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Abstract 14 

Microbial exponential growth is expected to occur infrequently in environments 15 

that have long periods of nutrient starvation punctuated by short periods of high nutrient 16 

flux. These conditions likely impose non-growth states for microbes. However, non-17 

growth states are uncharacterized for the majority of environmental bacteria, especially 18 

in regard to exometabolite production. We compared exometabolites produced over 19 

stationary phase across three environmental bacteria: Burkholderia thailandensis E264 20 

(ATCC 700388), Chromobacterium violaceum ATCC 31532, and Pseudomonas 21 

syringae pathovar tomato DC3000 (ATCC BAA-871). We grew each strain in 22 

monoculture and investigated exometabolite dynamics from mid-exponential to 23 

stationary phase. We focused on exometabolites that were released into the media and 24 

accumulated over 45 hours, including approximately 20 hours of stationary phase. We 25 
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also analyzed transcripts (RNA-seq) to interpret exometabolite output. We found that a 26 

majority of exometabolites released were strain-specific, with a subset of identified 27 

exometabolites involved in both central and secondary metabolism. Transcript analysis 28 

supported that exometabolites were released from intact cells, as various transporters 29 

had either increased or consistent transcripts through time. Interestingly, we found that 30 

succinate was one of the most abundant identifiable exometabolites for all strains, and 31 

that each strain re-routed their metabolic pathways involved in succinate production 32 

during stationary phase. These results show that non-growth states can be 33 

metabolically dynamic, and that environmental bacteria can enrich a minimal 34 

environment with diverse chemical compounds as a consequence of growth and post-35 

growth maintenance in stationary phase. This work provides insights into microbial 36 

community interactions via exometabolites in conditions of growth cessation or 37 

limitation.  38 

 39 

Importance 40 

Non-growth states are common for bacteria that live in environments that are densely 41 

populated and predominantly nutrient exhausted, and yet these states remain largely 42 

uncharacterized in cellular metabolism and metabolite output. Here, we investigated 43 

and compared stationary phase exometabolites and RNA transcripts for each of three 44 

environmental bacterial strains. We observed that diverse exometabolites were 45 

produced and provide evidence that these exometabolites accumulate over time 46 

through the release by intact cells. Additionally, each bacteria strain had a characteristic 47 

exometabolite profile and exhibited dynamics in exometabolite composition. This work 48 
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affirms that stationary phase is metabolically dynamic, with each strain tested creating a 49 

unique chemical signature in the extracellular space and altering metabolism in 50 

stationary phase. These findings set the stage for understanding how bacterial 51 

populations can support surrounding neighbors in environments with prolonged nutrient 52 

exhaustion through exometabolite-mediated interspecies interactions. 53 
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 59 

Introduction  60 

Much of microbiology research in the laboratory is conducted with bacterial or 61 

archaeal populations that are growing exponentially. However, it is estimated that 60% 62 

of microbial biomass in the environment is in a non-growing state (1, 2). Non-growing 63 

states can arise by virtue of being dormant (e.g. low metabolic activity) or entering 64 

stationary phase (e.g. maintenance-levels of metabolic activity) (3), where the latter 65 

refers to a population-level phenomenon that occurs after exponential growth. Various 66 

abiotic and biotic stressors at carrying capacity are known to induce stationary phase 67 

including nutrient exhaustion/inaccessibility and the accumulation of waste products. 68 

Particular environments impose conditions where microbial populations are in stationary 69 

phase for a better part of their existence. For example, dry soils with intermittent periods 70 

of rewetting (4–6), activated sludge operating in a sequencing batch reactor (SBR) (7, 71 
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8), and in the human gut (9, 10). Thus, unlike most cultivated laboratory strains, 72 

microbes experience stationary phase in environments where short periods of high 73 

nutrient flux is followed by long periods of famine (11, 12). 74 

Bacteria survive in stationary phase by employing various stress response 75 

adaptations (13–15). Stress response adaptations include changes to cell morphology, 76 

transcription, translation, and metabolism. Furthermore, in stationary phase, microbes 77 

can re-route metabolic pathways to maintain essential components of the cell and the 78 

proton motive force (16). While these adaptations are thought to serve as survival 79 

mechanisms, the levels and types of metabolic activities in stationary phase are not well 80 

understood for most environmental microbes. 81 

It is known, however, that microbes can exhibit appreciable metabolic activity in 82 

stationary phase (17). For example, entry into stationary phase resulted in prolonged 83 

protein production in Escherichia coli despite a decrease in overall protein levels (18). 84 

Metabolomic studies of E. coli in stationary phase support that there are unique 85 

metabolite production profiles associated with metabolic responses to growth arrest 86 

(19–21). These studies have provided valuable insights into stationary phase 87 

physiology. However, metabolome studies of microorganisms have generally focused 88 

on the dynamics of intracellular metabolites. It is expected that understanding 89 

metabolite dynamics in the extracellular environment can provide insights into metabolic 90 

responses that are relevant for microbial communities and interactions amongst 91 

coexisting community members.  92 

Exometabolomics is the characterization of small, extracellular molecules either 93 

released by a microbe through means of lysis or diffusion, passive or active (22). 94 
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Characterizing exometabolites can provide insights into the potential for microbes to 95 

engage locally with other microbes and the environment via release of small molecules 96 

(23). The effect of these small molecules on neighboring microbes can range from 97 

cooperative (e.g. signaling molecules) to antagonistic (e.g. antibiotics) (24). Some 98 

exometabolites, such as antibiotics, are known to increase in production upon entry into 99 

stationary phase (15). In addition, computational models have predicted that costless 100 

exometabolite production, such intermediates of central carbon metabolism, may be 101 

common among bacteria (25), which could provide an overall benefit in a microbial 102 

community setting. Untargeted exometabolomic profiling has benefited from recent 103 

advances in the sensitivity and throughput of mass spectrometers (26). This approach 104 

provides an experimental basis to observe the breadth of exometabolites produced by 105 

microbial strains and strain-specific contributions to the exometabolite pool. 106 

Characterizing the exometabolite profile of a microbial population over time can be 107 

applied to understand the dynamic interplay between cell metabolism and the 108 

environment. Integrating untargeted exometabolomic approaches with other ‘omic 109 

technologies (e.g. transcriptomics, genomics) informs comparisons across microbial 110 

populations of their metabolic responses in stationary phase. 111 

 We present an investigation of three environmental bacterial strains that are 112 

commonly associated with terrestrial environments (soils or plants) (Table 1). These 113 

strains were chosen because of reported (27) and observed interspecies exometabolite 114 

interactions in the lab. This current study evaluated exometabolite production for each 115 

strain in monoculture to first establish typical single-strain responses over stationary 116 

phase, with goals to next proceed to understand exometabolite-mediated interactions 117 
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among strains. Our previous work established a robust and flexible approach to 118 

investigate microbial exometabolite production in either monoculture or co-culture (28). 119 

Our approach uses filter plates that allow for the separation of cells from an 120 

exometabolite reservoir. Here, we examined the detailed exometabolite and transcript 121 

dynamics, defined as compositional changes through time, for each of these three 122 

environmental strains in monoculture over stationary phase after growth in minimal 123 

glucose (3.7 mM) medium. We asked: What is the diversity of unique exometabolites 124 

that accumulate over stationary phase? What is a likely explanation (e.g. transport from 125 

viable cells or lysis) for the accumulation of exometabolites? How does exometabolite 126 

composition and production compare across strains and time, and what general insights 127 

could these provide for understanding microbial metabolism and ecology of stationary 128 

phase?  129 

We found that exometabolite composition is dynamic through stationary phase, 130 

and that accumulated exometabolites were likely released from intact cells. We also 131 

found that a majority of released exometabolites were strain-specific, suggesting that 132 

different bacterial strains have individualized responses to stationary phase. Finally, we 133 

found that all three strains re-routed metabolism in stationary phase.  134 

Results  135 

Each strain had a distinct exometabolite profile in stationary phase 136 

 In total, 10,352 features were detected by mass spectral analysis (Fig. 1, Table 137 

