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Abstract—Efficient GPU scheduling is the key to minimizing
the execution time of the Deep Learning (DL) training workloads.
DL training system schedulers typically allocate a fixed number
of GPUs to each job, which inhibits high resource utilization and
often extends the overall training time. The recent introduction
of schedulers that can dynamically reallocate GPUs has achieved
better cluster efficiency. This dynamic nature, however, intro-
duces additional overhead by terminating and restarting jobs or
requires modification to the DL training frameworks.

We propose and develop an efficient, non-intrusive GPU
scheduling framework that employs a combination of an adaptive
GPU scheduler and an elastic GPU allocation mechanism to
reduce the completion time of DL training workloads and
improve resource utilization. Specifically, the adaptive GPU
scheduler includes a scheduling algorithm that uses training job
progress information to determine the most efficient allocation
and reallocation of GPUs for incoming and running jobs at
any given time. The elastic GPU allocation mechanism works
in concert with the scheduler. It offers a lightweight and non-
intrusive method to reallocate GPUs based on a “SideCar”
process that temporarily stops and restarts the job’s DL training
process with a different number of GPUs. We implemented the
scheduling framework as plugins in Kubernetes and conducted
evaluations on two 16-GPU clusters with multiple training jobs
based on TensorFlow. Results show that our proposed scheduling
framework reduces the overall execution time and the average job
completion time by up to 45% and 63%, respectively, compared
to the Kubernetes default scheduler. Compared to a termination-
based scheduler, our framework reduces the overall execution
time and the average job completion time by up to 20% and
37%, respectively.

Index Terms—deep learning, GPU clusters, resource schedul-
ing, container, Kubernetes

I. INTRODUCTION

Deep Learning (DL) [1]-[3] has achieved remarkable suc-
cess across a wide range of applications, including image
recognition, object detection and natural language processing
[4]-[6], and this has stimulated significant interest in applying
DL to commercial products. Enterprises are now building
flexibility into new training systems and tools so that they
can efficiently share a cluster of GPUs in both public and
private cloud environments to support the concurrent execution
of multiple DL training jobs [7], [8].

DL training systems rely on an orchestration platform (e.g.,
Kubernetes [9]) to manage the lifecycle of the training jobs,
and often, to allocate the computational resources needed. The
platform uses one or more Docker containers to run a training
job and launches the DL training processes in the containers.
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The training jobs utilize distributed training frameworks (e.g.,
TensorFlow [10] and PyTorch [11]) to efficiently handle large
training datasets by employing multiple GPUs in parallel.

In a DL training system, efficient GPU scheduling is the
key to minimize the overall training time (the makespan) of a
set of jobs. The default scheduler of one of the most popular
orchestration systems, Kubernetes [9], [12], allocates a fixed
number of GPUs to each job, based on its specifications. Use
of this type of scheduler has two major drawbacks that need to
be resolved in order to improve the efficiency of GPU cluster
usage: (1) it typically under-utilizes the resources and (2) it
typically extends the makespan of the workload.

With regard to the first drawback, such schedulers are not
capable of reallocating idle GPUs to other running jobs when a
given job completes, and so such idle GPUs continue to sit idle
until another training job is submitted. This can cause resource
under-utilization. With regard to the second drawback, when
running jobs hold all of the GPUs in the cluster, incoming
jobs are queued. Thus, the makespan will be longer than
that when a subset of currently used GPUs are reallocated to
incoming jobs. We refer to the GPU reallocation capability as
“reshaping”. Specifically, reallocating idle GPUs to running
jobs is referred to as “reshaping up” and reallocating used
GPUs to incoming jobs is referred to as “reshaping down”.

Calculating the gains from reshaping is complicated because
the relationship between the training speed of a DL job
and the number of GPUs allocated to the job is not linear
and is subject to diminishing returns [8], [13], [14]. For
example, in training a ResNet model [15], when the number
of allocated GPUs increases from one to two, the training
speed becomes 1.7x compared to the speed with one GPU (i.e.,
a 70% improvement). When the number of GPUs increases
from two to four, the training speed becomes 2.4x (a 41%
improvement compared to the speed with two GPUs). When
a running job holds all four GPUs in a cluster and achieves
2.4x training speed, the default scheduler would queue an
incoming job. Instead, removing two GPUs from the running
job and reallocating them to the incoming job (i.e., “reshaping
down”) would be a better scheduling strategy that reduces the
makespan of the two jobs. In this case, the two jobs both
obtain 1.7x training speed.

Reshaping has the potential to significantly improve the effi-
ciency of GPU cluster usage. Recent efforts propose advanced
schedulers that use reshaping to dynamically reallocate GPUs
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Fig. 1. Steps involved in an “reshaping down” example, in which GPU 2 used by Job 1 is reallocated to Job 2.

in DL training clusters. To minimize the makespan of multiple
DL jobs and improve resource utilization, Optimus [14] em-
ploys the idea of “reshaping up” and allocates idle GPUs to
running jobs one by one. Optimus also quantizes the impact
of GPU allocation to the makespan by predicting the job
completion time with different numbers of allocated GPUs,
thus each allocation aims to achieve makespan minimization.
However, Optimus does not support “reshaping down”. In each
allocation, it has to first terminate a job and then restart it with
reallocated GPUs, which incurs additional overhead. In Gan-
diva [8], when a cluster runs out of idle GPUs, incoming jobs
can share GPUs with running jobs. But this “reshaping down”
approach is intrusive, requiring source code modifications to
the DL training frameworks. The issue with modifying the DL
training frameworks is that since such frameworks are updated
rather frequently, each time a new version of a framework is
released and applied, the old version and its modifications will
be lost, and thus, the original modifications would need to be
reimplemented in the new version. The scheduler in Gandiva
applies this intrusive approach to reduce early feedback latency
in DL model training instead of minimizing the makespan.

In order to design an efficient and non-intrusive GPU sched-
uler, we have to address two primary issues in the orchestration
platform that cause reshaping to be inefficient. First, once the
orchestration platform instantiates the containers for a given
job, reallocation of GPUs requires complete termination and
restarting of the job, including pods (basic execution unit in
Kubernetes that encapsulates containers of a job), the con-
tainers, and the DL training processes within the containers.
Second, when GPUs are removed from a running job and
reallocated to an incoming job, the orchestration platform
cannot proactively initialize the incoming job in advance. The
incoming job initialization must wait until the running job
is terminated and its GPUs are released. As a result, GPUs

are idle during the termination and initialization phases in the
“reshaping down”. The second issue is due to limitations in
the NVIDIA device plugin [16].

