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We show how equilibrium binding curves of receptor homodimers can be expressed as rational polyno-

mial functions of the equilibrium binding curves of the constituent monomers, without approximation and

without assuming independence of receptor monomers. Using a distinguished spanning tree construction

for reduced graph powers, the method properly accounts for thermodynamic constraints and allosteric

interactions between receptor monomers (i.e. conformational coupling). The method is completely

general; it begins with an arbitrary undirected graph representing the topology of a monomer state-

transition diagram and ends with an algebraic expression for the equilibrium binding curve of a receptor

oligomer composed of two or more identical and indistinguishable monomers. Several specific examples

are analysed, including guanine nucleotide-binding protein-coupled receptor dimers and tetramers

composed of multiple ‘ternary complex’ monomers.

Keywords: pharmacological receptor models; allosteric modulation; product graphs.

1. Introduction

Guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) are the largest family of

signalling proteins in the mammalian genome and targets for therapeutic drugs (Audet & Bouvier,

2012; Rosenbaum et al., 2009). When GPCRs are activated by extracellular agonists, they interact

with heterotrimeric G proteins to regulate downstream second messenger and protein kinase cascades,

notably, cyclic-adenosine monophosphate, inositol 1,4,5-triphosphate and diacylglycerol.

Equilibrium receptor models are used by pharmacologists to quantify changes in ligand affinity and

efficacy, and various modes of activation of GPCRs, and to clarify mechanistic hypotheses regarding

drug action (Giraldo, 2012; Gregory et al., 2010; Hall, 2012; Kenakin, 2016; May et al., 2007; Wang

et al., 2018). Pharmaceuticals that allosterically modulate GPCRs are of therapeutic interest due to their

potential for greater subtype specificity than orthosteric ligands (Engers & Lindsley, 2013; Gregory

et al., 2013). Indeed, allosteric modulators hold promise for treating numerous CNS disorders (Conn

et al., 2009; Foster & Conn, 2017; O’Brien & Conn, 2016; Terrillon & Bouvier, 2004).

Evidence for dimerization and oligomerization of GPCRs has been obtained using various exper-

imental methods, including radioligand binding, coimmunoprecipitation and fluorescence resonance

energy transfer microscopy (Kaczor & Selent, 2011; Levitz et al., 2016; Park et al., 2008). It is widely

believed that dimerization and higher-order complexing (oligomerization) of GPCRs are common

phenomena that diversify GPCR signaling and opportunities for pharmacological intervention (Bouvier,

2001; Ferré et al., 2014; Gaitonde & González-Maeso, 2017; González-Maeso, 2011; Kenakin, 2014;

Milligan & Smith, 2007; Milligan et al., 2019; Park & Palczewski, 2005).

© The Author(s) 2019. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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314 G. D. CONRADI SMITH

GPCR dimerization may involve identical receptors (homodimerization), two different subtypes

of the same family or receptors from distantly related families (heterodimerization). Several family

C GPCRs exist and function as covalently linked homodimers (e.g. metabotropic glutamate receptors

and calcium-sensing receptors) (Niswender & Conn, 2010). Some family A GPCRs (e.g. β1-adenosine

and dopamine D2 receptors) function as homodimers (González-Maeso, 2014). Some GPCRs are

obligate heterodimers (e.g. the GABAB receptor and taste receptors for sweet and umami responses)

(Chandrashekar et al., 2006; Marshall et al., 1999; Pin et al., 2004). A prototypical GPCR heteromer

(composed of receptors from different families) is formed by A2A adenosine receptors and D2 dopamine

receptors (Borroto-Escuela et al., 2018; Ferré et al., 2004; Fuxe et al., 2010).

In many of the above examples, physical interactions between subunits of GPCR oligomers are

known, or suspected to be, important determinants in the mechanism of receptor activation (Ferré,

2015; Goudet et al., 2005; Kubo & Tateyama, 2005; Palczewski, 2010; Pin & Bettler, 2016; Vischer et

al., 2015). Mathematical analyses have provided specific insights into interactions between subunits of

receptor oligomers, i.e. conformational coupling (Casadó et al., 2007; Christopoulos & Kenakin, 2002;

Durroux, 2005; Farran, 2017; Park et al., 2004; Rovira et al., 2009). However, a deeper theoretical

understanding of oligomeric signalling is needed. In response to this need, we have developed a novel

theoretical framework for understanding allosteric interactions and thermodynamic constraints within

oligomeric receptors that are composed of any number of identical monomers. The framework allows

equilibrium binding curves of receptor dimers to be expressed in terms of the properties of constituent

monomers, without approximation and without assuming independence of receptor monomers.

This paper presumes understanding of receptor modelling and mathematical concepts familiar to

the mainstream pharmacological community; see Kenakin (2018) for an overview. Section 2 reviews

this methodology and introduces helpful notation that was developed as part of this work. En passant,

we distinguish two ways that thermodynamic constraints and allosteric parameters arise in receptor

models: (1) when the state-transition graph of a receptor includes cycles and (2) as a property of receptor

oligomers that emerges via conformational coupling of constituent monomers.

2. Thermodynamic constraints and allosteric parameters in the ternary complex model

It is well known that G proteins may modulate ligand affinity at GPCRs (De Lean et al., 1980; Ehlert,

2000; Kenakin, 2004; Maguire et al., 1976; Weiss et al., 1996). We review this phenomenon to illustrate

the relationship between cycles in the graph representing receptor model topology, thermodynamic

constraints on equilibrium model parameters and allosteric coupling (Hill, 1985).