2) across the three strains. These features represent what we defined as released 138 

exometabolites (see Methods: Mass spectrometry analysis section). Briefly, released 139 

exometabolites were defined as those that had temporal accumulation (assessed via 140 
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peak area) in stationary phase. Most features detected were strain-specific, and the 141 

number of unique features from any one strain outnumbered the total number of 142 

features shared by at least two strains (1494 features, ~16.9%). Of the 1494 shared 143 

features, ~12.7% were shared among all three strains. Specifically, B. thailandensis had 144 

the most unique detected features (~41.8%), followed by P. syringae (~25.2%) and C. 145 

violaceum (~18.6%) compared to all detected features. These data suggest that, 146 

despite monoculture growth in minimal medium initially containing one carbon source, 147 

an abundance of strain-specific exometabolites are produced during stationary phase.  148 

 We were interested in understanding differences in exometabolite composition 149 

and exometabolite temporal dynamics over stationary phase (Fig. 2). Comparing across 150 

strains (Fig. 2A-D), each strain had strain-specific exometabolite profiles (Adonis 0.590 151 

£ r2 £ 0.808, P value £ 0.001, all pair-wise FDR-adjusted P values £ 0.001).For each 152 

strain, exometabolite profiles from exponential growth phase were distinct from 153 

stationary phase profiles (Fig 2). Strain differences in released exometabolites were 154 

more important than time in explaining variation in exometabolite composition on both 155 

PCoA axes. As expected, strain identity explained ≥ 57% of the variation while time 156 

explained ≤ 6% of the variation across all polarity/ionization modes (Supplementary 157 

Table S1). However, the most variation was explained by the interaction effect of strain 158 

x time (Supplementary Table S1).).Thus, exometabolite compositional differences were 159 

mainly driven by the different released exometabolites by the different strains. This was 160 

expected given the large number of unique features detected for each strain (Table 2).  161 

Alternatively, we further looked at the influence of time on exometabolite profiles 162 

by observing exometabolites released by each strain, separately. We considered only 163 
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those exometabolites that met our stringent criteria for release and accumulation over 164 

time (see Methods). Notably, with these criteria, some of the same exometabolites were 165 

classified as released for some strains but not for others. In these cases, 166 

exometabolites were excluded from the temporal analysis of any strains for which the 167 

release criteria were not met. Directional temporal dynamics was observed for each 168 

strain (Fig. 2E-G), though continued directionality was not observed in some of the 169 

latest time points (e.g. Fig. 2F). We define directional as a progressive, step-wise 170 

trajectory between time points, where each time point is distinguished from any of the 171 

previous time points, and even more distinct from previous time points in PCoA space. 172 

This ultimately reflects temporal changes in exometabolite composition. Temporal 173 

trajectories in exometabolite profiles were highly reproducible for each strain across 174 

biological replicates (Protest analyses, Supplementary Table S2). For all strains, the 175 

difference between exometabolite profiles progressively increased when comparing 176 

each stationary phase time point to the initial, exponential phase time point 177 

(Supplementary Table S3). But, comparing successive time points revealed that the 178 

greatest differences occurred between the first stationary phase time point and the 179 

exponential phase time point. Notably, dissimilarity decreased between successive time 180 

points in stationary phase such that the latest time points were more similar to each 181 

other than the earliest time points (Supplementary Table S4). For each strain, the 182 

exometabolite profile changed over time (Supplementary Table S5). However, this was 183 

primarily due to differences in exometabolite profiles when comparing the exponential 184 

phase time point to each of the stationary phase time points (Supplementary Table S6). 185 

We note that hundreds to thousands of features were detected in late stationary phase 186 
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but were excluded (see Methods: Mass spectrometry analysis section) from the final 187 

dataset of released exometabolites. We maintained strict criteria for the detection of and 188 

accumulation of released exometabolites over stationary phase. Taken together, these 189 

data suggest that differences in exometabolite composition are largely driven by strain- 190 

specific production of exometabolites. Accounting for all released exometabolites within 191 

each strain, similar temporal patterns emerge, with the largest differences observed 192 

between exponential phase and stationary phase and more subtle differences observed 193 

over consecutive time points within stationary phase.  194 

Hierarchal clustering analysis also revealed strain-specific features and their 195 

dynamics (Fig. 3). Most features across all strains reached maximum accumulation in 196 

late stationary phase. Notably, exometabolites accumulated despite generally steady 197 

strain population levels (Supplementary Fig. S1). We did observe ~1 generation in B. 198 

thailandensis and P. syringae over the course of stationary phase but the doubling took 199 

20 h to complete. Dead cells across the time series remained consistent for both B. 200 

thailandensis and C. violaceum but increased for P. syringae (Supplementary Fig. S1). 201 

However, the quantity of live cells remained higher than the quantity of dead cells 202 

across the time series for all strains. Largely consistent counts of viable cells and a lack 203 

of death phase suggest that many exometabolites were released by intact cells rather 204 

than by lysis. To add support to this hypothesis, transcriptomics data indicate multiple 205 

organic molecule transporters were either consistently expressed throughout the time 206 

series or differentially expressed (Table 3, Dataset 1). Notable examples for all strains 207 

include various transporters related to dipeptide and C-4 dicarboxylate transport. In 208 

summary, despite growth arrest, each bacterial strain continued to produce (and the 209 
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media accumulated) a distinctive and dynamic profile of exometabolites into stationary 210 

phase. 211 

Identity of stationary phase exometabolites 212 

 Of the total set of exometabolite features, only 188 (~1.8%) could be identified 213 

(Fig. 4, Supplementary Figs. S2-S4, Dataset 2). These were classified according to the 214 

Metabolomics Standards Initiative (MSI): MSI level 1 (Identified compounds) and MSI 215 

level 2 (putatively identified compounds). Most of the identified exometabolites were 216 

uniquely produced by one strain under our experimental conditions, though there were 217 

some exometabolites shared across strains, especially between C. violaceum and P. 218 

syringae (Dataset 2). Many of the identified exometabolites, particularly those molecules 219 

involved in central metabolism, such as amino acids, nucleotides/nucleosides, and 220 

carboxylic acids, were classified using an in-house standard in accordance with MSI 221 

level 1. In addition, MSI level 1 exometabolites such as ectoine, proline, trehalose, and 222 

glutamate likely indicated a cellular stress (e.g. osmotic stress).   223 

Exometabolites putatively identified at MSI level 2 were annotated by matching 224 

MS/MS fragmentation to a reference database. MSI level 2 exometabolites included 225 

secondary metabolites such as bactobolin, yersiniabactin, and acyl homoserine 226 

lactones (AHLs) produced by B. thailandensis, P. syringae, and C. violaceum, 227 

respectively. Bactobolin and yersiniabactin are bioactive molecules, previously 228 

characterized as a bacteriostatic antibiotic (29) and a siderophore/virulence factor (30), 229 

respectively. AHLs induce quorum sensing in C. violaceum, and are linked to the 230 

production of hydrogen cyanide, antibiotics, and proteases (31, 32). These putatively 231 

identified secondary exometabolites suggest that stationary phase is coordinated with 232 
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shifts in metabolism, priming strains for competition via chemical warfare or nutrient 233 

scavenging. These data also suggest that a competitive phenotype may be standard 234 

among bacteria even in the absence of non-kin competitors, suggesting either priming 235 

for interspecific competition or engagement in intraspecific competition. This competitive 236 

priming is also supported by the observation of increased transcripts for transport 237 

systems involved in competition. For example, competitive transport systems included 238 

the type III secretion system in B. thailandensis and multidrug efflux systems for both C. 239 

violaceum and P. syringae. When comparing transcripts between times 45h to 12.5h, 240 

the aforementioned transport systems had a log2-fold change (LFC) in expression > 1. ( 241 

Dataset 1). Finally, a large proportion of MSI level 2 exometabolites were dipeptides, 242 

suggesting either the degradation of proteins (14) or the formation of dipeptides by non-243 

ribosomal peptide synthetases (NRPS), found in biosynthetic gene clusters (Dataset 3). 244 

