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ABSTRACT Efficient modeling of high-dimensional data requires extracting only relevant dimensions
through feature learning. Unsupervised feature learning has gained tremendous attention due to its unbiased
approach, no need for prior knowledge or expensive manual processing, and ability to handle exponential
data growth. Deep Autoencoder (AE) is a state-of-the-art deep neural network for unsupervised feature
learning, which learns embedded-representations using a series of stacked layers. However, as the AE
network gets deeper, these learned embedded-representations can deteriorate due to vanishing gradient,
leading to performance degradation. This article presents ResNet Autoencoder (RAE) and its convolutional
version (C-RAE) for unsupervised feature learning. The advantage of RAE and C-RAE is that it enables the
user to add residual connections for increased network capacity without incurring the cost of degradation for
unsupervised feature learning compared to standard AEs. While RAE and C-RAE inherit all the advantages
of AEs, such as automated non-linear feature extraction and unsupervised learning, they also allow users to
design larger networks without adverse effects on feature learning performance. We performed classification
on learned embedded-representation to evaluate RAE and C-RAE. RAE and C-RAE were compared against
AEs on MNIST, Fashion MNIST, and CIFAR10 datasets. When increasing the number of layers, C-RAE
outperformed AE by showing significantly lower performance degradation of classification accuracy (less
than 3%) compared to AE (33% to 65%). Further, C-RAE exhibited higher mean accuracy and lower variance
of accuracy than standard AE. When comparing RAE and C-RAE with widely used feature learning methods
(Convolutional AE, PCA, ICA, LLE, Factor Analysis, and SVD), C-RAE showed the highest accuracy.

INDEX TERMS Deep learning, unsupervised learning, autoencoders, ResNet, classification, deep embedded
classification, feature learning, dimension reduction.

I. INTRODUCTION

In this era of industrial big data, a massive amount of data
is available to the public through various industries such
as intelligent transportation [1], [2], power grids [3], cloud
computing [4], and finance [5]. Knowledge extraction on
these data is crucial for continuous improvements, process
automation, and resilience improvements of these industrial
systems [6]. Even though data availability increases expo-
nentially with time, these multi-variety data has many intri-
cacies such as incompleteness, high-dimensionality, noise,
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and rarely labeled [7]. This article focuses on two main
intricacies; high-dimensional and unlabeled data.

The first area of focus is the high-dimensionality of data.
The reliability of knowledge extraction methods generally
deteriorates due to the curse of dimensionality [8]. In other
words, extracting relevant features leads to a reduced num-
ber of features that results in efficient knowledge extrac-
tion methods with high accuracy [9]. Therefore, when
using high-dimensional data for data-driven machine learn-
ing tasks, it is necessary to capture only the relevant infor-
mation [2], [8], [10]. Extraction of relevant features and
reduction of input data dimensions are performed using
various feature learning and dimensionality reduction tech-
niques. This is achieved by performing non-linear mapping of
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FIGURE 1. The need for Deep Neural Networks (DNN) based unsupervised feature learning and its advantages.

input data into an embedded representation [11]-[13]. Since
the embedded representation only contains relevant infor-
mation, we can use these learned embedded representations
to perform various machine learning tasks with improved
reliability.

The second area of focus is the abundance of unlabeled
data. Real-world settings bring the challenge of dealing with
high volumes of unlabeled data. The manual labeling process
is time-consuming, expensive, and requires the expertise of
the data [14]. Further, supervised feature learning not only
is unable to take advantage of unlabelled data, but it also
can result in biases by relying on labeled data. Therefore,
unsupervised deep learning based feature learning(feature
extraction) has gained tremendous attention.

Many dimensionality reduction based unsupervised fea-
ture learning methods has been proposed to address the
above two problems. Widely used unsupervised feature
learning techniques include Principle component analy-
sis (PCA) [15], Independent component analysis (ICA),
Locally Linear Embedding (LLE) [15], Factor Analysis
embedding, and SVD embedding. Recently, Deep Learn-
ing has shown remarkable performance in many areas. It
has been successfully used to convert high-dimensional fea-
ture spaces into new embedded representations with rele-
vant and robust features [8], [14], [16]. This effective trans-
formation of the input data space to embedded space has
been achieved through unsupervised deep learning meth-
ods such as deep convolutional autoencoders (C-AEs) [11],
[13]. Figure 1 shows current applications of Deep Neu-
ral Network (DNN) based approaches for various indus-
trial applications such as process automation and resilience
improvement.