In this paper, we propose and develop an efficient, non-
intrusive GPU scheduling framework that employs a combi-
nation of an adaptive GPU scheduler and an elastic GPU allo-
cation mechanism to reduce makespan and improve resource
utilization. The adaptive GPU scheduler includes an algorithm
which employs training job progress information to determine
the most efficient allocation and reallocation of GPUs for the
incoming and running jobs at any given time. The reallocation
of GPUs supports both “reshaping up” and “reshaping down”.
The elastic GPU allocation mechanism works in concert with
the scheduler. It disables the NVIDIA device plugin and offers
a lightweight method to efficiently reallocate GPUs based on
a “SideCar” process.

SideCar is deployed as a process that is co-resident with
the DL training process in the same container. The SideCar
process performs two main functions. First, it has the ability
to stop and restart the co-resident DL training process of a job
so that reshaping does not require termination and restarting
of the job and its pods and containers. Second, SideCar
includes an early initialization feature in the “reshaping down”
period whereby that the incoming job initialization can be
conducted before the DL training processes of the running
job release their GPUs. Figure 1 is an example that depicts
the steps involved in “reshaping down”. In the example, Job
2 is submitted at time ?0, after which one GPU used by a
running job (Job 1) is reallocated to Job 2. Without SideCar,
Job 1 termination starts at time 0 and finishes at #/. After
termination, Job 1 and Job 2 initializations start at ¢/ and
finish at 2. Thus, the two GPUs remain idle from time t0
to 2. With SideCar, the idle period only ranges from time
t3 to 5. Thus, SideCar can significantly reduce the overhead
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Fig. 2. Non-linear relationship between training speed and number of GPUs.

in reshaping. Note that SideCar does not modify the source
code of any DL training frameworks, and thus, the scheduling
framework is non-intrusive.

In summary, we make the following technical contributions:
(1) we propose and develop an adaptive scheduler that uses
training job progress information to allocate and reallocate
GPUs so as to minimize the makespan of multiple DL jobs.
The novelty lies in supporting both “reshaping down” and
“reshaping up” in GPU reallocation; (2) we design and develop
an elastic GPU allocation mechanism that further improves
the efficiency of reshaping. The novelty lies in achieving both
lightweight and non-intrusive GPU allocation; (3) the sched-
uler and elastic mechanism constitute our GPU scheduling
framework and we implement the framework as plugins in Ku-
bernetes. We performed evaluations with multiple TensorFlow
jobs. Results show that our framework reduces the makespan
and the average job completion time by up to 45% and 63%,
respectively, compared to the default scheduler. Compared to
the termination-based scheduler in Optimus, our framework
reduces the makespan and the average job completion time by
up to 20% and 37%, respectively.

In the following, Section II provides motivations and a
case study. Section III describes the design of the scheduling
framework. Section IV provides the implementation details.
Section V and Section VI present the experimental setup
and evaluation results. Section VII reviews related work.
Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

TABLE I
Two DL JoBS IN THE CASE STUDY.

Job id Submission time Resources # of epochs # of containers
1 0 second four GPUs 1 1
2 180" second | two GPUs 1 1

A. Distributed DL Training

A DL job trains a deep neural network (DNN) model using
a training dataset to minimize a loss function. As DNN mod-
els become more sophisticated and training datasets become
increasingly larger, distributed DL training in GPU clusters
is becoming more prevalent. Distributed DL training involves
the use of multiple workers to perform the training. Data

parallelism is the most common strategy for distributed DL
training in popular training frameworks. In data parallelism,
the training dataset is divided into equal-sized data batches,
and each data batch is further divided into equal-sized mini-
batches. The number of mini-batches in one data batch equals
the number of GPUs involved in training. In each training
iteration, each GPU trains its local DL model and generates
local gradients by processing one mini-batch. The synchronous
parallel model [17] is widely used in synchronization Alter-
native models are SSP [18], ASP [19], and A-BSP [20].

In each iteration, each GPU first performs forward and
backward computation with one mini-batch, and then synchro-
nizes local gradients with others to update the DNN model.
Since the computation load and the communication volume
are exactly the same across iterations, the time of one iteration
is highly predictable. Moreover, when all mini-batches in the
training dataset have been processed once, one training epoch
is completed. The number of iterations in one epoch equals the
number of data batches, and thus, when the specified number
of epochs are completed, the DL job finishes. Therefore, the
training time of a distributed DL job is highly predictable
when the number of epochs is specified. Note that the number
of epochs to train in a distributed DL job can typically be
specified as a command-line parameter. When the number of
epochs is not specified, a DL job finishes when the validation
accuracy (e.g., Top-5 accuracy [21]) reaches a desired level. In
this case, previous studies [14], [22] track the training progress
on the fly and use online fitting to predict the number of epochs
required to achieve the desired accuracy.

B. GPU Scheduling

Static GPU allocation in default scheduler. In a GPU
cluster with multiple DL training jobs submitted over time,
efficient GPU scheduling is the key to minimize the makespan
of the jobs. The popular orchestration platform Kubernetes
runs a DL job using one or more Docker containers and
launches the DL training processes inside them. Its default
scheduler allocates a fixed number of GPUs to each job, based
on its specifications. The number of allocated GPUs remains
static during training.

Non-linear performance gain. The number of GPUs allo-
cated to a job significantly influences the training speed and
hence the training completion time. Recent research shows
that, when the number of allocated GPUs increases, the
communication overhead increases [13], [14], [23]. Thus, there
is no linear relationship between the training speed of a job
and the number of allocated GPUs. Figure 2 shows the training
speed with different numbers of GPUs using the AllReduce
architecture when we train ResNet-18 and ResNet-34 models,
two of the state-of-the-art DNNs for image classifcation, on
the ImageNet dataset [24] with different mini-batch sizes. We
see that increasing GPUs does not lead to linear training speed
improvement and can even slow down model training.
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Fig. 3. Microscopic views of the execution of two jobs.

