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1 | INTRODUCTION

In biomedical research, gene expression data have been
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Abstract

In the study of gene expression data, network analysis has played a uniquely
important role. To accommodate the high dimensionality and low sample size
and generate interpretable results, regularized estimation is usually conducted
in the construction of gene expression Gaussian Graphical Models (GGM).
Here we use GeO-GGM to represent gene-expression-only GGM. Gene
expressions are regulated by regulators. gene-expression-regulator GGMs
(GeR-GGMs), which accommodate gene expressions as well as their reg-
ulators, have been constructed accordingly. In practical data analysis, with a
“lack of information” caused by the large number of model parameters, lim-
ited sample size, and weak signals, the construction of both GeO-GGMs and
GeR-GGMs is often unsatisfactory. In this article, we recognize that with the
regulation between gene expressions and regulators, the sparsity structures of
a GeO-GGM and its GeR-GGM counterpart can satisfy a hierarchy. Accord-
ingly, we propose a joint estimation which reinforces the hierarchical struc-
ture and use the construction of a GeO-GGM to assist that of its GeR-GGM
counterpart and vice versa. Consistency properties are rigorously established,
and an effective computational algorithm is developed. In simulation, the
assisted construction outperforms the separation construction of GeO-GGM
and GeR-GGM. Two The Cancer Genome Atlas data sets are analyzed, leading
to findings different from the direct competitors.

KEYWORDS
assisted estimation, gene expressions, graphical models, hierarchy

analyses, for example, regression and clustering.
There are two main families of gene expression network
construction: unconditional and conditional. In an

routinely generated. A long array of analysis has been
conducted, among which network analysis has played a
uniquely important role. Network analysis can not only
lead to a deeper understanding of how genes affect each
other but also serve as the basis of other important

unconditional construction, when quantifying whether
two gene expressions are connected, information in other
genes is not accounted for. In contrast, a conditional
construction quantifies whether two gene expressions are
connected conditional on the rest of the genes. In a sense,
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with a system perspective, conditional construction can
be more informative and more comprehensive. Statisti-
cally, it is more challenging as the analysis of each gene
interconnection involves a large number of parameters.

In this article, we consider Gaussian Graphical Model
(GGM), which is possibly the most popular conditional
network construction approach. It has been extensively
applied to the analysis of gene expression data and led to
biologically useful findings. Representative examples in-
clude Dobra et al. (2004), Wang et al. (2016), Zhao and
Duan (2019), and others. We acknowledge that the GGM
approach is not ideal in the sense that it makes the
multivariate normal distribution assumption, whereas
practical gene expression data may have distributions
deviating from normal. In the literature, there have been
several works (Liu et al., 2012; Xue & Zou, 2012) relaxing
this assumption, and we note that the proposed technique
can be directly coupled with these works. However, these
alternatives are not as lucidly interpretable as the GGM.
In addition, when gene expression data are properly
processed (possibly with transformations), our data ex-
amination suggests that usually the distributions are bell-
shaped and unimodal. Considering the lucid interpreta-
tion and satisfactory performance observed in published
data analysis, we choose the GGM for gene expression
data while cautioning that exploratory analysis should be
conducted in practice (to examine deviation from nor-
mality) before applying the proposed approach. We refer
to X. T. Yuan and Zhang (2014), Ravikumar et al. (2011),
and Suzuki (2013) for methodological developments,
statistical properties, computational algorithms, and ap-
plications of GGMs under high-dimensional settings.
There are multiple ways for estimating GGMs, in parti-
cular including probabilistic (Friedman et al., 2008) and
Bayesian (Williams, 2018). In this article, we focus on the
probabilistic estimation, which may be more popular.
GGM is related to Bayesian networks (Jensen, 1996). In
particular, both study conditional dependence. However,
they are significantly different as Bayesian networks are
directed, while GGM is not. In addition, Bayesian
networks usually deal with categorically distributed
nodes, whereas GGM assumes the continuous Gaussian
distribution.

The levels of gene expressions are not “rootless” but
instead highly regulated by regulators including copy
number variations (CNVs), methylation, microRNAs,
and others. In the past few years, we have witnessed a
surge of multidimensional profiling studies, which col-
lect measurements on gene expressions as well as their
regulators on the same subjects. Such studies make it
possible to jointly analyze gene expressions and their
regulators, more informatively describing the whole
molecular picture. In the context of network analysis,

gene-expression-regulator GGMs (GeR-GGMs) have been
constructed (Chiquet et al, 2017), under which the
analysis of interconnection for two gene expressions is
conditional on the other gene expressions as well as reg-
ulators. We refer to Chiquet et al. (2017) and other
published studies for the rational and merit of GeR-GGM
analysis. To differentiate the two types of analysis, we use
GeO-GGM to represent a gene-expression-only GGM
analysis. We note that such techniques are also applic-
able to other types of molecular data (Chun et al., 2013)
and other types of biological data, and refer to Li et al.
(2012), M. Yuan (2010), and others for additional re-
levant discussions.

Gene expression data analysis is challenged by the
“high dimensional variables, small sample size” problem,
which gets more serious in network analysis where the
number of unknown parameters gets squared—this is
especially true in GeR-GGM constructions. To accom-
modate the high dimensionality and generate sparse net-
works that match the underlying biology (i.e., a specific
gene is only connected to a few other genes), regularized
estimation has been extensively conducted. Among the
existing approaches, the most famous is perhaps graphical
Lasso (Friedman et al.,, 2008), which applies Lasso pena-
lization in GGM estimation. Beyond Lasso, other penali-
zation approaches and approaches based on other
regularization techniques have also been developed
(Witten & Tibshirani, 2009; M. Yuan, 2010). Despite sa-
tisfactory theoretical properties of the graphical Lasso and
other regularized estimation approaches, in practical data
analysis, numerical results are still often unsatisfactory,
which can be attributable to a “lack of information”
caused by the large number of unknown parameters,
small sample size, and weak signals. To overcome this
problem, various “information borrowing” techniques
have been developed. For example, the horizontal data
integration techniques pool multiple independent data
sets that share certain similarity and jointly estimate
multiple GeO-GGMs (or GeR-GGMs) (Cai et al., 2016).
There are also studies that borrow information from prior
knowledge, for example, functional annotations of genes
or published findings (Mihaylov et al., 2019).