Even though Deep learning had become the primary tech-
nique with state-of-the-art performance in many areas, they
have the problem of vanishing gradient, i.e., when the net-
work goes deeper, its performance gets saturated or even
starts degrading rapidly. [17]. Because of this, the shallow
counterparts can perform better than deep networks [17].
He et al. proposed residual blocks between layers to alle-
viate the problem of performance degradation [17]. These
networks are called ResNets [18]-[22].
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While the ideas of adding residual connections do exist,
there has been very limited work that has applied it to unsu-
pervised feature learning. Further, the existing work does
not address the effect of performance degradation of deep
neural networks for unsupervised feature learning. Therefore
in this article, we present a framework that consists of residual
blocks in AE architectures for unsupervised feature learning.

We use AEs to perform unsupervised feature learning.
The unsupervised here refers to the unsupervised process of
feature learning, i.e., learning of embedded representation
from input data without using any labels. We used data
labels only for the evaluation of learned embedded repre-
sentations. We hypothesize that AEs with residual connec-
tions (RAE) will have improved resistance to performance
degradation of learned features and improved feature learning
capability compared to standard AEs. L.e., residual connec-
tions will alleviate possible information loss when increasing
the number of hidden layers, and embedded representation
will provide better separability for classification/clustering
tasks.

Mainly for unlabeled data, it is challenging to decide
the optimal number of hidden layers ahead when design-
ing dimensionality reduction experiments. The proposed
approach will always perform similar or better, even with a
higher number of layers. Therefore, users have the advantage
of designing few experiments with large networks, knowing
that there is no adverse effect on the network’s dimension
reduction performance. To test our hypothesis, it is neces-
sary to show that RAEs have lower performance degradation
of unsupervised feature learning than AEs when increasing
the networks’ depth. We showed the effectiveness of the
approach quantitatively by calculating the classification accu-
racy drop. Le., we increased the number of hidden layers
on both AEs and RAEs and checked how the classification
accuracies on embedded representations change with the
increase of the number of hidden layers. We used K Nearest
Neighbor (KNN) for classification, as it allows us to check
whether the same class samples are close to each other in the
learned embedded representation (if the learned feature space
learns a representation that encodes high-level concepts such
as the classes of the input datasets).
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The article presents the following contributions:

o Address the effect of performance degradation of deep
neural networks for unsupervised feature learning

o Performance comparison between proposed architec-
ture (RAE) and standard AE based feature learning,
using a different number of hidden layers on three dif-
ferent datasets.

o Performance comparison between widely used unsuper-
vised dimensionality reduction methods

We compare the presented method against two relevant
groups of methods (a total of 7 different methods). The first
group is represented by Autoencoders, which the literature
indicates to be the most commonly used state-of-the-art deep
learning based unsupervised dimensionality reduction archi-
tectures. We focus on standard Autoencoder and standard
Convolutional Autoencoders because these are: 1) most fre-
quently used; 2) other variants of AEs in the literature follow
the principles of these two. Our objective was to evaluate how
residual connections improve ““feature learning™, as such we
compared against the same models with and without resid-
ual connections to evaluate improvement. The second group
represents other types of feature extraction methods (five of
those): Principal Component Analysis, Independent Compo-
nent Analysis, Locally Linear Embedding, Factor Analysis,
and Singular Value Decomposition.

The rest of the article is organized as follows: Section II
presents the background and related work; Section III
presents the RAE architecture; Section IV discusses the
experiments and results; and finally, Section V presents the
conclusions of the article.

Il. BACKGROUND AND RELATED WORK

This section consists of three subsections. The first subsec-
tion discusses widely used traditional unsupervised dimen-
sionality reduction techniques. The second section discusses
Autoencoder based deep learning approaches for dimension-
ality reduction. The third section discusses the theory behind
residual connections.