In summary, there was a consistent accumulation of a diversity of exometabolites in 245 

stationary phase, including exometabolites that were intermediates in central carbon 246 

metabolism as well as secondary metabolites implicated in competition. 247 

 To maximize annotation of remaining unidentified MS/MS data, we performed 248 

chemical ontology analysis to determine chemical classes of exometabolites produced 249 

in stationary phase. Using in silico prediction of exometabolites by MS/MS 250 

fragmentation patterns, we putatively characterized compound classes (MSI level 3 251 

designation). Broadly, carboxylic acids and derivatives were the most abundant type of 252 

exometabolite produced in stationary phase for all strains (Fig. 5A). This is expected 253 

because carboxylic acid derivatives are prominent in cellular constituents and molecules 254 

involved in primary metabolism (e.g. TCA cycle). Their excess production, and release 255 
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to relieve internal accumulation, may be due to stoichiometric constraints in metabolic 256 

network topology (33). However, MSI level 3 exometabolites revealed considerable 257 

quantification of exometabolites related to fatty acyls, organonitrogen compounds, 258 

organooxygen compounds, and benzene and substituted derivatives, suggesting 259 

additional classes of exometabolites contributing to the exometabolite pool that are 260 

unable to be identified by MSI level 1 and level 2 standards. These chemical ontologies 261 

were resolved further to the direct parent level (Fig. 5B). Amino acids and peptides were 262 

the most abundant and common exometabolites across all identification levels. In 263 

particular, dipeptides were the most abundant exometabolite. Transcriptomics data also 264 

indicated that dipeptide transporters for each strain were either consistently expressed 265 

or differentially expressed over time (Table 3, Dataset 1).  In summary, chemical 266 

ontology analysis revealed chemical classes represented in the exometabolite dataset 267 

but lacking identification and, revealed that dipeptides were a common exometabolite 268 

released by all strains.  269 

Insights into stationary phase metabolic re-routing 270 

 We then aimed to interpret strain metabolism in stationary phase by focusing on 271 

exometabolites most confidently identified (MSI level 1).  For each strain, we examined 272 

the 10 most abundant exometabolites that accumulated and were detected at the last 273 

time point (45 h) for positive and negative polar exometabolites. We included all MSI 274 

level 1 exometabolites in this analysis. Generally, the abundant, accumulated 275 

exometabolites that were distinct for each strain were also uniquely detected in those 276 

strains (Fig. 6, ANOVA, all Q-values £ 0.01), with two exceptions: 5’-277 

methylthioadenosine and hypoxanthine were also abundant in Chromobacterium 278 
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violaceum media but not within its top 10 accumulated exometabolites. Transporters 279 

that had a log2-fold change (LFC) in expression (comparing times 45h to 12.5h) > 1 280 

could be linked with their substrates for both C. violaceum and P. syringae (Dataset 1). 281 

This included substrates such as succinate and cytosine for C. violaceum and P. 282 

syringae, respectively. None of the most abundant exometabolites in B. thailandensis 283 

could be linked to a transporter with a large LFC. The majority of strain-specific 284 

abundant exometabolites suggest that each strain released a set of unique metabolic 285 

intermediates into the extracellular environment. This finding could have implications for 286 

how bacterial populations maintain viability through interspecies interactions in periods 287 

of nutrient exhaustion. Perhaps a simple explanation for differences in the types of 288 

exometabolites released could result from differences in the alteration of stationary 289 

phase metabolism. 290 

 Of the most accumulated exometabolites, succinate was a common 291 

exometabolite detected in all strains, and this is unsurprising as it is directly involved in 292 

central metabolism. Notably, succinate did not meet our stringent definition of released 293 

and accumulating over stationary phase (Fig. 6). However, its abundance and 294 

accumulation for all strains and its important role in central metabolism warranted 295 

further investigation. We overlaid temporal log fold changes in gene expression onto 296 

KEGG pathways involved in succinate production (Fig. 7). These data suggest that all 297 

strains re-routed metabolism during stationary phase. For the most part, transcripts 298 

involved in glycolysis and the TCA were decreased in all strains (KEGG Pathways). 299 

With regard to succinate production, both B. thailandensis and C. violaceum appear to 300 

have re-routed metabolism to use the glyoxylate cycle, as supported by the increase in 301 
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transcripts for isocitrate lyase and increase in transcripts involved in the ß-oxidation of 302 

fatty acids. P. syringae appears to have re-routed metabolism to use the methylcitrate 303 

cycle to generate succinate, as evidenced by the increase in transcripts for 2-304 

methylisocitrate lyase. Other potential sources of succinate production include the 305 

GABA shunt and succinyl-CoA:acetate CoA-transferase in both B. thailandensis and P. 306 

syringae. In all strains, stationary phase results in exometabolite production that 307 

appears to coincide with alterations in metabolism.  308 

 309 

Discussion 310 

Microbes can experience a feast-or-famine lifestyle in environments (e.g. soil, 311 

activated sludge, in the gut) where long periods of starvation are punctuated by short 312 

periods of nutrient flux (4–10). Thus, microbes in particular environments predominantly 313 

exist in stationary phase. Understanding the metabolic response to stationary phase 314 

can reveal generalities as well as strain-specific strategies to maintain viability in 315 

nutrient-exhausted environments.  316 

We studied exometabolite production in stationary phase across three bacterial 317 

strains. We specifically focused our analyses on released exometabolites, metabolites 318 

that accumulated in the medium over time. Even though we applied a very conservative 319 

definition to identify features that accumulated over time, we detected and characterized 320 

thousands of features that met our criteria. However, in the end, only a subset of these 321 

features could be identified using standards, MS/MS databases, and computational 322 
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predictions based on chemical characteristics (Fig. 4, Supplementary Figs. S2-S4, 323 

Dataset 2).  324 

Exometabolites could accumulate over stationary phase by two mechanisms. 325 

First, exometabolites could be transported passively or actively across viable cells’ 326 

membranes. Second, cells could lyse and spill primary metabolites and other debris into 327 

extracellular environment (34). Our results suggest that a major contributing factor to 328 

exometabolite accumulation for all three strains investigated here was exometabolite 329 

release from intact cells. In fact, we did not observe a death phase over stationary 330 

phase (Supplementary Fig. S1). Live cells generally remained at consistent levels 331 

throughout stationary phase. One generation during stationary phase was observed for 332 

both B. thailandensis and P. syringae. Given the decrease in transcripts observed for 333 

multiple genes in central metabolism (KEGG Pathways), this generation was likely the 334 

result of reductive cell division (35–37). Dead cells were present and in particular, 335 

increased for P. syringae throughout the time course. While dead cells could leak 336 

exometabolites, the accumulation of certain exometabolites (e.g. secondary 337 

metabolites) were identified and have been previously associated with production from 338 

viable cells in stationary phase cultures from each strain (29, 30, 32)  Furthermore, our 339 

results are consistent with a previous study in E. coli that observed the extracellular 340 

accumulation of nucleobases upon entry into stationary phase (19). Ribosome 341 

degradation is initiated in growth-limiting environments and is a likely source of 342 

nucleobase accumulation due to the degradation of rRNA (38). We also observed the 343 

accumulation of various nucleobases in the extracellular environment across all strains, 344 

consistent with the concept of some common stationary phase phenomenon among 345 
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bacteria. Additional evidence of exometabolite release from intact cells was provided by 346 

RNA-seq analysis. Transcriptomics results indicated the increase in transcripts for or 347 

consistent expression of transporters (Dataset 1). In a previous study, Paczia et al. also 348 

observed similar patterns of exometabolite accumulation in stationary phase in various 349 

strains (39). They were able to rule out lysis and determine that passive or active 350 

diffusion could explain exometabolite production in growth limited conditions. In 351 

integrating transcriptomics with exometabolomics, our study builds on the findings of 352 