C. A Case Study

We created a 4-GPU cluster to demonstrate the drawbacks of
the default scheduler. Specifically, two DL jobs are submitted
at different times by a user. Table I gives the job details.
The performance metrics include makespan and the average
job completion time. Three approaches are examined: (1) the
default static GPU allocation, (2) an advanced GPU allocation
approach with reshaping that was used in Optimus [14] and the
reshaping is performed based on job termination, and (3) the
proposed elastic GPU allocation mechanism based on SideCar.

Figure 3 shows the microscopic views of the execution of
two jobs using the three approaches. Figure 3(a) shows the
number of iterations per second in the two jobs due to the
default approach. Specifically, when Job 1 is submitted at time
0, Kubernetes initializes the job and allocates four GPUs to
start training. When Job 2 is submitted at the 180" second,
all cluster GPUs are used by Job 1 and so Job 2 is queued. At
the 6337 second, Job 1 finishes all of its epochs and releases
all GPUs. After that, Kubernetes initializes Job 2 and allocates
two GPUs to the job to start training. At the 807" second,
Job 2 starts running with two GPUs. At the 1249t" second,
Job 2 finishes all of its epochs.

Figure 3(b) shows the execution process using the approach
that is based on job termination. When Job 2 is submitted
at the 180" second, this approach removes two GPUs from
Job 1 by first terminating the job and then restarting it with
only two GPUs. After termination, Kubernetes initializes Job
2 and allocates the removed two GPUs to the job. At the
384%" second, Job 2 starts running. At the 815! second, Job
2 finishes all of its epochs. To utilize the two GPUs released
by Job 2, this approach allocates them to Job 1 based on job
termination. At the 1057t second, Job 1 starts running with
four GPUs. At the 1143"¢ second, Job 1 finishes all of its
epochs.

Figure 3(c) shows the execution process using the proposed
elastic GPU allocation mechanism. According to the early
initialization feature, Job 2 is initialized after it is submitted at
the 180" second. After initialization, SideCar in Job 1 stops
and restarts its DL process with only two GPUs. Then, SideCar
in Job 2 starts its DL process at the 290" second immediately
after two GPUs become available. At the 692"¢ second, Job

T T T T T T
1500 | il Default static GPU allocation [~~~ i At iy
[ 1GPU allocation based on job termination

200 || [_]The elastic GPU allocation mechanism

Time in seconds _,

Average job completion time Makespan

Fig. 4. Performance due to the three approaches.

2 finishes all of its epochs and releases its two GPUs. After
that, SideCar in Job 1 stops and restarts its DL process. At
the 729t second, Job 1 starts running with four GPUs, At the
845th second, Job 1 finishes all of its epochs.

Figure 4 depicts the performance using the three different
approaches. Overall, the default approach leads to the longest
makespan. The reasons are twofold. First, the other two
approaches conduct “reshaping down” such that the two GPUs
used by Job 1 are reallocated to Job 2. The “reshaping down”
can reduce makespan because of the non-linear performance
gain. Second, the default approach cannot reallocate two idle
GPUs to Job 2 while it is running, leading to resource under-
utilization. In contrast, the other two approaches conduct “re-
shaping up” to improve the utilization. The approach based on
job termination introduces in non-trivial reshaping overhead.
In the case study, this results in the largest average job
completion time because the two jobs are relatively small
and thus the overhead becomes more severe. Our mechanism
achieves the shortest makespan and average job completion
time due to its elasticity. It spends 27 and 37 seconds on the
“reshaping down” and “reshaping up”, respectively, which is
much shorter than the time (204 and 242 seconds) spent in
the termination-based approach.

III. SCHEDULING FRAMEWORK DESIGN
A. Architecture and Workflow

Figure 5 illustrates the architecture of the scheduling frame-
work whose components are shown in grey. Specifically, the
elastic GPU allocation mechanism consists of four out of
the five scheduling framework components: an In-memory
Database, a Job Launcher, a GPU Coordinator, and SideCar
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processes. Note that one SideCar process is deployed in each
Docker container. The SideCar process receives a request from
the GPU Coordinator and sends back a corresponding report.
The SideCar process is also able to restart the DL training
process according to the received request.

Placing a SideCar process in the same container as the DL
training process enables resource allocation to be conducted
with fine granularity. In particular, without SideCar, GPU
allocation is conducted at the job level, and thus requires
restarting the entire job, including its associated containers and
all of the processes inside them. With SideCar, GPU allocation
is conducted at the process level, and thus it only requires
restarting the DL training processes inside the containers of a
given job.

Workflow for incoming job. When a job is submitted, the
framework allocates GPUs to the job. The workflow contains
two phases: early initialization and GPU allocation.

(1) Early initialization. The Job Launcher first gets the
information of the incoming job and all running jobs from the
In-memory Database. The information is sent to the Adaptive
GPU Scheduler which also retrieves offline profile from the
In-memory Database. Based on this information, the scheduler
then determines the number of GPUs to be allocated to the
incoming job. The allocated GPUs include idle GPUs and
GPUs to be removed from a running job. The scheduler sends
its scheduling decision to both the Job Launcher and the GPU
Coordinator. Based on the decision, the Job Launcher submits
the incoming job to Kubernetes so as to initialize it. Finally,
after the incoming job is initialized, the SideCar in the job
reports to the GPU Coordinator.

(2) GPU allocation. After the incoming job is initialized,
the GPU Coordinator sends a request to the SideCar in the
running job based on the scheduling decision. The request
specifies the GPUs to be removed. After the SideCar stops and
restarts the DL training processes of the running job, the GPU
Coordinator sends a request to the SideCar in the incoming
job. The SideCar starts the DL training processes with the
allocated GPUs including idle GPUs and the GPUs removed
from the running job. Finally, the GPU Coordinator updates the
In-memory Database accordingly. Note that, if the scheduling
decision does not remove GPUs from a running job, the

SideCar in the incoming job starts its processes immediately
after initialization.