A. TRADITIONAL UNSUPERVISED MACHINE LEARNING
FOR DIMENSIONALITY REDUCTION

As discussed in the introduction, feature learning is essen-
tial for efficient and accurate machine learning tasks. Two
types of dimensionality reduction based feature learning tech-
niques exist, namely feature selection and feature transfor-
mation [23]. A subset of features from the original space is
selected in feature selection, whereas in feature transforma-
tion (Dimension reduction), it generates an entirely new set
of features. Both try to keep as much information in the data
as possible while reducing the dimension. However, feature
selection can be misleading as it assigns weights to individ-
ual features ignoring the correlation between features [23].
Therefore, feature transformation approaches are preferable.
Widely used such dimension reduction techniques are dis-
cussed below.
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o Principal Component Analysis (PCA): A linear algo-
rithm which preserves most of the data’s variability in
the latent space [15]. It minimizes the redundancy (mea-
sured through covariance) of data while maximizing
information (Measured through variance) in the resulted
space. Limitations include; 1) it only considers linear
correlation, 2) input variables are assumed to be scaled
at the numeric level [24].

o Independent Component Analysis (ICA): A linear trans-
formation method that minimizes the dependence of
the components of the transformed feature space [24].
Linearity is a major disadvantage of this method.

o Locally Linear Embedding (LLE): This is a non-linear
algorithm that uses neighborhood preservation learning
to generate subspace [15], [24]. However, this method
has a high sensitivity for noise/outliers.

o Factor Analysis: This is the same as PCA in cases where
the added noise is zero [25]. This method assumes that
input data represent independent, random samples from
a multivariate distribution. If variables are correlated,
generated factors can be highly correlated [26].

o Singular Value Decomposition (SVD): This is mainly
used for sparse data, i.e. when data contains many zero
values. It converts the input data space to a latent rep-
resentation with a reduced number of features while
keeping the maximum information from the original
space [27]. This approach is computationally expensive.

B. UNSUPERVISED DEEP AUTOENCODERS FOR
DIMENSIONALITY REDUCTION

The traditional concept of unsupervised learning was mainly
limited to the idea of data clustering and association rule
mining. However, the expansion of deep learning methods
and data mining combined with this era of big data has
given a much broader perspective to traditional unsupervised
learning. Therefore, unsupervised learning is used not only
for clustering, but also for dimentionality reduction (also
referred as unsupervised feature learning / deep embedded
representation learning) [28], [29], generative modelling [30],
[31], and auto-regressive modelling [32], [33]. This article
focuses on deep unsupervised feature learning, which is the
process of transforming the input space to an embedded
space, preferably a lower dimension compared to the input
data space, using deep neural networks.

Many recent classification tasks use different variants of
AEs, to learn feature representation from high-dimensional
input data, where the learned (extracted) features will provide
good separability for classification tasks. In these cases, fea-
ture extraction will be performed in an unsupervised manner,
whereas classification will be performed on the extracted
features in the reduced dimension in a supervised man-
ner. Feature learning using variants of AEs has shown the
following advantages: improve the robustness of feature
learning [13], non-linear feature extraction [12], replac-
ing handcrafted features with efficient algorithms for
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TABLE 1. Algorithm for Training the Proposed RAE.

Algorithm I: RAE Training

Inputs: Training set of images (X)

Outputs: Trained RAE, Encoder
I: Random Weight initialization

2:  for each epoch e do

3 fori = 1...T do /Mmumber of training samples
4 x; < pick random input record from X

5: h + z;

6: forl=1...L. do /leach hidden layer  in encoder
7: hy < h

8 for j=1..F do /leach layer j in f

9 hy — o(WEDhy + b))

0 end for

1

add residual connection to the hidden activation A s
b W%+ hy

12: end for
13: yi < h
14: forl =1...Lydo //each hidden layer 1 in decoder do
15: Y 0o (V(l>y1, + c(l>)
16: end for
17: end for
18: Compute the reconstruction loss:
Jo =% 1 (@i — yi)?
19: Perform one-step of the optimizer:

