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Abstract

Summary: Heterogeneity is a hallmark of many complex human diseases, and unsupervised hetero-
geneity analysis has been extensively conducted using high-throughput molecular measurements and
histopathological imaging features. “Classic” heterogeneity analysis has been based on simple statistics
such as mean, variance, and correlation. Network-based analysis takes interconnections as well as indi-
vidual variable properties into consideration and can be more informative. Several Gaussian graphical
model (GGM)-based heterogeneity analysis techniques have been developed, but friendly and portable
software is still lacking. To facilitate more extensive usage, we develop the R package HeteroGGM, which
conducts GGM-based heterogeneity analysis using the advanced penaliztaion techniques, can provide
informative summary and graphical presentation, and is efficient and friendly.

Availability: The package is available at https://CRAN.R-project.org/package=HeteroGGM.

Contact: shuangge.ma@yale.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Heterogeneity is a hallmark of cancer, diabetes, and many other complex
diseases. It has different definitions under different contexts. Here we focus
on the scenario under which samples form subgroups, and (molecular,
imaging, etc.) variables have different properties in different subgroups.
Unsupervised heterogeneity analysis can assist identifying disease subty-
pes, provide a deeper understanding of disease biology, and serve as the
basis of downstream analysis such as regression. It has been based on high-
throughput molecular measurements (gene expression, SNP, methylation,
etc.) as well as histopathological imaging features. A few example are pro-
vided in Section 1 of the Supplementary Materials. “Classic” heterogeneity
analysis has been based on simple statistics, such as mean, variance, and
correlation. Network-based analysis can accommodate such information
as well as that on the interconnections among variables, take a system per-
spective, and be more effective. One of the most popular network analysis
approaches is Gaussian graphical model (GGM) and has been applied to
a variety of molecular, histopathological imaging, and other types of data.

With minor revisions, GGM techniques can also be applied to non-normal
data. A few examples are described in Section 1 of the Supplementary
Material. GGM-based heterogeneity analysis approaches include JGL —
joint graphical Lasso (Danaher et al., 2014), pPGMM — parsimonious Gaus-
sian mixture models (Gao et al., 2016), SCAN — Simultaneous Clustering
And estimatioN of heterogeneous graphical models (Hao et al., 2018), and
others, and have led to promising findings. These and some other early stu-
dies are limited in that the number of subgroups is assumed to be known
a priori, which is not realistic. In addition, the accompanying software
programs are not sufficiently “friendly”, hindering broad utilization.

In a very recent study (Ren et al., 2021), a novel approach based
on the penalized fusion technique is developed to fully data-dependently
determine the number and structure of subgroups in GGM-based hetero-
geneity analysis. The goal of this study is to develop a user-friendly R
package implementing this and the highly relevant approach developed in
Zhou et al. (2009). Beyond the original approaches, more estimations are
added, so that the package is self-contained and more comprehensive. Pre-
sentation functions are developed, so that the package can provide “more
direct” insights for practitioners.
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Fig. 1. Workflow of the HeteroGGM package

2 The HeteroGGM package

The main workflow is presented in Figure 1. This package implements
two GGM-based heterogeneity analysis methods: (i) the penalized fusion-
based method developed in Ren et al. (2021), which data-dependently
determines the number of sample subgroups. In the original development,
the penalty is built on MCP (Minimax Concave Penalty); and (ii) the
method developed in Zhou et al. (2009), which assumes that the num-
ber of subgroups is known a priori or determined elsewhere (for example
using the approach in Ren et al. (2021)). In the original development, the
penalty is built on Lasso. In the package, to be more comprehensive, we
allow users to choose from Lasso, MCP, and SCAD (Smoothly Clipped
Absolute Deviation Penalty) base penalties for both methods. Computation
of both methods is realized using EM (expectation maximization), ADMM
(Alternating Direction Method of Multipliers), and S-AMA (Sparse Alter-
nating Minimization Algorithm) techniques. Details on the methods and
computation are provided in Section 2 of the Supplementary Material. The
package has the following key functions:

o GMMPF: It applies the method developed in Ren et al. (2021). Input
includes the data matrix, an upper bound for the number of subgroups,
and the choice of base penalty (with MCP being the default). It gene-
rates the number of estimated subgroups, subgrouping memberships
for samples, and network structures for all subgroups.

e PGGMBC: It applies the method developed in Zhou et al. (2009). The
design of the function is similar to the above. The key difference is
that the number of subgroups needs to be specified, either based on
prior knowledge or from other analysis (for example using GMMPF).

o summary-network & plot-network: These two functions summarize
the key findings, including the numbers of edges for all subgroups,
numbers of overlapping edges, graphical presentation of the networks,
and information on nodes that are connected to a specific node of
interest.

In Section 3 of the Supplementary Material, we provide demonstrative
code for implementing the above functions to a sample dataset.

3 Application examples

We apply the aforementioned functions to two data examples. (i) We
analyze the TCGA gene expression data on breast cancer patients. The
data contains measurements on 73 genes in the Wnt signaling pathway
and 771 subjects with primary solid tumors. The GGMPF function identi-
fies three sample subgroups with sizes 156, 331, and 284, respectively, and
their networks have 322, 252, and 68 edges, respectively. The PGGMBC
function, with the number of subgroups set as three, generates subgroups
with sizes 172, 320, and 279, whose networks have 402, 302, and 88
edges, respectively. Significant differences are observed, and discussi-
ons are provided in the Supplementary Materials. (i) We analyze the
TCGA lung squamous cell carcinoma (LUSC) data. To demonstrate the
broad applicability of the GGM-based heterogeneity analysis and the
package, we analyze 89 histopathological imaging features extracted using
an automated digital signal processing pipeline. Six sample subgroups
with significantly different networks are identified. For both datasets, we
provide additional numerical and graphical results in Section 4 of the
Supplementary Material.

4 Discussion

With the still strong demand for heterogeneity analysis and successes of
recent network-based analysis, we expect a significant growth in network-
based heterogeneity analysis. The HeteroGGM package can realize the
most advanced and recent GGM-based heterogeneity analysis methods
and, with its comprehensiveness and user-friendly functions, significantly
facilitate routine data analysis. It only demands basic R settings, and its
compartmentalized design will also facilitate revision and partial adoption.
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