Our goal is to conduct more effective GGM analysis of
gene expression data, when regulator data is available for
at least some subjects (more detailed data setting de-
scribed below). The gene expression networks generated
by our analysis have the same implications and can be
utilized in the same manner as in the literature (Dobra
et al., 2004; Wang et al., 2016; Zhao & Duan, 2019). This
study has been motivated by the importance of graphical
models in the analysis of gene expression data, still not
fully satisfactory performance of the existing analysis,
and hence demand for new and more effective network
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construction. It has been made possible by the growing
popularity of multidimensional profiling. Significantly
different from the existing studies, a new analysis
strategy is proposed to borrow information across a
GeO-GGM and its corresponding GeR-GGM, so that the
estimation of the GeO-GGM can assist the estimation of
the GeR-GGM, and vice versa. Loosely speaking, this
strategy shares some similar spirit with the vertical data
integration (Wang et al., 2019). This study may advance
from the existing literature in the following aspects. The
first is to propose a biologically sensible hierarchy be-
tween the GeO-GGM and GeR-GGM, which motivates
our methodological development and has not been
accounted for in the literature. Second, although the
proposed penalized estimation shares some similarity
with published studies, its application to the present
context is new and novel. Third, statistical and numerical
properties are rigorously established, providing the pro-
posed method a stronger ground than some of the ex-
isting studies that are limited to numerical developments.
Last but equally important, our study can provide new
insights into gene interconnections for cutaneous mela-
noma and lung cancer and showcase how to extract more
information from the The Cancer Genome Atlas (TCGA)
data. Overall, this study can provide a practical and
useful new venue for gene expression network analysis.

2 | METHODS

2.1 | Strategy
Consider gene expressions G1, G2, and G3, and regulator
R (which can be multidimensional). In a GeO network
analysis, the goal is to quantify, for example, (G1, G2)IG3,
that is, the interconnection between G1 and G2 condi-
tional on G3. This interconnection can be caused by
multiple factors: (a) coregulation by R. If G1 and G2 are
both regulated by R, then they can be interconnected; (b)
coregulation by regulators other than R. Most if not all
profiling studies are “incomplete,” in the sense that not
all regulators are measured; (c) direct effects such as gene
interference; and (d) mechanisms yet to be identified. In
the analysis of (G1l, G2)IG3, G1 and G2 are inter-
connected if any of the above exists. In the analysis that
accommodates regulators, the goal is to quantify (GI,
G2)I(G3, R), that is, the interconnection between G1 and
G2 caused by (b)-(d), after removing (accounting for) (a),
and conditional on G3.

A GeO graphical model contains all-causes gene in-
terconnections, whereas a GeR graphical model contains
only gene interconnections not explained by the analyzed
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regulators. Motivated by this consideration, we proposed
the hierarchy:

the edge set in the gene-expression-regulator graphical
model is a subset of that in the gene-expression-only
graphical model.

This hierarchy connects a GeO graphical model and
its GeR counterpart. For a GeO graphical model, this
hierarchy amounts to additional information. That is, if
we can effectively take advantage of this hierarchy and
“borrow strength” from its corresponding GeR graphical
model, we can potentially improve its identification and
estimation of gene connections. The same applies to the
GeR graphical model. It is noted that this specific bio-
logically sensible hierarchy has not been considered in
the literature and can provide a way of information
borrowing significantly different from the existing ones.

The above discussions are applicable to the scenario
with gene coregulations by regulators not measured. As
such, the proposed analysis does not demand the collection
of all regulators. It also does not demand the collected
regulators all being informative. In the worst-case scenario,
R only contains unrelated noises. Then the proposed ana-
lysis will basically reduce to a GeO network analysis, with
no gain of information from regulators but also no loss.

211 | Remarks
Identifying biologically motivated hierarchy to assist data
analysis is by no means new. Examples include Schadt
et al. (2005), Yazdani et al. (2020), Zhu et al. (2012), and a
few others. In a sense, they provide support to our general
strategy of improving estimation/selection with the assis-
tance of the hierarchy. Our literature review suggests that
our study fundamentally differs from the existing hier-
archies/approaches in one or more of the following
aspects. First, the aforementioned and some other
hierarchy-incorporating studies address problems other
than conditional network analysis using the GGM tech-
nique. Second, although some of the existing studies also
deal with high-dimensional data, they conduct the analysis
of a small number of variables at a time and hence does
not demand regularized estimation/selection. Third, hier-
archy is not reinforced with penalization, which is one of
the state-of-the-art high-dimensional techniques. Fourth,
as shown below, the joint analysis of high-dimensional
variables and penalized estimation demand challenging
methodological, computational, as well as theoretical de-
velopments, which are not present in the literature.
There are also other ways of jointly analyzing gene
expression and regulator data related to the network
analysis paradigm. For example, in Wu et al. (2018), the
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associations between gene expressions and their regulators
are analyzed, taking into account the interconnections
among genes/regulators. However, these studies do not
focus on the construction of gene networks, and there is
no counterpart of the proposed hierarchy.