Consider the well-known ternary complex model of interactions between a 7-transmembrane

receptor (R), endogenous ligand (L) and heterotrimeric G protein (Fig. 1a). This model hypothesizes

distinct binding sites for ligand (orthosteric) and G protein (allosteric), four receptor conformations

(states) and four reversible reactions. Microscopic reversibility requires that the product of the transition

rates (not shown) around the four states of the ternary complex model is the same clockwise as

counter-clockwise for fixed ligand and G protein concentrations (Hill, 1989). If we consider bimolecular

association as the forward reaction, then the chemical equilibrium constants are KL = [LR]/([L][R]),

KG = [RG]/([G][R]), K̂L = [LRG]/([L][RG]) and K̂G = [LRG]/([G][LR]), where [L], [R]

etc. represent equilibrium concentrations. The cycle in the ternary complex model leads to the

thermodynamic constraint KLK̂G = KGK̂L and, consequently, the ternary complex model has three (not

four) free equilibrium parameters. To emphasize the cooperativity of the two binding processes, one

may define an allosteric parameter γ = K̂G/KG = K̂L/KL. In that case, the receptor model is specified

by two association constants (KL, KG) and γ , the strength of allosteric coupling. The ligand affinity is
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ALLOSTERY IN OLIGOMERIC RECEPTOR MODELS 315

Fig. 1. Ternary complex model of a G protein-coupled receptor (De Lean et al., 1980; Ehlert, 2000; Kenakin, 2004; Maguire

et al., 1976; Weiss et al., 1996). For given ligand and G protein concentration ([L] and [G]), there are three free equilibrium

parameters: two association constants (KL, KG) and the allosteric parameter γ .

KL when G protein is unbound and γ KL when G protein is bound. Thus, γ > 1 implies that G protein

binding increases agonist affinity, as observed for β2-ARs (De Lean et al., 1980; Maguire et al., 1976;

Weiss et al., 1996).

For any [L] and [G], the equilibrium fraction of receptors in each of the four states of the ternary

complex model (Fig. 1) can be found by expressing each receptor state concentration in terms of [R],

[LR] = KL[L][R]

[RG] = KG[G][R]

[LRG] = γ KG[G][LR] = γ KG[G]KL[L][R].

Solving these equations simultaneously with the equation for the conserved total receptor concentration,

namely,

[R]T = [R] + [LR] + [RG] + [LRG] ,

gives the fraction of receptors in each state,

[R]/[R]T = 1/zT (2.1)

[LR]/[R]T = KL[L]/zT (2.2)

[RG]/[R]T = KG[G]/zT (2.3)

[LRG]/[R]T = γ KG[G]KL[L]/zT (2.4)

where zT = 1+KL[L]+KG[G]+γ KG[G]KL[L]. Figure 2 shows example binding curves for the ternary

complex model.

3. Cooperativity and constraints in receptor dimers

The previous section illustrated the well-known phenomena of allosteric coupling in the ternary complex

model. Less well known is how thermodynamic constraints and allosteric parameters arise as an
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316 G. D. CONRADI SMITH

Fig. 2. Example binding curves for ternary complex monomer (2.1)–(2.4). Parameters: KL = 0.5 μM−1, KG = 0.1 μM−1 and

in (a) [G] = 5 μM and γ = 40.

emergent properties of receptor dimerization. To demonstrate this phenomenon, consider a model

receptor monomer with three states and two sequential binding reactions,

(3.1)

In the state-transition diagram shown above, κb and κc are dimensionless equilibrium constants, κ∗
b

and κ∗
c are association constants and x is ligand concentration. The solid harpoons indicate the forward

reaction direction. For example, the reaction labelled κb has a as reactant and b as product; consequently,

increasing κb decreases the equilibrium probability (relative fraction) of state a and increases the

probability of state b. The three states of (3.1) are labelled so that the reactant comes before the product

in dictionary order (a to b to c). The subscript of the equilibrium constants κb and κc are chosen to match

the label of the reaction products.

For an isolated monomer with state-transition diagram given by (3.1), the probability of state i is

given by πi = zi/zT , where zT =
∑

i zi, za = 1, zb = κb = κ∗
b

x and zc = κbκc = κ∗
b
κ∗
c x2. That is,

πa =
1

1 + κ∗
b

x + κ∗
b
κ∗
c x2

, πb =
κ∗
b

x

1 + κ∗
b

x + κ∗
b
κ∗
c x2

and πc =
κ∗
b
κ∗
c x2

1 + κ∗
b

x + κ∗
b
κ∗
c x2

. (3.2)

It is helpful to present this set of rational functions using the following compact notation:

[πa : πb : πc] = [1 : κb : κbκc] =
[

1 : κ∗
bx : κ∗

bκ
∗
c x2

]

.

In expressions of this kind, it is understood that [x1 : x2 : · · · : xn] = [λx1 : λx2 : · · · : λxn] for any λ �= 0.

Furthermore, λ = 1/
∑

i xn gives the probability distribution π = (π1, π2, . . . , πn) where 1 =
∑

i πi.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
a
m

m
b
/a

rtic
le

/3
7
/3

/3
1
3
/5

6
6
6
1
6
6
 b

y
 g

u
e
s
t o

n
 1

0
 S

e
p
te

m
b
e
r 2

0
2
0



ALLOSTERY IN OLIGOMERIC RECEPTOR MODELS 317

Fig. 3. (a) Equilibrium parameters for a heterodimer composed of two 3-state monomers (same topology and different

parameters). There are four 4-cycles and four allosteric parameters: ηbb, ηbc, ηcb and ηcc. (b) State-transition diagrams for a

dimer composed of identical and indistinguishable subunits (not necessarily independent) and three allosteric parameters: ηbb,

ηbc and ηcc.

3.1 Receptor dimer composed of distinguishable monomers

A receptor dimer model composed of two distinguishable monomers with the 3-state topology of (3.1)

has 32 = 9 states, 12 reversible reactions, 4 thermodynamic constraints and 12−4 = 8 free equilibrium

parameters (Fig. 3a). Each monomer contributes two parameters, for a total of four (κb, κc for one

monomer and κb, κc for the other monomer). The remaining parameters, denoted ηbb, ηbc, ηcb and ηcc
in Fig. 3a, encode the strength of the four possible allosteric interactions among the monomers; there is

one allosteric parameter for each 4-cycle, as in the ternary complex model (Fig. 1).

To clarify the meaning of the emergent allosteric parameters shown in Fig. 3a, let us write κb[a] for

the equilibrium constant of the a � b reaction of first monomer occurring in the context of the second

monomer being in state a and similarly for κb[b], κb[a], κb[b] (below left).