Workflow for running job. When there are idle GPUs but
no incoming jobs, the framework adds idle GPUs to running
jobs. This process is performed in three steps. First, the Job
Launcher sends the information of all running jobs to the
Adaptive GPU Scheduler. The scheduler then selects a running
job to which idle GPUs can be added. Finally, the GPU
Coordinator updates the In-memory Database and sends a
request to the SideCar in the running job. The request specifies
the GPUs to be added.

B. Elastic GPU Allocation Mechanism

TABLE II
AN EXAMPLE OF GPU INFORMATION IN THE IN-MEMORY DATABASE.
GPU id State Job id | Worker id
0 in use 0 0
1 in use 0 1
2 in use 1 0
3 reserved 2 null
TABLE III
AN EXAMPLE OF JOB INFORMATION IN THE IN-MEMORY DATABASE.
Job State number GPU Job optional
id of GPUs ids type numbers of GPUs
0 running 2 0,1 0 1,24
1 adjusting 1 2 1 1,24
2 initialized 1 3 2 1,2,4
3 submitted 0 null 3 1,248
4 completed 0 null 4 1,248

In our elastic GPU allocation mechanism, SideCar is the
key component that enables resource allocation to be con-
ducted with fine granularity. Other components manage jobs
and GPUs in the cluster and work in concert with SideCar.
In particular, the In-memory Database stores GPU cluster
information and the offline job profile that is used by the
Adaptive GPU Scheduler. The Job Launcher continuously
monitors the job queue for pending (as yet unscheduled) and
newly submitted jobs. After obtaining a scheduling decision
from the Adaptive GPU Scheduler, it uses manifest files to
launch job containers in Kubernetes. The GPU Coordinator is
responsible for communicating with the SideCar process itself.

1) In-memory Database: The In-memory Database con-
tains a global view of all GPUs and jobs in a Kubernetes
cluster. To accomplish this, we use two tables to store the
global information on GPUs and jobs. Tables II and Table III
show an example of job information. A job contains one or
more workers. When a GPU is allocated to a job, it can only
be used by one worker in the job. Note that each job can be
configured with several optional numbers of GPUs, specifying
the number of GPUs that can be allocated to the job. For
example, when the optional numbers of GPUs of a job are 1,
2, and 4, the job can run successfully with 1, 2, and 4 GPUs,
respectively.

The database also stores an offline job profile that includes
a training speed profile and a training accuracy profile. The



training speed profile is used to predict the job completion time
for a certain number of epochs. If the number is not specified,
the training accuracy profile is used to initialize an online
fitting model that predicts the number of epochs. Specifically,
we classify all jobs into different types of jobs based on
DNN model, training dataset, and hyperparameters. For each
type, the training speed profile contains the training time
of one iteration with different numbers and types of GPUs,
and the training accuracy profile contains Top-5 accuracies
with different numbers of iterations. Tables IV and V show
examples of the two types of profiles. Note that profiling is
inexpensive because it only requires running each type for a
small number of iterations. The offline profile also includes
job termination and initialization time in Kubernetes, training
process termination and initialization time in DL training
framework, and model checkpoint time.

TABLE IV
AN EXAMPLE OF TRAINING SPEED PROFILE.

Job type | GPU type | # of GPUs | Time of one iteration
0 1080Ti 1 0.31 second
0 1080Ti 2 0.23 second
0 P100 1 0.25 second
0 P100 2 0.19 second
0 V100 1 0.18 second
0 V100 2 0.14 second
TABLE V

AN EXAMPLE OF TRAINING ACCURACY PROFILE.

Job type # of iterations Top-5 accuracy
0 1 0.008
0 5 0.019
0 10 0.025
0 20 0.032

2) Job Launcher: The Job Launcher periodically checks
the states of all GPUs and jobs by querying tables in the In-
memory Database. When there is an incoming job, the Job
Launcher triggers GPU scheduling by sending information
about all GPUs and jobs to the scheduler. After receiving
the scheduling decision from the scheduler, the Job Launcher
submits the incoming job to Kubernetes. In order to do this, the
Job Launcher is responsible for building the Docker image of
the job including its training code, dataset, training framework,
SideCar, and other dependencies. It also triggers scheduling
when there are idle GPUs but no incoming jobs.

3) GPU Coordinator: The GPU Coordinator provides three
main functions. 1) It receives the scheduling decision from the
scheduler and forwards the decision to SideCar to ensure that
the scheduling decision is applied. 2) It sends the scheduling
decision at the correct moment to reduce GPU idle time and
avoid conflict by preventing multiple jobs from running simul-
taneously on the same GPU. In particular, when the scheduler
decides to remove GPUs from a running job and allocate
them to an incoming job, the GPU Coordinator requests the
running job to remove GPUs after the incoming job has been
initialized. After removing the GPUs, it informs the incoming

job to start running. In this case, the removed GPUs are still
utilized by the running job during the initialization of the
incoming job, and the removed GPUs become idle just before
the incoming job starts its DL training processes. 3) Once the
GPU Coordinator receives a report from SideCar, it updates the
In-memory Database. The goal is to maintain the consistency
between the states of GPUs and jobs in Kubernetes cluster and
the corresponding information in the In-memory Database.

4) SideCar: Each job’s Docker image includes the SideCar
code, which is invoked when the container is instantiated
by Kubernetes at the direction of the Job Launcher. SideCar
receives requests from the GPU Coordinator and sends updates
to it. There are two types of requests. The first type of
request is sent to the SideCar in an incoming job that has
been initialized, after which the SideCar starts its DL training
processes. The second type of request is sent to the SideCar in
a running job. The request specifies the number of GPUs that
should be removed from or added to the job. After receiving
the request, the SideCar stops and restarts the DL training
processes with the adjusted number of GPUs.

There are two types of updates. The first type of update
is the acknowledgment to confirm that the request from the
coordinator has been executed successfully. The second type
of update contains the utilization information of the associated
GPUs. Specifically, SideCar continues to monitor the usage
of GPUs and the progress of the DL training processes. It
periodically reports the collected information to the GPU
Coordinator, which, in turn, updates the In-memory Database.