Strictly speaking, it is possible to design settings un-
der which the proposed hierarchy fails. With a slight
abuse of notation, we use G1, G2, R1 and R2 to also de-
note the variables representing gene expressions and
regulators. Considering the linear regression models for
generating gene expressions:

Gl=R1+R2+¢q, G2=Rl—-R2+ g,

where R1, R2 are independent and N (0, 1) distributed, and
€1, & are random errors. Here G1 and G2 are independent.
However, conditional on R1, they are not. Our preliminary
exploration suggests that it is possible to design more com-
plicated settings, for example, involving more genes and reg-
ulators, however, they share the same spirit. Failure of the
hierarchy demands regulators with completely com-
plementary effects and that only one part of such regulators
is measured. When R1 and R2 are two different types of
regulators, our extensive literature search suggests that, to
date, regulators with such complementary effects have not
been identified. When R1 and R2 are the same type, studies
have found regulators with strongly negatively correlated
effects—but they are correlated, not independent. Under the
worst-case scenario that independent and complementary
R1, R2 do exist, a closer examination of our methodology
and theoretical development suggests that, because of the
existence of the interconnection conditional on the reg-
ulators (in the GeR-GGM), the interconnection in the GeO-
GGM will be identified. Thus, there will be a false positive
discovery. However, with the estimation consistency results
described below, the estimate of the edge will converge to
zero. More discussions are provided below.

2.2 | Assisted estimation

Let Y=(%, ..., Yp)T denote p gene expressions and
X = (X, .., X,)" denote q regulators. With multiple types
of regulators, their measurements can be stacked to-
gether. Consider a data set D; = {y}j%, with ny i.i.d. copies
of Y and a data set D, = {(y, x)}}2, with n, i.i.d. copies of
(Y, X). The GeO-GGM and GeR-GGM analysis will be
conducted on D; and D,, respectively. Our strategy is to
simultaneously estimate the GeO-GGM and GeR-GGM,
borrow information across each other via the hierarchy,
and improve performance for both. The proposed ana-
lysis can flexibly accommodate multiple scenarios. The
first scenario is where the same samples have both gene

expression and regulator measurements. In this case, Dy
contains only gene expression measurements, while D,
contains both gene expression and regulator measure-
ments on the same samples. This scenario is considered
in our simulation and data analysis. Under the second
scenario, D; and D, are generated by different studies,
and there is no overlapping subject. This scenario is also
considered in our simulation. Under the third scenario,
in a single study, some samples have only gene expres-
sion measurements, while others have both gene ex-
pression and regulator measurements.

Under the GGM framework, it is assumed that ¥ and
Y1X are Gaussian distributed. The graph structures are
fully determined by the precision matrices. Specifically,
first consider the GeO-GGM. Denote Zyy and 5yy as the
covariance and precision matrices of Y, respectively.
Then ¥; LY; | Y. © Oy = 0, where Qj is the (i,j)th
element of O and Y. is Y with the ith and jth elements
removed. Further consider the GeR-GGM. Denote the

Qvy Qyx

precision matrix of (Y,X) as Q = oy Qxl Then

(Qyy)j =0 isequivalentto Y LY;| Y, X, where

(Qyy)y is the (i, j)th entry of Qyy.

We adopt penalization, a state-of-the-art high-
dimensional technique, for the estimation and identifica-
tion of graph structures. To reinforce the hierarchy and
realize information borrowing, we propose jointly esti-
mating the GeO-GGM and GeR-GGM. Denote Syy as the
empirical covariance matrix calculated using D; U D,, Syy
as the empirical covariance matrix calculated using
D,, Syx as the empirical correlation matrix calculated
using D,, and Sxx as the empirical correlation matrix
calculated using D,. We propose the objective function:

Q(Qyy, Qvy, Qvx) = L1(Qyy) + L2(Qyy, Qyx)

+ P(Qyy, Qwy) + P(Qwx), (1)
where

Li(@yy) = — logdet(@yy) + 1Sy Oyy). L(Qyy. Q)
= — logdet(Qyy) + tr(SyyQyy)
+ 2tr(SyxQyx) + tr(Sxx QyxQpyQyx), B

Oy Oyy)
_ Zp(\/ Q)2 + Q)2 Ay, }()
i#f
N ZP(KQYY)UL 43.7), B(Qyy)
v a
= 2. 2p0@yyl: 5. 7).
i=1j=1
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Here p(t; A,y) = Aj(;m(l — 1—’;)+dx is the minimax con-

cave penalty (MCP; Zhang, 2010), 4, and A, are data-
dependent tuning parameters, and y is the regularization
parameter. The estimate is defined as the minimizer
of (1), and a nonzero element corresponds to an
interconnection.

Remarks: Distributions of regulator data may further
deviate from normality. With CNV (which is analyzed in
this study), although the raw measurements are discrete,
with proper processing as in TCGA, data distributions
are continuous and mostly bell-shaped. As such, it can be
reasonable to analyze under the GGM framework. With
continuously distributed regulators such as methylation
and microRNA, marginal transformations can be applied
to get closer to normality. With for example SNP, gene-
level data aggregation and transformation may lead to
distributions closer to continuous and normal. However,
if not, we propose following the literature and replacing
the simple correlation with robust, for example, rank-
based, correlations to accommodate nonnormality. Then
the proposed approach can be applied.

