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We show how equilibrium binding curves of receptor homodimers can be expressed as rational polyno-
mial functions of the equilibrium binding curves of the constituent monomers, without approximation and
without assuming independence of receptor monomers. Using a distinguished spanning tree construction
for reduced graph powers, the method properly accounts for thermodynamic constraints and allosteric
interactions between receptor monomers (i.e. conformational coupling). The method is completely
general; it begins with an arbitrary undirected graph representing the topology of a monomer state-
transition diagram and ends with an algebraic expression for the equilibrium binding curve of a receptor
oligomer composed of two or more identical and indistinguishable monomers. Several specific examples
are analysed, including guanine nucleotide-binding protein-coupled receptor dimers and tetramers
composed of multiple ‘ternary complex’ monomers.
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1. Introduction

Guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) are the largest family of
signalling proteins in the mammalian genome and targets for therapeutic drugs (Audet & Bouvier,
2012; Rosenbaum et al., 2009). When GPCRs are activated by extracellular agonists, they interact
with heterotrimeric G proteins to regulate downstream second messenger and protein kinase cascades,
notably, cyclic-adenosine monophosphate, inositol 1,4,5-triphosphate and diacylglycerol.

Equilibrium receptor models are used by pharmacologists to quantify changes in ligand affinity and
efficacy, and various modes of activation of GPCRs, and to clarify mechanistic hypotheses regarding
drug action (Giraldo, 2012; Gregory et al., 2010; Hall, 2012; Kenakin, 2016; May et al., 2007; Wang
et al., 2018). Pharmaceuticals that allosterically modulate GPCRs are of therapeutic interest due to their
potential for greater subtype specificity than orthosteric ligands (Engers & Lindsley, 2013; Gregory
et al., 2013). Indeed, allosteric modulators hold promise for treating numerous CNS disorders (Conn
et al., 2009; Foster & Conn, 2017; O’Brien & Conn, 2016; Terrillon & Bouvier, 2004).

Evidence for dimerization and oligomerization of GPCRs has been obtained using various exper-
imental methods, including radioligand binding, coimmunoprecipitation and fluorescence resonance
energy transfer microscopy (Kaczor & Selent, 2011; Levitz et al., 2016; Park et al., 2008). It is widely
believed that dimerization and higher-order complexing (oligomerization) of GPCRs are common
phenomena that diversify GPCR signaling and opportunities for pharmacological intervention (Bouvier,
2001; Ferr€ et al., 2014; Gaitonde & Gonzalez-Maeso, 2017; Gonzalez-Maeso, 2011; Kenakin, 2014;
Milligan & Smith, 2007; Milligan et al., 2019; Park & Palczewski, 2005).

© The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

020z Jequisidag 01 uo 1sonb Aq 991.9996/€ L €/€/.€/BI0IE/UILIELI/WOS"dNODlWSPEsE//:SARY WO} PSPEOjUMOQ



314 G. D. CONRADI SMITH

GPCR dimerization may involve identical receptors (homodimerization), two different subtypes
of the same family or receptors from distantly related families (heterodimerization). Several family
C GPCRs exist and function as covalently linked homodimers (e.g. metabotropic glutamate receptors
and calcium-sensing receptors) (Niswender & Conn, 2010). Some family A GPCRs (e.g. 8;-adenosine
and dopamine D, receptors) function as homodimers (Gonzalez-Maeso, 2014). Some GPCRs are
obligate heterodimers (e.g. the GABAy receptor and taste receptors for sweet and umami responses)
(Chandrashekar er al., 2006; Marshall et al., 1999; Pin et al., 2004). A prototypical GPCR heteromer
(composed of receptors from different families) is formed by A, , adenosine receptors and D, dopamine
receptors (Borroto-Escuela et al., 2018; Ferré et al., 2004; Fuxe et al., 2010).

In many of the above examples, physical interactions between subunits of GPCR oligomers are
known, or suspected to be, important determinants in the mechanism of receptor activation (Ferré,
2015; Goudet et al., 2005; Kubo & Tateyama, 2005; Palczewski, 2010; Pin & Bettler, 2016; Vischer et
al., 2015). Mathematical analyses have provided specific insights into interactions between subunits of
receptor oligomers, i.e. conformational coupling (Casadé et al., 2007; Christopoulos & Kenakin, 2002;
Durroux, 2005; Farran, 2017; Park et al., 2004; Rovira et al., 2009). However, a deeper theoretical
understanding of oligomeric signalling is needed. In response to this need, we have developed a novel
theoretical framework for understanding allosteric interactions and thermodynamic constraints within
oligomeric receptors that are composed of any number of identical monomers. The framework allows
equilibrium binding curves of receptor dimers to be expressed in terms of the properties of constituent
monomers, without approximation and without assuming independence of receptor monomers.

This paper presumes understanding of receptor modelling and mathematical concepts familiar to
the mainstream pharmacological community; see Kenakin (2018) for an overview. Section 2 reviews
this methodology and introduces helpful notation that was developed as part of this work. En passant,
we distinguish two ways that thermodynamic constraints and allosteric parameters arise in receptor
models: (1) when the state-transition graph of a receptor includes cycles and (2) as a property of receptor
oligomers that emerges via conformational coupling of constituent monomers.

2. Thermodynamic constraints and allosteric parameters in the ternary complex model

It is well known that G proteins may modulate ligand affinity at GPCRs (De Lean et al., 1980; Ehlert,
2000; Kenakin, 2004; Maguire et al., 1976; Weiss et al., 1996). We review this phenomenon to illustrate
the relationship between cycles in the graph representing receptor model topology, thermodynamic
constraints on equilibrium model parameters and allosteric coupling (Hill, 1985).