Algorithm 1 Incoming job scheduling with “reshaping down”

: /* select running jobs whose GPUs are removable */
: The incoming job: J_new;
: Set S_opt_J_new: the optional numbers of GPUs of J_new;
: The number of idle GPUs: N _idle;
. Initialize a hash table: hashmap;
: for job J_i in running jobs
Set S_opt_J_i: the optional numbers of GPUs of J_i; The maximal number
is N_max and the minimal number is N_min;
N_current: the number of GPUs used by J_i;
for N_remowve ranges from N_min to N_max:
10: if N_current - N_remove is in S_opt_J_i:
11: add N_remowve and J_i in hashmap;
12: /* decide the number of GPUs allocated to J_new */
13: Initialize T' = [0, null, 0] and M S_min = infinity;
14: for optional number of GPUs N _opt in set S_opt_J_new:
15: if N_idle > N_opt

X NOUA LN~

16: Predict completion time of J_new with N_opt GPUs based on profile;
17: Predict makespan M S_predict;

18: if MS_predict < MS_min

19: MS_min = MS_predict;

20: T = [N_opt, null, 0];

21: else

22: N_remove = N_opt — N_idle;

23: Get set S_job_remove from hashmap;

24: for job J_i in set S_job_remove

25: Predict remaining running time of J_¢ based on profile;

26: Predict completion time of J_new with N_opt GPUs based on profile;
27: Predict makespan M S_predict;

28: if MS_predict < MS_min

29: MS_min = MS_predict;

30: T = [N_opt, J;, N_removel;

31: return T';

C. Adaptive GPU Scheduler

The Adaptive GPU Scheduler provides efficient GPU
scheduling via two scheduling modes: incoming job scheduling



Algorithm 2 Running job scheduling with “reshaping up”

: /* select running jobs who are able to add GPUs */
: The number of idle GPUs: N _idle;
: Initialize a hash table: hashmap;
: for job J_i in running jobs
Set S_opt_J_i: the optional numbers of GPUs of J_t;
N_current: the number of GPUs used by J_i;
for N_add ranges from 1 to N_idle:

if N_current + N_add is in S_opt_J_i:

Add N_add and J_i in hashmap;

10: /* select the job to add GPUs */
11: Initialize T' = [null, 0] and M S_min = infinity;
12: for N_add ranges from 1 to N_idle:

R A ol S

13: Get set S_job_add from hashmap;

14: for job J_i in set S_job_add

15: Predict remaining time of J_i based on profile;
16: Predict makespan M S_predict;

17: if MS_predict < MS_min

18: MS_min = MS_predict;

19: T = [J;, N_add);

20: return T';

and running job scheduling. The goal of both is to minimize
the makespan. Incoming job scheduling is triggered when a
new job is submitted. The scheduling not only allocates idle
GPUs to the new job but also supports “reshaping down”.
Running job scheduling is triggered when there are idle GPUs
but no incoming jobs, and supports “reshaping up” to improve
resource utilization. The novelty of the Adaptive GPU Sched-
uler lies in supporting both “reshaping down” and “reshaping
up” in GPU scheduling for makespan minimization.

1) Incoming Job Scheduling: The scheduling policy for an
incoming job is shown in Algorithm 1. The algorithm first
checks the number of idle GPUs in the cluster (lines 1 to 4). It
then initializes a hash table, in which the key is the number of
GPUs N_remove and the value is the set of jobs from which
N_remove GPUs can be removed (line 5). Note that when
removing GPUs from a job, the number of remaining GPUs is
equal to one of the job’s optional numbers of GPUs (lines 6 to
11). The GPU allocation scheme is notated as a triple 7" (line
13), in which the first element is the number of GPUs allocated
to the incoming job, the second is the running job from which
GPUs are to be removed, and the third specifies the number of
GPUs to be removed. The algorithm also maintains a global
minimal makespan M S_min (line 13).

To obtain the scheme with the minimal makespan, the
algorithm iterates through every optional number of GPUs
specified in the resource requirements of the incoming job
(line 14). For an optional number N_opt, the algorithm
predicts the job completion time with N_opt GPUs (line 16
and line 26). If the number of idle GPUs is smaller than
N_opt (line 23), it calculates the number of GPUs to be
removed (IN_remove) and iterates through every running job
from which N_remove GPUs can be removed (lines 22 to
24). For a running job, the algorithm predicts its remaining
running time when N_remove GPUs are removed. Finally,
the algorithm predicts the makespan M S predict based on
the predicted remaining running time of the running job and
the job completion time of the incoming job. If M S_predict
is smaller than the global minimal makespan, both M.S_min
and 7' are updated (lines 19 to 20 and lines 29 to 30).

The predicted completion time of a new job is the sum of job
initialization time in Kubernetes, training process initialization
time in the DL training framework, model training time for
a certain number of training epochs, model checkpoint time
before termination, training process termination time in the DL
training framework, and job termination time in Kubernetes.
Similarly, the predicted remaining running time of a running
job is the sum of model checkpoint time before restarting train-
ing process, training process termination and initialization time
in the DL training framework, model training time for a certain
number of remaining training epochs, model checkpoint time
before termination, training process termination time in the DL
training framework, and job termination time in Kubernetes.

When the number of training epochs is not specified, the
scheduler employs the online fitting method of Optimus [14]
to predict the number of remaining training epochs required
to achieve a desired validation accuracy. In particular, the
scheduler first obtains training accuracy data points from the
training accuracy profile and then collects more data points
during the training. Each data point is a pair of training
accuracy and the number of iterations. Based on the points
collected so far, the scheduler uses a non-negative least squares
solver [14] to build a training accuracy curve that fits the
points. Finally, the scheduler uses the accuracy curve to predict
the number of epochs. Since the scheduler can collect more
and more data points as the job progresses, the prediction
accuracy improves continuously.

Note that the algorithm considers that each “reshaping
down” involves one running job and one incoming job. Based
on this consideration, the algorithm enumerates all possible
values for the three elements in the triple 7" and chooses the
values that achieve the minimum makespan. Thus, the algo-
rithm derives the optimal GPU allocation. The time complexity
is O(n*m*k), in which n is the number of optional numbers
of GPUs in Table III, m is the number of running jobs, and k
is the average number of GPUs used by running jobs.

2) Running Job Scheduling: This scheduling policy is
shown in Algorithm 2. The algorithm checks the number of
idle GPUs in the cluster and initializes a hash table where the
key is the number of GPUs N_add and the value is the set
of jobs that are able to add N_add GPUs (lines 2 to 3). Note
that when adding GPUs to a job, the total number of allocated
GPUs is equal to one of the job’s optional numbers of GPUs
(lines 4 to 9).

