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SUMMARY

In recent biomedical research, genome-wide association studies (GWAS) have demonstrated great suc-
cess in investigating the genetic architecture of human diseases. For many complex diseases, multiple
correlated traits have been collected. However, most of the existing GWAS are still limited because they
analyze each trait separately without considering their correlations and suffer from a lack of sufficient
information. Moreover, the high dimensionality of single nucleotide polymorphism (SNP) data still poses
tremendous challenges to statistical methods, in both theoretical and practical aspects. In this article, we
innovatively propose an integrative functional linear model for GWAS with multiple traits. This study
is the first to approximate SNPs as functional objects in a joint model of multiple traits with penaliza-
tion techniques. It effectively accommodates the high dimensionality of SNPs and correlations among
multiple traits to facilitate information borrowing. Our extensive simulation studies demonstrate the sat-
isfactory performance of the proposed method in the identification and estimation of disease-associated
genetic variants, compared to four alternatives. The analysis of type 2 diabetes data leads to biologically
meaningful findings with good prediction accuracy and selection stability.

Keywords: Functional data analysis; Genome-wide association studies; Joint analysis of multiple traits; Penalization.

1. INTRODUCTION

Genome-wide association studies (GWAS) in humans have been extensively conducted in biomedical
research to identify a genotype–phenotype association. Recently, compared to a single trait, multiple cor-
related traits have been collected simultaneously in some GWAS, which usually share common biological
mechanisms but which also have different implications. For example, in the analysis of type 2 diabetes in
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2 Y. LI AND OTHERS

Fig. 1. A simple example: true coefficient signals (grey solid line), estimated signals using the regression model with
the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001) (blue points), and estimated signals using
the functional data analysis method fSCAD developed in Lin and others (2017b) (orange dashed line). Upper right
small plot: zoomed-in version with y-axis from −0.01 to 0.01.

the Health Professionals Follow-up Study (HPFS) (Cornelis and others, 2010), both the body mass index
(BMI) and weight are measured to determine the obesity level. Another example is the Northern Finland
Birth Cohort 1966 (NFBC1966) (Järvelin and others, 2004), where four lipid traits, including total choles-
terol, low-density lipoprotein, high-density lipoprotein, and triglycerides, were collected to study the risk
factors of some diseases. However, most of the existing GWAS are still limited because they analyze each
trait separately and do not effectively accommodate the correlations among multiple traits (Pan and others,
2014; Otowa and others, 2016). Compared to single-trait analysis, the joint analysis of multiple traits can
investigate shared genetic variants with increased statistical power and identify pleiotropic loci in GWAS
(Porter and O’eilly, 2017; Liang and others, 2018). The joint analysis of multiple responses has gained
much success in low-dimensional biomedical studies. However, it is still very limited in high-dimensional
studies. Recent joint analysis methods include Wu and others (2014) and Shi and others (2019).

To identify the disease-associated genetic variants, marker selection techniques are needed, among
which the representative ones include multiple tests with multiple comparison adjustments (Pan and
others, 2014) and regularized estimation with penalties (Shi and others, 2014). With the development of
next-generation sequencing technologies, recent GWAS usually collect a large number of single nucleotide
polymorphism (SNPs). However, the size of the subjects involved is still relatively small due to the sample,
cost, and other constraints. As such, existing statistical methods often still have unsatisfactory results. For
example, multiple tests with a large number of comparisons usually suffer from a substantial power
loss. Regularization methods involve millions of parameters, leading to unstable estimation, inaccurate
identification, and high computational complexity.
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Integrative functional linear model for GWAS with multiple traits 3

A simple example is illustrated in Figure 1. We simulate SNP data with a sample size n = 150 and
dimension L = 5000 and generate one response with the true signals described by the solid grey line in
Figure 1. A regression method with a SCAD penalty (Fan and Li, 2001) is conducted on discrete SNP data
for a regularization estimation and marker selection, and the corresponding estimates are shown with blue
points in Figure 1. The estimated values are observed as being much weaker, and they miss the majority
of the true signals. Detections of disease-associated genetic variants when L is large are very challenging.