0 = argming(Jg)
20:  end for

Algorithm II: Deep Embedded Classification using KNN
Inputs: Training set(X), Training labels (Y"), Testing set(X "), Testing labels (Y”), Trained Encoder
Outputs: Accuracy

10 Ztrain < Encoder(X) %convert training data to embedded representation

2. Ztest =4 Em:orle*r(X’) Yconvert testing data to embedded representation
3 Initialize a list (zy) to store predicted class label
4; for each sample (7) in z¢es¢ do
5: Initialize a list ({ist) to store < distance, class > pairs
6: dist < 0, label + 0
7: for each sample (j) in z¢rqin do
38 dist < ||ztest,i — Ztrain,jll
9: label + classlabelofhx
10: list +— append < dist, label >
11: class_list < find list of labels of K nearest neighbors
12: predicted_class < mode(class_list)
13: 2y =< append(predicted_class)
14: end for
15:  end for
16:  calculate accuracy using z, and Y’

unsupervised feature learning [34], and reduces the time and
storage space through dimensionality reduction [35].

The variant of deep AEs has been successfully used for
deep embedded clustering tasks that perform feature learning
and clustering simultaneously. In the past, clustering and
feature learning were performed sequentially, i.e., it embeds
the input space to a latent space and then performs cluster-
ing on the embedded space [29], [36]. With deep embed-
ded clustering, it performs a joined optimization of feature
learning (dimensionality reduction), and clustering [29]. For
example, in [37], the authors have presented a deep cluster-
ing approach using fully connected convolutional AEs. They
argue that the embedded representations extracted from an
encoder may not be discriminative enough for efficient clus-
tering. To overcome that, they have proposed a soft k -means
model on top of the encoder to make a unified clustering
model.

C. RESIDUAL CONNECTION WITHIN DEEP NEURAL
NETWORKS

He et al. raised the awareness towards the problem of per-
formance degradation [18]. I.e., when the network’s depth
increases, the network’s performance will start to saturate,
and eventually, it can even deteriorate [19]. This is not caused
due to the over-fitting, but by the vanishing gradient of deep
neural networks [19].
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This problem has been addressed by various network
designs networks such as ResNets [18], [20], Highway Net-
works [21], and DenseNets [22]. All these networks use
the same design principle, i.e., skip connections or residual
connections [19]. These networks with skip connections have
consistently shown state-of-the-art performances in different
neural network typologies [18], [21]. Other advantages of
skip connection includes better easier training [19], numer-
ical stability and easier optimization [19], [38]. Empirical
evidence has shown that these deep architectures with skip
connections should not produce a large error than their shal-
low counterparts [18], [20].

IIl. METHODOLOGY: ResNet AUTOENCODER BASED
FEATURE LEARNING FOR DEEP EMBEDDED
CLASSIFICATION

This section discusses the stacked ResNet Autoen-
coder (RAE) based feature learning approach for classifica-
tion. Figure 2 presents the standard C-AE architecture with
multiple convolution and max-pooling layers with multiple
filters.

In this article, we implemented standard and convolutional
AEs (AEs and C-AEs) with residual connections. Our intent
was to convey the advantages of adding residual connection
into AE networks to improve feature learning capability.
Therefore, we designed a simple and reproducible experi-
ment, which can run in a reasonable amount of time. We
introduced residual connection into the AE architecture and
presented the novel Residual Autoencoder (RAE) framework
for deep embedded classification. We call its convolutional
counterpart C-RAE. The proposed framework is presented
in Figure 3 where (a) presents the training of presented RAE
and (b) represent the classification task on learned features.

As similar to AEs, RAEs are trained to regenerate their
inputs from its output (Figure 3 (a)). The input sample x is
typically a n dimensional vector. Therefore the input layer
consists of n neurons. Since the RAE network is trained to
reconstruct the input, the output layer has the same number
of neurons as the input layer. The hidden layers consist of m
neurons.

Similar to AE, RAE also consists of two phases,
i.e., encoding phase and decoding phase [39], [40]. For a
high-dimentional input x, the encoder £ computes a hidden
representation z = E(x). The decoder D reconstructs the
hidden representation back to the high-dimensional input
space y = D(z). Both encoder and decoder have several
hidden layers, making a deep (stacked) RAE.