Consider the well-known ternary complex model of interactions between a 7-transmembrane
receptor (R), endogenous ligand (L) and heterotrimeric G protein (Fig. 1a). This model hypothesizes
distinct binding sites for ligand (orthosteric) and G protein (allosteric), four receptor conformations
(states) and four reversible reactions. Microscopic reversibility requires that the product of the transition
rates (not shown) around the four states of the ternary complex model is the same clockwise as
counter-clockwise for fixed ligand and G protein concentrations (Hill, 1989). If we consider bimolecular
association as the forward reaction, then the chemical equilibrium constants are K; = [LR]/([L][R]),
K; = [RGI/(IGIRD, K; = [LRG]/([L]I[RG]) and K; = [LRG]/([G][LR]), where [L], [R]
etc. represent equilibrium concentrations. The cycle in the ternary complex model leads to the
thermodynamic constraint K; K; = K;K; and, consequently, the ternary complex model has three (not
four) free equilibrium parameters. To emphasize the cooperativity of the two binding processes, one
may define an allosteric parameter y = kG /K = K 1 /K; . In that case, the receptor model is specified
by two association constants (K;, K;) and y, the strength of allosteric coupling. The ligand affinity is
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FiG. 1. Ternary complex model of a G protein-coupled receptor (De Lean et al., 1980; Ehlert, 2000; Kenakin, 2004; Maguire
et al., 1976; Weiss et al., 1996). For given ligand and G protein concentration ([L] and [G]), there are three free equilibrium
parameters: two association constants (K7, K) and the allosteric parameter y .

K; when G protein is unbound and y K; when G protein is bound. Thus, y > 1 implies that G protein
binding increases agonist affinity, as observed for 8,-ARs (De Lean et al., 1980; Maguire et al., 1976;
Weiss et al., 1996).
For any [L] and [G], the equilibrium fraction of receptors in each of the four states of the ternary

complex model (Fig. 1) can be found by expressing each receptor state concentration in terms of [R],

[LR] = K [L][R]

[RG] = K;[GIIR]

[LRG] = yK;[GI[LR] = yK;[GIK [LI[R].

Solving these equations simultaneously with the equation for the conserved total receptor concentration,
namely,

[R]; = [R] + [LR] + [RG] + [LRG],

gives the fraction of receptors in each state,

[R]/[R]y = 1/z¢ 2.1)
[LR]/[R]ly = K [L]/zr (2.2)
[RGI/[R]y = K5[Gl/zr (2.3)

[LRG]/[R]ly = yKGIGIK, [L]/z7 (2.4)

where z; = 14K, [L]1+K5[G]+ vy K;[GIK, [L]. Figure 2 shows example binding curves for the ternary
complex model.

3. Cooperativity and constraints in receptor dimers

The previous section illustrated the well-known phenomena of allosteric coupling in the ternary complex
model. Less well known is how thermodynamic constraints and allosteric parameters arise as an
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F1G. 2. Example binding curves for ternary complex monomer (2.1)—(2.4). Parameters: K;, = 0.5 uM~L Kg =0.1 uM~ ! and
in (a) [G] =5 uM and y = 40.

emergent properties of receptor dimerization. To demonstrate this phenomenon, consider a model
receptor monomer with three states and two sequential binding reactions,

Kb Re
* *
KpT Kok
as———)hs===—2c¢C (3.1)

In the state-transition diagram shown above, kp, and « are dimensionless equilibrium constants, i
and «¢§ are association constants and x is ligand concentration. The solid harpoons indicate the forward
reaction direction. For example, the reaction labelled «}, has a as reactant and b as product; consequently,
increasing k, decreases the equilibrium probability (relative fraction) of state a and increases the
probability of state b. The three states of (3.1) are labelled so that the reactant comes before the product
in dictionary order (a to b to ¢). The subscript of the equilibrium constants «, and «, are chosen to match
the label of the reaction products.

For an isolated monomer with state-transition diagram given by (3.1), the probability of state i is
given by 7; = z;/z7, where z; = >, 2;, 2, = 1, 2, = kp = kjix and z, = kpk = Kkkgx>. That is,

1 KpX q K kgx? (32)
T, = , T, = and 7w, = . .
C T4 afx + rgrEx? L Kpx + K igx? Ol rpx+agn?
It is helpful to present this set of rational functions using the following compact notation:
[y 7y ] =1tk < kpkol = [1: kix s kieda?].
In expressions of this kind, it is understood that [x; :x, :---:x,] = [Ax; :Ax, :---:Ax,] for any A # 0.

Furthermore, A = 1/ Zixn gives the probability distribution w = (my,m,,...,m,) where 1 = Zi ;.
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Fig. 3. (a) Equilibrium parameters for a heterodimer composed of two 3-state monomers (same topology and different
parameters). There are four 4-cycles and four allosteric parameters: npp, Mg, Nch and 7cc. (b) State-transition diagrams for a
dimer composed of identical and indistinguishable subunits (not necessarily independent) and three allosteric parameters: npyp,
Npc and 7ec.

3.1 Receptor dimer composed of distinguishable monomers

A receptor dimer model composed of two distinguishable monomers with the 3-state topology of (3.1)
has 32 = 9 states, 12 reversible reactions, 4 thermodynamic constraints and 12 — 4 = 8 free equilibrium
parameters (Fig. 3a). Each monomer contributes two parameters, for a total of four (ky,, «, for one
monomer and k,, k, for the other monomer). The remaining parameters, denoted 7y, Npe, Mg and Nee
in Fig. 3a, encode the strength of the four possible allosteric interactions among the monomers; there is
one allosteric parameter for each 4-cycle, as in the ternary complex model (Fig. 1).

To clarify the meaning of the emergent allosteric parameters shown in Fig. 3a, let us write ky[a] for
the equilibrium constant of the @ = b reaction of first monomer occurring in the context of the second
monomer being in state ¢ and similarly for k[b], ky[al, kp[b] (below left).