To tackle these high dimensionality problems, recent GWAS have widely used functional data analysis.
As large numbers of ordered genetic variants are located in very narrow regions, multiple genetic variants
are treated as a continuum of sequence data rather than discrete variables (Fan and others, 2013), providing
more satisfactory results compared to discrete SNP-based analysis. For example, a functional estimator
with the fSCAD method, which was proposed by Lin and others (2017b), is provided in Figure 1 and
indicated by the orange dashed line, which effectively detects the true signals. Some novel functional
data analysis methods have been developed for GWAS. For instance, Luo and others (2011) develop an
association test based on a genome continuum model and functional principal components to detect the
association of rare variants. Vsevolozhskaya and others (2014) propose a functional analysis of variance
method to test the joint effect of gene variants, including both common and rare variants, with a qualitative
trait. A few methodological developments for multiple traits are also conducted. Examples include Jadhav
and others (2017b), where a nonparametric functional U-statistic method is proposed to test the associ-
ation between individuals’ sequencing data and multiple phenotypes. Lin and others (2017a) introduce
a quadratically regularized functional canonical correlation analysis with a likelihood ratio test for the
association analysis of multiple traits. Despite considerable successes, the identified genetic variants have
been shown to account for only a small fraction of disease heritability, and more effective GWAS analysis
methods are very desirable (Porter and O’eilly, 2017; van Rheenen and others, 2019). Most existing stud-
ies, including the aforementioned, are based on hypothesis testing, and functional analysis for detecting
disease-associated genetic variants still needs state of the art techniques.

Motivated by the tremendous challenges of GWAS in relation to high-dimensional SNPs and multiple
correlated traits, and the demand for more effective genetic variant detection models, we propose a novel
integrative method by jointly analyzing multiple traits with functional methods to approximate genetic
variants and penalization techniques for smooth estimation and marker selection. Significantly advancing
from existing single-trait analysis (Luo and others, 2011; Vsevolozhskaya and others, 2014; Lin and oth-
ers, 2017b), we jointly analyze multiple traits to improve statistical power and enhance our understanding
of complex diseases, where traits’ correlations are effectively accounted for. Furthermore, significantly
advancing from a discrete SNP-based analysis (Shi and others, 2014; Wu and others, 2014), we adopt
functional data analysis and assume that high-dimensional genetic data follow a continuous process. It not
only naturally accommodates correlations among adjacent SNPs but also avoids the unstable estimation
of a large number of parameters. This is especially desirable with the rapidly increasing dimensions of
SNP data but still limited sample size. In addition, unlike the testing strategy-based functional data anal-
ysis (Jadhav and others, 2017b; Lin and others, 2017a), the proposed method is based on penalization
techniques, with a solid statistical foundation and the potential to be effectively realized. Overall, the
proposed method provides a useful new venue for detecting disease-associated genetic variants in GWAS
with multiple traits.

2. METHODS

Consider n i.i.d subjects. For the ith subject, we denote yi = (yi1, . . . , yiJ ) as the vector of J traits and
Gi = (gi(t1), . . . , gi(tL)) as the measurement vector of L SNPs which are located in a normalized region
with ordered physical locations 0 ≤ t1 < t2 < · · · ≤ tL = T = 1. Here, gi(tl) ∈ {0, 1, 2} is the number
of minor alleles for the ith subject and the lth SNP at tl . In this study, high-dimensional SNP data are
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4 Y. LI AND OTHERS

treated as a continuous sequence. We denote Xi(t) as the genetic variant function of the ith subject, which
can be estimated based on the measurements gi(t1), . . . , gi(tL) of L discrete SNPs using some smooth
estimation techniques. Specifically, consider the ordinary linear square smoother (Fan and others, 2013)
with Xi(t) = (gi (t1) , . . . , gi (tL)) �

[
�′�

]−1
φ(t), where φ(t) = (φ1(t), . . . , φK(t))′ is the vector of basis

functions and � is an L × K matrix consisting of φk(tl), k = 1, . . . , K , l = 1, . . . , L.

2.1. Integrative functional linear model

In this study, we consider the most popular continuous traits and propose adopting a linear regression
model. The proposed method can be extended to other trait types or models. Specifically, to describe the
association of the genetic variant function Xi(t) with multiple continuous traits yi, the integrative functional
linear model is proposed as

yi =
∫ T

0
Xi(t)β(t)dt + ε i, (2.1)

where β(t) = (β1(t), . . . , βJ (t))1×J is the unknown coefficient function vector for J traits, ε i =
(εi1, . . . , εiJ ) is the random error vector following the multivariate Normal distribution N (0, �) with
mean 0 and unknown covariance matrix �, and intercepts are omitted with yi being properly centered.