For the decoder, each hidden layer is a non-linear mapping
of the form o(Vz + ¢), where o is an activation function
such as sigmoid, tanh, softsign, or Relu [40]. V is the weight
matrix. We use superscripts V) to denote the weight matrix
that corresponds to layer /. In convolutional neural networks
(C-RAE), the matrix multiplication is replaced by a convolu-
tion operation and max-pooling (see Fig. 3).

For the encoder, each hidden layer / is composed by a
non-linear mapping f(-) and a residual connection r(-). Each
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FIGURE 2. Standard architecture of stacked convolutional auto-encoder.
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FIGURE 3. RAE based feature learning (a) Training of C-RAE, (b) C-RAE based classification/clustering.

hidden representation 4) in a hidden layer [ is computed
follows:

D — <h(1)> +f (h(l)> (D

The residual connection r(h) = W,h is a linear mapping
that ensures the dimensions match the output of the function
f. The function f can be thought of as a smaller network
with F number of layers. Each layer in f is a non-linear
mapping o (Wh + b), similar to the decoder layers. W is the
weight matrix, and we use superscripts W7 to denote the
weight matrix that corresponds to layer / and sub-layer j. For
C-RAEs, both matrix multiplications (W, and W) are
replaced by convolution operations and max pooling (see
Fig. 3).

Similar to AE, the loss function Jy of the RAE network is
also computed using the difference between input(x) and the
output(y), L.e. the error.

T
1
m=7§~m—mﬁ 2)
1=
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where x; is the ith input sample, y; is the output for ith input
sample, 6 denotes the set of parameters of the autoencoder
(weights and biases).

The RAE is trained to minimize the above loss func-
tion with 7 training samples using error-back-propagation.
The pseudo-code for RAE training is presented in
Algorithm I.

Similar to AE, the dimension of the hidden representations
(z) of RAE can be smaller or larger than the dimension of x.
When the hidden representation is small, the RAE performs
dimensionality reduction (data compression) [40].

The encoded value z is viewed as the extracted feature or
the hidden representation for the input data. Once the encoder
converts the input samples (x) to an embedded representation
z, then classification or clustering can be performed on this
latent space (shown in Figure 3 (b)).

For classification purposes, any supervised classification
algorithm can be integrated at the end of the encoder
(Figure 3 (b)). For this experiment, the K-Nearest Neighbor
algorithm (KNN) is used. Algorithm II presents the KNN
based deep embedded classification.
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As presented in Algorithm II, the trained RAE’s encoder
is used to generate an embedded representation of train and
test data (line 1-2). Then class labels for test data can be
predicted by comparing each test record with all the train
records and find the mode class label of K nearest train
records (Algorithm II line 4-12). The distance between a test
record and a train record should be calculated using a distance
calculation method to find the nearest neighbors. For this
experiment, Euclidean distance is calculated:

dim
dist(Zsest s Ztrain) = Z (Ztest,i - Ztrain,i) 3
i=0
where Z;.; is the test record, z;4iy is the train record, and dim
is the dimension of the embedded feature space (z). However,
it is possible to use other distance calculation methods such
as Minkowski, Manhattan, Mahalanobis, and cosine. Finally,
predicted labels and actual labels are compared to calculate
the accuracy of the KNN algorithm.

IV. EXPERIMENT AND RESULTS

This section discusses the experiments and results. First,
we discuss the datasets used for experimental evaluation.
Then, we present the experimental set-up and architecture
details of the networks. Finally, we discuss the results of the
experiment with a comparison between existing dimension-
ality reduction methods.

A. DATASETS

Three datasets were used for experimental evaluation:
1) MNIST [41], 2) CIFARI10 [42], and 3) Fashion
MNIST [43]. All the datasets were scaled to the 0-1 range.
These benchmark datasets were selected due to their rela-
tively high dimension and reasonable training time with deep
networks. Datasets were directly obtained from the Keras
library [44].