Kb0] TbbHb
ab === 10bb ab === bb

l [ i [b] K@} i E [Ubwg

L--- ag === bha
kbla] b

In that case, the allosteric parameter 1, is, by definition,

iplb]  kplbl
iplal — Kplal

Npp -=

That is, 1y, is the degree to which «y,, the equilibrium constant of process b (the ¢ = b transition in
monomer 1) increases upon the occurrence of process b (the ¢ = b transition in monomer 2).

Taking states a and a as reference states, we write ky, := kplal, kp, = «plal. Consequently, «,[b] =
NbbKb> kblP] = Nppkp» leading to the choice of parameters for the 4-cycle shown above right. Similar
definitions for nyg, g, and 7 lead to the 9-state model of Fig. 3a. The proportion of dimers in each
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state,
T = [zag " Zab * Zha * Zac * Zbb ¢ Zea t Tbe tZch ch] s

can be ‘read off’ the state-transition diagram, remembering that the equilibrium constants are defined
sothata — b — cand a — b — c are forward reactions. Because aa is not a product of a forward
reaction, we assign z,, = 1. The other z; are given by the product of parameters labelling forward
reactions on a path from aga to i. For example, to calculate z,,, we observe the path aa — ab — bb —
cb, passes in the forward direction through three reactions with equilibrium constants ky, (aa — ab),
NobKp (@b — bb) and Ny (bb — cb); the product gives 2., = Ngpkg * NppKp - Kp- In @ similar manner,
we obtain Zpa = Kp> Zap = Kps Zeq = K¢ * Kps Zpp = NpbkDb - Kt;’ Zac = K¢~ Kt; N

Zpe = MbcKe * TbbXb " Kb
Zec = MecllebXe ™ MogbpXb * K¢ * Kp -

3.2 Receptor dimer composed of indistinguishable monomers

A receptor homodimer composed of two indistinguishable monomers with the 3-state topology of (3.1)
has six states, six reversible reactions, one thermodynamic constraint and 6 — 1 = 5 free equilibrium
parameters (see Fig. 3b). The homodimer state-transition diagram (Fig. 3b) is a contraction of the
heterodimer diagram (Fig. 3a) obtained by lumping and renaming states (aa — a2, ba + ab — ab, . ..)
and identifying parameters (kp, = Ky, kg = K¢, Mg = Ngp)- The monomers, being identical, contribute
only two parameters (k},, k) to the homodimer state-transition diagram (Fig. 3b). For a receptor dimer
composed of indistinguishable monomers (Fig. 3b), there are three allosteric parameters, denoted 7y,
Mpe and 7
_ “olP] _ fplel _ Klbl . Kelcl
T el T bl T kglal 7T kg lb]

For example, 7y, is the degree to which «y,, the equilibrium constant of process b (the a = b transition)
increases upon the occurrence of process C (the b = c transition) in the other monomer. The relative
probability of dimers in each state,

T = [Zaz “Zap - 22 Zge ¢ Lpe - Zcz] ’ (3.3)

isgivenby z,2 =1, z,, = 2k, 742 = nbb/cg, Zge = 2KpKe

Zbe = TooTTobK * Ko - 2K = 2ppTlbckpke

Z2 = S0 neke - K e = 2 2,2

% 3 Necllocke * MocobXb * K¢ * <K = NbbMpcNeckpkeco
where the combinatorial coefficient 2 (resp. 1/2) appears as a factor on the transitions out of (resp.
into) states a2, b? and ¢%. Note that this calculation does not assume independent monomers. Rather,
the dependence of the monomers in the homodimer has been parameterized by the three allosteric

parameters Npp, Mpe and 74.. To see this, transform (3.3) to an equivalent expression by dividing each
term by (1 + kp, + Kk,)? to obtain

2, N : 2 2
= (75 27, Mo 2 27 e 2y oo T e Mee Mo ob™e | - G4

where 7, ;, and 7, are the functions of x given by (3.2).
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FiG. 4. (a) The fraction of occupied ligand binding sites (3.6) in the homodimer model (Fig. 3b) for different values of the
allosteric parameters npp, Npc and nec. (b,c) Hill plots show that interactions between the monomers may lead to cooperativity.

Equation (3.4) is significant. Without assuming independence, we have expressed the state proba-
bilities of a receptor homodimer in terms of...

o the state probabilities of an isolated monomer (7, 7, and 7., determined by «, and «.) and
o the allosteric parameters 1y, 7, and 1. that represent the possibility of conformational coupling.

In the absence of allosteric interactions, n; = 1 and (3.4) simplifies as expected (. = 72, 7, = 27,7,
etc.).

3.3 Allosteric interactions influence receptor dimer binding curves

Figure 4 illustrates the influence of allosteric parameters (i.e. conformational coupling between
monomers) on the binding curve of a receptor dimer. Using the 6-state receptor dimer model discussed
in the previous section (Fig. 3b), Fig. 4a plots the fraction of occupied ligand binding sites (four in the
dimer, two for each monomer) as a function of ligand concentration x. The fraction of occupied sites is

1 1 3
Tap T E(?sz + nac) + Z”bc +tre2, (3.5)

y=Z a

where 7, w2 etc., are given by (3.3)and (3.4). When the fraction of occupied ligand binding sites is
written in terms of the monomer state probabilities and allosteric parameters, (3.5) becomes

y= %ﬂanb + %nbb”bz + 7,7 + %nbcnbb”bnc + NeoTlgeMob e » (3.6)
where we have used 72 = N2, T = 2eTpp 7T, €lc., obtained by identifying (3.3) and (3.4). In
this expression, 7, 7r;, and 7, are given by (3.2).