For smooth estimation and marker selection, the proposed objective function is defined as

l(β̃(t), �) = 1

2

(
log |�| + 1

n

n∑
i=1

(
ỹi −

∫ T

0
Xi(t)β̃(t)dt

)(
ỹi −

∫ T

0
Xi(t)β̃(t)dt

)′
)

+
J∑

j=1

M

T

∫ T

0
pλ1(|β̃j(t)|)dt + λ2

J∑
j=1

||D2β̃j(t)||2 + λ3

∑
1≤j<j′≤J

∣∣∣∣∣∣β̃j(t) − β̃j′(t)
∣∣∣∣∣∣2

. (2.2)

Here, we introduce two modified variables ỹi = yi�
−1/2 and β̃(t) = β(t)�−1/2. In the first penalty term,

M
T

∫ T
0 pλ1(|β̃j(t)|)dt ≈

M∑
m=1

pλ1

( ‖β̃j,[m]‖2√
T/M

)
is the functional generalization of ordinary SCAD (fSCAD),

where ||β̃j,[m]||2 =
√∫ tm

tm−1
β̃2

j (t)dt, pλ1(v) = λ1vI (0 ≤ v ≤ λ1) − v2−2aλ1v+λ2
1

2(a−1)
I (λ1 < v < aλ1) +

(a+1)λ2
1

2 I (v ≥ aλ1) with I (·) being an indicator function and a being 3.7 as suggested by Fan and Li (2001),
and M is a large enough constant. In the second penalty term, we denote D2 as the 2nd-order differential

operator, and ||f (t)|| =
√∫ T

0 f 2(t)dt as the L2 norm of a function f (t). There are three tuning parameters
λ1, λ2, and λ3. The proposed estimate is defined as the minimizer of (2.2). Since SNPs are closely located
in continuous regions of chromosomes and those that are physically close are often likely to have similar
biological functions or statistical effects, we select a region that is opposed to individual SNPs utilizing
the natural property of functional data analysis. This region-based strategy has also been adopted in a few
recent SNP studies (Guo and others, 2016; Wu and others, 2020). Specifically, the nonzero subregions of
βj(t) correspond to the important SNPs that are associated with the jth trait. In the objective function (2.2),

the first term is a reparameterized form of the negative log-likelihood function log |�| + 1
n

∑n
i=1

(
yi −∫ T

0 Xi(t)β(t)dt
)
�−1

(
yi −

∫ T
0 Xi(t)β(t)dt

)′
, where the correlations between multiple traits are effectively

accommodated with the covariance matrix �. If � is an identity matrix, each trait is then analyzed
independently. Reparameterization is conducted to make the objective function scale-invariant and easier
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Integrative functional linear model for GWAS with multiple traits 5

to compute. For each of the coefficient functions, the fSCAD penalty is imposed for marker selection.
It was first developed in Lin and others (2017b) for locally sparse estimation under the functional linear
regression model with a single response. The fSCAD penalty is the functional generalization of the SCAD
penalty, which has been demonstrated to have better theoretical and numerical performance than some
other penalties such as LASSO. For a sufficiently large number of consecutive subintervals, the overall
magnitude, that is, the L2 norm, of β̃j(t) over each subregion [tm−1, tm] can be shrunk to zero, leading
to a locally sparse estimate. To control the smoothness of the locally sparse estimator, an additional
smooth penalty is employed based on the 2nd-order differential of β̃j(t), which is a popular choice in
functional data analysis. Significantly advancing from existing studies, the similarity of the coefficients
between multiple traits is accommodated using the last penalty term, where some common genetic variants
across multiple traits can be effectively identified. Three tuning parameters (λ1, λ2, λ3) are involved in the
objective function, which is not uncommon in recent biomedical studies (Chai and others, 2017). With the
complexity of complex diseases, adopting increasing advanced statistical techniques and complex models
has become a popular trend. They often include multiple parameters and have been suggested to still be
computationally feasible. If we set λ3 to 0, the objective function goes back to the multiple-trait problem
without considering the similarity among traits.

2.2. Computation

The proposed algorithm consists of two steps: the estimation of the genetic variant function Xi(t) with Gi

and the optimization of the objective function (2.2). The first step includes a simple calculation and does not
demand any special algorithm. For the basis function, φk(tl), both the B-spline basis and the Fourier basis
are examined. We consider the simulation scenarios of Case I (details on the data settings are presented
in the next section) and provide the summary results in Table S2 of the Supplementary material available
at Biostatistics online. It is observed that different basis functions lead to different performance levels,
and neither of them can perform consistently better than the other under all scenarios, which is similar to
what was observed for other functional data analysis (Fan and others, 2013). In this study, we adopt the
B-spline basis function, as it is also a popular choice in recent publications (Fan and others, 2013; Jadhav
and others, 2017a). To optimize the objective function (2.2), we update � and β̃(t) alternately. First, we
adopt the B-spline basis method to approximate the coefficient function β̃(t), in accordance with the first
step. We denote B(t) = (B1(t), . . . , B(M+d)(t)) as the B-spline basis vector with the order of the B-spline
function being d + 1 and the number of knots being M + 1. Then each coefficient function is expanded
as β̃j(t) = ∑M+d

k=1 Bk(t)bkj with an unknown coefficient vector bj = (b1j, . . . , b(M+d)j)
′ for j = 1, 2, . . . , J .