The MNIST dataset consists of hand-written digits
(0-9), where each digit is an image of 28 X 28 pixels in
size. The complete MNIST dataset was used, which consist
of 55000 train images and 10000 test images.

The Fashion MNIST dataset benchmark dataset consist
of images used for clothing classification. It consists of
images with 28 X 28 pixels in size. Class labels include
(T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt,
Sneaker, Bag, Ankle boot) The complete Fashion MNIST
dataset was used, which consists of 60000 train images and
10000 test images. Images belong to 10 classes.

The CIFAR10 dataset consists of color images of 32 X
32 pixels in size. These images correspond to 10 classes
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
truck). The complete CIFAR10 dataset was used, which con-
sist of 50000 train images and 10000 test images.

B. HYPER-PARAMETERS AND ARCHITECTURAL DETAILS
To maintain consistency in the experiments, all the archi-
tectures were kept constant across datasets when increasing
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FIGURE 4. Architecture.

the number of layers. Only two filters were used with size
32 and 64. The size of the embedded representation is
kept at 32. The number of layers were increased by repeat-
ing the convolution layer and pooling layer for a given
filter size. For this experiment number of repeating lay-
ers were increased from 2 to 90 for each filter. Optimizer
(adadelta) and K(5) were kept constant for all the experiments
across datasets. Batch normalization and leakyRelu was used
to improve model performance. For illustration purposes,
the MNIST dataset architecture with two filters (32,64) and
2 repeats is presented in Figure 4. For a given number of
repeats (f), the total number of hidden layers is 2 + (f*no. of
filters).
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TABLE 2. Classification Accuracies of Models for Different Datasets.

No of Repeated Layers Performance
Dataset | Model 3 ; 0 0 3 0 50 60 7 80 90 | Degradation
MNIST C-AE 0.9849 | 0.9836 | 0.9830 | 0.9824 | 0.9805 | 0.9767 | 0.9806 | 0.9482 | 0.9379 | 0.5559 | 0.3752 61.90
C-RAE | 09846 | 0.9853 | 0.9845 | 0.9835 | 0.9776 | 0.9768 | 0.9762 | 0.9761 0.9753 | 0.9764 | 0.9770 0.86
CIFAR C-AE 0.4285 | 0.4233 | 0.4158 | 0.4134 | 0.4052 | 0.4107 | 0.4026 | 0.3817 | 0.3076 | 0.2262 | 0.1480 65.46
C-RAE | 04313 | 0.4333 | 04312 | 0.4281 0.4246 | 0.4268 | 0.4239 | 0.4231 0.4289 | 0.4263 | 0.4217 2.68
Fashion | C-AE 0.8844 | 0.8839 | 0.8838 | 0.8795 | 0.8785 | 0.8600 | 0.8558 | 0.8078 | 0.7875 | 0.6805 | 0.5892 33.38
MNIST | C-RAE | 0.8858 | 0.8850 | 0.8826 | 0.8805 | 0.8751 | 0.8750 | 0.8733 | 0.8692 | 0.8698 | 0.8712 | 0.8683 1.97
TABLE 3. Comparative Analysis.
Dataset KNN applied after unsupervised feature extraction (Embedded classification) KNN on original
Standard ICA Factor Analysis | Truncated SVD | high-dimensional
AE RAE C-AE | C-RAE | PCA LLE Embedding Embedding Embedding feature space
MNIST 0.9745 | 0.9758 | 0.9849 0.9853 0.9758 0.9684 0.9713 0.9621 0.9755 0.9688
ﬁ‘;‘;‘s";‘ 0.8599 | 0.8617 | 0.8844 | 0.8858 | 0.8524 | 0.8126 0.8538 0.8499 0.8517 0.8552
CIFAR10 | 0.4182 | 0.4201 0.4285 0.4333 0.4039 0.2831 0.4134 0.4070 0.4019 0.3398
. 0.4 1.0 1 :] —e=—
g 0.3 ¢ [;] —e=—
< 0.2 — CIFARCAE 0.84 ¥
CIFAR C-RAE
0 20 40 60 80 X
No of Repeated layers 061 «
(a) CIFAR x
T e —————— 0.44 X %’
>08 x
< X
201 wnistcae 02 X
0.4 MNIST C-RAE u‘_{ u‘J Ll'.l u‘_l I.I'J u‘J
£ < < g
° o Nc[:)l; Repeated layers % & E ?‘) ‘.;’ % z s
2 I 2 I P g
z > > O [Ty
(b) MNIST s z i z ) 5
o c
0.9 —_————— ’% .g