In that case, the allosteric parameter ηbb is, by definition,

ηbb :=
κb[b]

κb[a]
=

κb[b]

κb[a]
.

That is, ηbb is the degree to which κb, the equilibrium constant of process b (the a � b transition in

monomer 1) increases upon the occurrence of process b (the a � b transition in monomer 2).

Taking states a and a as reference states, we write κb := κb[a], κb := κb[a]. Consequently, κb[b] =

ηbbκb, κb[b] = ηbbκb, leading to the choice of parameters for the 4-cycle shown above right. Similar

definitions for ηbc, ηcb and ηcc lead to the 9-state model of Fig. 3a. The proportion of dimers in each
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318 G. D. CONRADI SMITH

state,

π = [zaa : zab : zba : zac : zbb : zca : zbc : zcb : zcc] ,

can be ‘read off’ the state-transition diagram, remembering that the equilibrium constants are defined

so that a → b → c and a → b → c are forward reactions. Because aa is not a product of a forward

reaction, we assign zaa = 1. The other zi are given by the product of parameters labelling forward

reactions on a path from aa to i. For example, to calculate zcb, we observe the path aa → ab → bb →

cb, passes in the forward direction through three reactions with equilibrium constants κb (aa → ab),

ηbbκb (ab → bb) and ηcbκc (bb → cb); the product gives zcb = ηcbκc · ηbbκb · κb. In a similar manner,

we obtain zba = κb, zab = κb, zca = κc · κb, zbb = ηbbκb · κb, zac = κc · κb,

zbc = ηbcκc · ηbbκb · κb

zcc = ηccηcbκc · ηbcηbbκb · κc · κb .

3.2 Receptor dimer composed of indistinguishable monomers

A receptor homodimer composed of two indistinguishable monomers with the 3-state topology of (3.1)

has six states, six reversible reactions, one thermodynamic constraint and 6 − 1 = 5 free equilibrium

parameters (see Fig. 3b). The homodimer state-transition diagram (Fig. 3b) is a contraction of the

heterodimer diagram (Fig. 3a) obtained by lumping and renaming states (aa → a2, ba + ab → ab, . . .)

and identifying parameters (κb = κb, κc = κc, ηbc = ηcb). The monomers, being identical, contribute

only two parameters (κb, κc) to the homodimer state-transition diagram (Fig. 3b). For a receptor dimer

composed of indistinguishable monomers (Fig. 3b), there are three allosteric parameters, denoted ηbb,

ηbc and ηcc:

ηbb :=
κb[b]

κb[a]
ηbc :=

κb[c]

κb[b]
=

κc[b]

κc[a]
ηcc :=

κc[c]

κc[b]
.

For example, ηbc is the degree to which κb, the equilibrium constant of process b (the a � b transition)

increases upon the occurrence of process c (the b � c transition) in the other monomer. The relative

probability of dimers in each state,

π = [za2 : zab : zb2 : zac : zbc : zc2] , (3.3)

is given by za2 = 1, zab = 2κb, zb2 = ηbbκ
2
b

, zac = 2κbκc,

zbc = ηbcηbbκc · κc · 2κb = 2ηbbηbcκ
2
bκc

zc2 = 1
2
ηccηbcκc · ηbcηbbκb · κc · 2κb = ηbbη

2
bc

ηccκ
2
b
κ2
c ,

where the combinatorial coefficient 2 (resp. 1/2) appears as a factor on the transitions out of (resp.

into) states a2, b2 and c2. Note that this calculation does not assume independent monomers. Rather,

the dependence of the monomers in the homodimer has been parameterized by the three allosteric

parameters ηbb, ηbc and ηcc. To see this, transform (3.3) to an equivalent expression by dividing each

term by (1 + κb + κcκb)
2 to obtain

π =
[

π2
a :2πaπb :ηbbπ

2
b :2πaπc :2ηbbηbcπbπc :ηccη

2
bcηbbπ

2
c

]

, (3.4)

where πa, πb and πc are the functions of x given by (3.2).
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ALLOSTERY IN OLIGOMERIC RECEPTOR MODELS 319

Fig. 4. (a) The fraction of occupied ligand binding sites (3.6) in the homodimer model (Fig. 3b) for different values of the

allosteric parameters ηbb, ηbc and ηcc. (b,c) Hill plots show that interactions between the monomers may lead to cooperativity.

Equation (3.4) is significant. Without assuming independence, we have expressed the state proba-

bilities of a receptor homodimer in terms of...

• the state probabilities of an isolated monomer (πa, πb and πc, determined by κb, and κc) and

• the allosteric parameters ηbb, ηbc and ηcc that represent the possibility of conformational coupling.

In the absence of allosteric interactions, ηi = 1 and (3.4) simplifies as expected (πa2 = π2
a , πab = 2πaπb

etc.).

3.3 Allosteric interactions influence receptor dimer binding curves

Figure 4 illustrates the influence of allosteric parameters (i.e. conformational coupling between

monomers) on the binding curve of a receptor dimer. Using the 6-state receptor dimer model discussed

in the previous section (Fig. 3b), Fig. 4a plots the fraction of occupied ligand binding sites (four in the

dimer, two for each monomer) as a function of ligand concentration x. The fraction of occupied sites is

y =
1

4
πab +

1

2
(πb2 + πac) +

3

4
πbc + πc2 , (3.5)

where πab, πb2 etc., are given by (3.3)and (3.4). When the fraction of occupied ligand binding sites is

written in terms of the monomer state probabilities and allosteric parameters, (3.5) becomes

y =
1

2
πaπb +

1

2
ηbbπ

2
b + πaπc +

3

2
ηbcηbbπbπc + ηccη

2
bcηbbπ

2
c , (3.6)

where we have used πb2 = ηbbπ
2
b , πbc = 2ηbcηbbπbπc etc., obtained by identifying (3.3) and (3.4). In

this expression, πa, πb and πc are given by (3.2).