The Hill plots in Fig. 4(b and c) show how the allosteric parameters (1, 1, and 7..) that represent
the interactions between the monomers may lead to cooperativity in the fraction of occupied binding
sites. This example is reminiscent of a sequential (as opposed to concerted) model of cooperative oxygen
binding in haemoglobin that accounts for the inequivalence of @ and B subunits (Di Cera, 2005; Eaton
et al., 2007). In this interpretation, the original three-state model (3.1) is analogous to a 8 haemoglobin
dimer, and the allosteric parameter 1y, is the increase in affinity for the second binding event. The
6-state model represents a haemoglobin tetramer, in which 7, and 5. represent affinity changes
resulting from interactions between o dimers.
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3.4 A theory of allostery in oligomeric receptor models

The remainder of this paper presents a general theory of allostery in oligomeric receptor models
composed of any number of identical and indistinguishable monomers. In Section 4, we provide a
construction of the state-transition diagram of receptor homodimers (and oligomers), for any given
monomer topology. Section 5 calculates the number of thermodynamic constraints in an arbitrary
receptor oligomers in terms of the monomer topology (i.e. without having to construct the state-
transition graph of the oligomer). Sections 6-9 show how to enumerate the emergent allosteric
interactions of receptor oligomers. In this way, the equilibrium state probabilities of a receptor oligomer
may be understood in terms of the properties of an isolated monomer and allosteric parameters, each of
which has a clear biophysical interpretation with respect to conformational coupling of the constituent
monomers.

4. The state-transition diagram for a receptor oligomer is a reduced graph power

Let G = (V, E) denote an undirected graph with v vertices and e edges. Formally, the vertex setis V =
{a;,a,,...,a,}, but for readability we will often use the first v letters of the alphabet, V = {a,b, ¢, d, .. .}.
Each element of the set of edges, E, is an unordered pair of vertices. When we say that the graph G has
the same structure (topology) as a receptor monomer of interest, we mean that the undirected edge
(a;, aj) is an element of E(G) precisely when there is a reversible transition between states a; and a;
in the monomer state-transition diagram. For a monomer with v states and e transitions, G will have
v = |V| vertices and e = |E| edges (using the common notation for the number of elements in a finite
set). We assume G has no loops or multiple edges and is connected.

What graph corresponds to a receptor homomer composed of k identical subunits with topology
given by G? The answer to this question is the kth reduced power of G (Hammack & Smith, 2017),
denoted by G®, which is formally defined as a product graph that is contracted using the symmetries
of indistinguishable monomers (see Section S5 in the supplemental materials for mathematical details).
For readers with no prior knowledge of product graphs, the state-transition graph of a receptor homo-
oligomer can be constructed in three easy steps, as follows.

(1) For a receptor model of interest, construct an undirected graph with same topology. For example,
an undirected graph H = (V, E) corresponding to the ternary complex model (Fig. 1) has vertex set
V ={a,b,c,d} and edge set E = {(a, b), (a,c), (b,d), (c,d)} (graph H in Fig. 5).

(2) Interpreting the vertex labels as variables, write their sum, raise this quantity to the kth power and
expand. Each term of the resulting polynomial corresponds to a state of the receptor homo-oligomer. For
a dimer composed of k = 2 indistinguishable ternary complex monomers, there are 10 distinguishable
states

(a4 b+ c+d)? =a®+2ab+ 2ac + 2ad + b*> + 2bc + 2bd + ¢* + 2cd + d* . 4.1

For a ternary complex tetramer, k = 4 and (a+b+c+d)* = a* +a®b+a’c+ - - - +d* gives 35 states.
In general, the number of states in the receptor oligomer is given by v multi-choose £, i.e.

wn (VN v+k—1)_(v+k—1)!
v ”‘((k))‘( ko) Ke-Dr @2

This is the number of ways k indistinguishable monomers can each be assigned to one of v states.
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Fi1G. 5. Left: Undirected graph with topology of ternary complex model (Fig. 1). Middle: Topology of a homodimer composed of
two identical and indistinguishable ternary complex monomers is given by the reduced graph power H @, Right: Topology of a
receptor oligomer composed of four identical ternary complex monomers is given by the reduced power H' @,

(3) For edges of the receptor oligomer state-transition graph, notice that if (a;, a;) is an edge of G

(an allowed transition in the monomer), there is an edge between two states of G® (a transition in the
oligomer) precisely when these states can be written as a;fy | = afy_; where fi_,(a;,a,...,a,) is a
monomial of degree k — 1. The monomial f;_; will be referred to as the context of the a; = a; transition,
Le. the unchanged state of k — 1 monomers when one monomer changes state from a; to a; or vice versa.

Evidently, the number of edges of G® is

| v _ v+k—2)_ v+k—2)!
[EG )|_e((k—1))_e( k=1 ) " -l w—n1" (*-3)

This is the product of number of edges of G, given by e = |E(G)|, and the number of contexts, which is
the number of ways k — 1 indistinguishable monomers can each be assigned to one of v states.

Figure 5 shows the reduced graph power H® that gives the topology of the state-transition diagram
for a ternary complex homodimer. H® has 4(4+%_2) = 4(‘1‘) = 16 edges. The edge (ab, bd) of H®
corresponds to one monomer making an @ = d transition in the context of the other monomer occupying
state b. Figure 5 also shows the graph H® for a receptor oligomer composed of four indistinguishable
ternary complex monomers. H® has 4(4“3‘72) = 4(2) = 80 edges. The edge (b’cd, bc’d) of HW
corresponds to one monomer of the receptor 4-mer making an b = c transition in the context of bcd.

