total number of wave packets), then the
corresponding energy functional is

E (δz) = E0 + V sin2(δz) − �̃

2
sin2(2δz) − �̃

2
sin2(δz) sin(2δz) (C1)

with E0 the remaining interaction energy which is not relevant here. When �̃/h̄�m � 1, around phase boundary �̃ → �̃c, we
have δz ∼ 0 and

E (δz) ∼ pδz2 − �̃δz3 + qδz4 + O(δz5) (C2)

with p = V − 2�̃, q = (8�̃ − V )/3. When �̃ = 0, The above equation describes a continuous phase transitions at p = 0 when
q > 0. Otherwise, the local energy minimal E (δz) of can be obtained from

E ′(δz) = 0 ⇒ δz0 = 0, δz± = (3�̃ ± χ )/(8q) with χ =
√

9�̃2 − 32pq. (C3)

The corresponding energies and second-order derivations are

E (δz0) = 0, E ′′(δz0) = 2p, (C4)

E (δz+) = −1

2048q3
(3�̃ + χ )2[�̃(3�̃ + χ ) − 16pq], E ′′(δz+) = χ (χ + 3�̃)

8q
, (C5)

E (δz−) = −1

2048q3
(3�̃ − χ )2[�̃(3�̃ − χ ) − 16pq], E ′′(δz−) = χ (χ − 3�̃)

8q
. (C6)

In our case, since �̃ → �̃c = V/2 and �̃ � 1, this ensures q > 0. Therefore an overall shift occurs only when p � 0. This
gives the following constrains:

χ � 3�̃ > 0, δz− < 0 < δz+, (C7)

E ′′(δz0) � 0, E ′′(δz+) > 0, E ′′(δz−) � 0. (C8)

Therefore we have E (δz+) < E (δz−) � E (δz0). The energy minimal point locates at δz = δz+ and the ground state is a right-
moved lattice phase. At the critical point p = 0, the order parameter jumps from zero to its minimal value δz+|min = 3�̃/4q,
which indicates that the phase transition is of fist order.
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APPENDIX D: BOGOLIUBOV EXCITATIONS

In this section, we explore the stability and the excitations of different states in the phase diagram. Taking into account the
first-order fluctuations, we rewrite the order parameter as ϕ(z) = ϕ0(z) + δϕ(z), where ϕ0(z) is wave function of atomic BEC
and δϕ(z) is the fluctuation. Substituting ϕ(z) into the GP equation [Eq. (21)], the zero-order term gives the mean-field ground
state satisfying

i∂tϕ0(z) = {H0 + g̃|ϕ0(z)|2 − �̃κ[ϕ0] sin(2z) − �̃χ [ϕ0, z] sin(z)}ϕ0(z). (D1)

For the fluctuation δϕ(z), up to the first-order correction, we get the Bogoliubov equation

i∂tδϕ(z) = {H0 + 2g̃|ϕ0(z)|2 − �̃κ[ϕ0] sin(2z) − �̃χ [ϕ0, z] sin(z)}δϕ(z) + g̃ϕ2
0 (z)δϕ∗(z)

− �̃ sin(2z)ϕ0(z)
∫

dz′ sin(2z′)[ϕ∗
0 (z′)δϕ(z′) + ϕ0(z′)δϕ∗(z′)]

− �̃ sin(z)ϕ0(z)
∫

dz′ sin(z′)[sin(z + z′) − sin |z − z′|][ϕ∗
0 (z′)δϕ(z′) + ϕ0(z′)δϕ∗(z′)]. (D2)

To obtain the Bogoliubov excitation, we rewrite the time-dependent wave function as

ϕ0(z, t ) = exp(−iμt )ϕ0(z), δϕ(z, t ) = e−iμt [e−iωt u(z) + eiωtν∗(z)], (D3)

with chemical potential μ and excitation energy ω > 0. Here μ depends only on wave function ϕ0(z) of condensation

μ =
∫

dz ϕ∗
0 (z){H0 + g̃|ϕ0(z)|2 − �̃κ[ϕ0] sin(2z) − �̃χ [ϕ0, z] sin(z)}ϕ0(z). (D4)

The excitation energy ω is determined by following equations of u(z) and ν(z)

ωu(z) = [A(z) − μ]u(z) + [B(z, z′) + C(z, z′)]u(z′) + [B′(z, z′) + C ′(z, z′)]ν(z′) + g̃ψ2
0 (z)ν(z), (D5)

ων(z) = − [B′∗(z, z′) + C ′∗(z, z′)]u(z′) − g̃ψ∗2
0 (z)u(z) − [A∗(z) − μ]ν(z) − [B∗(z, z′) + C∗(z, z′)]ν(z′) (D6)

with operators

A(z) = H0 + 2g̃|ϕ0(z)|2 − �̃κ[ϕ0] sin(2z) − �̃2χ [ϕ0, z] sin(z), (D7)

B(z, z′) = − �̃ sin(2z)ϕ0(z)
∫

dz′ sin(2z′)ϕ∗
0 (z′), (D8)

B′(z, z′) = − �̃ sin(2z)ϕ0(z)
∫

dz′ sin(2z′)ϕ0(z′), (D9)