The Hill plots in Fig. 4(b and c) show how the allosteric parameters (ηbb, ηbc and ηcc) that represent

the interactions between the monomers may lead to cooperativity in the fraction of occupied binding

sites. This example is reminiscent of a sequential (as opposed to concerted) model of cooperative oxygen

binding in haemoglobin that accounts for the inequivalence of α and β subunits (Di Cera, 2005; Eaton

et al., 2007). In this interpretation, the original three-state model (3.1) is analogous to a αβ haemoglobin

dimer, and the allosteric parameter ηbb is the increase in affinity for the second binding event. The

6-state model represents a haemoglobin tetramer, in which ηbc and ηcc represent affinity changes

resulting from interactions between αβ dimers.
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320 G. D. CONRADI SMITH

3.4 A theory of allostery in oligomeric receptor models

The remainder of this paper presents a general theory of allostery in oligomeric receptor models

composed of any number of identical and indistinguishable monomers. In Section 4, we provide a

construction of the state-transition diagram of receptor homodimers (and oligomers), for any given

monomer topology. Section 5 calculates the number of thermodynamic constraints in an arbitrary

receptor oligomers in terms of the monomer topology (i.e. without having to construct the state-

transition graph of the oligomer). Sections 6–9 show how to enumerate the emergent allosteric

interactions of receptor oligomers. In this way, the equilibrium state probabilities of a receptor oligomer

may be understood in terms of the properties of an isolated monomer and allosteric parameters, each of

which has a clear biophysical interpretation with respect to conformational coupling of the constituent

monomers.

4. The state-transition diagram for a receptor oligomer is a reduced graph power

Let G = (V , E) denote an undirected graph with v vertices and e edges. Formally, the vertex set is V =

{a1, a2, . . . , av}, but for readability we will often use the first v letters of the alphabet, V = {a, b, c, d, . . .}.

Each element of the set of edges, E, is an unordered pair of vertices. When we say that the graph G has

the same structure (topology) as a receptor monomer of interest, we mean that the undirected edge

(ai, aj) is an element of E(G) precisely when there is a reversible transition between states ai and aj

in the monomer state-transition diagram. For a monomer with v states and e transitions, G will have

v = |V| vertices and e = |E| edges (using the common notation for the number of elements in a finite

set). We assume G has no loops or multiple edges and is connected.

What graph corresponds to a receptor homomer composed of k identical subunits with topology

given by G? The answer to this question is the kth reduced power of G (Hammack & Smith, 2017),

denoted by G(k), which is formally defined as a product graph that is contracted using the symmetries

of indistinguishable monomers (see Section S5 in the supplemental materials for mathematical details).

For readers with no prior knowledge of product graphs, the state-transition graph of a receptor homo-

oligomer can be constructed in three easy steps, as follows.

(1) For a receptor model of interest, construct an undirected graph with same topology. For example,

an undirected graph H = (V , E) corresponding to the ternary complex model (Fig. 1) has vertex set

V = {a, b, c, d} and edge set E = {(a, b), (a, c), (b, d), (c, d)} (graph H in Fig. 5).

(2) Interpreting the vertex labels as variables, write their sum, raise this quantity to the kth power and

expand. Each term of the resulting polynomial corresponds to a state of the receptor homo-oligomer. For

a dimer composed of k = 2 indistinguishable ternary complex monomers, there are 10 distinguishable

states

(a + b + c + d)2 = a2 + 2ab + 2ac + 2ad + b2 + 2bc + 2bd + c2 + 2cd + d2 . (4.1)

For a ternary complex tetramer, k = 4 and (a + b + c + d)4 = a4 + a3b + a3c +· · ·+ d4 gives 35 states.

In general, the number of states in the receptor oligomer is given by v multi-choose k, i.e.

∣
∣V(G(k))

∣
∣ =

((
v

k

))

=

(
v + k − 1

k

)

=
(v + k − 1)!

k! (v − 1)!
. (4.2)

This is the number of ways k indistinguishable monomers can each be assigned to one of v states.
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ALLOSTERY IN OLIGOMERIC RECEPTOR MODELS 321

Fig. 5. Left: Undirected graph with topology of ternary complex model (Fig. 1). Middle: Topology of a homodimer composed of

two identical and indistinguishable ternary complex monomers is given by the reduced graph power H(2). Right: Topology of a

receptor oligomer composed of four identical ternary complex monomers is given by the reduced power H(4).

(3) For edges of the receptor oligomer state-transition graph, notice that if (ai, aj) is an edge of G

(an allowed transition in the monomer), there is an edge between two states of G(k) (a transition in the

oligomer) precisely when these states can be written as aifk−1 = ajfk−1 where fk−1(a1, a2, . . . , av) is a

monomial of degree k−1. The monomial fk−1 will be referred to as the context of the ai � aj transition,

i.e. the unchanged state of k−1 monomers when one monomer changes state from ai to aj or vice versa.

Evidently, the number of edges of G(k) is

∣
∣E(G(k))

∣
∣ = e

((
v

k − 1

))

= e

(
v + k − 2

k − 1

)

= e
(v + k − 2)!

(k − 1)! (v − 1)!
. (4.3)

This is the product of number of edges of G, given by e = |E(G)|, and the number of contexts, which is

the number of ways k − 1 indistinguishable monomers can each be assigned to one of v states.

Figure 5 shows the reduced graph power H(2) that gives the topology of the state-transition diagram

for a ternary complex homodimer. H(2) has 4
(

4+2−2
1

)

= 4
(

4
1

)

= 16 edges. The edge (ab, bd) of H(2)

corresponds to one monomer making an a � d transition in the context of the other monomer occupying

state b. Figure 5 also shows the graph H(4) for a receptor oligomer composed of four indistinguishable

ternary complex monomers. H(4) has 4
(

4+4−2
3

)

= 4
(

6
3

)

= 80 edges. The edge (b2cd, bc2d) of H(4)

corresponds to one monomer of the receptor 4-mer making an b � c transition in the context of bcd.