Methodologically advancing from many of the exist-
ing studies, the proposed approach jointly estimates the
GeO-GGM and GeR-GGM. We note that this differs from
the joint analysis of multiple GeO-GGMs. There are two
lack-of-fit functions. L, is standard for the GeO-GGM. In
the GeR-GGM estimation, the interconnections among
regulators are not of interest. As such, we adopt a partial
GGM approach (X. T. Yuan & Zhang, 2014), which uses a
reparametrization and effectively avoids the Qxy term in
L,. This is computationally advantageous especially
when the dimension of the regulators is high. In addi-
tion, this avoids making additional assumptions on the
interconnections among regulators. It is noted that, when
needed, the full GeR-GGM lack-of-fit function can be
adopted. As described above, the proposed approach can
accommodate the scenario where some samples are used
for the construction of both L; and L,. However, as can
be seen from the theoretical development below, there
are no correlation or “double dipping” problems.

The proposed penalties have two components. The
first, P;, is a sparse group penalty built on MCP. It
generates sparse estimates (graphs) and, equally im-
portantly, reinforces the hierarchy. Specifically, if the
estimate of (Qyy)y is nonzero, the estimate of (ﬁyy)ij is
guaranteed to be nonzero (Huang et al., 2012). This way,
estimates in the GeO-GGM and those in the GeR-GGM
affect each other. For estimating one network, estimates
of the other network provide additional information
through the hierarchy, realizing information borrowing.

WILEY——

The second component, P, is a “standard” sparse pen-
alty. Qyx, which describes the conditional interconnec-
tions between gene expressions and regulators, is also
expected to be sparse. As such, P; is imposed to generate
sparsity and accommodate the high dimensionality. We
note that the above discussions are valid as long as a
“GeO-GGM + GeR-GGM” estimation problem is sen-
sibly formulated. In particular, all the three different
Dy, + D, data scenarios described above can be
accommodated.

Consider the scenario that the hierarchy is actually
violated, that is, the true value of (Qyy); is nonzero but
that of (ﬁyy);j is zero. In this case, the proposed approach
will generate nonzero estimates for both, leading to a
false-discovery with respect to (AQJYY)Q-. With the estima-
tion consistency established below, the estimate for the
zero entry will be very small. In practical data analysis,
small estimates in (ﬁyy) can raise alarm, with which one
needs to more carefully examine data to identify poten-
tial violation of the hierarchy. If found, separate esti-
mation of the GeO-GGM and GeR-GGM will be needed.

2.3 | A small example
To gain more intuition into the proposed analysis, we
simulate one small data set with p =20, q = 20, and
n=mn = 100. Qyy has a homogeneous structure with
@ = 0.1. More details on the simulation settings are pro-
vided in Section 3. The true data generating model has a
total of 36 nonzero off-diagonal entries in Qyy and 46
nonzero off-diagonal entries in Qyy (left panels of
Figure 1). Beyond the proposed method, we also consider
the alternative that separately estimates the GeO-GGM
and GeR-GGM using the MCP technique, to explicitly
demonstrate the benefit of joint estimation. The esti-
mated network structures are also shown in Figure 1.
For this specific example, the proposed method has
more accurate identification. Specifically, for the GeR
network ({yy), it identifies 14 true-positives and five false-
positives, whereas the alternative separate estimation
identifies 11 true-positives and nine false-positives. For the
GeO network (Qyy), the proposed method identifies 16
true positives and seven false-positives, where the alter-
native identifies 13 true positives and nine false-positives.
The alternative identification result violates the hierarchy.
Specifically, there are three edges that are identified in the
GeR network but not in the GeO one. We further examine
estimation performance using RMSE (details in Section 3).
The RMSE values of Qyy are 14.48 (proposed) and 15.61
(alternative), and those of Qyy are 7.65 (proposed) and
8.04 (alternative). More definitive results based on larger
scale simulations are presented in Section 3.
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True

FIGURE 1

Proposed

GeO-GGM

Gene expression networks in the small example: true (left), proposed (middle), and alternatives (right). Solid lines:

true-positives; dashed lines: false-positives; green lines: identifications that violate the hierarchy

2.4 | Statistical properties

Rigorously establishing statistical properties can provide the
proposed approach a stronger ground than those not
properly supported. Suppose that gene expressions
(4, ..., Yp) are associated with the vertex set
W = {1, 2, ..., p} of the undirected graph G; = (W, Ej), and
that gene expressions plus regulators (Y, ..., Yp, X1, ..., Xg)
are associated with the vertex set V5 = {1,2,..,p + q} of
the undirected graph G, = (15, E,). Here E; and E, are the
sets of edges. We first define the following support sets and
their =~ complements. Let :Zyy ={(i, j)|(ﬁ;y)ij #0;
iL,j=1.p} Aw={@DIQ);#0:1,j=1,..p}, and Ayx =
DI F0:i=1,..p:j = p,.p+ q} be the sets of
indices of all nonzero elements in Qyy, QFy, and Qfx, re-
spectively. Here and below, values with superscript “*”
denote the true values. Further denote A =Ayy U Ay,
A={@Pli=1..p;j=1..p+q\A, A =AyU
Ayy,and A] = {(, )li=1,...p;j =L, ... p)\Ai.