For the fSCAD penalty, the local quadratic approximation method is applied, where pλ1(|v|) ≈
pλ1(|v0|) + 1

2

p′
λ1

(v0)

|v0| (v2 − v2
0) for v ≈ v0. Specifically, given some initial estimator β̃

(0)
j (t), we have

M∑
m=1

pλ1

(
‖β̃j,[m](t)‖2√

T/M

)
≈ 1

2

∑M
m=1 p′

λ1

(
||β̃(0)

j[m](t)||2
√

M/T
)

||β̃(0)

j[m](t)||2
√

M/T
||β̃j[m](t)||22M/T + H (β̃

(0)
j (t)),

where H (β̃
(0)
j (t)) is a constant. With the B-spline expansion, ||β̃j,[m](t)||22 = ∫ tm

tm−1
β̃2

j (t)dt = b′
jW mbj,

where W m is an (M + d) × (M + d) matrix with element wkk ′ = ∫ tm
tm−1

Bk(t)Bk ′(t)dt if m ≤ k , k ′ ≤ m + d

and zero otherwise. Denote W(0)
j = 1

2

∑M
m=1

(
p′
λ1

(
||β̃(0)

j[m](t)||2
√

M/T
)

||β̃(0)
j[m](t)||2

√
T/M

Wm

)
, and we have M

T

∫ T
0 pλ1(|β̃j(t)|)dt =

b′
jW

(0)
j bj + H (β̃

(0)
j (t)).
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6 Y. LI AND OTHERS

Then, the objective function for β̃(t) can be rewritten as

l1(b) = 1

2n

(
Y̆ − Ŭb

)′(
Y̆ − Ŭb

)
+ λ1

J∑
j=1

b′
jW

(0)
j bj + λ2

J∑
j=1

b′
jV bj + λ3

∑
1≤j<j′≤J

(bj − bj′)
′Z(bj − bj′).

Here b = (b′
1, . . . , b′

J )
′. Y̆ = vec(Ỹ ) is the nJ -dimensional vector corresponding to the matrix Ỹ n×J =

(ỹ′
1, · · · , ỹ′

n)
′. Ŭ = 1J×J ⊗ U is a nJ × (M + d)J matrix, where ⊗ is the Kronecker product, 1J×J is the

identity matrix, and U is the n × (M + d) matrix with element uik = ∫ T
0 Xi(t)Bk(t)dt. V and Z are the

(M + d) × (M + d) matrices with elements vkk ′ = ∫ T
0

(
d2Bk (t)

dt2
d2Bk ′ (t)

dt2

)
dt and zkk ′ = ∫ T

0 Bk(t)Bk ′(t)dt,

respectively. A further arrangement is conducted as,

l1(b) = 1

2n

(
Y̆ − Ŭb

)′(
Y̆ − Ŭb

)
+ λ1b′W b + λ2b′(1J×J ⊗ V )b + λ3b′(A ⊗ Z)b,

where W = diag(W (0)

1 , . . . , W (0)

J ) and A is a J × J matrix with element ajj = J − 1 and ajj′ = −1 for
j �= j′. Then, differentiating l1(b) with respect to b and setting it to zero, we have the following solution,

b =
(

Ŭ
′
Ŭ + 2nW + 2nλ2(1J×J ⊗ V ) + 2nλ3(A ⊗ Z)

)−1
Ŭ

′
Y̆ . (2.3)

To update �, we use the ordinary maximum likelihood estimator � = 1
n

(
Y − Ub∗)′(

Y − Ub∗), where
Y = (y′

1, . . . , y′
n)

′ and b∗ = (b1, . . . , bJ )�
1/2. We adopt this estimator instead of optimizing the objective

function (2.2), as it is computationally simpler and leads to satisfactory numerical results.
In summary, the proposed algorithm for optimizing (2.2) has these steps:

Step 1: Initialize s = 0, �(s) = 1
n Y ′Y , Ỹ

(s) = Y
(
�(s)

)−1/2
, and b(s) =

(
Ŭ

′
Ŭ

)−1
Ŭ

′
Y̆

(s)
with Y̆

(s) =
vec

(
Ỹ

(s)
)

, where �(s), Ỹ
(s)

, b(s), and Y̆
(s)

denote the estimates of �, Ỹ , b, and Y̆ at iteration s, respectively.