5. Thermodynamic constraints in receptor oligomers

The number of thermodynamic constraints in a receptor model is given by its Betti number, which is the

dimension of the cycle space (sometimes called the nullity) of the state-transition graph (see Section S6

for a formal definition of the cycle space of a graph). For a graph G that is connected and has no loops

or multiple edges, its Betti number is given by β(G) = |E(G)|− |V(G)|+1 = e− v+1. The number of

free equilibrium parameters in the monomer model is the number of edges less the constraints (e − β),

which is equal to v − 1, the number of edges in a spanning tree of G.
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How many thermodynamic constraints are present in a receptor oligomer obtained from G? Using

(4.2) and (4.3), one finds that the Betti number of the reduced graph power G(k) is

β(G(k)) =
∣
∣E(G(k))

∣
∣ −

∣
∣V(G(k))

∣
∣ + 1 = e

(
v + k − 2

k − 1

)

−

(
v + k − 1

k

)

+ 1 . (5.1)

The number of free equilibrium parameters in a receptor oligomer model is

∣
∣E(G(k))

∣
∣ − β(G(k)) =

∣
∣V(G(k))

∣
∣ − 1 =

(
v + k − 1

k

)

− 1 , (5.2)

which is the number of edges in a spanning tree of the reduced graph power G(k). For example, the

ternary complex homodimer, shown as H(2) in Fig. 5, has β(H(2)) = 16 − 10 + 1 = 7 thermodynamic

constraints and 9 free parameters. The ternary complex tetramer, shown as H(4) in Fig. 5, has β(H(4)) =

80 − 35 + 1 = 46 thermodynamic constraints and 34 free equilibrium parameters. The next section

discusses the biophysically meaningful assignment of these equilibrium parameters.

6. Equilibrium parameters in receptor monomers and oligomers

Our goal is to assign equilibrium parameters to a receptor oligomer in a manner that clarifies the possible

interactions between monomers (i.e. conformational coupling). We begin by introducing a convention

for assignment of equilibrium parameters to the edges of G, the state-transition graph of the monomer,

whose vertex set is V(G) = {a1, a2, . . . , av}. To accomplish this, we first construct a rooted spanning

tree of G with root a1 and indexing that respects a breadth-first traversal (denoted TG or just T). Any

edge of T is uniquely determined by its endpoint aj that is furthest from the root. For each 2 � i � v,

let ej be the edge of T that has endpoints ai and aj, with aj further from the root than ai. For each edge

of T , we have ei = (a−
i , ai), where a−

i is the predecessor of ai. For each edge ei of T , there is a free

equilibrium constant that will be denoted by κei
.

For the ternary complex monomer introduced in Fig. 1, denoted H in Fig. 5, an example spanning

tree (TH) is shown below left.

The edges of TH are b = (a, b), c = (a, c), d = (b, d) and the predecessors are b− = a, c− = a, and

d− = b. The root vertex a has no predecessor. For convenience, we have chosen TH so each directed

edges (b, c and d) points backwards (reactant ← product). The free equilibrium constants are denoted

κb, κc and κd (shown above right). The constrained equilibrium constant is κx = κbκd/κc. In the notation

of Fig. 1, κb = KL[L], κc = KG[G] and κd = γ KG[G] and κx = γ KL[L].

We may now formally assign equilibrium parameters to the edges of the receptor oligomer state-

transition graph G(k). Because TG is a spanning tree of G, the reduced power of this spanning tree,

denoted T
(k)
G , is a subgraph of G(k) that spans G(k). Although T

(k)
G spans G(k), it is not a tree. In fact, T

(k)
G
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Fig. 6. (a,b) Because TH is a spanning tree of H, the reduced graph power of TH , denoted T
(2)
H

, spans H(2). However, T
(2)
H

has

three Cartesian squares and is not a tree. (c) Θ(T
(2)
H

) is a spanning tree obtained from T
(2)
H

by eliminating three edges (shown

dash-dotted), one from each Cartesian square. The parameters labelling edges of T
(2)
H

in (b) are transition-context pairs, e.g., κd[b]

denotes the equilibrium constant for reaction d = (b, d) in one ternary complex monomer when the other monomer is in state

b. In (c), the nine free parameters of ternary complex homodimer are specified as three equilibrium constants inherited from the

monomer (κi for i ∈ {b, c,d}) and six allosteric parameters (ηij for i, j ∈ {b, c,d} and i � j).

will include
(

v−1
2

)

Cartesian squares (a special type of 4-cycle), one for each distinct pair of edges in TG

(see Section S6). However, a spanning tree of G(k), denoted by Θ(T
(k)
G ), can always be constructed by

eliminating edges of T
(k)
G in such a way that each successive edge removed breaks a Cartesian square.

The edges of the spanning tree Θ(T
(k)
G ) ⊂ G(k) will be transition-context pairs involving an edge of

TG (the transition), denoted ei = (a−
i , ai), and a monomial fk−1(a1, a2, . . . , av) of degree k − 1 (the

context). The equilibrium constants labelling the edges of Θ(T
(k)
G ) are formally denoted as κei

[fk−1]

where 2 � i � v. The next paragraphs illustrate the pruning of T
(k)
G that leads to the spanning tree

Θ(T
(k)
G ) using our two running examples, the ternary complex dimer and tetramer.

Figure 6b shows T
(2)
H where TH is the spanning tree of the ternary complex model shown as H

in Fig. 6a. The
(

v−1
2

)

=
(

3
2

)

= 3 Cartesian squares are a2 + ac + ab + bc, ab + ad + b2 + bd and

ab + bd + bc + cd. Using this notation, the equilibrium parameters for the spanning tree Θ(T
(2)
H ) are

κb[a] for the edge (a2, ab), κb[b] for (ab, b2), κd[c] for (bc, cd) and so on (see Fig. 6b). Figure 6c shows

the spanning tree Θ(T
(2)
H ) that is obtained by eliminating one edge from each Cartesian square in T

(2)
H

(the three eliminated edges are shown dash-dotted).

The arrows of Fig. 7 show a spanning tree Θ(T
(4)
H ) for the ternary complex tetramer H(4) that is

constructed in a similar fashion. Θ(T
(4)
H ) has

(
v+k−1

k

)

− 1 =
(

7
4

)

− 1 = 34 edges (shown solid). The

reduced graph product T
(4)
H has (v−1)

(
v+k−2

k−1

)

= 3
(

6
3

)

= 60 edges (solid and dash-dotted but not dotted).