Define the following estimates:

6}'}«' —arg_ min L](ayy),
Qyy >0,(Qyy) =0

@:arg min L,(0),
Q}'y>0,®)(‘=0

where @ = (Qyy, Qyx). We also denote the maximum degrees

of the two graphs as d == max |{j € Vl|(5;1')ﬁ?50}|
i=1, .. p

and d == max |{j € ,|Qf # 0}].
i=1, .. p

Consider the 4 and €4, norms. Specifically, for

a matrix A€ RX7" ||A|; = max Z:zll Ay |, and
1<j<m
m — *
| Al = ?é?ézj:ﬂ Ay | Denote x5t = || Lyy |l

With results on matrix derivatives, it can be shown
that the Hessian of logdet(ﬁyy), evaluated at 6;1;,
takes the form ™ := ﬁ;;l R ﬁ;;l, where @ denotes
the Kronecker product. Consequently, we define
PO ® O3y Loy 11 = | @a) ko and 7=
max | T, (T% 1) Ih. For the GeR graph, we denote its

Hessian evaluated at the true values as:
H* := H(Q%y, Q¥x)

Q' ® (O 20K @ SxOkx

+ 2031055 Qi
=| Qiloi!
203! 2057 ® Sxx

® QF'QixSxx

Similar to above, we define x4 := max || Hy(H %) |h.

ec A

o= max || HAEL) U & = max || HEEL)
seAn-Uﬁ;?zl N ec Ay #—1

catst = Il " lor Cate = || Qi [h and e = || Q3G o

The following conditions, which pertain the
model, sample size, and edge signals, are assumed.
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They are comparable to those in the existing GGM
studies.

Condition 1.

® + D} A

~
min ( |(Q + 1(QF > {y + xp
Jin (1@ ]+ 1@5yl) > {7 + x50/

Condition 2. i Q QF
ondition 2. min (1(Qr), I, 1@y ) >

At A
CH*mm{ n+l wtl n +1} + v Ay
Condition 3. max || X |[./Jn2 < cx, where cx is a
constant. J

Under these conditions, we can establish the follow-
ing consistency properties.

Theorem 1. Suppose that the sample sizes satisfy:

nm > max{0, C; log{-ﬂtpr)ls_:f2 — Gylog[4(p v @)ld%}, m > C,
log[4(p v q)]d* where Ci= [max{xg: xp, xzw K2}
and C = cZ[max{3cqe, ey, cagcd cz}?. In add-

ition, the regularization and tuning parameters satisfy

[log(4p) in{ithk & _4
A >2® + Dey-===, and mm{ mtl’ mtl 353+1} >

hg(‘“i"q”. For some 7> 2 and probability at
least1 — 1/p=2 — 2/(p v )" %

(I) the estimates have nonzero entries that are the same as
those of the true values;

(ID) with ¢y = 40\/_ max (QYY )u and c) = max
{4042 n'liaX(Q;Yl)ii, 2\/_ 2cx},
I Sy — By oo < 20000 [ 2D )
n + n
Il Qvy — Q. Oix — Qx llo
< 2¢' e M- (3)

5}

These results have the following theoretical im-
plications in an asymptotic sense. Under mild con-
ditions, result (I) establishes that the important and
unimportant edges can be correctly distinguished.
Result (IT) further establishes that, asymptotically, the
estimates can be very close to the true values. As
such, the proposed method is theoretically guaran-
teed to recover the true GeO-GGM and GeR-GGM
structures. Such a theoretical rigor is not presented in

many of the existing studies. With the two sets of
estimates, complexity of graph models, and differ-
ences in the imposed penalties, the proof differs sig-
nificantly from the literature and is highly nontrivial.
It can also shed insights for other network analysis
studies. Details are presented in the Appendix.

As for most theoretical studies, there is a “gap” be-
tween theoretical conclusions and practical applications.
For example, the consistency is in an asymptotic sense
with sample sizes go to infinity, while with any practical
data, sample size is finite.

2.5 | Computation

We optimize objective function (1) using the proximal
gradient decent (PGD) technique. The proposed algo-
rithm adopts the backtracking line search to determine
the step size. Specifically, it proceeds as follows:

1. Initidlize: = 0, Q% = Oyy, OF = Opx, Oyy = S
| Qv Owx
where Q =| .t ~ |is calculated from data. n© = 1.
Qyx Qxx
2. Update:

(1) Calculate
a. For each (i, j)th off-diagonal element, minimize

M, ((Qyy)y) with respect to (Qyy);;, where

M((@er)) = 1@l — (@R, — 1AL

+ n“’p[\l|(ﬂw)2 ( “) 3 A1, Y]

7]
+ 79p(|(Qyy)il; A2, ¥)-

4)
Here A® = Syy — (Qﬁf})_l

- (o) ols(o) (o)

b. For each (i, j)th off-diagonal element, minimize
M ((Qyy);) with respect to (Qyy);;, where

M ((Qyy)y)

1| ~ ( 1) plt i
- 2@ (9), o)
+ n(t)p( ( (t)) + (QYY)U 3 /:L]., ]

Here B® = Syy — (Nm) 1
With y > #®, the solutions are
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(Q;'Y)u =1

y [ ®
1- Ay

N ((agf;
1]

2
), - mos) <

o )+ (@

1—59/y N 2
o7+, 7o)
i

2
YY)J - 7}’(03150] > yh

2
)U — n(‘)B,?)] <yh

2
(5&2) — @B if \/ (R,}‘))Z + ((5521) - n(‘)B,?)] > vh
] ¥
where
R::(ft) =
t —_ a0 (®
1—n®fy i N
t _ (D) A (D) j Y _ 4@
(Q%)U n¢ )Aij if | (Qg,,,):J nt )A:j | > ¥,
N ) ov(s* =0
Here S(z,2) = (1 — 22 L = 1(@n) + o ’(“ o))
c. For each (1 jith  element, minimize 1 N | P
M ((Qyx)y) with respect to (Qyx ), where + 27 ® " Lz(ﬂ » Oyx)
— n o1 O, * o)
1 = Ly(Qyy, Qyx) + tr((4 )(ﬂyy
My ((Qyx)y) = E[(Qm)ﬁf — [( g,;[) C(r)]] ( ( )
+ r(COV(Qx — )
() Q)| A . 1 2
+7 P(l( YX)gly 21}’) +W[” Q;Y_ng)(”‘p
Here C® = 2[(Q3y) Q% Sxx + Svx]. + 1 0% — 0 IL1. (5)
With y > », the solution is
(08x), =
S((Q(}g-) _ n(t)cﬁ}‘), AQU(I))
g if | Q%) —10CP | < vk
1—-n®fy :
Q%) — nci it | Q) — nOCP 1> rh

(2) Determine the step size.