Step 2: Update s = s + 1.

• Compute (b∗)(s) =
(

b(s−1)

1 , . . . , b(s−1)

J

) (
�(s−1)

)1/2
and �(s) = 1

n

(
Y − U (b∗)(s) )′(

Y − U (b∗)(s) );

• Compute Y̆
(s) = vec

(
Ỹ

(s)
)

with Ỹ
(s) = Y

(
�(s)

)−1/2
and W (s) with b(s−1);

• Compute b(s) =
(

Ŭ
′
Ŭ + 2nW (s) + 2nλ2(1J×J ⊗ V ) + 2nλ3(A ⊗ Z)

)−1
Ŭ

′
Y̆

(s)
.

Step 3: Repeat Step 2 until convergence. In our numerical study, convergence is achieved if ||b(s)−b(s−1)||
||b(s)|| <

10−4.
The convergence of the proposed algorithm is observed in all our numerical studies. Three tuning

parameters, λ1, λ2, and λ3, are selected using grid search and 10-fold cross-validation. There are two
further parameters, including the knot number and the order, that are involved in the B-spline basis
function. Our investigation suggests that with the smoothness penalty, the value of the knot number is
not important, as long as it is large enough. We set the number of knots to 70 (=M + 1), which has also
been adopted in Lin and others (2017b). For the order, we first examine four values, including 4, 5, 6,
and 7, under the simulation scenarios of Case I. Summary results are provided in Tables S3–S5 of the
Supplementary material available at Biostatistics online. It is observed that compared to order = 4 or 7,
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Integrative functional linear model for GWAS with multiple traits 7

models with order = 5 or 6 behave slightly better. Overall, the proposed method is not very sensitive to
the choice of order when it is in a sensible range. Thus, to reduce computing complexity, we fix the order
of the B-spline basis as 5 (=d + 1) in our numerical studies.

The proposed algorithm is computationally feasible. With the functional data analysis framework, the
number of parameters involved in the objective function is just (M +d)J , which is much lower than those
with discrete SNP-based analysis. Specifically, under a standard laptop configuration, with fixed tuning
parameters, the proposed analysis takes about 2 s for a simulated dataset with 150 subjects and 5000 SNP
measurements. With extremely high efficiency, the grid search for three tuning parameters does not lead
to a high computational cost. We have developed an R code that implements the proposed method, as well
as an example with simulated data to illustrate its usage. The code and example are publicly available at
https://github.com/rucliyang/IntegrativeFunc.

3. SIMULATION

We simulate SNP data with ordered physical locations. Specifically, (i) Each simulated dataset has n = 150,
L = 5000, and J = 2. (ii) A two-step method is adopted to simulate SNP data coded with (0, 1, 2) for

genotypes (aa, Aa, AA). We first generate the genetic variant function Xi(t) = ∑M̃
j=1 aijBj(t), which is

assumed to be the underlying continuous process of the discrete SNP data, with M̃ = 101 B-spline
basis functions B1(t), . . . , BM̃ (t) and the corresponding coefficients aij. We consider two settings for aij

to represent different SNP patterns, where aij’s are generated from a normal distribution N (0, 1) and
a uniform distribution U(−2, 2), respectively. Following in the footsteps of previous studies (Liu and
others, 2014; Wu and Ma, 2019; Santos and others, 2020), we conduct a trichotomization strategy to
generate discrete SNP measurements. Specifically, consider a single locus with two alleles a and A having
frequencies pa = 0.5 and pA = 1 − pa = 0.5, respectively. With the Hardy–Weinberg equilibrium
assumption, the frequencies of genotypes (aa, Aa, AA) are set to (p2

a, 2papA, p2
A) = (0.25, 0.5, 0.25). Thus,

for l = 1, . . . , L and t ∈ [0, 1], we categorize the continuous values Xi(l/L) at its first and third quartiles
to generate 3-level SNP measurements (0,1,2). (iii) For the coefficient function β1(t), we consider three
settings for the lengths of signal regions: 20% (Case I), 10% (Case II), and 30% (Case III). (iv) For β2(t),
we set three levels of similarity with β1(t). The first function β21(t) has the same signal regions and shape
as β1(t), but has a smaller magnitude of signals; the second one β22(t) has the same signal regions and
a similar magnitude of signals as β1(t), but a different shape; the third one β23(t) has longer length of
signal regions than β1(t) and a different shape. A graphical presentation of β1(t) and β2(t) under Case
I is illustrated in Figure 2. Figures of the other two cases and detailed equations of all cases are shown
in Appendix A of the Supplementary material available at Biostatistics online. (v) Two correlated traits
are generated based on (2.1), where the random error vector follows the multivariate normal distribution
N (0, �). We set two levels of correlations between two traits, that is, ( 1 0.6