Figure 7 also shows the equilibrium constants for several transitions that are shown: κb[a3] for the edge

(a4, a3b) representing an a � b transition in the context of a3; κb[a2b] for (a3b, a2b2) representing an

a � b transition in the context of a2b; κd[b3] for (b4, b3d) representing an b � d transition in the

context of b3; κd[a2b] for (abd2, ad3) representing an b � d transition in the context of a2b. Note that
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324 G. D. CONRADI SMITH

Fig. 7. The graph TH is a rooted spanning tree of H. The graph T
(4)
H

is the subgraph of H(4) shown solid and dash-dotted (but

not dotted). The solid arrows are Θ(T
(4)
H

), the subgraph of T
(4)
H

that is the distinguished spanning tree of H(4). Several edges of

Θ(T
(4)
H

) are labelled as transition-context pairs.

there are
(

v−1
2

)(
k+v−3

k−2

)

=
(

3
2

)(
5
2

)

= 30 Cartesian squares in the reduced graph product T
(4)
H , but not all of

these are independent (see Section S6). A total of 26 edges of T
(4)
H are eliminated to obtain the spanning

tree Θ(T
(4)
H ) (the eliminated edges are shown dash-dotted).

7. Enumerating allosteric interactions in receptor dimers

How should the free parameters for a receptor oligomer be specified to illuminate the possible allosteric

interactions among monomers? Because the spanning tree TG has e = v − 1 edges, we may define

(e + 1)e/2 = v(v − 1)/2 independent 2-way allosteric parameters (the number of ways 2 edges can be

chosen from the spanning tree with replacement). For a dimer (k = 2), these 2-way parameters are

ηeiej
:=

κei
[aj]

κei
[a−

j ]
=

κej
[ai]

κej
[a−

i ]
, (7.1)

where 2 � i � j � v. For example, the spanning tree TH of the ternary complex monomer has three

edges (b, c, d). Thus, there are 4 · 3/2 = 6 allosteric parameters for the dimer,

ηbb = κb[b]/κb[a] (7.2)

ηbc = κb[c]/κb[a] = κc[b]/κc[a] (7.3)
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ALLOSTERY IN OLIGOMERIC RECEPTOR MODELS 325

ηbd = κb[d]/κb[b] = κd[b]/κd[a] (7.4)

ηcc = κc[c]/κc[a] (7.5)

ηcd = κc[d]/κc[b] = κd[c]/κd[a] (7.6)

ηdd = κd[d]/κd[b] . (7.7)

Using the 2-way allosteric parameters defined above and the equilibrium parameters inherited from the

monomer model (κb[a] = κb, κc[a] = κc, κd[a] = κd because a is the root of TH), we are able to

specify the equilibrium constants for each edge of Θ(T
(2)
H ) in a manner that illuminates the possibility

of conformational coupling. For example, the parameter on edge (ab, b2) is formally κb[b] because this

edge is a b = (a, b) transition in the context of b. Using (7.2), we have κb[b] = κb[a]ηbb = κbηbb.

The edge (bd, d2) is a d = (b, d) transition in the context of d. Using both (7.2) and (7.7), we see that

this equilibrium constant is κd[d] = κd[b]ηdd = κdηbdηdd. Repeating this process for all 10 states

yields the specification of allosteric parameters in the ternary complex homodimer shown in Fig. 6b.

The corresponding binding curve [ πa2 : πab : πac : πad : πb2 : πbc : πbd : πc2 : πcd : πd2 ] is

[

1:2κb :κ2
bηbb :2κc :2κbκcηbc :κ2

cηcc :2κbκd :2κ2
bκdηbdηbb :2κbκcκdηbcηcd :κ2

bκ
2
dηbbη

2
bdηdd

]

. (7.8)

Dividing (7.8) by (1 + κb + κc + κbκd)
2 gives

[

π2
a :2πaπb :π2

b ηbb :2πaπc :2πbπcηbc :π2
c ηcc :2πaπd :2πbπdηbdηbb :2πcπdηbcηcd :π2

d ηbbη
2
bdηdd

]

,

(7.9)

where [πa : πb : πc : πd] = [1 : κb : κc : κbκd]. Without assuming independence of receptor

monomers, we have expressed the equilibrium occupancy measure of the ternary complex homodimer

in terms of the properties of an isolated monomer (πa, πb etc.) and allosteric parameters (ηbb, ηbc etc.).

Some readers may prefer Fig. 8, which is Fig. 6c recast in the biophysical notation of Fig. 1.

8. Enumerating allosteric interactions in higher-order receptor oligomers

For receptor oligomers with k > 2, the 2-way allosteric parameters take the form

ηeiej
[fk−2] :=

κei
[ajfk−2]

κei
[a−

j fk−2]
=

κej
[aifk−2]

κej
[a−

i fk−2]
,

where 2 � i � j � v and fk−2(a1, a2, . . . , av) is a monomial of degree k − 2. This is a generalization

of (7.1) because fk−2 = 1 when k = 2. When k > 2, there are also multiway allosteric interactions that

must be considered. For example, the 3-way allosteric parameters are

ηeiejeh
[fk−3] :=

ηeiej
[ahfk−3]

ηeiej
[a−

h fk−3]
=

ηeieh
[ajfk−3]

ηeieh
[a−

j fk−3]
=

ηejeh
[aifk−3]

ηejeh
[a−

i fk−3]
, (8.1)
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326 G. D. CONRADI SMITH

Fig. 8. Left: Spanning tree of the ternary complex model (cf. Fig. 1). Right: Specification of allosteric parameters in the ternary

complex dimer given by Fig. 6c with the replacements a → R, b → LR, c → RG, d → LRG, ηbb → χ��, ηbc → χ�g,

ηbd → χ�γ , ηcc → χgg, ηcd → χgγ , ηdd → χγ γ where �, g and γ stand for the transitions R � LR, R � RG and

LR � LRG, respectively.

where 2 � i � j � h � v and fk−3(a1, a2, . . . , av) is a monomial of degree k − 3 (fk−3 = 1 when k = 3).