Calculate the quadratic approximations of

Ll(QYY) and L,(Q¥y, Q)

0.57®, and return to Step 1; else continue.

If L(O%y) + L(Q%y, %) > Li(O%y) + L(Qfy, Qi) n® «
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(3) Update the estimates of Qyy, ﬁyy, and Qyx as

- Q) 1#] ~(t+
(ngn)ij - (Q%); i=j ’ (Q;Yl))g
@ry; 7]

) (552)9 i=jf (le))ij

3. Repeat Step 2 until convergence. In numerical study,
we use

~(t+1) ~(t)
| 0 — o I + | 87 - a5y

F
+ 112" - 0F Iy < 1073
as the convergence criterion, where | A |r =

P 1| @ [ for matrix A € R>m,

In all of our numerical analysis, convergence is sa-
tisfactorily achieved. The proposed algorithm is computa-
tionally affordable. With fixed tunings, the analysis of one
simulated data (details described below) takes about 30 s on
a regular laptop. The proposed approach involves the MCP
regularization parameter y. As in published studies, we
examine a few values and find that y = 6 leads to the best
performance for our numerical examples. 4; and 4, are
obtained using V-fold cross validation.

3 | SIMULATION

The precision matrix Q can be decomposed into four

submatrices: Qyy, Qyx, Q;X, and Qxx, which are gener-
ated as follows. Each entry of Qyx is generated in-
dependently, and equals 1 with probability 8 and 0 with
probability 1 — 8. For Qyy, we consider the following
structures: (a) a homogeneous structure, under which
each off-diagonal entry of Qyy is independently drawn
from a Bernoulli distribution with a success probability
of 6. The diagonal elements of Qyy are zero; (b) a block

AL 0 - 0
. A - 0

structure, under which Qyy equals I S
0 0 --- As

For each block Ai(k =1, ..., 5), the diagonal elements are
zero, and the off-diagonal elements are independently
drawn from a Bernoulli distribution with a success prob-
ability of 8. All elements of Qxx are set as 0.5. To ensure the
positive-definiteness of Q2, we add a diagonal matrix oI, and

o is set as 10. Qyy that follows this data generation is
sparse. For example, for the setting described in Table 1,
about 13.0% of its elements are nonzero. In addition, this
data generation leads to graphs that satisfy the hierarchy.
We generate i.i.d. observations from N (0, ) with £ = QL
As shown in Table 1 in the main text and tables 2-6 in the
appendix, we consider & = 0.1 and 0.05. For the (p, q) dual,
we consider (50, 50), (50, 100), (50, 150), (100, 50), (100,
100), and (100, 150). To demonstrate the broad applicability
of the proposed approach, we consider two different sce-
narios for D; and D,. More specifically, we first consider
the first scenario described in the “Assisted estimation”
section, where D; and D, contain the same subjects and
n; = np = 300. Here the subjects are “analyzed twice,” first
with Y only and then with both ¥ and X. Then we con-
sider the second scenario, where D; and D, contain no
overlapping subjects. Here n; = 200 and n, = 300. Under
all simulation settings, the numbers of unknown para-
meters are much larger than the sample sizes.

In our analysis, of the most interest is the estimation
and identification of sparsity structure for the precision
matrices Qyy and Qyy. Three measures are adopted to
measure identification accuracy, including recall (which
measures the true-positive rate), false-positive rate (FPR),
and Fscore (which is the harmonic mean of precision and
recall). Estimation accuracy is measured using the Fro-
benius norm of the difference between the estimated and
true precision matrices. The proposed approach has been
motivated by the hierarchy. As such, we also evaluate the
count and proportion of the hierarchy being violated
(meaning (Qyy); = 0 but (Qyy)y # 0).

For comparison, we consider the separate estimation
of GeO-GGM and GeR-GGM, for which we adopt the
MCP penalization. For the estimation of GeR-GGM, fol-
lowing the reasonings described in Section 2, the partial
GGM technique is adopted. Although there are poten-
tially other approaches for estimating the graphs, com-
paring with the separate estimation can the most directly
establish the merit of the proposed joint estimation. For
the separate estimation, the same regularization para-
meter is adopted, and the tuning parameters are also
chosen using V-fold cross validation.

Under each setting, 200 replicates are simulated.
Summary statistics for the setting with a homogeneous
Qyy,D; and D, containing the same 300 subjects, and
@ = 0.1 are presented in Table 1. The rest of the results are
presented in tables 2-6 in the appendix. It is observed that,
across all simulation settings, the proposed analysis out-
performs the separate estimation. Consider for example
the last setting in Table 1. For the estimation of Qyy, the
proposed approach has (recall, FPR, Fscore)=(0.421,
0.024, 0.471), compared to (0.406, 0.038, 0.429) of the
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GeO-GGM. In the evaluation of estimation accuracy, the
proposed approach has the Frobenius norm of the differ-
ence between the estimated and true precision matrices
equal to 60.23, compared to 77.79 of the GeO-GGM. For
the estimation of Qyy, the proposed approach has (recall,
FPR, Fscore)=(0.478, 0.024, 0.502), compared to (0.45,
0.112, 0.287) of the GeR-GGM. In the evaluation of esti-
mation accuracy, the Frobenius norms are 538.6 (pro-
posed) and 696.9 (GeR-GGM), respectively. With the
separate estimation, 79.2% of the hierarchy are violated.
Similar findings are made with the other settings. We have
also simulated data with similar structures but different
parameter values and made similar observations.