0.6 1 ) and ( 1 0.9
0.9 1 ). There are a total

of 36 scenarios, comprehensively covering a wide spectrum with different SNP patterns, and different
levels of genetic variant signal, similarities between coefficient functions, and correlations among multiple
traits.

In addition to the proposed method (M1), four alternatives are conducted. M2 analyzes the discrete
SNP data directly and each trait independently using the penalized regression model with a spline-SCAD
penalty developed by Guo and others (2016). The SCAD and spline penalty terms are adopted for sparse
and smooth estimation, respectively, where the correlations among closely located SNPs are effectively
accommodated. M3 is the same as M2 except for the absence of the spline penalty term. M4 is the functional
data analysis method with fSCAD and smooth penalties developed in Lin and others (2017b), where two
traits are analyzed independently. M5 is the same as M4, except for the fact that the smooth penalty is
not imposed, and the number of knots is selected using cross-validation. For two discrete SNP-based
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8 Y. LI AND OTHERS

Fig. 2. Simulation: true coefficient functions under scenario of Case I (20% signal region). Blue solid line: β1(t);
Pink dashed line: β2(t). Left: β1(t) and β21(t); Middle: β1(t) and β22(t); Right: β1(t) and β23(t).

alternatives M2 and M3, to make all methods comparable, the coefficient functions are derived based on
the estimated discrete coefficients. Comparing these alternatives can intuitively reveal the values of the
proposed joint analysis of multiple traits and a functional data analysis strategy.

Four measures are used to evaluate model performance on the aspects of identification, estimation,
and prediction, which are computed separately for each trait. First, the functional generalizations of true
positive (TP) and false positive (FP) are employed to evaluate identification ability. We denote ηs(f (t))
and η0(f (t)) as the lengths of the signal and zero regions of the function f (t), respectively. We define
TP= ηs(β̂(t)β(t))

ηs(β(t)) and FP = ηs(β̂(t))−ηs(β̂(t)β(t))
η0(β(t)) , where β̂(t) and β(t) are the estimated and true coefficient

functions. Second, the integrated squared error (ISE), defined as ISE = ∫ T
0

(
β̂(t) − β(t)

)2
dt

/ ∫ T
0 β(t)2dt,

is used to examine the estimation property. Finally, an independent testing set with the same sample size
is simulated for the prediction evaluation, and the predicted mean square error (PMSE) is adopted as the
evaluation measure.

For each scenario, 100 replications are simulated. The summarized results, including the mean and
standard deviation, under Case I of β1 paired with β21, β22, and β23 are shown in Tables 1, 2, and 3,
respectively. The rest of the results are shown in Appendix B of the Supplementary material available
at Biostatistics online. The proposed method is observed to have superior or competitive performance
compared to the alternative methods across all scenarios. For example, in Table 1, consider the scenario
under Case I with U(−2, 2), correlation 0.6, and β21(t), where the two coefficient functions have identical
signal regions, the same shape, but a different magnitude of signals. For both coefficient functions, the
proposed method can identify the majority of signal regions with low FP. Specifically, the TP values of two
functions are (0.980, 0.980) for M1, compared to (0.983, 0.516) for M2, (0.984, 0.512) for M3, (1.000,
0.986) for M4, and (0.976, 0.924) for M5, and the FP values are (0.317, 0.317) for M1, (0.800, 0.259) for
M2, (0.814, 0.263) for M3, (0.730, 0.527) for M4, and (0.512, 0.297) for M5. The proposed method also
has the lowest estimation errors. Under the above specific setting, the proposed method has the ISE values
of (0.229, 0.273), compared to (0.736, 0.942) for M2, (0.722, 0.938) for M3, (0.377, 0.332) for M4, and
(0.561, 0.491) for M5. To provide a more lucid demonstration, we show the true and estimated curves of
coefficient functions under the scenario of Case I with N (0, 1), correlation 0.9, and β23(t) in Figure 3. The
proposed M1 provides a much more accurate estimation. It also behaves better in prediction performance
with the PMSE being (0.717, 0.725), compared to (0.916, 2.049) for M2, (0.911, 2.039) for M3, (0.750,
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12 Y. LI AND OTHERS

Fig. 3. Simulation: true and estimated coefficient functions under scenario of Case I with N (0, 1), correlation 0.9 and
β23(t). Blue solid line (thin): β1(t); Blue solid line (thick): β̂1(t); Orange dashed line (thin): β23(t); Orange dashed
line (thick): β̂23(t).