C(z, z′) = − �̃ sin(z)ϕ0(z)
∫

dz′ sin(z′)(sin(z + z′) − sin |z − z′|)ϕ∗
0 (z′), (D10)

C ′(z, z′) = − �̃ sin(z)ϕ0(z)
∫

dz′ sin(z′)(sin(z + z′) − sin |z − z′|)ϕ0(z′). (D11)

The presence of membrane-atom and atom-atom couplings brings about nonlocal long-range coupling of excitation modes
between u(z) and ν(z), which is explicitly shown by B, B′ and C, C ′ respectively. From Eqs. (D5) and (D6), we can obtain
the excitation spectra using numerical diagonalization. The lowest three excitations are shown in Fig. 7 in the main text. The
vanishing imaginary part of the excitations indicates the dynamical stability of all three orders in phase diagram. The transition
between different phases can also be observed from the excitation spectra by their typical analytical behavior around the critical
points.

APPENDIX E: PARAMETERS ESTIMATION IN A HYBRID ATOM-OPTOMECHANICAL SYSTEM

In the main text, we have introduced the dimensionless coordinate z in the total Hamiltonian [see Eq. (A1)]. The units of bω,
V (org), and λm,a are Hz−1/2, J, and J · (Hz)−1/2 respectively. Following the discussions in [22], we can write down the relevant
parameters as

V = μ2ε2
wl

ζ 2

h̄δ̃
, (E1)

λa =
√

2πμ2ε2
wl

ζ

h̄δ̃
, (E2)

λm = h̄
ζkl la√

π
|τm|2F

π
, (E3)

023328-12



BOSE-EINSTEIN CONDENSATES IN AN … PHYSICAL REVIEW A 103, 023328 (2021)

where μ is the atomic dipole moment, εwl =
√

h̄wl
πε0cS with the light speed c and the cross-sectional area S of the laser mode, ζ is

related with the laser power P = h̄wl ζ
2

2π
, λl is the wave-length of laser and kl wave number of laser, δ̃ = wl − weg is the detuning

between the laser frequency ωl and the atomic energy gap ωeg, la =
√

h̄
M�m

is the characteristic length of the membrane with mass
M and frequency �m, τm is the reflection index, and F is the finesse of the cavity. We assume that a pencillike shape condensate
resides in a potential trap which is a harmonic trap in x, y directions with high frequency wx, wy and a square well in z axis with
length Lz. Other needed physical constants are

h̄ = 6.626 × 10−34/(2π ) J s, ε0 = 8.854 × 10−12 C N− m−2,

c = 3 × 108 m/s, μ = 3.584 × 10−29 C m.

In this quasione dimensional system, wave function of atoms can be assumed as ψ (r′) = ψg(x′)ψg(y′)ψ ′(z′) with

ψg(γ ) = 1√
aγ

√
π

exp

(
− γ 2

2a2
γ

)
, aγ =

√
h̄

mwγ

, and γ = x′, y′. (E4)

Effective s-wave interaction can be derived as

g′

2

∫
dr′ |ψ (r′)|4 = g′

2

∫
dx′ |ψg(x′)|4

∫
dy′ |ψg(y′)|4

∫
dz′ |ψ ′(z′)|4 ≡ g

2

∫
dz |ψ (z)|4 with g = 2h̄2as

maxayλl
, (E5)

where we have used g′ = 4π h̄2as/m, z′ = zλl and ψ (z) = √
λlψ

′(z′).
We next calculate these parameters by taking 87Rb atom as an example. The mass of a 87Rb atom is m = 87 × 1.66 ×

10−27 Kg. In experiment [28], the relevant parameters of the membrane and cavity are

M = 117 ng, �m = 2π × 276 kHz, τm = 0.41, F = 570. (E6)

Here the wavelength of laser is λl = 780 nm, δ̃ = −2π × 1 GHz is the detuning, and the laser power is P = 3.4 mW. The beam
waist of laser reads wr = 250 μm, from which we have that S = πw2

r . The frequencies of the harmonic traps can be set as
{wx,wy} = 2π × {62, 85} Hz. Their corresponding characteristic length are ax = 1.37 μm and ay = 1.17 μm. We also set the
length of the quasione dimensional condensate as Lz = 10λl = 7.8 μm � λl/2. Using these setting, we can then calculate the
recoil energy as

h̄ωR = h̄2k2
l

2m
= 2.498 × 10−30 J = h̄ × 2π × 3.77 kHz (E7)

and

λm ≈ 0.00595941 s1/2 h̄ωR,

λa ≈ 0.00002044 s1/2 h̄ωR,

λa

λm
≈ 3.4 × 10−3.

Next we calculate effective membrane-atom coupling �̃ and long-range atom-atom interaction �̃ with

�̃ = β�2

h̄�m
N = βλ2

mλ2
a

4h̄2h̄�m
N,

�̃ = �

2
N = λ2

a

2h̄
N. (E8)

The relative strength between �̃ and �̃ is then determined by λm, β, and �m, respectively. If we set β = 2�2
m/(�2

m + γ 2) =
200/101 and the total particle number N = 106. Using the above parameters, we can obtained that

�̃ ≈ 0.06h̄ωR, �̃ ≈ 4.95h̄ωR, �̃/�̃ ≈ 87.87. (E9)

This ratio indicates that the predict phase transition should be attainable within current setup.
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