Remarks: As an experiment, we simulate data with
some of the nonzero elements violating the hierarchy, using
the strategy described in Section 2.1.1. We observe that, for
those satisfying the hierarchy, estimation, and identification
results are similar to those above. For those violating the
hierarchy, estimation errors are slightly inflated, and higher
FPRs are observed, as expected. The overall performance
is reasonable. Here we also note that, when all or the
majority of the nonzero elements violate the hierarchy, the
proposed approach is expected to perform unsatisfactorily.
However, as this is biologically insensible as discussed in
Section 2.1.1, we do not further examine this scenario. In
the second experiment, we dichotomize the simulated X at
the medians and create 0/1 data. The proposed approach
can still be applied. However, the numerical results are
much less satisfactory. As discussed above, modifications
are recommended with nonnormal data.

BT
EZDIO

EZD§

4 | DATA ANALYSIS
We download TCGA data on two cancers from the
cBioPortal (http://www.cbioportal.org/).

4.1 | Skin cutaneous melanoma
(SKCM) data

Following the literature, we focus on the 395 White pa-
tients who had nonglabrous skin. Beyond gene expres-
sions, data is also available on CNVs. Our goal is to
construct the GeO-GGM and GeR-GGM analysis (with a
focus on gene expressions in the latter analysis). Although
in principle the proposed analysis can be conducted at a
larger scale, with considerations on the limited sample
size and large number of parameters, we conduct
pathway-specific analysis. Specifically, we download the
KEGG pathway database “c2.cp.kegg.v6.2.symbols.gmt”
from the Broad Institute. This database contains in-
formation on 186 pathways, and we select the “KEGG-
MELANOGENESIS” pathway, which has a top relevance
for melanoma, to conduct analysis. By matching with the
pathway information, we obtain 87 gene expressions and
101 CNVs. We graphically examine the marginal dis-
tributions of gene expressions and CNVs. All distributions
are continuous, and the dominating majority are bell-
shaped. We also conduct marginal regressions of gene
expressions on CNVs. There are no CNVs seemingly with
complementary effects. As such, the proposed approach
can be reasonably applied.

WNT2
EZD1v

EZDs

e VAT

EDN1

CREB3L1
NTEB

GHALL

WATTB

KIT
ELCES
TXRPI

CALMLS WHT9B C us_m“'
. D2 R
CALMLS WNTIA ADCY4 KEAS Dy LY
TcFr | WETIA BT cgens
WATS o
Wi Pus;(\-mhl‘-(..\:u: CREBI -
PREACA
WATIE PRECB ADCYS
EDNRB
ADCYT
AP BCT
PREX . S
GIAQ Mhéics MAPKL
CTNEL 1
GEKAB CREBBP
DYVLY ¥ ER300
CALMI "
206 MCIR
_ CAMKIB , ¥° i i
W PREACEA?
5
>4 L WNT4
CEEBIL4 EZDo
EZD3
CAMEID

EZD

ELCB4

e T

EDN1
CREB3L1

CALMLY WNTB ‘“"‘;T?B

GEAIL

WNTTE

KIT
PLCE}
TARF1

CREB3L3
. 202 R
CALMLS WHTSA ARCY4 ERAS DV LI
TcFr | WETIOA g (R
" WATTA CAMR Gy
NTT4 ppeps COMENGHAL  cgEml
PRECACA HRAS
wWTE b b ADCYE
ADCY?
MAPKL - BCT
BREX NAL TEFTLL
GNAQ MAfEs @ ALAPKL
CINNBL
GakiB CREBEP
LS ("2 RN
CALML
E2D6 MCIR
L
CAMEIB " i
W PREACKA
¥’ WNTY
CREBIL4 EZDe )

EZD3

EZD1 < =

TEFTL2

PLCBY

FIGURE 2 Analysis of TCGA SKCM data using the proposed approach: the GeO-GGM (left) and GeR-GGM (right) gene expression
networks. Four red edges are identified in the GeO-GGM but not GeR-GGM. GeO-GGM; GeR-GGM; SKCM; TCGA
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Analysis of TCGA lung cancer data using the proposed approach: the GeO-GGM (left) and GeR-GGM (right) gene

expression networks. Twenty-one red edges are identified in the GeO-GGM but not GeR-GGM

We apply the proposed approach and alternative se-
parate estimation. Tuning and regularization parameters
are selected in the same manner as in simulation. Sum-
mary comparison result is presented in table 7 in the
appendix. The estimated graph structures using the
proposed approach are presented in Figure 2. Results
using the alternative and comparison are presented in
figure 4 in the appendix. For gene expressions, the pro-
posed approach identifies 101 edges in the GeO-GGM
and 97 edges in the GeR-GGM, and the hierarchy is sa-
tisfied. For the gene expression edges in the GeR-GGM
with moderate to large estimates, we examine the cor-
responding GeO-GGM estimates and do not observe very
small values, showing no alarm of hierarchy violation.
For gene expressions, the separate estimation identifies
119 edges in the GeO-GGM and 99 edges in the GeR-
GGM, and the edge sets differ significantly from those of
the proposed approach. It identifies 76 edges in the GeR-
GGM that are not identified in the GeO-GGM (i.e., vio-
lation of the hierarchy).