The GPU allocation scheme is notated as a tuple 7" (line 11),
in which the first element is the running job to which GPUs
will be added and the second specifies the number of GPUs
to be added. The algorithm also maintains a global minimal
makespan M.S_min (line 11). To determine the scheme with
the minimal makespan, the algorithm first iterates through the
number of idle GPUs (N_add) from one to N_idle (line 12).
Then, it iterates through every running job to which N_add
GPUs can be added (line 14). For a running job, it predicts
its remaining running time when N_add GPUs are added.
Finally, the algorithm predicts makespan M S_predict based
on the predicted remaining running time. If MS_predict is



smaller than the global minimal makespan, both M .S_min and
T are updated (lines 18 to 19).

Predicting the remaining time of a running job in running
job scheduling is similar to that in incoming job scheduling.
The only difference is that when the GPUs to be added are
not in the same host machine as the containers of the job, the
overhead of the terminating and restarting a job in Kubernetes
is considered in the time prediction.

Note that the algorithm considers that each “reshaping
up” involves one running job. Based on this consideration,
the algorithm derives the optimal “reshaping up”. The time
complexity is O(m*c), in which m is the number of running
jobs and c is the number of idle GPUs.

IV. IMPLEMENTATION

We implement the scheduling framework in Python as
plugins in Kubernetes. We use MongoDB [25] as the In-
memory Database. When a new job is submitted by a user,
a new record is added to the job information table in the
database. In the new record, the job status is set to ‘submitted’.

In the Job Launcher, there are two steps to submit a job to
Kubernetes. 1) The job is encapsulated as one or more Docker
containers. 2) A job manifest is generated to launch the Docker
containers in the Kubernetes cluster. Ansible Playbook [26] is
used to ensure that the two steps are performed sequentially.

A Python Tornado server [27] is installed in both the
GPU Coordinator and SideCar so that they can com-
municate with each other. SideCar controls (e.g., stops,
restarts or checkpoints) the co-resident DL training pro-
cess by sending Unix signals. SideCar also modifies the
environment variables NVIDIA_VISIBLE_DEVICES and
CUDA_VISIBLE_DEVICES to control the GPUs that are
visible to the process.

TABLE VI
SEVEN TYPES OF JOBS IN JOB SET ONE.

Job type ResNet model Batch size Training dataset
0 ResNet-18 64 ImageNet
1 ResNet-18 128 ImageNet
2 ResNet-18 256 ImageNet
3 ResNet-34 64 ImageNet
4 ResNet-34 128 ImageNet
5 ResNet-50 64 ImageNet
6 ResNet-8 1024 Cifarl0
TABLE VII

SEVEN TYPES OF JOBS IN JOB SET TwWoO.

Job type DL model Batch size Training dataset

0 ResNet-18 256 ImageNet
1 ResNet-34 128 ImageNet
2 InceptionV3 128 ImageNet
3 VGG16 64 ImageNet
4 GoogLeNet 512 ImageNet
5 AlexNet 256 ImageNet
6 LeNet 1024 MNIST

V. EVALUATION SETUP
A. Testbed and Workloads

We built two clusters to evaluate the performance of our
proposed scheduling framework. Physical Cluster is a 16-
GPU cluster that consists of two GPU servers. One server has
eight NVIDIA V100 GPUs and the other has eight NVIDIA
P100 GPUs. AWS Cluster is a 16-GPU cluster that consists
of two AWS GPU instances. One instance is p3.16xlarge
with eight V100 GPUs and the other is p2.8xlarge with eight
NVIDIA K80 GPUs. The servers and instances run CentOS 7
and employ Kubernetes 1.14.

Two job sets were built for the evaluation. Job Set One only
includes the representative ResNet model [15] and Job Set
Two consists of various popular DL models such as ResNet,
Inception [28], LeNet [29], VGG [30], GoogLeNet [31], and
AlexNet [32]. In each job set, jobs are classified into seven
types based on DL model type, batch size, and training dataset
(i.e., ImageNet [24], Cifar10 [33], or MNIST [34]). Each job
is encapsulated as one container and employs a synchronous
parallel model based on the MirroredStrategy in TensorFlow.
The details are shown in Tables VI and VII.

In Physical Cluster, we ran two workloads based on Job
Set One. They contain 40 jobs (Workload One) and 20 jobs
(Workload Two), respectively. In AWS Cluster, we ran two
workloads (Workload Three and Workload Four) based on Job
Set Two. The two workloads both contain 40 jobs. The only
difference between them is that the jobs in Workload Four do
not specify the number of epochs, so that these jobs finish
when the validation accuracy reaches a desired level. In each
workload, job arrival times are calculated using an exponential
distribution (as that in Optimus) between [0, 11000] seconds.
Upon an arrival event, we randomly choose a job from the
corresponding job set.

In Workload One, Two, and Three, the number of training
epochs is set to 1, 10, and 10 for jobs that use ImageNet, Cifar-
10, and MNIST, respectively. For each job in Workload Four,
the desired validation accuracy is set to the Top-5 accuracy
reached by the same job in Workload Three.

B. Metrics and Compared Approaches

The performance metrics include the average job completion
time (JCT) and makespan (as that in Optimus [14]). We eval-
uate the performance of three scheduling approaches: our pro-
posed scheduling framework (our framework), a termination-
based scheduling approach (termination), and the default
scheduler in Kubernetes (default). In the default scheduler,
the number of GPUs allocated to each job is randomly chosen
from the optional numbers of GPUs.

Note that the second approach adopts the scheduling algo-
rithm proposed in Optimus. That is, it only supports “reshaping
up”. More specifically, when there are idle GPUs in the cluster,
the approach first allocates one GPU (the minimal number of
required GPUs) to an incoming job. It then adds idle GPUs to
the job one by one based on job termination. When there are
no idle GPUs in the cluster, the incoming job is queued.
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Fig. 6. The makespan and average job completion time due to the three approaches.
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Fig. 7. The numbers of pending and running jobs in Workload One due to the three approaches.