0.772) for M4, and (0.773, 0.760) for M5 under the scenario of Case I with U(−2, 2), correlation 0.9,
and β21(t). With the higher levels of correlation between two traits and similarity between two coefficient
functions, the superiority of the proposed method become prominent. Cases II and III examine whether the
proposed method has stable performance when the length of signal regions changes. Similar performance
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Integrative functional linear model for GWAS with multiple traits 13

patterns are observed, where the proposed method performs better than alternatives by comprehensively
considering all evaluation measures.

4. DATA ANALYSIS

We analyze the type 2 diabetes dataset from the HPFS, which is collected by the GENEVA genotyping
center of MIT and Harvard. Type 2 diabetes has been shown to affect almost 10% of the U.S. adult
population and is thus an increasing public concern. Meanwhile, HPFS data have been successfully used
in many clinical and epidemiological studies since it was first launched in 1986. It has contributed to many
recent analyses (Yang and others, 2019; Liu and others, 2020) and provides valuable information. The
data are downloaded from dbGaP with the accession number phs000091.v2.p1. In this study, the traits of
interest are the BMI and weight, which are frequently used to describe the subject’s obesity level. They
measure overlapped but different features of the subject’s obesity level and may share some common
genetic information. SNPs on chromosome 4 are analyzed, wherein changes have been shown to have
a variety of effects including delayed growth and development, intellectual disability, heart defects, and
other medical problems. We first remove SNPs with MAF < 0.05 or a deviation from the Hardy–Weinberg
equilibrium, and we then impute missing values via fastPHASE, to get 2558 subjects with 40 568 SNPs.
As the number of disease-related genetic variants is not expected to be large, prescreening is conducted
to improve stability. The p-values of each SNP through the marginal linear model is calculated, and the
region of 10 000 consecutive SNPs with the smallest sum of p-values are selected for downstream analysis,
where the ordered physical locations of SNPs are not changed.

Analysis is conducted using the proposed method and four alternatives. Estimated coefficient functions
are shown in Figure 4, illustrating the identified null and signal regions of two functional genetic variant
effects. Compared to the discrete SNP-based methods M2 and M3, three functional data analysis methods
lead to much smoother and sparser estimation. With the joint analysis strategy, the proposed method can
effectively detect some common genetic variants. Detailed information of the identified SNPs, including
their locations and genes that the SNPs belong to or are the closest to, are provided in the Supplementary
Excel File available at Biostatistics online.

The proposed method identifies 116 distinct genes based on the estimated coefficient functions. The
literature search suggests that most of the identified genes have important biological implications. For
example, PPM1K not only increases the risk of developing type 2 diabetes but also regulates β cell
insulin production and proliferation. Gene PDLIM5 has been suggested as a novel candidate gene, which
probably plays a role in islets and in the context of diabetes. A high concentration of protein UNC5C
has been indicated to be associated with end-stage kidney disease and structural lesions of diabetes. In
a study identifying type 2 diabetes loci at regulatory hotspots in African Americans and Europeans, the
regulation of the molecular functions of cis-genes PDHA2 has been detected as diabetes associated. A
study of the hormonal activity of gene AIMP1 has shown that, in glucose homeostasis, AIMP1 plays a
glucagon-like role and causes the increase of the blood glucose level. Gene HADH has been observed to
have a significant expression in a meta-analysis of investigating diabetes-associated genes and pathways.
Some other identified genes have been confirmed to play a critical role in obesity- or body weight-related
studies. For example, the gene expression level of SPP1 has been shown to contribute to obesity-associated
inflammation of peripheral blood mononuclear cells. Gene NAP1L5 has been found to be present in
subjects with moderate obesity. Gene FAM13A has been demonstrated to be associated with adipose
development and insulin sensitivity, and it has been identified as a candidate gene for fasting insulin. The
genes GPRIN3, SNCA, MMRN1, and CCSER1 have also been found to be candidate genes in loci related
to BMI and fasting serum insulin. The gene GRID2 has been demonstrated as a shared susceptibility gene
in the neural synapse for substance use, obesity, stress, heart rate, and blood pressure traits. The over-
expression of gene HPGDS has been observed in human adipose tissues, compared with lean subjects,
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14 Y. LI AND OTHERS

Fig. 4. Data analysis: estimated coefficient functions. Blue solid line: β̂1(t); Orange dashed line: β̂2(t).

suggesting that the inhibition of HPGDS may help control weight loss.A study has discovered a “phospho-
switch” strategy that controls the stability of a tumor suppressor TET2 and can potentially help in cancer
prevention and treatment. Gene PPA2 activation has been confirmed to be associated with a soluble form
of tumor necrosis and is a weak inducer of apoptosis, which plays a significant role in obesity and type 2
diabetes.