5. Thermodynamic constraints in receptor oligomers

The number of thermodynamic constraints in a receptor model is given by its Betti number, which is the
dimension of the cycle space (sometimes called the nullity) of the state-transition graph (see Section S6
for a formal definition of the cycle space of a graph). For a graph G that is connected and has no loops
or multiple edges, its Betti number is given by (G) = |E(G)| — |V(G)|+ 1 = e —v+ 1. The number of
free equilibrium parameters in the monomer model is the number of edges less the constraints (e — ),
which is equal to v — 1, the number of edges in a spanning tree of G.
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How many thermodynamic constraints are present in a receptor oligomer obtained from G? Using
(4.2) and (4.3), one finds that the Betti number of the reduced graph power G® is

BGP) = [EG™)| - [V(GP)| +1 = e(v;gf; 2) - (VH;_ 1) +1. (5.1)

The number of free equilibrium parameters in a receptor oligomer model is

EG®)| - BGW) = |G| -1 = (V +i_ 1) —1, (5.2)

which is the number of edges in a spanning tree of the reduced graph power G®. For example, the
ternary complex homodimer, shown as H® in Fig. 5, has B(H®) = 16 — 10 + 1 = 7 thermodynamic
constraints and 9 free parameters. The ternary complex tetramer, shown as H® in Fig. 5, has (H®) =
80 — 35 + 1 = 46 thermodynamic constraints and 34 free equilibrium parameters. The next section
discusses the biophysically meaningful assignment of these equilibrium parameters.

6. Equilibrium parameters in receptor monomers and oligomers

Our goal is to assign equilibrium parameters to a receptor oligomer in a manner that clarifies the possible
interactions between monomers (i.e. conformational coupling). We begin by introducing a convention
for assignment of equilibrium parameters to the edges of G, the state-transition graph of the monomer,
whose vertex set is V(G) = {a;,a,,...,a,}. To accomplish this, we first construct a rooted spanning
tree of G with root a; and indexing that respects a breadth-first traversal (denoted T; or just T). Any
edge of T'is uniquely determined by its endpoint g; that is furthest from the root. For each 2 < i <,
let €; be the edge of T that has endpoints a; and a;, with g; further from the root than ;. For each edge
of T, we have €; = (a; ,q;), where a; is the predecessor of a;. For each edge €; of T, there is a free
equilibrium constant that will be denoted by &, .

For the ternary complex monomer introduced in Fig. 1, denoted H in Fig. 5, an example spanning
tree (Ty) is shown below left.

Rd
b<~——4d bs===-d
1 .
d K 1 .H RbKd
b |1 thx =
Ty b ! : e
4
a<~——c at=-=-=zsc
C Ke

The edges of Ty are b = (a,b), ¢ = (a,c), d = (b,d) and the predecessors are b~ = a, ¢~ = a, and
d~ = b. The root vertex a has no predecessor. For convenience, we have chosen Ty so each directed
edges (b, ¢ and d) points backwards (reactant <— product). The free equilibrium constants are denoted
Ky, K and k4 (shown above right). The constrained equilibrium constant is k, = kpkq/k.- In the notation
of Fig. 1, ky, = K;[L], k; = K5[Gl and ky = yK;[G] and k, = y K [L].

We may now formally assign equilibrium parameters to the edges of the receptor oligomer state-
transition graph G®). Because T is a spanning tree of G, the reduced power of this spanning tree,

denoted Tg ) isa subgraph of G® that spans G . Although Tg( ) spans G® it is not a tree. In fact, Tg )
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a b 2 . c 2 2
Ty C H T c H® o cry
b<—14d 2k4[D] bd Ligld) 2% bd L, s
Kd 2 Kdbd ‘ 5 Rdbddd
e y / \ - . / \\ \ p
fipd] ;
@< —c 5kb[0] $FbTlbb |
» be ~ |l 4& bf: «‘,‘%
ab \ /cd ab\‘ -
Kalal ad = k[d) Kd : ad~""
2kp|a) 2kp '
Kblc] i
a? c? a® | c?
2“:[‘1]\ ac ‘é[‘“] v% zic ‘éﬁce

FiG. 6. (a,b) Because Ty is a spanning tree of H, the reduced graph power of T, denoted T(z), spans H @, However, TI(-12 ) has
three Cartesian squares and is not a tree. (c) @(Tl(f)) is a spanning tree obtained from Tg ) by eliminating three edges (shown

dash-dotted), one from each Cartesian square. The parameters labelling edges of T;IZ )in (b) are transition-context pairs, e.g., kq[b]
denotes the equilibrium constant for reaction d = (b,d) in one ternary complex monomer when the other monomer is in state
b. In (c), the nine free parameters of ternary complex homodimer are specified as three equilibrium constants inherited from the
monomer (k; for i € {b, ¢, d}) and six allosteric parameters (n;; for i, j € {b,c,d} and i < ).

will include (Vgl) Cartesian squares (a special type of 4-cycle), one for each distinct pair of edges in 7;
(see Section S6). However, a spanning tree of G*), denoted by @(Tg‘ )), can always be constructed by
eliminating edges of Ték ) in such a way that each successive edge removed breaks a Cartesian square.
The edges of the spanning tree (H)(T(Gk )) c G® will be transition-context pairs involving an edge of
T (the transition), denoted €; = (a; ,q;), and a monomial f,_;(a;,a,,...,a,) of degree k — 1 (the
context). The equilibrium constants labelling the edges of (H)(T((;k )) are formally denoted as ¢ [f;_]
where 2 < i < v. The next paragraphs illustrate the pruning of T((;k ) that leads to the spanning tree
(¢ (Tg( )) using our two running examples, the ternary complex dimer and tetramer.

Figure 6b shows T1(12 ) where Ty is the spanning tree of the ternary complex model shown as H
in Fig. 6a. The (Vgl) = (g) = 3 Cartesian squares are a*> + ac + ab + bc, ab + ad + b* + bd and
ab + bd + bc + cd. Using this notation, the equilibrium parameters for the spanning tree (H)(Tﬁl2 )) are
kpla] for the edge (az, ab), kD] for (ab, bz), kglc] for (bc, cd) and so on (see Fig. 6b). Figure 6¢ shows
the spanning tree (»*)(TI({2 )) that is obtained by eliminating one edge from each Cartesian square in TI,(i,2 )
(the three eliminated edges are shown dash-dotted).