o
@

e
S

Accuracy

—— Fasion MNIST C-AE
Fasion MNIST C-RAE

o
o

0 20 40 60 80
No of Repeated layers

(c) Fashion MNIST

FIGURE 5. Classification accuracy vs number of hidden layers.

C. CLASSIFICATION ACCURACY

The trained autoencoder models were used to generate the
embedded representation for the datasets. These embedded
representations were used for the classification using the
KNN algorithm, i.e., encoder followed by KNN used as the
classification network. Each experiment was repeated five
times, and the average performances were recorded.

Table 2 shows the deep embedded classification accuracy
obtained using the two models, C-AE and C-RAE, for dif-
ferent datasets when increasing the number of hidden layers.
When comparing all the models, C-RAE showed improved
accuracy compared to C-AE for all three datasets (highlighted
values in Table 2). Table 3, column 6 shows the classifica-
tion performance of KNN on the original high dimensional
data. It can be seen that both C-AE and C-RAE based deep
embedded classification showed better accuracies than just
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FIGURE 6. Accuracy distribution.

applying KNN on original data. This infers that these deep
neural network models convert original data into embedded
representations that are more suitable than using the original
input data for down-stream tasks such as classification.

Figure 5 shows a plot of the accuracies against no of
repeated layers. When increasing the number of layers,
a small fluctuation of accuracy was observed for small models
(up to 20 repeated layers) for all the datasets. For large mod-
els, when increasing the no of hidden layers, the accuracies
started to decrease. However, C-RAE showed significantly
lower degradation compared to C-AE. Therefore, it can be
inferred that C-RAE based embedded representations are
less likely to under-perform when increasing the number of
layers.

Figure 6 shows classification accuracy distribution in box
and whisker graphs for all three datasets when increasing the
number of layers. The height of the box plot indicates the
variability of classification accuracy for each model. Any-
thing outside the normal distribution is marked as outliers
shown as “X’” marks. A shorter box and whiskers plot indi-
cates low variability of classification accuracies. For all the
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C-RAE, the whiskers are shorter than C-AEs, and there are
no outliers. It shows that C-RAE has consistent performance
with low variability when increasing the number of layers.
Mean values are marked with “O”. All C-RAEs mean values
are higher than the C-AEs. These observations show that
with the change of the number of hidden layers, C-RAEs
have consistent performance, whereas, for standard C-AEs,
a thorough cross-validation process is needed.

The last column of Table 2 shows the overall performance
degradation for deep embedded classification when increas-
ing the number of hidden layers. The performance degra-
dation (PD) was calculated as the percentage accuracy drop
when increasing the number of layers:

(MaximumAcc—MinimumAcc) x 100

PD = - @)
MaximumAcc

Both C-RAE and C-AE showed some performance degra-
dation for all three datasets. C-AE without residual con-
nection showed 33.38% - 65.46% performance degradation
whereas C-RAE showed 0.86% - 1.97% performance degra-
dation. Based on the experimental result, it can be seen that
residual connections reduce possible performance degrada-
tion significantly.