In practical data analysis, it is difficult to objectively evaluate identification performance as the true
signal regions are unknown. To provide partial support, we examine the prediction accuracy and selection
stability, which are commonly adopted in existing studies. A resampling is conducted. The training data
with 2/3 of all subjects is used to build a model and estimate parameters, and testing data with 1/3 of all
subjects is used to evaluate the prediction. The average values of PMSE over 100 resamplings are (0.128,
0.128), (0.727, 0.669), (0.936, 0.849), (0.130, 0.129), and (0.129, 0.129) for M1, M2, M3, M4, and M5,
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Integrative functional linear model for GWAS with multiple traits 15

respectively. The proposed method has competitive prediction accuracy compared to M4 and M5, and a
much better prediction performance than M2 and M3. For the evaluation of selection stability, we adopt
the functional generalization of the Jaccard coefficient (FJC), defined as the ratio of the length of the signal
region identified from both original and resampling data to that identified from the original data. It takes
values between 0 and 1, with a larger value indicating better selection stability. The proposed method has
the average FJC value of (0.774, 0.774) for two traits, compared to (0.960, 0.991), (0.590, 0.748), (0.652,
0.748), and (0.798, 0.717) for M2, M3, M4, and M5, respectively. Satisfactory selection stability of the pro-
posed method is observed, where M2 identifies a much denser signal region, resulting in a larger FJC value.
The favorable prediction and stability performance provides support to the validity of the proposed analysis.

5. DISCUSSION

With the burgeoning development of next-generation sequence technologies, millions of SNPs are usually
collected in recent GWAS, and the high dimensionality poses immense challenges to statistical analysis.
Another challenge comes from the need to accommodate the correlations among multiple traits. In this
study, we have developed a new integrative method that jointly analyzes multiple traits and effectively
accounts for the similarity between more than one trait to facilitate information borrowing. Functional data
analysis has been adopted to exploit the naturally ordered physical locations of SNPs and accommodate
the high dimension problems. We acknowledge that the values of SNP data are highly discrete, which may
not be very common in traditional functional data estimation. However, functional data analysis of discrete
SNP data is becoming a new trend in GWAS, where the effectiveness has been well established (Fan and
others, 2013; Jadhav and others, 2017b; Chiu and others, 2019). Extensive simulation studies with various
patterns of discrete SNP data in our study have also provided strong support for the validity of the functional
data analysis. Three penalty terms have been imposed for sparse, smooth, and similarity estimation, with an
intuitive formulation and lower computational cost. Our numerical studies have revealed that consideration
of the unknown correlation between two traits is necessary and can help improve the model performance
of identifying, estimating, and predicting common genetic variants. The analysis of type 2 diabetes data
has shown that the proposed method can select biologically meaningful genetic markers with satisfactory
prediction accuracy and selection stability, providing suggestions for further clinical or epidemiological
research.

Nonetheless, this study suffers from some limitations, which can be addressed by future research. This
study has considered multiple continuous traits. It can be of interest to extend the proposed joint functional
linear model to other data types, such as categorical and count traits. For example, the latent continuous
variable-based strategy developed in Gueorguieva and Agresti (2001) can be potentially coupled with
the proposed framework to accommodate both continuous and binary traits. We have mostly focused
on the methodological development and implementation of the proposed method. The estimation and
selection consistency of the locally sparse estimator for functional linear regression with a single trait
has been rigorously established in Lin and others (2017b). It is thus reasonable to conjecture that the
proposed joint analysis may also have good statistical properties; we leave the detailed investigation to
further research. The proposed method has adopted functional data analysis to naturally accommodate the
adjacency structure of SNPs, where the distance of adjacency is not accounted for. It is sensible since many
SNPs are densely located in a narrow region of the chromosome. The proposed method can be potentially
extended to incorporate the distance of adjacency, if necessary, which may warrant a separate investigation.
In the data analysis, we have identified some disease-associated genes with supportive clinical evidence.
Others still need professional biological and functional examinations.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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