The arrows of Fig. 7 show a spanning tree @(TI(_? )) for the ternary complex tetramer H® that is
constructed in a similar fashion. @(TI(; )) has (V'H]i_l) -1 = (Z) — 1 = 34 edges (shown solid). The
reduced graph product Tg ) has (v— 1)(Vﬁjz) =3 (g) = 60 edges (solid and dash-dotted but not dotted).
Figure 7 also shows the equilibrium constants for several transitions that are shown: fcb[a3] for the edge
(a4, a’ b) representing an a = b transition in the context of a3; Kb[azb] for (a3b, azbz) representing an
a = b transition in the context of azb; Kg [b3 ] for (b4, b3d) representing an b = d transition in the
context of b3; Ky [azb] for (abdz, ad3) representing an b = d transition in the context of a?b. Note that
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4ka[b?] = ARaniyTibaTbbba

1,...2,.2, . .
3 KdTlbdTldd Tlbbd Tbdd T]ddd

F1G. 7. The graph Ty is a rooted spanning tree of H. The graph Tg ) is the subgraph of H 4 shown solid and dash-dotted (but
not dotted). The solid arrows are @(TI(;‘)), the subgraph of Tl(f) that is the distinguished spanning tree of H @ Several edges of

¢ (T;? )) are labelled as transition-context pairs.

3

there are (") (k“,:f) = (3) (3) = 30 Cartesian squares in the reduced graph product T, but not all of

these are independent (see Section S6). A total of 26 edges of TI(; ) are eliminated to obtain the spanning
tree @(TI(; )) (the eliminated edges are shown dash-dotted).

7. Enumerating allosteric interactions in receptor dimers

How should the free parameters for a receptor oligomer be specified to illuminate the possible allosteric
interactions among monomers? Because the spanning tree T; has e = v — 1 edges, we may define
(e + 1)e/2 = v(v — 1)/2 independent 2-way allosteric parameters (the number of ways 2 edges can be
chosen from the spanning tree with replacement). For a dimer (k = 2), these 2-way parameters are

3 K, L] B Kej[ai]

ne,-ej T

(7.1)

ke la; 1 Kgla; 1

where 2 < i < j < v. For example, the spanning tree T, of the ternary complex monomer has three
edges (b, ¢, d). Thus, there are 4 - 3/2 = 6 allosteric parameters for the dimer,

Mo = Kplb1/Kplal (1.2)

Mo = Kplcl/kplal = k¢[b]/kclal (7.3)
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Nod = Kpldl/Kkplb] = Kk4[bl/Kylal (7.4)
Nee = kclel/xclal (7.5)
Neg = keldl/kc[b] = kylcl/kgylal (7.6)
Ngd = Kkqgld1/KkglD]. (7.7)

Using the 2-way allosteric parameters defined above and the equilibrium parameters inherited from the
monomer model (kplal = «p, klal = kg, kglal = k4 because a is the root of Ty), we are able to
specify the equilibrium constants for each edge of @(T1(12 )) in a manner that illuminates the possibility
of conformational coupling. For example, the parameter on edge (ab, b?) is formally kp[b] because this
edge is a b = (a, b) transition in the context of b. Using (7.2), we have k,[b] = «plalng, = Kplpp-
The edge (bd, d?) is ad = (b, d) transition in the context of d. Using both (7.2) and (7.7), we see that
this equilibrium constant is k4ld] = x4[blngy = KqMpqNdq- Repeating this process for all 10 states
yields the specification of allosteric parameters in the ternary complex homodimer shown in Fig. 6b.
The corresponding binding curve [ 7w @ 7wy, @ T, i Ty P T2 P Ty P Mg S W2 I Ty T S

[ 1255 iy 26+ 2Kk Ko Tloc * 2KpKg 2K K lpalob * 2KpKokaTlbolled Kbk Moo Tgaad |- (7-8)
Dividing (7.8) by (1 + iy, + &g + kpkg)? gives

[773 270,70 T Moy * 2T s 27T Mg o Mo * 27T 270 g o o 27T led :”c%nbb’?%dndd]’
(7.9)
where [, : m, 1 7w, 7wyl = [1 @ ky @ kg © kpkgl. Without assuming independence of receptor
monomers, we have expressed the equilibrium occupancy measure of the ternary complex homodimer
in terms of the properties of an isolated monomer (77, 7, etc.) and allosteric parameters (7, Mg €LC.).

Some readers may prefer Fig. 8, which is Fig. 6¢ recast in the biophysical notation of Fig. 1.

8. Enumerating allosteric interactions in higher-order receptor oligomers

For receptor oligomers with k > 2, the 2-way allosteric parameters take the form

ke lafinl  Kelafisl

ko la fial  Kelaifial’

Ue,e_,. [fkfz] =

where 2 < i < j < vandf,_,(a,4a,,...,a,) is a monomial of degree k — 2. This is a generalization
of (7.1) because f;,_, = 1 when k = 2. When k > 2, there are also multiway allosteric interactions that
must be considered. For example, the 3-way allosteric parameters are

Neglafi—3l  nee,laifi 3l Tee,laifisl

Neelanfi—31  Tee, 4 fi3l  TNeje,[4; i3l

Nesejen k-3l = (8.1)
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LR[LRG

2v7Ka [G]AXP/ . VQKG [GIxey X
(LR)* !

(LRG)?