Paczia et al. to identify transporters likely involved in exometabolite accumulation and to 353 

provide insights into alterations in stationary phase metabolism. Findings from our work 354 

and from Paczia et al. in agreement with metabolic models that suggest that the 355 

extracellular accumulation of central metabolites could be attributed to costless 356 

metabolic secretions in resource poor environments (25). Unintuitively, the release of 357 

exometabolites by viable cells, and, particularly, release of central carbon intermediates, 358 

may be a common adaptation of bacteria in stationary phase. An interesting explanation 359 

is that the stoichiometry of metabolites is constrained by evolved metabolic network 360 

topology: some metabolites could be produced in excess to meet all metabolite 361 

requirements for a bacterium. Fitness tradeoffs of metabolite overproduction (e.g. toxic 362 

accumulation) could be alleviated through metabolite efflux (33). 363 

In addition to the characterization of exometabolites implicated in cooperative 364 

interactions (e.g. central carbon intermediates or quorum sensing molecules), we also 365 

identified exometabolites implicated in competition. An antibiotic (bactobolin), with 366 

previously described bioactivity (27, 29, 40), was produced by B. thailandensis and a 367 

siderophore/virulence factor (yersiniabactin) was produced by P. syringae (30), 368 
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representing interference (direct harm to neighbors) and exploitative (indirect negative 369 

interaction) competition strategies, respectively (41, 42). These exometabolites are 370 

involved in interspecies competition but, here, were produced in monoculture. While we 371 

did not identify an exometabolite in C. violaceum involved in competition, we did identify 372 

quorum sensing molecules, which are linked to the production of competitive 373 

exometabolites in this strain (31, 32). Taken together, the metabolic profile in each 374 

strain was altered in stationary phase and resulted in production of both cooperative 375 

and competitive exometabolites. Simultaneous production of both cooperative and 376 

competitive exometabolites may be an advantageous strategy to sustain kin while 377 

maintaining competition for scarce resources (25, 43). Additional studies that include 378 

co-coculturing experiments are needed to understand the impact that these 379 

exometabolites may have on ecological dynamics and these interplay of biotic factors 380 

under changing environmental conditions.  381 

Putative (MSI level 2) exometabolite identifications provided evidence for the 382 

release of dipeptides (Fig. 5B) and transcriptomics provided evidence for differentially 383 

regulated or consistent expression of dipeptide transporters (Dataset 1). Hydrolysis by 384 

dipeptidyl peptidases of ribosomal proteins or degradation of other polypeptide chains 385 

can be one source of dipeptide production. Estimates in E. coli have shown that 50-80% 386 

of ribosomes were degraded upon transition from exponential phase to stationary phase 387 

(38). Interestingly, another source of dipeptides may be active production. Recent 388 

studies have examined dipeptide formation by adenylation domains in nonribosomal 389 

peptide synthetases (NRPS) (44, 45). All strains in our study have numerous NRPS that 390 

could contribute to the production of dipeptides (Dataset 3). Furthermore, one dipeptide 391 
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was characterized as a cyclic dipeptide. Cyclic dipeptides can be involved in cell 392 

communication (46). Thus, the diverse chemical ecology that can be facilitated by 393 

dipeptides points to the importance of understanding how dipeptides are formed and of 394 

characterizing the environments that induce their production.  395 

A clear limitation to our study is in the incomplete exometabolite annotations. 396 

Only 1.8% of released exometabolites could be identified. While exact molecule 397 

identifications are lagging behind the identification of new features, efforts have been 398 

put forth to chemically classify all MS/MS data (47). We used the same approach to 399 

computationally predict and classify the chemical ontology of MS/MS data not identified 400 

at MSI level 1 or level 2 (Fig. 5). Differences between in silico predictions of MS/MS 401 

data (MSI level 3) and MSI levels 1 and 2 was most apparent at the class level (Fig. 402 

5A). This knowledge can be used to direct research efforts and analytical techniques to 403 

identify underrepresented classes of compounds. Targeted identification efforts of 404 

exometabolites will reveal uncharacterized biological phenomena occurring in 405 

experimental systems.  406 

Microbes in growth-arrested states can re-route metabolism to maintain the 407 

proton motive force (PMF) and stabilize ATP levels (16). We used a combination of 408 

exometabolomics and transcriptomics to shed light on metabolic re-routing in each 409 

strain investigated. Notably, all three strains accumulated high levels of succinate, and 410 

this was further supported by RNA-seq data that showed an increase in transcripts in 411 

genes involved in succinate production (Fig. 7). We found that the major metabolic re-412 

routing in stationary phase included transitioning to the glyoxylate cycle in B. 413 

thailandensis and C. violaceum and to the methylcitrate cycle in P. syringae. This 414 
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finding, specifically for B. thailandensis, agrees with previous studies in B. thailandensis 415 

and closely related strains. Previous studies found quorum-sensing mediated metabolic 416 

re-routing to the glyoxylate cycle during stationary phase in B. thailandensis and 417 

Burkholderia glumae as a mechanism to combat alkalinity toxicity (48, 49). Furthermore, 418 

the greatest increase in isocitrate lyase was observed in Burkholderia cenocepacia 419 

during stationary phase compared to other abiotic stressors (50). This supports the 420 

notion that a re-routing metabolism to the glyoxylate cycle in stationary phase may be a 421 

shared feature among members of the genus Burkholderia. Prior evidence for stationary 422 

phase metabolic re-routing in both C. violaceum and P. syringae is lacking. However, a 423 

metabolic model in C. violaceum ATCC 12472 suggested metabolic re-routing to the 424 

glyoxylate cycle occurred in response to antibiotics in a streptomycin-resistant 425 

population (51). In support of succinate extracellular accumulation, we found that C4-426 

dicarboxylic acid transporters were transcriptionally active in all three strains (Dataset 427 

1). It could be that succinate export is facilitated by a succinate/proton symporter for 428 

maintenance of the PMF. However, both cycles involved in succinate production do not 429 

generate ATP, and the generation of ATP is are also necessary to maintain cell viability. 430 

While ATP could be generated through the production of acetate (Fig. 7), we note that 431 

we did not quantify acetate and therefore are unable to confirm this scenario. Additional 432 

studies are needed to confirm the mechanisms of maintaining cell viability during 433 

stationary phase. Regardless, combining exometabolomic and transcriptomic 434 

approaches provided increased biological interpretation that could not have been 435 

achieved by either approach in isolation. The characterization of exometabolite 436 

production and metabolic response to stationary phase in monocultures sets the stage 437 
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for understanding exometabolite-mediated interspecies interactions within a microbial 438 

community.  439 

Materials and Methods 440 

Bacterial strains and culture conditions  441 

 Glycerol stocks of B. thailandensis, C. violaceum, and P. syringae (Table 1) were 442 

plated on half-concentration Trypticase soy agar (TSA50) at 27°C for at least 24 h. 443 

Strains were inoculated in 7 ml of M9–0.2% glucose medium and grown for 16 h at 444 

27°C, 200 rpm. Cultures were then back-diluted into 50 ml M9-0.2% glucose medium 445 

such that exponential growth phase was achieved after 10 h of incubation at 27°C, 200 446 

rpm. Strains were back-diluted in 50 ml M9–0.067% glucose medium to target ODs (B. 447 

thailandensis 0.3 OD, C. violaceum: 0.035 OD, P. syringae 0.035 OD) such that 448 

stationary phase was achieved after approximately 24 h of incubation in filter plates.  449 

Filter plate experiments 450 

We used the filter plate system to study each strain in monoculture over the 451 

course of stationary phase. Filter plate preparation was performed as previously 452 

described (28). Briefly, we used sterile filter plates with 0.22-μm-pore polyvinylidene 453 

difluoride (PVDF) filter bottoms (MultiScreen GV Filter Plate, 0.22 µm, MSGVS2210, 454 

Millipore). Prior to use, filter plates were washed three times with sterile water using a 455 

vacuum apparatus (NucleoVac 96 vacuum manifold; Clontech Laboratories). The filter 456 

of well H12 was removed with a sterile pipette tip and forceps, and 31 ml of M9–0.067% 457 

glucose medium was added to the reservoir through well H12. Each well was then filled 458 

with 130 μl of back-diluted culture in M9–0.067% glucose medium or medium only. For 459 

a given time series replicate, a custom R script (RandomArray.R [see the GitHub 460 
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repository]) was used to randomize the placement of a strain in the wells so that a strain 461 

occupied a total of 31 wells per plate and the remaining 64 wells were filled with 462 

medium. Each monoculture time course was independently replicated four times for a 463 

total of 12 experiments. The time course included 6 time points: an exponential phase 464 

point (12.5 h) and 5 points assessed every 5 h over stationary phase (25 h – 45 h). 465 

Plates were destructively sampled, comprising a total of 72 plates for the entire 466 

experimental design of 3 strains x 6 timepoints x 4 replicates.  467 

 Filter plates were incubated at 27°C with gentle shaking (~0.32 rcf). We again 468 

used our RandomArray.R script to randomize wells used for RNA extraction (16 wells, 469 

pooled per plate) and flow cytometry (5 wells, pooled per plate). During destructive 470 

sampling, first, the wells containing spent culture assigned to RNA-seq were pooled into 471 

a 1.5 mL microcentrifuge tube, flash frozen in liquid nitrogen, and stored at -80°C for 472 

RNA extraction. Next, wells containing spent culture assigned to flow cytometry were 473 

pooled, and then 20 μL was initially diluted in 180 μL Tris-buffered saline (TBS; 20 mM 474 