VI. EVALUATION
A. Makespan

Figure 6(a) shows the makespan of the four workloads based
on the three approaches. Compared to the default scheduler,
our framework reduces the makespan by 45%, 34%, 42%, and
36% for the four workloads, respectively.

The reasons are twofold. First, when the cluster GPUs are
not fully used by the running jobs and there are no new
jobs submitted yet, the default scheduler cannot utilize the
idle GPUs. In contrast, our framework can efficiently conduct
“reshaping up” due to its adaptive scheduling and elastic GPU
allocation so as to utilize idle GPUs and reduce the makespan.

Second, in the default scheduler, when all cluster GPUs
are allocated to running jobs, a new job is pending in a queue
until one or more running jobs finish training and release their
GPUs. If each job runs with its minimal number of required
GPUs, the pending job does not affect the makespan because
there is no space for “reshaping down”. Otherwise, “reshaping
down” can reduce the makespan because of the non-linear
performance gain. Note that the performance improvement in
Workload Four is lower than that in Workload Three due to
the error in the prediction of the number of training epochs.

Compared to the termination approach, our framework
reduces the makespan by 17%, 20%, 17%, and 18% for
the four workloads, respectively. The reasons are twofold.
First, the termination approach incurs significant overhead in
“reshaping up”. Second, the termination approach does not
support “reshaping down”.

Figure 7 plots the number of pending and running jobs
in Workload One. Figure 8 further shows the number of
pending jobs when each job is submitted in Workload One.
Our framework can offer GPUs to a new job by removing
a subset of GPUs from a running job. Thus, it achieves the

lowest number of pending jobs among the three approaches.
When the last job is submitted, the number of pending jobs
due to our framework is zero, which is much smaller than the
number (12 and 3) due to default and termination approaches.

In the default and termination approaches, a new job
remains pending while all cluster GPUs are allocated to
running jobs. However, the number of pending jobs due to the
termination approach is much lower than that due to the default
scheduler. The reason is that the number of times this pending
scenario occurs due to the termination approach is much
lower than that due to the default scheduler. In particular, the
termination approach only allocates one GPU to an incoming
job during the submission and adds idle GPUs to the job later.
Thus, after the initial allocation, the number of idle GPUs
due to the termination approach is higher than that due to the
default scheduler.

In the default scheduler, jobs that require a large number of
GPUs could be negatively affected by out-of-order scheduling.
For example, consider a job that requires 8 GPUs. While this
job is waiting for such configuration, if a new job that requests
2 GPUs is submitted, the new job is scheduled on a machine
before the 8-GPU job when two GPUs become available. The
8-GPU job can only be scheduled when eight GPUs become
available and no job requests a smaller number of GPUs.

B. Average Job Completion Time

Figure 6(b) shows the average job completion time of
the four workloads. Compared to the default scheduler, our
framework reduces the average job completion time by 63%,
58%, 61%, and 55% for the four workloads, respectively.
Compared to the termination approach, our framework reduces
the average job completion time by 27%, 37%, 35%, and 36%
for the four workloads, respectively.
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Fig. 9. CDF of the job completion time due to the three approaches.

Figure 9 also plots the job completion time distribution of
Workload One and Workload Two. The results show that the
job completion time of the default scheduler has a severe heavy
tail distribution since the jobs suffer from long pending times.
Compared to the default scheduler, the heavy tail phenomena
due to the termination approach is less severe because the jobs
incur a shorter average job pending time.

The job completion time using our scheduling framework
is more evenly distributed than that due to the termination ap-
proach. The reasons are twofold. First, our framework achieves
a shorter average job pending time. Second, the termination
approach gradually searches for the optimal number of GPUs
that minimizes the makespan by adding GPUs to a running job
one by one. In contrast, the Adaptive GPU Scheduler in our
framework can find the optimal number directly, based on its
scheduling algorithm. The search process in the termination
approach prolongs the job completion time.

C. GPU Usage

Figure 10 depicts the number of allocated GPUs in Work-
load One based on the three approaches. At the beginning
of the workload, two jobs are submitted and there are no
incoming jobs until the 2 second. In this period (from the
beginning to the t2 second), eight GPUs are idle due to the
default scheduler since it cannot allocate idle GPUs to the
running jobs. The idle GPUs can only be allocated when there
are new jobs submitted at the 72 second. The termination
approach gradually adds GPUs to running jobs so that all
GPUs are allocated at the 7/ second. In our framework, all
GPUs are allocated to running jobs at the beginning, according
to the scheduling decision from the Adaptive GPU Scheduler.

In the default scheduler, when the number of GPUs in use
drops to 12 around the 20,000 second, there is a pending
job in the cluster. The number of GPUs required by that job is
eight. However, the default scheduler cannot allocate the four
idle GPUs to the job due to its inelasticity.
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D. Overhead Analysis

Table VIII presents the overhead of the four workloads
based on our framework and the termination approach. The
overhead is measured as the ratio of the total time spent on
removing and adding GPUs to the total runtime of all jobs.
The overhead due to our framework is small compared to its
performance improvement. The termination approach incurs
much higher overhead compared to our framework.

Taking a closer look at the overhead analysis, Figure 11
plots the numbers of removing and adding events in Workload
One based on the two approaches. The results show that the
number of adding events (46) due to the termination approach
is much higher than that (16) of our framework because the
termination approach only allocates one GPU to a job during
the job submission, and gradually adds GPUs to the job. There
is no removing event in the termination approach because it
does not support “reshaping down”.

TABLE VIII
THE OVERHEAD OF OUR FRAMEWORK AND TERMINATION APPROACH.
Workload Workload Workload Workload Average
One Two Three Four
Termination 29.3% 21.9% 27.1% 28.6% 26.7%
Our framework 8.9% 6.7% 7.6% 8.3% 7.9%




E. Discussions

Compatibility. Our scheduling framework considers that jobs
are running in Docker containers. Thus, it can be extended
as plugins in other orchestration platforms, such as Apache
Yarn [35]. It can also be applied to other types of jobs (e.g.,
batch jobs) that run in Docker containers.

Straggler. Our framework considers that there are no strag-
glers [36], [37] in job training because a given GPU is not
shared by multiple jobs, and thus there is no interference
between jobs that are running simultaneously.