LKLL)) i

1Ko[d] i \

LR <—— LRG g
KalGlxts _ LRIRG ’VKG[G]XW

\

KL[L] RILR v \ ~ RG|LRG

\ ‘ -
YEG[G] T RILRG ~

Kol o 2K (L] \

R2 \ (RG)2

2K6lG] g < 2H6lCGlxe

FiG. 8. Left: Spanning tree of the ternary complex model (cf. Fig. 1). Right: Specification of allosteric parameters in the ternary
complex dimer given by Fig. 6¢ with the replacements a — R, b — LR, ¢ — RG,d — LRG, npy = xees Toc —> Xegs
Nbd —> Xtys Mec —> Xgg» Med —> Xgy»> Ndd —> Xyy where £, g and y stand for the transitions R = LR, R = RG and
LR = LRG, respectively.

where 2 <i <j<h<vandf,_5(ay,a,,...,a,)is amonomial of degree k — 3 (f,_3 = 1 when k = 3).
The equalities in (8.1) may be confirmed by expanding the definition, for example,

neiej[ahfk—3] _ Kei[ajahfk—3]/Kei[a]iahfk—3]

New;larfios] Kol fis)/Kelar ayfi_s]

ke lanaifi_31/ke lay a;fy_3] _ Ne,e,[4ifk—31
Kelana; fr_31/kelay a; fi3l  Nee,ld; frsl

In general, for 2 < n < k, n-way allosteric parameters are defined as

Ne; eiyei, ei, e [ai fk—n]
. 1€ip 7" Cig—1 Cigyq " Cin T TE
r’e,-le,-z---e,-n [f}c—n] = [ ,f ] > l < g < n,
€iy CipCig_ Cigy) " Cin Gipke—n
where 2 < iy <i, <--- < i, <vandf,_,(a;,a,,...,a,) is a monomial of degree k — n. Note that

the n-way allosteric parameter "eil . has m equivalent definitions where m is the number of distinct
subscripts.

For a monomer topology given by G, the spanning tree T has v — 1 edges. A receptor oligomer
composed of k monomers has ((vzl)) = (V+Z_2) n-way allosteric parameters for 2 < n < k, which is the
number of ways that n of the v — 1 edges can be chosen with replacement. For example, the spanning
tree @(T;;1 )) of the ternary complex 4-mer has (3) = 6 2-way, (3) = 10 3-way and (§) = 15 4-way
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parameters. Some of these are

Nbbb = Mob b1/ npplal

Need = Neeld]/Neclb] = neglel/neglal

Nbed = Mbcld]/Mpclb] = npglel/npglal = neglbl/negylal

Mobed = Mobeld]/MobeP] = Nppalc]/Nppalal = Npealbl/Npeqlal
Necdd = Need @]/ NecalP] = Negalc]/negqlal
Ndddd = Naddl4]/Mdaalb]-

Specifying allosteric interactions in this fashion introduces the number of parameters required to

specify a receptor oligomer model, which is the number of edges in spanning tree @(T((;k )), ie. ((Z)) -

1= (V+i_1) — 1 where v = |V(G)|. To see this, note that the number of n-way allosteric interactions

involving the v — 1 edges of the spanning tree Ti; is ((‘:1)) When n = 1, this is ((VII)) =v—1,ie.the
number of free parameters in the monomer. When these are supplemented with allosteric parameters for
2-way through k-way interactions, the total number of parameters obtained is

2R )

n=1

k
v+n—2 v+k—1
()= ()

which is the number of edges in the spanning tree ©® (Tg‘ )).

9. Token method for specifying allosteric parameters

For receptor dimers with state-transition diagram G@ | the allosteric factors that were discussed in the
previous sections may be enumerated using a natural ‘token’ representation of receptor oligomer states.
To begin, draw the tree T; that spans the state-transition graph G of the monomer. For any given state
of the oligomer, put (indistinguishable) tokens in the positions associated with the monomer states. For
example, the token graphs associated to states bd and d in the ternary complex dimer, H®, are

To calculate allosteric factor for state bd, consider the path of each token to the root (the vertex a). These
paths yield b for the first token and b+d for the second token. Because the product is b(b+d) = b?+bd,
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TABLE 1 Worksheet for the token method for enumerating allosteric parameters in the case of the
ternary complex dimer. Compare (7.9) and Fig. 6c.

State Token 1 Token 2 Sum 1-Way Product 2-Way
a? 0 0 0 0 0 -
ab 0 b b Ky 0 -

b? b b 2b kg b? Nbb
ac 0 b+c b+c Kpke 0 -
bc b b+c 2b+c KiKe b2 + bc NobTbe
c? b+c b+c 2b+2c KpKe b? + 2bc + ¢2 Moo Mae e
ad 0 d d Kg 0 -
bd b d b+d KpKg bd Nbd
cd b+c d b+c+d KpKeKg bd + cd Nbdled
d? d d 2d i3 d? Ndg

the allosteric factor in the term 7,7, in (7.9) is Ny npg- For state d, the path to root for both tokens
is b + d and the product is (b + d)? = b? + 2bd + d; thus, the allosteric factor for 77 is np1EyMdg-
Table 1 shows the complete list of allosteric factors for the ternary complex dimer, H® . Figure 6¢ shows
the corresponding labelled spanning tree (*D(Tél2 )). The relative probability of any receptor dimer state
(@2, ab, ...d*) can be read off this spanning tree. For example, the relative probability of state d? is
found, using Fig. 6¢, as the product of labels on the path from d? to the root (a*> <« ab <« b*> <«
bd < d?). This product is 2k, - %Kbnbb - 2K4Mbd - %Kdnbdndd = /cékgnbbn%dndd (7.8). Dividing by
(1 4 kp + kg + kpkg)? gives nﬁnbbngdndd (7.9).