Tris, 0.8% NaCl [pH 7.4]), and then, after checking concentrations needed for accurate 475 

flow cytometry counts, diluted further in TBS to reach final dilutions of 1,300-fold, 1,540-476 

fold, and 900-fold for B. thailandensis, C. violaceum, P. syringae, respectively. Finally, 477 

spent medium (~31 ml) from the shared reservoir was transferred into 50 mL conical 478 

tubes, flash-frozen in liquid nitrogen and stored at −80 °C for subsequent exometabolite 479 

extraction.  480 

Flow cytometry 481 

Diluted cultures were stained with the Thermo Scientific LIVE/DEAD BacLight 482 

bacterial viability kit at final concentrations of 1.5 μM Syto9 (live stain) and 2.5 μM 483 
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propidium iodide (dead stain). Two hundred microliters of stained cultures were 484 

transferred to a 96-well microtiter U-bottom microplate (Thermo Scientific). Twenty 485 

microliters were analyzed on a BD Accuri C6 flow cytometer (BD Biosciences) at a 486 

fluidics rate of 66 μl/min and a threshold of 500 on an FL2 gate. The instrument 487 

contained the following optical filters: FL1-533, 30 nm; FL2-585, 40 nm; and FL3, 670-488 

nm longpass. The counting accuracy of the flow cytometer was periodically checked 489 

with GFP beads. Data were analyzed using BD Accuri C6 software version 1.0.264.21 490 

(BD Biosciences). 491 

Metabolomics  492 

LCMS sample preparation and data acquisition 493 

The following methods were according to the Department of Energy Joint 494 

Genome Institute (DOE JGI) standard operating protocols performed at the DOE JGI 495 

facility. Spent medium samples from the monocultures were shipped from Michigan 496 

State to the DOE JGI overnight on dry ice. Spent medium (ranging from 2.5 to 8 mL) 497 

were lyophilized in a Labconoco FreeZone 2.5 lyophilizer (Labconco, Kansas City, MO). 498 

Dried samples were resuspended in 700 µL methanol, vortexed, sonicated for 10 499 

minutes in a water bath (VWR Scientific Aquasonic Water Bath, Model 150HT), and 500 

then centrifuged for 2 minutes at 1200 g. Supernatant was transferred to 96 deep-well 501 

plate (1.1 mL) and then dried in a speed-vac (SPD111V, Thermo Scientific). Samples 502 

were stored at -80 oC until LC-MS analysis. Four extraction blanks were also prepared 503 

using the same protocol.  504 

Dried samples were resuspended in methanol containing internal standards 505 

(ITSD). ITSD used for polar analysis were 13C,15N amino acid mixture (30 µM, 506 
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767964,Sigma, Inc). ITSD for nonpolar analysis was 2-Amino-3-bromo-5-methylbenzoic 507 

acid (ABMBA, 1 µg/mL). Additionally, a quality control (QC) sample containing ~20 508 

common biomolecules was prepared. ITSD are used to check for injection errors, mass 509 

accuracy, and RT shifts within a sample. The m/z accuracy and retention time shifts in 510 

QC samples were assessed to check for instrument consistency and column 511 

performance. Samples were analyzed for both polar and non-polar exometabolites. 512 

Resuspended samples containing ITSD were vortexed, sonicated in a water bath for 2 513 

minutes, transferred to transwell plates (MultiScreen GV Filter Plate, 0.22 µm, 514 

MSGVS2210, Millipore) and centrifuged for 2 min at ~1200 g into a 96-well plate, and 515 

then transferred into an LC-MS glass vial. 516 

UHPLC chromatography was performed using and Agilent 1290 LC stack, with 517 

MS and tandem mass spectrometry (MS2) data collected in both positive and negative 518 

ion mode using a Thermo QExactive (for HILIC) or Thermo QExactive HF (for C18) 519 

mass spectrometer (Thermo Scientific, San Jose, CA). Full MS spectra was collected 520 

for m/z 80-1,200 at 60,000 resolution for C18, and m/z 70-1,050 at 70,000 resolution for 521 

HILIC. MS/MS fragmentation data was acquired using stepped collision energies 522 

between 10−40 eV at 17,500 resolution. Specifically, 1 MS1 scan was followed by 2 523 

MS2 scans of the 2 most intense ions, then another MS1 scan followed by another 2 524 

MS2 scans of the 2 most intense ions. If the 2 most intense ions were already 525 

fragmented in the previous 10 seconds of analysis, the next 2 most intense ions were 526 

fragmented. For MS2, 10,20 and 30eV collision energies were collected and averaged 527 

with the exception of one biological replicate per condition, where 10, 20 and 40eV 528 

collision energies were collected and averaged.  529 
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For detection of nonpolar metabolites, reverse phase chromatography was 530 

performed using a C18 column (Agilent ZORBAX Eclipse Plus C18, Rapid Resolution 531 

HD, 2.1 x 50 mm, 1.8 µm) at a flow rate of 0.4 mL/min. Samples were run on the C18 532 

column held at 60 ºC equilibrated with 100% buffer A (100% LC-MS water with 0.1 % 533 

formic acid) for 1 minute, followed by a linear gradient to 100% buffer B (100% 534 

acetonitrile with 0.1% formic acid) over 7 minutes, and then an isocratic elution in 100% 535 

buffer B for 1.5 minutes. A final re-equilibration to 100% buffer A over 1 minute and 536 

isocratic hold for 1 minute was performed prior to the next sample injection. For 537 

detection of polar metabolites, normal phase chromatography was performed using a 538 

ZICHydrophilic Interaction Liquid Chromatography (HILIC) column (SeQuant ZIC-HILIC 539 

3.5-μm particle size, 200 Å porosity, 150 mm x 2.1 mm, Millipore Sigma). Samples were 540 

run on the ZIC-HILIC column held at 40 oC equilibrated with 100% buffer B (95:5 541 

acetonitrile:water with 5mM ammonium acetate) at a flow rate of 0.45 mL/min for 1.5 542 

minutes, diluting buffer B down to 65% with buffer A (100% water with 5mM ammonium 543 

acetate) over 13.5 minutes, followed by a linear increase in flowrate to 0.6 mL/min as 544 

buffer B approached 0% over 3 minutes, and then an isocratic elution in 100% A for 5 545 

minutes. This was followed by a 2 minute linear gradient back to 100% B and decrease 546 

in flowrate to 0.45 mL/min, and then a final 5 minute column re-equilibration at 100% B 547 

prior to the next sample injection.  548 

 Sample injection order on the mass spectrometer was randomized and an 549 

injection blank (2 uL of methanol) was run between each sample. For all samples, 550 

resuspension volume (70 to 120 µL) and injection volume (2 µL to 8 µL) varied to 551 

normalize by initial sample volume prior to extraction. A total of 257 samples were 552 
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successfully analyzed (Dataset 4). Samples not included in downstream analyses were 553 

removed either because they failed quality standards during mass spectrometry 554 

analysis or the sample had low intragroup reproducibility.  555 

Mass spectrometry analysis 556 

 Both MS and MS/MS data were used for untargeted metabolomics analysis. A 557 

total of 257/288 metabolomic samples were used for analysis (Dataset 4); 30 samples 558 

were removed due to failed injection and 1 sample was removed due to low intragroup 559 

reproducibility in polar analysis (Pearson’s r £ 0.14). MZmine (version 2.42) (52) was 560 

used for peak picking, aligning features across samples, and peak integration for both 561 

nonpolar and polar analyses and in both negative and positive ion mode. MZmine XML 562 

parameter files for all analyses can be viewed and downloaded from GitHub (Dataset 563 

7). For MS data, a feature by sample matrix was exported for additional feature filtering 564 

steps. For MS/MS data, the GNPS feature was used to export data in addition to 565 

performing a local spectra database search within MZmine (see Compound 566 

identification section, below).  567 

 We used filter featuring steps to identify exometabolites released from each 568 

strain in stationary phase. The feature filtering steps were performed as follows on a 569 

per-strain basis: 1) Features were removed if the max peak area was found in one of 570 

the replicates for the external control sample. 2) A noise filter: the minimum peak area 571 

of a feature from a replicate at the last time point (45 hr) needed to be 3X the maximum 572 

peak area of the same feature in one of the external control replicates. 3) Coefficient of 573 

variation (CV) values for each feature calculated between replicates at each time point 574 

needed to be less than 20% across the time series. 4) The minimum value of the 575 
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average peak area needed to be observed in the first, exponential phase time point 576 