Synchronous parallel model. TensorFlow employs two strate-
gies (MirroredStrategy and MultiWorkerMirroredStrategy) to
support AllReduce-based synchronous training. Our frame-
work is compatible with both strategies and it launches ap-
propriate number of SideCar processes for each of them.
Communication pattern. Job completion time prediction in
our framework is based on per-iteration execution time and is
agnostic to the communication pattern in training. Thus, our
framework works for both AllReduce and Parameter Server
architectures.

SideCar limitation. In performing running job scheduling,
SideCar cannot reallocate GPUs for a given job when the
GPUs to be added are not in the same host machine as the
containers of the job. In this scenario, our framework must
terminate and restart the job to add GPUs. Note that the
overhead of the terminating and restarting a job is considered
in the scheduling algorithm.

Model parallel. In DL training frameworks, there are two
strategies for distributed training: data parallel and model par-
allel. Since SideCar is non-intrusive to DL training frameworks
and is agnostic to the training strategy used in the DL training
process, our proposed framework can also be applied to DL
jobs that employ model parallel distributed training.

VII. RELATED WORK

Improving the efficiency of distributed DL training has
become the focus of recent works. The techniques in our
scheduling framework are related to the following research.
Distributed DL training. Based on a Parameter Server
(PS) architecture [38], [39], a number of distributed DL
frameworks (e.g., TensorFlow [10] and MXNet [40]) have
been developed. BigDL [41] is proposed as a distributed DL
library for Spark [17]. With BigDL, users can write their
DL applications as standard Spark programs. Poseidon [13]
uses wait-free backpropagation that overlaps the backward
propagation computation with the gradient communication.
iBatch [42] is a novel communication approach that batches
parameter communication and forward computation in PS
to overlap them with each other. P3 [43], TicTac [44], and
ByteScheduler [6] change the transmission order of different
DNN layers in order to reduce the communication overhead in
a PS architecture. PHub [45] is a multi-tenant and rack-scale
PS design for cloud-based distributed deep neural network
training. Parallax [46] integrates PS with an AllReduce archi-
tecture to optimize the amount of data transmission. LAG [47]
proposes a lazily aggregated gradient that adaptively skips the

gradient calculations to reduce communication and computa-
tion in PS. PyTorch [11] supports distributed DL training using
AllReduce primitives. Horovod [48] is designed for scalable
distributed deep learning using TensorFlow. It implements an
AllReduce operation using a ring-based algorithm and MPI
for communication.

The above approaches optimize the training of a single dis-
tributed DL job, whereas our scheduling framework optimizes
the GPU scheduling of multiple distributed DL jobs.
Resource scheduling in multi-job DL clusters. Tiresias [5]
is a GPU cluster resource manager that minimizes the job
completion time based on the characteristic study of the Mi-
crosoft cluster, Philly [4]. SLAQ [22] uses a dedicated cluster
to run distributed ML jobs in the early feedback phase. The
goal is to maximize the average model accuracy in that phase.
It dynamically allocates CPU resources at runtime based on
the job resource demand and intermediate model accuracy.
Gandiva [8] accelerates DL model training in feedback-driven
exploration by dynamically changing GPU usage modes of
distributed deep learning jobs at runtime. It can reduce early
feedback latency and improve the scheduling efficiency in
GPU clusters. However, this approach is intrusive to DL
training frameworks. Optimus [14] minimizes makespan and
average job completion time of multiple jobs running in a PS
architecture. It designs a novel resource-performance model
and proposes a scheduling scheme to dynamically adjust the
number of allocated workers and servers. However, the adjust-
ment does not support “reshaping down” and is implemented
based on job termination, which results in significant overhead.

Our proposed scheduling framework is not intrusive to DL
training frameworks and supports both “reshaping down” and
“reshaping up”. It also includes an elastic GPU allocation
mechanism to further reduce the overhead in reshaping. Thus,
it is efficient and non-intrusive in GPU utilization.

VIII. CONCLUSION

This paper presents an efficient, non-intrusive GPU schedul-
ing framework that employs a combination of an Adaptive
GPU Scheduler and an elastic GPU allocation mechanism to
reduce makespan and improve resource utilization. The Adap-
tive GPU Scheduler uses training job progress information to
determine the most efficient GPU allocation and reshaping.
The elastic GPU allocation mechanism further reduces the
reshaping overhead by using a SideCar process that is able to
control the DL training processes of a job. We implemented the
scheduling framework as plugins in Kubernetes and conducted
evaluations on two 16-GPU clusters with multiple training
workloads based on TensorFlow. The evaluation results show
that our proposed scheduling framework reduces the overall
execution time and the average job completion time by up to
45% and 63%, respectively, compared to the default scheduler.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

1. Testbed: we built a 16-GPU cluster that consists of two GPU
servers. One server has eight NVIDIA Tesla V100 GPUs and the
other one has eight NVIDIA Tesla P100 GPUs. The two servers in
the cluster run CentOS 7 and share a file system. The Kubernetes
version is 1.14 and the Docker version is 18.09.

2. Open-source software used in our framework: we use Mon-
goDB as In-memory Database. Job Launcher submits a job to Ku-
bernetes based on Ansible Playbook. GPU Coordinator and each
SideCar process include a Python Tornado server so that they can
communicate with each other.

3. Workloads: we built two workloads based on representative
ResNet model and training datasets ImageNet and Cifar-10. The
two workloads contain 40 jobs and 20 jobs using TensorFlow 1.12,
respectively. Job arrival times are calculated using the exponential
distribution. To submit a job, a user inserts a new record in the job
information table in the In-memory Database. The record specifies
the location of the dataset and training code in the shared file
system.

ARTIFACT AVAILABILITY

Software Artifact Availability: Some author-created software ar-
tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: There are associated proprietary artifacts
that are not created by the authors. Some author-created artifacts
are proprietary.

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER
Relevant hardware details: NVIDIA Tesla V100 and P100 GPUs

Operating systems and versions: CentOS 7

Compilers and versions: Python 3.6.8

Applications and versions: Kubernetes 1.14, TensorFlow 1.12,
Libraries and versions: Docker 18.09

Key algorithms: traversal

Input datasets and versions: ImageNet, Cifar-10