The token method for a receptor k-mer where k > 2 is more complicated than the special case of a
receptor dimer where k = 2. For a receptor k-mer, we may assume p; < p, < --- < p; where p, is the
place of the £th token. Recall that e, = (a, , a,) and define h(a,) recursively,

0 f =
h(ay) = L ra=4 ©.1)
e, +h(a,) otherwise.
The n-way interactions are enumerated by the elementary symmetric polynomials in £y, k5, . . ., y,
namely,
g,y hy, ... ) = > hi hiy by 9.2)

1<ip<ipg<-<ip<k

For example, the token graphs associated to states bed? and ac?d in the ternary complex tetramer,
shown in Fig. 5 as H @ are
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The 2-, 3- and 4-way interactions are (9.2)

2—Way . hlh2 + h1h3 + ]’llh4 + h2h3 + h2h4 + h3h4
3-way : hyhyhy + hyhohy + hyhyhy + hohsh,
4-way : hyhyhshy

where (9.1)

bed*> :hy=b hy=c hy=b+d h,=b+d
ac’d:hy =0 hy=c¢ hy=c h,=b+d.
For state bed?,

2-way : bc 4 2b(b 4 d) + 2c(b + d) + (b + d)?

= 3b? + 4bd 4 3bc + d* + 2cd
3-way : 2bc(b + d) + b(b + d)? + c(b + d)?

= b’ + 2b’d + 3b’c 4 bd? + 4bcd + cd?
4-way : be(b + d)? = bic + 2b%cd + bed?.

Thus, the nbncnj term, which has combinatorial coefficient (1,1,2)!= 4!/(0!1!1!2!) = 12, has
allosteric factors

3 .4 3 2 2 3 4 2
NobModTbeddTed bbb Tbbd Tbbe TbddTbedTedd TbbbeTbbed Toedd -

2 way 3 way 4 way
For state ac?d, a similar calculation gives

2 2 2
127,705 7 4 e Mecod Moceeed:-

Section S3.2 of the supporting material gives the complete result, obtained through a symbolic
calculation of (9.1) and (9.2).

To find the allosteric factors associated to a given edge of the spanning tree G)(Tl(f )), one may
compare combinatorial coefficients and allosteric factors associated to state and its predecessor (both
adjacent to the edge of interest). For example, the edge (abd?, ad®) represents the b = d transition in
the context of ad?. This edge has the equilibrium constant %"d [ad®] where the coefficient 1/3 is the
ratio of (1,3)! = 4 for ad® and (1,1,2)! = 12 for abd®. Evaluating (9.2) gives 6bd + 3bd” + 3b*d +
3b? + b* 4 3d? + d? for ad® and 4bd + bd? + 2b*d 4 3b? + b? + d? for abd?. Because the difference
is 2bd + 2d? + b%d + 2bd? + d3, we conclude that 1kglad’] = LkgnZ4n34TbbaeqqNddad (see Fig. 7).

Alternatively, one may calculate the allosteric factors associated to process d occurring in the context
of ad® in the following, more direct fashion. The token graph associated to the context ad® involves the
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following placement of 3 tokens,

Reading this token graph we find #; = 0 and 7, = h; = b + d. Substituting these values in (9.2) gives
a polynomial associated to the context ad?, namely,

hy 4 hy + hy + hyhy + hyhy 4 hohy 4+ hyhyhy = hy + by 4 hyhy = 2(b + d) + (b + d)2.
——

1 way 2 way 3 way
Multiplying this polynomial by d for the b = d transition gives
d[2(b + d) + (b + d)*] = 2bd + 2d* + b*d + 2bd* + d”,

so the alloste.ric factor a‘ssociated wi.th transition d = (b, d) in context ad? is n%dn?jd”bbd”gddnddd’ in
agreement with the previous calculation.

10. Discussion

The framework presented here for understanding allostery in receptor oligomers is an intriguing and
novel combination of graph theory and quantitative receptor pharmacology. We began by establishing
that the structure of state-transition diagram of a receptor k-mer, for any given monomer topology G,
is the reduced graph power G®). We showed that the equilibrium probabilities of a receptor k-mer may
be expressed in terms of the parameters for an isolated monomer and emergent allosteric parameters,
without approximation and without assuming independence of receptor monomers.

For clarity, we have used the (perhaps over-simple) ternary complex model dimer and tetramer as
running examples, but the approach is completely general. For any given spanning tree 7; of a monomer
state-transition diagram G that is of interest, the allosteric parameters can be enumerated by performing
the symbolic calculations of (9.1) and (9.2) in a computer algebra system.

The example code is provided in the supporting material (Section S3) that performs the required
algebraic calculations for any 7 and k specified by the user. The special case of a receptor dimer
composed of two cubical ternary complex monomers is discussed in Sections S2 and S3.3.

We need not elaborate on the limitations of this theoretical framework for allostery in receptor
oligomers. These are, for the most part, inherited from the limitations of the receptor modelling as
practised by quantitative pharmacologists.

The identifiability of allosteric parameters (»,) that emerge in receptor oligomer models is an
important question that is beyond the scope of this paper. Presumably, identifiability will depend on
whether (or not) parameters inherited from the monomer (k;) are fixed during the process of fitting
allosteric parameters to experiment. An information criterion could be used to determine if it is
legitimate to assume any given allosteric parameter has non-negligible effect (n, # 1).
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We hope this theoretical framework for receptor oligomer allostery will be valuable to investigators
interested in pharmacological alteration of signalling via oligomeric GPCRs. It would be straightforward
to apply this analysis of allosteric interactions to equilibrium oligomeric receptor modelling in contexts
other than GPCRs (ligand-gated ion channels, receptor tyrosine kinases etc.). Extension of this
framework to non-equilibrium steady states would allow its application to kinetic studies of multimeric
enzymes, including the G protein activation/deactivation cycle of oligomeric GPCRs.
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