The equalities in (8.1) may be confirmed by expanding the definition, for example,

ηeiej
[ahfk−3]

ηeiej
[a−

h fk−3]
=

κei
[ajahfk−3]/κei

[a−
j ahfk−3]

κei
[aja

−
h fk−3]/κei

[a−
j a−

h fk−3]

=
κei

[ahajfk−3]/κei
[a−

h ajfk−3]

κei
[aha−

j fk−3]/κei
[a−

h a−
j fk−3]

=
ηeieh

[ajfk−3]

ηeieh
[a−

j fk−3]
.

In general, for 2 � n � k, n-way allosteric parameters are defined as

ηei1
ei2

···ein
[fk−n] :=

ηei1
ei2

···ei�−1
ei�+1

···ein
[ai�

fk−n]

ηei1
ei2

···ei�−1
ei�+1

···ein
[a−

i�
fk−n]

, 1 � � � n,

where 2 � i1 � i2 � · · · � in � v and fk−n(a1, a2, . . . , av) is a monomial of degree k − n. Note that

the n-way allosteric parameter ηei1
ei2

···ein
has m equivalent definitions where m is the number of distinct

subscripts.

For a monomer topology given by G, the spanning tree TG has v − 1 edges. A receptor oligomer

composed of k monomers has
((

v−1
n

))

=
(

v+n−2
n

)

n-way allosteric parameters for 2 � n � k, which is the

number of ways that n of the v − 1 edges can be chosen with replacement. For example, the spanning

tree Θ(T
(4)
H ) of the ternary complex 4-mer has

(
4
2

)

= 6 2-way,
(

5
3

)

= 10 3-way and
(

6
4

)

= 15 4-way
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parameters. Some of these are

ηbbb = ηbb[b]/ηbb[a]

ηccd = ηcc[d]/ηcc[b] = ηcd[c]/ηcd[a]

ηbcd = ηbc[d]/ηbc[b] = ηbd[c]/ηbd[a] = ηcd[b]/ηcd[a]

ηbbcd = ηbbc[d]/ηbbc[b] = ηbbd[c]/ηbbd[a] = ηbcd[b]/ηbcd[a]

ηccdd = ηccd[d]/ηccd[b] = ηcdd[c]/ηcdd[a]

ηdddd = ηddd[d]/ηddd[b].

Specifying allosteric interactions in this fashion introduces the number of parameters required to

specify a receptor oligomer model, which is the number of edges in spanning tree Θ(T
(k)
G ), i.e.

((
v
k

))

−

1 =
(

v+k−1
k

)

− 1 where v = |V(G)|. To see this, note that the number of n-way allosteric interactions

involving the v − 1 edges of the spanning tree TG is
((

v−1
n

))

. When n = 1, this is
((

v−1
1

))

= v − 1, i.e. the

number of free parameters in the monomer. When these are supplemented with allosteric parameters for

2-way through k-way interactions, the total number of parameters obtained is

v − 1 +

k
∑

n=2

((
v − 1

n

))

=

k
∑

n=1

((
v − 1

n

))

= −1 +

k
∑

n=0

((
v − 1

n

))

= −1 +

k
∑

n=0

(
v + n − 2

n

)

= −1 +

(
v + k − 1

k

)

,

which is the number of edges in the spanning tree Θ(T
(k)
G ).

9. Token method for specifying allosteric parameters

For receptor dimers with state-transition diagram G(2), the allosteric factors that were discussed in the

previous sections may be enumerated using a natural ‘token’ representation of receptor oligomer states.

To begin, draw the tree TG that spans the state-transition graph G of the monomer. For any given state

of the oligomer, put (indistinguishable) tokens in the positions associated with the monomer states. For

example, the token graphs associated to states bd and d2 in the ternary complex dimer, H(2), are

To calculate allosteric factor for state bd, consider the path of each token to the root (the vertex a). These

paths yield b for the first token and b+d for the second token. Because the product is b(b+d) = b2+bd,
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Table 1 Worksheet for the token method for enumerating allosteric parameters in the case of the

ternary complex dimer. Compare (7.9) and Fig. 6c.

State Token 1 Token 2 Sum 1-Way Product 2-Way

a2 0 0 0 0 0 -
ab 0 b b κb 0 -

b2 b b 2b κ2
b

b2 ηbb
ac 0 b+ c b+ c κbκc 0 -

bc b b+ c 2b+ c κ2
b
κc b2 + bc ηbbηbc

c2 b+ c b+ c 2b+ 2c κ2
b
κ2
c b2 + 2bc+ c2 ηbbη

2
bc

ηcc
ad 0 d d κd 0 -
bd b d b+ d κbκd bd ηbd
cd b+ c d b+ c+ d κbκcκd bd+ cd ηbdηcd
d2 d d 2d κ2

d
d2 ηdd

the allosteric factor in the term πbπd in (7.9) is ηbbηbd. For state d2, the path to root for both tokens

is b + d and the product is (b + d)2 = b2 + 2bd + d2; thus, the allosteric factor for π2
d is ηbbη

2
bd

ηdd.

Table 1 shows the complete list of allosteric factors for the ternary complex dimer, H(2). Figure 6c shows

the corresponding labelled spanning tree Θ(T
(2)
H ). The relative probability of any receptor dimer state

(a2, ab, . . . d2) can be read off this spanning tree. For example, the relative probability of state d2 is

found, using Fig. 6c, as the product of labels on the path from d2 to the root (a2 ← ab ← b2 ←

bd ← d2). This product is 2κb · 1
2
κbηbb · 2κdηbd · 1

2
κdηbdηdd = κ2

b
κ2
d
ηbbη

2
bd

ηdd (7.8). Dividing by

(1 + κb + κc + κbκd)
2 gives π2

d ηbbη
2
bd

ηdd (7.9).

The token method for a receptor k-mer where k > 2 is more complicated than the special case of a

receptor dimer where k = 2. For a receptor k-mer, we may assume p1 � p2 � · · · � pk where p� is the

place of the �th token. Recall that e� = (a−
� , a�) and define h(a�) recursively,

h(a�) =

{

0 for a� = a1

e� + h(a−
� ) otherwise.