(12.5 h). 5) The log2 fold change of the average peak areas observed between the last 577 

(45 h) and first (12.5 h) timepoints needed to be greater than 1. 6) The time series 578 

abundance of a feature needed to have a Pearson correlation greater than or equal to 579 

0.7.  580 

Four final feature datasets from polar and nonpolar analysis in both ionization 581 

modes were analyzed in MetaboAnalyst 4.0 (53). Features were normalized by an 582 

internal standard (ITSD) reference feature (Dataset 5) and cube root transformed. 583 

Reference features for polar analysis in positive (13C-15N-proline) and negative (13C-584 

15N-alanine) was determined by the ITSD with the lowest CV value across all samples. 585 

The reference feature for nonpolar datasets was the ITSD 2-Amino-3-bromo-5-586 

methylbenzoic acid (ABMBA). Heatmaps were generated in MetaboAnalyst using 587 

Ward’s clustering algorithm with Euclidean distances from Z-scored data. Normalized 588 

and transformed datasets were exported from MetaboAnalyst to generate principal 589 

coordinate analysis (PCoA) plots in R. Abundances for exometabolites that did not pass 590 

release criteria in each strain were replaced with NAs prior to distance matrix 591 

computation.   592 

Compound identification 593 

A three step process was used to identify compounds or characterize chemical 594 

ontologies(47). Identification confidence was assigned according to the Metabolomics 595 

Standards Initiative (MSI) (54). First, compounds were identified by an in-house 596 

reference library at the Joint Genome Institute (JGI). This reference library was curated 597 

to identify compounds based on m/z, retention time, and MS/MS spectra of standards. A 598 
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compound passing the first two criteria were denoted MSI level 1. A compound passing 599 

all three criteria exceeded MSI level 1. All compounds at or exceeding MSI level 1 were 600 

identified using the reference library. This reference library was only available for polar 601 

analysis. Ranges for m/z and retention time values for compounds in the reference 602 

library were used to identify exometabolites from the MZmine analysis (Dataset 6).  603 

 We made an effort to identify as many of the remaining compounds from both 604 

polar and nonpolar analyses that had MS/MS data. MS/MS data acquired during mass 605 

spec analysis were used to putatively identify compounds that matched to fragmentation 606 

patterns from libraries outside of JGI; these were assigned MSI level 2. First, MS/MS 607 

data was exported to GNPS format and analyzed in GNPS (55) to match fragmentation 608 

patterns against the NIST17 commercial library. Second, a local spectra database 609 

search was performed within MZmine using the entire compound library from MassBank 610 

of North American (MoNA- https://mona.fiehnlab.ucdavis.edu). For both approaches, 611 

compounds were putatively identified if cosine scores were 0.7 or above. A subset of 612 

the final feature datasets was created from compounds identified at MSI level 1 and 613 

level 2 (Dataset 2). These datasets were processed in MetaboAnalyst (see Mass 614 

spectrometry analysis section, above) to generate heat maps, perform pathway analysis 615 

(see Pathway analysis section, below), and perform ANOVA analysis between strains 616 

exometabolite abundances.  617 

 All remaining unidentified compounds with MS/MS data were analyzed with 618 

CSI:Finger ID and assigned MSI level 3. This method provides the putative chemical 619 

ontology of a compound. The top CSI:Finger ID match was used for each compound. 620 

Then, lnChl keys from all MSI levels were used to perform a chemical ontology analysis 621 
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using ClassyFire version 1.0. SDF files from ClassfyFire were exported from each 622 

analysis to extract both Class level and Direct Parent level ontologies. These data were 623 

then exported to R for data visualization.  624 

RNA-Seq 625 

RNA sample prep, sequencing, and QC   626 

At Michigan State, RNA was extracted using the E.Z.N.A. Bacterial RNA kit 627 

(Omega Bio-tek, Inc.). An in-tube DNase I (Ambion, Inc AM2222, 2U) digestion was 628 

performed to remove DNA from RNA samples. RNA samples were purified and 629 

concentrated using the Qiagen RNAeasy MinElute Clean up Kit (Qiagen, Inc). Ten 630 

random samples were chosen to assess RNA integrity on an Agilent 2100 Bioanalyzer.  631 

The following methods were according to DOE JGI standard operating protocols 632 

and performed at the DOE JGI facility. RNA samples were shipped from Michigan State 633 

to DOE JGI overnight on dry ice. RNA samples were placed into 4, 96-well plates- 1 634 

plate for each species containing all stationary phase time points and 1 plate containing 635 

exponential phase time points. Plate-based RNA sample prep, including the Ribo-Zero 636 

rRNA Removal Kit (Illumina, for Bacteria) and the TruSeq Stranded Total RNA HT 637 

sample prep kit, was performed on the PerkinElmer Sciclone NGS robotic liquid 638 

handling system with the following conditions: total RNA starting material of 100 ng per 639 

sample and 10 cycles of PCR for library amplification. The prepared libraries were 640 

quantified using KAPA Biosystem's next-generation sequencing library qPCR kit and 641 

run on a Roche LightCycler 480 real-time PCR instrument. The quantified libraries were 642 

then prepared for sequencing on the Illumina HiSeq sequencing platform utilizing a 643 

TruSeq Rapid paired-end cluster kit, v4. Sequencing of the flowcell was performed on 644 
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the Illumina HiSeq2500 sequencer using HiSeq TruSeq SBS sequencing kits, v4, 645 

following a 2x100nt indexed run.  646 

Read preprocessing and filtering 647 

BBDuk (56) was used on raw fastq files to filter contaminants and trim both 648 

adaptor sequence and right quality trim reads where quality dropped to 0. Using BBDuk, 649 

raw reads were evaluated for artifact sequences by kmer matching (kmer=25), allowing 650 

1 mismatch and detected artifacts were trimmed from the 3' end of the reads. BBDuk 651 

was used to remove reads that contained 1 or more 'N' bases, had an average quality 652 

score across the read less than 10 or had a minimum length <= 51 bp or 33% of the full 653 

read length. Reads mapped with BBMap (56) to masked human, cat, dog and mouse 654 

references at 93% identity were removed. Reads aligned to common microbial 655 

contaminants were also removed. Ribosomal RNA reads were also removed. 656 

Pseudo-alignment and counting 657 

The reads from each library were pseudo-aligned to the transcriptome of each strain 658 

with kallisto (57). Raw counts from each library were combined into gene count matrix 659 

for each strain. The gene count matrix was used for downstream analyses. 660 

Transcriptomics  661 

RNA quality filtering and differential gene expression (DGE) analysis  662 

Count matrices for each strain were quality filtered in two steps prior to DGE: genes 663 

containing 0 counts in all samples were removed and genes with a count £ 10 in more 664 

than 90% of samples were removed. DGE was performed in DESeq2 version 1.22.1 665 

(58). We tested for differential gene expression by evaluating genes that changed at 666 
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any time point (FDR < 0.01). Genes with differential expression were then evaluated for 667 

log2 fold changes >1. Specifically, we focused on genes involved in transport (see 668 

Transporter analysis section, below).Defining expression minimums 669 

A cumulative abundance plot was generated for each strain by organizing locus 670 

IDs from low transcript counts to high transcript counts and plotting the % of total 671 

transcripts against the % of total read counts (59, 60). The 25th quantile was calculated 672 

to obtain the transcript count value that defined a low expression minimum. That is, all 673 

genes with transcript counts above this minimum were considered to be expressed in 674 

the cell, regardless of longitudinal differential expression. 675 

Transporter analysis 676 

TransportDB 2.0 (http://www.membranetransport.org/transportDB2/index.html) 677 

was used to annotate transporters in each strain (61). Annotated transporters were then 678 

evaluated to determine differential expression or expression above the low expression 679 

minimum.  680 

 681 

KEGG pathway analysis 682 

We extracted log2 fold change (LFC) values from transcripts in each strain from 683 

DESeq analysis. Log2 fold change were obtained by comparing each stationary phase 684 

time point to the exponential time point 1 (12.5 h). We then mapped longitudinal LFCs 685 

onto KEGG pathways for each strain using the pathview package in R. First, K numbers 686 

were assigned to genes for both C. violaceum and P. syringae using BlastKOALA 687 