D. COMPARISON BETWEEN WIDELY USED
DIMENSIONALITY REDUCTION METHODS

Table 3 presents the performance comparison between pro-
posed approaches and widely used unsupervised dimension-
ality reduction methods. We compared the proposed approach
with two state-of-the-art deep neural network based dimen-
sionality reduction methods (AE and C-AE) and five most
widely used conventional dimensionality reduction methods
in the recent literature (PCA, LLE, ICA, Factor Analysis
embedding, Truncated SVD embedding). As described in
the previous section, all these methods were used to convert
the high dimensional input space to an embedded repre-
sentation of 32 features. Then, KNN was used to perform
the classification on the embedded representations. Further,
KNN was ran to calculate the classification accuracy on the
original high dimensional space (last column of Table 3). For
MNIST, all the embedded classification approaches except
LLE and FAE showed better accuracies compared to apply-
ing KNN on the original high dimensional feature space.
C-RAE showed the highest accuracy (.9853) for MNIST. For
Fashion MNIST, only deep neural network based embedded
classification showed higher accuracy compared to KNN.
C-RAE showed the highest accuracy (0.8858) for Fashion
MNIST. For CIFAR10, all the embedded classification meth-
ods except LLE showed higher accuracy compared to KNN.
C-RAE showed the highest accuracy (0.4333) for CIFAR10.
When comparing AEs and RAEs on all three datasets, RAEs
showed slightly better performance. When comparing RAE
and C-RAE, C-RAE showed better accuracy on all three
datasets. The results of 2 and Table 3 infers that deep neural
network models convert original data into embedded rep-
resentations that are more suitable than using the original
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input data for down-stream tasks such as classification, and
C-RAE based embedded representations are less likely to
under-perform when increasing the number of layers.

E. OVERALL DISCUSSION AND FUTURE WORK

Our hypothesis was that when adding new layers to standard
AEs, their ability for effective feature learning degrades.
Through accuracy comparison in Table 2, we confirmed
that addition of residual connections to AEs (RAEs),
improved their overall classification accuracy without incur-
ring significant performance degradation (relative to standard
AEs).

Through a comprehensive comparison of widely used
unsupervised dimensionality reduction methods in Table 3,
we demonstrated that the C-RAE outperforms widely used
feature learning methods such as standard AE, KNN, PCA,
LLE, ICA, Factor Analysis, and SVD by 1%-3% improve-
ments of classification accuracy. In addition to the accuracy
improvement over standard CAE, C-RAE showed signifi-
cantly lower performance degradation of classification accu-
racy (less than 3%) compared to CAE (33%-65%), when
increasing the network depth. These results evidenced the
advantages and the overall superiority of C-RAEs for unsu-
pervised feature learning compared to standard AEs and
widely used traditional methods.

Finally, by implementing the novel RAE framework pre-
senting here, one does not need to go through a trial and
error process of finding the best architecture. Instead, one
can safely go with more layers in case a more complex
model is required for improved overall performance while not
sacrificing the dimensionality reduction performance.

The experiment was tested using three datasets that can be
trained with deep neural networks within a reasonable amount
of time. However, it has to be noticed that the advantage of
using a deep neural network is more prominent when deal-
ing with more complex datasets. Therefore, in future work,
the framework will be tested with more complex datasets,
which are high in dimension and number of data records.

V. CONCLUSION

In this article, we tackle the performance degradation prob-
lem of automated deep unsupervised feature learning. We
introduced an unsupervised deep learning framework, con-
sisting of ResNet Autoencoder (RAE) and its convolutional
version C-RAE, that allows making deeper neural networks
while not sacrificing its dimensionality reduction perfor-
mance. In this way, we improve resistance to performance
degradation compared to standard Autoencoders (AEs) for
feature learning. The performance of RAE on learning deep
embedded representations was evaluated on a classification
task using KNN. RAE was compared against AE while
increasing the number of hidden layers. We did this com-
parison on three benchmark datasets. We demonstrated that
C-RAE showed the highest accuracy on all three datasets.
At the same time, C-RAE based classification only showed
0.86% to 2.68% performance degradation, which is signif-
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icantly lower than the performance degradation showed by
standard C-AE (33.38% - 65.46%). The empirical results con-
firmed that RAE reduces performance degradation of deep
embedded representation based classification. This frame-
work allows users to design fever number of experiments
knowing that larger networks will not affect the network
performance, especially when dealing with unlabelled data
where the optimal network size is challenging to decide.
Further, the classification accuracy distribution showed that
RAE models perform better in terms of mean accuracy and
accuracy variance (low variance), making them more suitable

for

deep embedded classification tasks than AE. Finally,

we compared RAEs with widely used dimensionality reduc-
tion methods and showed that C-RAE outperforms on all
experimented datasets.
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