In network analysis, a large number of edges are
estimated. In addition, the conditional connections
among genes are still not fully understood. Our ex-
amination of published gene expression network studies
does not suggest a well-established way of evaluating
the identification results. To gain some insights, we
conduct literature search and find that some gene in-
terconnections identified by the proposed but not al-
ternative analysis may have important biological
implications. For example, genes FZD7 and CAMK2B
both also belong to the Proteoglycans in cancer pathway

and have been suggested as having coordinated func-
tions. Profiling analysis has suggested that the onco-
genic roles of CREB3L1/3 fusions in sclerosing
epithelioid fibrosarcoma induction might be very simi-
lar. Studies have suggested the coordinated down-
regulations of Calml and Camk2b in the cTnTR“W
transgenic model. Genes CREBBP and GNAI3 both also
belong to the molecular mechanisms of cancer pathway
and have related functions. Genes CREBBP and TCF7L1
both have been identified in the pathways in cancer,
which play a key role in multiple cancers. Genes GNAI3
and MAP2K1 are both associated with multiple cancer
types for specific populations. Gene FZD2 is highly
correlated with gene GNAI2 in the Wnt pathway. Such
results, although not meant to be conclusive, can pro-
vide some support to the proposed analysis.

We further adopt a random splitting-based approach
for evaluation. Specifically, the data set is randomly split
into a training and a testing set with sizes 4:1. We apply the
proposed and alternative approaches to the training set,
and then evaluate the negative log-likelihood functions L;
and L, on the testing set. This process is repeated 100
times. The average L; values are 82.3 (proposed) and 87.5
(alternative), and the average L, values are 503.7 (pro-
posed) and 7272 (alternative), respectively. With this
random splitting approach, we are also able to evaluate the
stability of identification. For the edges identified using the
whole data set, we compute their probabilities of being
identified in the random splits. Such probabilities have
been referred to as the Observed Occurrence Index (OOI),
with higher values indicating more stable estimation. For
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gene expression edges, the average OOI values are 0.89
(proposed) and 0.81 (alternative) for the GeO-GGM, and
0.80 (proposed) and 0.71 (alternative) for the GeR-GGM,
respectively. Overall, the proposed approach has improved
estimation/prediction and stability.

4.2 | Lung cancer data

We follow the literature and focus on patients who had no
neoadjuvant therapy before tumor sample collection. Data
on the gene expressions and CNVs of 519 samples are
available for analysis. As above, we also conduct the
analysis of one KEGG pathway. Specifically, the “KEGG-
CELL-CYCLE-PATHWAY,” which contains genes playing
important roles in cell cycle and lung cancer prognosis, is
analyzed. There are a total of 102 gene expressions and
101 CNVs analyzed. The same exploratory analysis as for
the melanoma data is conducted, again suggesting it is
reasonable to apply the proposed approach.

Data is analyzed using the proposed and alternative
approaches. As in the previous analysis, we focus on results
for gene expressions. Summary comparison results are
provided in Table 8 in the Appendix. The estimated graph
structures are presented in figures 3 and 5 in the appendix.
The proposed approach identifies 285 edges in the GeO-
GGM and 263 edges in the GeR-GGM, and the hierarchy is
satisfied. The separate estimation identifies 278 (GeO-
GGM) and 258 (GeR-GGM) edges, with a total of 148 edges
violating the hierarchy. Examining the estimates also does
not raise any alarm on possible hierarchy violation. It is
found that the proposed analysis can identify biologically
sensible gene interconnections missed by the alternative.
For example, the coordination of genes CCNH and CCNB1
has been observed in multiple studies. Genes CDC6 and
CHEK1 have been suggested as coordinated. The inter-
connection between CCNE2 and E2F1 has been shown to
play a vital role in aberrant coronary vascular smooth
muscle cell proliferation. The random splitting approach as
described above is applied for evaluation. The proposed
approach has average L, and L, values 90.7 and 158.1,
respectively, which are lower than their alternative coun-
terparts 94.9 and 169.6. In the stability evaluation, the OOI
values of the proposed approach are 0.88 (GeO-GGM) and
0.88 (GeR-GGM), compared to 0.79 (GeO-GGM) and 0.76
(GeR-GGM) of the separate estimation.

5 | DISCUSSION

In this article, we have developed a new approach
that well fits the GGM framework for gene expression
data but can have improved estimation/identification

performance. Although loosely speaking there have
been other works on information borrowing in gene
network analysis, the proposed strategy of borrowing
information between GeO and GeR networks is new
and novel. A new hierarchy in the sparsity structures
of the two networks, which is biologically sensible,
has been proposed. It differs from the hierar-
chies identified for other omics problems (Schadt
et al., 2005; Yazdani et al., 2020; Zhu et al., 2012).
Along with the high dimensionality in a single model/
estimation, it has led to a penalized estimation sig-
nificantly different from those in the literature. Ex-
tensive and highly nontrivial methodological,
theoretical, and computational developments have
been conducted. The proposed analysis can flexibly
accommodate multiple scenarios. Overall, this study
can expand the GGM analysis paradigm and provide a
practical and effective way of estimating gene ex-
pression networks.

The proposed analysis demands multidimensional
profiling data, which is getting increasingly routine. It
does not have strict requirements on the type and
“quality” of collected regulators. In particular, it does
not demand the collection of all factors that may affect
gene expressions. As such, it can enjoy broad applic-
ability. Graphical models have also been constructed
for omics data other than gene expression and nono-
mics data. As long as there are underlying determi-
nants for the variables of main interest, the proposed
analysis can be applied. It will be of interest to sys-
tematically examine graphical modeling for nonnormal
data using the proposed technique. However, literature
indicates that a significant amount of separate in-
vestigation may be needed. We postpone it to future
research. It may be of theoretical interest to study
scenarios with regulators having completely com-
plementary effects. However, without much practical
value, it is not pursued. Although the sound biological
implications and improved prediction/stability can
support the validity of our data analysis to a certain
extent, it is of interest but beyond our scope to in-
dependently validate the findings.
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