(version 2.2). K numbers were not assigned to B. thailandensis because KEGG 688 

identifiers were available. KEGG identifiers for B. thailandensis and K numbers 689 
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assigned to C. violaceum and P. syringae were used to map longitudinal LFCs onto 690 

KEGG pathways. Pathways of interest were curated and manually edited in Inkscape 691 

(verision 0.92.4) using a colorblind palette.  692 

Annotation of biosynthetic gene clusters (BSGC) 693 

 BSGC were annotated using antismash bacterial version 5.0 (62). Annotated 694 

genome files for each strain were submitted to the online server. Default parameters 695 

included a relaxed detection strictness and extra features such as KnownClusterBlast, 696 

SubClusterBlast, and ActiveSiteFinder.  697 

Code availability 698 

Computing code and workflows and datasets are available at 699 

https://github.com/ShadeLab/Paper_Chodkowski_MonocultureExometabolites_2020. R 700 

packages used during computing analyses included vegan (63), ggplot2 (64), 701 

VennDiagram (65), RVAideMemoire (66), patchwork (67), DESeq2 (58), pathview (68), 702 

KEGGREST (69), and helper functions (70–73). 703 

 704 

Data availability  705 

Genomes for B. thailandensis, C. violaceum, and P. syringae are available at JGI 706 

Genome Portal under project IDs 1133672, 1133669, and 1133674, respectively. An 707 

improved annotated draft genome of C. violaceum is available under NCBI BioProject 708 

number PRJNA402426 (Genbank Accession ID: PKBZ00000000). Re-sequencing 709 

efforts for B. thailandensis and P. syringae are under NCBI BioProject numbers 710 

PRJNA402425 and PRJNA402424, respectively. Metabolomics data and 711 
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transcriptomics data are also available at JGI Genome Portal (74) under JGI Proposal 712 

ID 502921. MZmine XML parameter files for all analyses can be viewed and 713 

downloaded from GitHub (Dataset 7). Large data files (e.g. MZmine project files) are 714 

available upon request. Other datasets are also available on GitHub (Datasets). 715 
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Figure legends 919 

Figure 1. Quantification of all features that fit criteria for released in all strains across all 920 

polarity/ionization modes. 921 

 922 

Figure 2. Exometabolite profiles differ by strain and time. PCoA plots for polar positive 923 

(A), polar negative (B), nonpolar positive (C), nonpolar negative (D), and combined 924 

polar positive + polar negative exometabolites (accounting for 72-77% of released 925 

exometabolites per strain) for B. thailandensis (E), C. violaceum (F), and P. syringae 926 

(G). Each point represents the exometabolite profile (relative contributions assessed by 927 

peak area) for a particular strain at a particular time point. Features were normalized by 928 

an internal standard (ITSD) reference feature and cube root transformed. Bray-Curtis 929 

distance metric was used to calculate dissimilarities between exometabolite profiles. 930 

Strain is indicated by shape (B. thailandensis (●), C. violaceum (▲), P. syringae (■)) 931 

and timepoint is indicated by a color gradient. Error bars are 1 standard deviation 932 

around the mean axis scores of n = 2 to 4 replicates destructively sampled from the 933 

same strain/time point condition.   934 

 935 

Figure 3. Released exometabolites and their temporal dynamics. A heat map of all 936 

released exometabolites is shown for A) polar positive, B) polar negative, C) nonpolar 937 

positive, and D) nonpolar negative modes, where samples are columns are 938 

exometabolites are in rows. Each sample is the average of independent time point 939 

replicates (n = 2 to 4). Euclidean distance was calculated from Z-scored mass spectral 940 
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profiles (containing peak areas). Prior to Z-scoring, features were normalized by an 941 

internal standard (ITSD) reference feature and cube root transformed.  Features were 942 

clustered by Ward’s method. 943 

 944 

Figure 4. Released and identified exometabolites and their temporal dynamics. A heat 945 

map of identified exometabolites in polar positive mode is shown, where samples are 946 

columns are exometabolites are in rows. Each sample is the average of independent 947 

time point replicates (n = 3 or 4). Euclidean distance was calculated from Z-scored 948 

mass spectral profiles (containing peak areas). Prior to Z-scoring, features were 949 

normalized by an internal standard (ITSD) reference feature and cube root transformed. 950 

Features were clustered by Ward’s method.  951 

 952 

Figure 5. Chemical ontologies at different MSI levels. ClassyFire was used to 953 

categorize identified (MSI level 1 and level 2) and in silico predicted MS/MS data (MSI 954 

level 3) at the a) class and b) direct parent levels. Identification confidence 1,2, and 3 955 

refers to Metabolomics Standards Initiative (MSI) identification levels 1, 2, and 3, 956 

respectively. The top ten chemical ontologies are provided for each classification level. 957 

Chemical ontologies for panel A: 1) Azoles, 2) Benzene and substituted derivatives, 3) 958 

Carboxylic acids and derivatives, 4) Diazines, 5) Fatty Acyls, 6) Imidazopyrimidines, 7) 959 

Organonitrogen compounds, 8) Organooxygen compounds, 9) Purine nucleosides, 10) 960 

Pyridines and derivatives. Chemical ontologies for panel B: 1) Alpha amino acids, 2) 961 

Dipeptides, 3) Hydroxybenzoic acid derivatives, 4) Hydroxypyrimidines, 5) Medium-962 



 40 

chain fatty acids, 6) N-acyl-alpha amino acids, 7) N-acyl-alpha amino acids and 963 

derivatives, 8) Peptides, 9) Purine nucleosides, 10) 6-alkylaminopurines. 964 

 965 

Figure 6. Distinctions and overlaps between the most abundant exometabolites in each 966 

strain. Exometabolites in bold passed criteria for released. Exometabolites in italics are 967 

isomers and could not be resolved to determine the exact identification. 968 

 969 

Figure 7. Temporal changes in transcriptomics reveal re-routing of metabolism towards 970 

succinate production. Log2-fold change (LFC) values were mapped onto pathways 971 

involved in succinate production for a) B. thailandensis, b) C. violaceum, and c) P. 972 

syringae. LFC values are represented by rectangles alongside each reaction in the 973 

pathway map. Each column represents the 5 stationary phase time points. Colors within 974 

each rectangle represent LFC (green-increased transcripts, red-decreased transcripts) 975 

compared to the exponential phase time point.  976 

977 
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Table captions 978 

Table 1. Bacterial strains used in this study.  979 

 980 

Table 2: Summary of released exometabolites for each strain. Bt is B. thailandensis, Cv 981 

is C. violaceum, and Ps is P. syringae.  982 

 983 

Table 3: Summary of RNA-Seq results with focus on genes annotated as transporters. 984 

Criteria included genes that were a) above the low expression minimum (LEM), b) 985 

genes that were differentially expressed, and c) genes with a stationary phase time 986 

point that had a log2 fold change (LFC) > 1 compared to the exponential phase time 987 

point. 988 

  989 
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Supplemental figure legends 990 

Supplementary Figure S1. Counts of live (green) and dead (blue) cells throughout the 991 

time course. Cells were obtained from 5 wells in the transwell plate for 5 technical 992 

replicates/independent replicate at each time point. Syto9 and propidium iodide-stained 993 

cells were counted using flow cytometry.  994 

 995 

Supplementary Figure S2. Released and identified exometabolites and their temporal 996 

dynamics. A heat map of identified exometabolites in polar negative mode is shown, 997 

where samples are columns and exometabolites are in rows. Each sample is the 998 

average of independent time point replicates (n = 3 or 4). Euclidean distance was 999 

calculated from Z-scored mass spectral profiles (containing peak areas). Prior to Z-1000 

scoring, features were normalized by an internal standard (ITSD) reference feature and 1001 

cube root transformed. Features were clustered by Ward’s method. 1002 

 1003 

Supplementary Figure S3. Released and identified exometabolites and their temporal 1004 

dynamics. A heat map of identified exometabolites in nonpolar positive mode is shown, 1005 

where samples are columns and exometabolites are in rows. Each sample is the 1006 

average of independent time point replicates (n = 2 to 4). Euclidean distance was 1007 

calculated from Z-scored mass spectral profiles (containing peak areas). Prior to Z-1008 

scoring, features were normalized by an internal standard (ITSD) reference feature and 1009 

cube root transformed. Features were clustered by Ward’s method. 1010 

 1011 
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Supplementary Figure S4. Released and identified exometabolites and their temporal 1012 

dynamics. A heat map of identified exometabolites in nonpolar negative mode is shown, 1013 

where samples are columns and exometabolites are in rows. Each sample is the 1014 

average of independent time point replicates (n = 2 to 4). Euclidean distance was 1015 

calculated from Z-scored mass spectral profiles (containing peak areas). Prior to Z-1016 

scoring, features were normalized by an internal standard (ITSD) reference feature and 1017 

cube root transformed. Features were clustered by Ward’s method. 1018 

  1019 
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Supplemental table captions 1020 