(9.1)

The n-way interactions are enumerated by the elementary symmetric polynomials in h1, h2, . . . , hk,

namely,

εn(h1, h2, . . . , hk) :=
∑

1�i1<i2<···<in�k

hi1
hi2

· · · hin
. (9.2)

For example, the token graphs associated to states bcd2 and ac2d in the ternary complex tetramer,

shown in Fig. 5 as H(4), are
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The 2-, 3- and 4-way interactions are (9.2)

2-way : h1h2 + h1h3 + h1h4 + h2h3 + h2h4 + h3h4

3-way : h1h2h3 + h1h2h4 + h1h3h4 + h2h3h4

4-way : h1h2h3h4

where (9.1)

bcd2 : h1 = b h2 = c h3 = b+ d h4 = b+ d

ac2d : h1 = 0 h2 = c h3 = c h4 = b+ d.

For state bcd2,

2-way : bc+ 2b(b+ d) + 2c(b+ d) + (b+ d)2

= 3b2 + 4bd+ 3bc+ d2 + 2cd

3-way : 2bc(b+ d) + b(b+ d)2 + c(b+ d)2

= b3 + 2b2d+ 3b2c+ bd2 + 4bcd+ cd2

4-way : bc(b+ d)2 = b3c+ 2b2cd+ bcd2.

Thus, the πbπcπ
2
d term, which has combinatorial coefficient (1, 1, 2)! = 4! /(0! 1! 1! 2! ) = 12, has

allosteric factors

η3
bbη

4
bdη

3
bcηddη

2
cd

︸ ︷︷ ︸

2 way

ηbbbη
2
bbdη

3
bbcηbddη

4
bcdηcdd

︸ ︷︷ ︸

3 way

ηbbbcη
2
bbcdηbcdd

︸ ︷︷ ︸

4 way

.

For state ac2d, a similar calculation gives

12 πaπ
2
c πd η2

bcηccη
2
cd ηbccηccd.

Section S3.2 of the supporting material gives the complete result, obtained through a symbolic

calculation of (9.1) and (9.2).

To find the allosteric factors associated to a given edge of the spanning tree Θ(T
(4)
H ), one may

compare combinatorial coefficients and allosteric factors associated to state and its predecessor (both

adjacent to the edge of interest). For example, the edge (abd2, ad3) represents the b � d transition in

the context of ad2. This edge has the equilibrium constant 1
3
κd[ad2] where the coefficient 1/3 is the

ratio of (1, 3)! = 4 for ad3 and (1, 1, 2)! = 12 for abd2. Evaluating (9.2) gives 6bd + 3bd2 + 3b2d +

3b2 + b3 + 3d2 + d3 for ad3 and 4bd+ bd2 + 2b2d+ 3b2 + b3 + d2 for abd2. Because the difference

is 2bd+ 2d2 + b2d+ 2bd2 + d3, we conclude that 1
3
κd[ad2] = 1

3
κdη

2
bd

η2
dd

ηbbdη
2
bdd

ηddd (see Fig. 7).

Alternatively, one may calculate the allosteric factors associated to process d occurring in the context

of ad2 in the following, more direct fashion. The token graph associated to the context ad2 involves the
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following placement of 3 tokens,

Reading this token graph we find h1 = 0 and h2 = h3 = b+ d. Substituting these values in (9.2) gives

a polynomial associated to the context ad2, namely,

h1 + h2 + h3
︸ ︷︷ ︸

1 way

+ h1h2 + h1h3 + h2h3
︸ ︷︷ ︸

2 way

+ h1h2h3
︸ ︷︷ ︸

3 way

= h2 + h3 + h2h3 = 2(b+ d) + (b+ d)2.

Multiplying this polynomial by d for the b � d transition gives

d[2(b+ d) + (b+ d)2] = 2bd+ 2d2 + b2d+ 2bd2 + d3,

so the allosteric factor associated with transition d = (b, d) in context ad2 is η2
bd

η2
dd

ηbbdη
2
bdd

ηddd, in

agreement with the previous calculation.

10. Discussion

The framework presented here for understanding allostery in receptor oligomers is an intriguing and

novel combination of graph theory and quantitative receptor pharmacology. We began by establishing

that the structure of state-transition diagram of a receptor k-mer, for any given monomer topology G,

is the reduced graph power G(k). We showed that the equilibrium probabilities of a receptor k-mer may

be expressed in terms of the parameters for an isolated monomer and emergent allosteric parameters,

without approximation and without assuming independence of receptor monomers.

For clarity, we have used the (perhaps over-simple) ternary complex model dimer and tetramer as

running examples, but the approach is completely general. For any given spanning tree TG of a monomer

state-transition diagram G that is of interest, the allosteric parameters can be enumerated by performing

the symbolic calculations of (9.1) and (9.2) in a computer algebra system.

The example code is provided in the supporting material (Section S3) that performs the required

algebraic calculations for any TG and k specified by the user. The special case of a receptor dimer

composed of two cubical ternary complex monomers is discussed in Sections S2 and S3.3.

We need not elaborate on the limitations of this theoretical framework for allostery in receptor

oligomers. These are, for the most part, inherited from the limitations of the receptor modelling as

practised by quantitative pharmacologists.

The identifiability of allosteric parameters (η∗) that emerge in receptor oligomer models is an

important question that is beyond the scope of this paper. Presumably, identifiability will depend on

whether (or not) parameters inherited from the monomer (κi) are fixed during the process of fitting

allosteric parameters to experiment. An information criterion could be used to determine if it is

legitimate to assume any given allosteric parameter has non-negligible effect (η∗ �= 1).
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We hope this theoretical framework for receptor oligomer allostery will be valuable to investigators

interested in pharmacological alteration of signalling via oligomeric GPCRs. It would be straightforward

to apply this analysis of allosteric interactions to equilibrium oligomeric receptor modelling in contexts

other than GPCRs (ligand-gated ion channels, receptor tyrosine kinases etc.). Extension of this

framework to non-equilibrium steady states would allow its application to kinetic studies of multimeric

enzymes, including the G protein activation/deactivation cycle of oligomeric GPCRs.
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