Supplementary Table S1. Percent variation explained on the effect of strain, time, and 1021 

their interaction on exometabolite profiles. Permanova revealed strain-specific 1022 

differences in exometabolite composition (all P ≤ 0.001). 1023 

 1024 

Supplementary Table S2. Summary of Protest analyses comparing exometabolite 1025 

composition through time across independent replicates. Coordinates of the first two 1026 

PCoA axes were used to perform Protest analyses. Ranges reflect separate Protest 1027 

analyses performed for each polarity (polar/nonpolar) and ionization mode 1028 

(positive/negative). 1029 

 1030 

Supplementary Table S3. Average Bray-Curtis dissimilarity between group centroids 1031 

when comparing each stationary phase time point to the initial, exponential phase time 1032 

point (12.5 h). Ranges reflect separate analyses performed for each polarity 1033 

(polar/nonpolar) and ionization mode (positive/negative). 1034 

 1035 

Supplementary Table S4. Average Bray-Curtis dissimilarity between group centroids 1036 

when comparing time points in a step-wise manner. Ranges reflect separate analyses 1037 

performed for each polarity (polar/nonpolar) and ionization mode (positive/negative). 1038 

 1039 
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Supplementary Table S5. Repeated measures permanova performed on 1040 

independently replicated time series within each strain. P values are listed followed by 1041 

R2 values in parenthesis. 1042 

 1043 

Supplementary Table S6. Q-values from pairwise adonis tests comparing all time 1044 

points within a strain. Ranges reflect separate analyses performed for each polarity 1045 

(polar/nonpolar) and ionization mode (positive/negative). 1046 

 1047 

 1048 
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Table 1. 

 Family Genome 
size (Mb) 

ORFs 

Burkholderia thailandensis 
 E264 (68) 

Burkholderiaceae 6.72 5,641 

Chromobacterium violaceum 
ATCC 31532 (69) 

Neisseriaceae 4.75 4,371 

Pseudomonas syringae pathovar 
tomato DC3000 (70) 

Pseudomonadaceae 6.53 5,853 

 



Table 2. 

 B. thailandensis C. violaceum P. syringae 
Total features 5216 3083 3736 
Unique features 4327 1922 2609 
Features in common with Bt - 367 333 
Features in common with Cv 367 - 605 
Features in common with Ps 333 605 - 
Features detected in all strains 189 189 189 
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 Strain Time Strain x Time 
Polar Positive 0.578 0.061 0.685 
Polar Negative 0.670 0.026 0.749 
Nonpolar Positive 0.762 0.024 0.858 
Nonpolar Negative 0.800 0.000 0.865 
 



 

 m12 R P 
B. thailandensis 0.019 – 0.389 0.782 – 0.990 0.001 – 0.040 
C. violaceum 0.008 – 0.190 0.900 – 0.996 0.001 – 0.035 
P. syringae 0.016 – 0.300 0.837 – 0.992 0.001 – 0.075 
 



 

Time (h) B. thailandensis C. violaceum P. syringae 
25 0.132 - 0.181 0.232 – 0.378 0.233 – 0.374 
30 0.148 - 0.215 0.298 – 0.382 0.303 – 0.436 
35 0.179 - 0.265 0.326 – 0.442 0.339 – 0.458 
40 0.218 - 0.323 0.381 – 0.521 0.370 – 0.506 
45 0.242 - 0.333 0.361 – 0.526 0.391 – 0.519 

 



 

Time comparisons 
(h) 

B. thailandensis C. violaceum P. syringae 

25 to 12.5 0.132 - 0.181 0.232 – 0.378 0.233 – 0.374 
30 to 25 0.036 – 0.056 0.035 – 0.112 0.070 – 0.096 
35 to 30 0.041 – 0.064 0.042 – 0.078 0.032 – 0.058 
40 to 35 0.029- 0.083 0.066 – 0.097 0.049 – 0.075 
45 to 40 0.023 - 0.052 0.023 – 0.052 0.036 – 0.057 

 



 

 B. thailandensis C. violaceum P. syringae 
Polar Positive 0.001 (0.553) 0.001 (0.644) 0.001 (0.626) 
Polar Negative 0.068 (0.363) 0.001 (0.650) 0.002 (0.630) 

Nonpolar Positive 0.003 (0.744) 0.002 (0.746) 0.001 (0.892) 
Nonpolar Negative 0.001 (0.849) 0.001 (0.877) 0.001 (0.893) 

 



 

Time comparisons 
(h) 

B. thailandensis C. violaceum P. syringae 

25 to 12.5 0.093 – 0.21 0.088 – 0.15 0.075 – 0.17 
30 to 12.5 0.093 – 0.21 0.088 – 0.13 0.075 – 0.17 
35 to 12.5 0.093 – 0.21 0.088 – 0.13 0.075 – 0.17 
40 to 12.5 0.093 – 0.21 0.088 – 0.15 0.075 – 0.17 
45 to 12.5 0.093 – 0.21 0.088 – 0.15 0.075 – 0.17 
30 to 25 0.75 – 0.89 0.38 – 1.0 0.15 – 0.79 
35 to 25 0.15 – 0.86 0.16 – 0.28 0.15 – 0.72 
40 to 25 0.098 – 0.69 0.088 – 0.2 0.075 – 0.59 
45 to 25 0.12 – 0.69 0.088 – 0.2 0.086 – 0.40 
35 to 30  0.75 – 0.89 0.49 – 0.98  0.64 – 1.0 
40 to 30 0.15 – 0.75 0.13 – 0.45 0.15 – 0.79 
45 to 30 0.15 – 0.75  0.11 – 0.59 0.15 – 0.60 
40 to 35 0.38 – 0.96 0.16 – 0.56 0.46 – 0.97 
45 to 35 0.27 – 0.96 0.15 – 0.88 0.38 – 0.83 
45 to 40 0.90 – 0.96 0.87 – 1.0 0.94 – 1.0 
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35 to 12.5 0.093 – 0.21 0.088 – 0.13 0.075 – 0.17 
40 to 12.5 0.093 – 0.21 0.088 – 0.15 0.075 – 0.17 
45 to 12.5 0.093 – 0.21 0.088 – 0.15 0.075 – 0.17 
30 to 25 0.75 – 0.89 0.38 – 1.0 0.15 – 0.79 
35 to 25 0.15 – 0.86 0.16 – 0.28 0.15 – 0.72 
40 to 25 0.098 – 0.69 0.088 – 0.2 0.075 – 0.59 
45 to 25 0.12 – 0.69 0.088 – 0.2 0.086 – 0.40 
35 to 30  0.75 – 0.89 0.49 – 0.98  0.64 – 1.0 
40 to 30 0.15 – 0.75 0.13 – 0.45 0.15 – 0.79 
45 to 30 0.15 – 0.75  0.11 – 0.59 0.15 – 0.60 
40 to 35 0.38 – 0.96 0.16 – 0.56 0.46 – 0.97 
45 to 35 0.27 – 0.96 0.15 – 0.88 0.38 – 0.83 
45 to 40 0.90 – 0.96 0.87 – 1.0 0.94 – 1.0 

 



Table 3. 

 

aAbove LEM 
bDifferentially expressed (Q-value < 0.01) 
cLFC > 1 

 

 B. thailandensis C. violaceum P. syringae 

Genes 
involved in 
transport 
 

669 465 689 

 

447a 103a,b 20a,b,c 354a 169a,b 53a,b,c 461a 136a,b 12a,b,c 

Genes 
annotated as 
transporters 
related to 
dipeptide/C4-
dicarboxylate 
transport 

26 22 43 

 

17a 4a,b 0a,b,c 22a 7a,b 1a,b,c 20a 10a,b 0a,b,c 

Genes 
annotated as 
transporters 
related to 
dipeptide/C4-
dicarboxylate 
transport 
(transcripts 
below LEM) 
  
 

9 0 23 
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