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Abstract

Microbial exponential growth is expected to occur infrequently in environments
that have long periods of nutrient starvation punctuated by short periods of high nutrient
flux. These conditions likely impose non-growth states for microbes. However, non-
growth states are uncharacterized for the majority of environmental bacteria, especially
in regard to exometabolite production. We compared exometabolites produced over
stationary phase across three environmental bacteria: Burkholderia thailandensis E264
(ATCC 700388), Chromobacterium violaceum ATCC 31532, and Pseudomonas
syringae pathovar fomato DC3000 (ATCC BAA-871). We grew each strain in
monoculture and investigated exometabolite dynamics from mid-exponential to
stationary phase. We focused on exometabolites that were released into the media and

accumulated over 45 hours, including approximately 20 hours of stationary phase. We
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also analyzed transcripts (RNA-seq) to interpret exometabolite output. We found that a
majority of exometabolites released were strain-specific, with a subset of identified
exometabolites involved in both central and secondary metabolism. Transcript analysis
supported that exometabolites were released from intact cells, as various transporters
had either increased or consistent transcripts through time. Interestingly, we found that
succinate was one of the most abundant identifiable exometabolites for all strains, and
that each strain re-routed their metabolic pathways involved in succinate production
during stationary phase. These results show that non-growth states can be
metabolically dynamic, and that environmental bacteria can enrich a minimal
environment with diverse chemical compounds as a consequence of growth and post-
growth maintenance in stationary phase. This work provides insights into microbial
community interactions via exometabolites in conditions of growth cessation or

limitation.

Importance

Non-growth states are common for bacteria that live in environments that are densely
populated and predominantly nutrient exhausted, and yet these states remain largely
uncharacterized in cellular metabolism and metabolite output. Here, we investigated
and compared stationary phase exometabolites and RNA transcripts for each of three
environmental bacterial strains. We observed that diverse exometabolites were
produced and provide evidence that these exometabolites accumulate over time
through the release by intact cells. Additionally, each bacteria strain had a characteristic

exometabolite profile and exhibited dynamics in exometabolite composition. This work
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affirms that stationary phase is metabolically dynamic, with each strain tested creating a
unique chemical signature in the extracellular space and altering metabolism in
stationary phase. These findings set the stage for understanding how bacterial
populations can support surrounding neighbors in environments with prolonged nutrient

exhaustion through exometabolite-mediated interspecies interactions.

Keywords
Burkholderia thailandensis, Chromobacterium violaceum, Pseudomonas syringae,
secondary metabolism, RNA-seq, mass spectrometry, metabolomics, stationary phase,

non-growth state

Introduction

Much of microbiology research in the laboratory is conducted with bacterial or
archaeal populations that are growing exponentially. However, it is estimated that 60%
of microbial biomass in the environment is in a non-growing state (1, 2). Non-growing
states can arise by virtue of being dormant (e.g. low metabolic activity) or entering
stationary phase (e.g. maintenance-levels of metabolic activity) (3), where the latter
refers to a population-level phenomenon that occurs after exponential growth. Various
abiotic and biotic stressors at carrying capacity are known to induce stationary phase
including nutrient exhaustion/inaccessibility and the accumulation of waste products.
Particular environments impose conditions where microbial populations are in stationary
phase for a better part of their existence. For example, dry soils with intermittent periods

of rewetting (4—6), activated sludge operating in a sequencing batch reactor (SBR) (7,
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8), and in the human gut (9, 10). Thus, unlike most cultivated laboratory strains,
microbes experience stationary phase in environments where short periods of high

nutrient flux is followed by long periods of famine (11, 12).

Bacteria survive in stationary phase by employing various stress response
adaptations (13—15). Stress response adaptations include changes to cell morphology,
transcription, translation, and metabolism. Furthermore, in stationary phase, microbes
can re-route metabolic pathways to maintain essential components of the cell and the
proton motive force (16). While these adaptations are thought to serve as survival
mechanisms, the levels and types of metabolic activities in stationary phase are not well

understood for most environmental microbes.

It is known, however, that microbes can exhibit appreciable metabolic activity in
stationary phase (17). For example, entry into stationary phase resulted in prolonged
protein production in Escherichia coli despite a decrease in overall protein levels (18).
Metabolomic studies of E. coli in stationary phase support that there are unique
metabolite production profiles associated with metabolic responses to growth arrest
(19-21). These studies have provided valuable insights into stationary phase
physiology. However, metabolome studies of microorganisms have generally focused
on the dynamics of intracellular metabolites. It is expected that understanding
metabolite dynamics in the extracellular environment can provide insights into metabolic
responses that are relevant for microbial communities and interactions amongst

coexisting community members.

Exometabolomics is the characterization of small, extracellular molecules either

released by a microbe through means of lysis or diffusion, passive or active (22).
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Characterizing exometabolites can provide insights into the potential for microbes to
engage locally with other microbes and the environment via release of small molecules
(23). The effect of these small molecules on neighboring microbes can range from
cooperative (e.g. signaling molecules) to antagonistic (e.g. antibiotics) (24). Some
exometabolites, such as antibiotics, are known to increase in production upon entry into
stationary phase (15). In addition, computational models have predicted that costless
exometabolite production, such intermediates of central carbon metabolism, may be
common among bacteria (25), which could provide an overall benefit in a microbial
community setting. Untargeted exometabolomic profiling has benefited from recent
advances in the sensitivity and throughput of mass spectrometers (26). This approach
provides an experimental basis to observe the breadth of exometabolites produced by
microbial strains and strain-specific contributions to the exometabolite pool.
Characterizing the exometabolite profile of a microbial population over time can be
applied to understand the dynamic interplay between cell metabolism and the
environment. Integrating untargeted exometabolomic approaches with other ‘omic
technologies (e.g. transcriptomics, genomics) informs comparisons across microbial

populations of their metabolic responses in stationary phase.

We present an investigation of three environmental bacterial strains that are
commonly associated with terrestrial environments (soils or plants) (Table 1). These
strains were chosen because of reported (27) and observed interspecies exometabolite
interactions in the lab. This current study evaluated exometabolite production for each
strain in monoculture to first establish typical single-strain responses over stationary

phase, with goals to next proceed to understand exometabolite-mediated interactions
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among strains. Our previous work established a robust and flexible approach to
investigate microbial exometabolite production in either monoculture or co-culture (28).
Our approach uses filter plates that allow for the separation of cells from an
exometabolite reservoir. Here, we examined the detailed exometabolite and transcript
dynamics, defined as compositional changes through time, for each of these three
environmental strains in monoculture over stationary phase after growth in minimal
glucose (3.7 mM) medium. We asked: What is the diversity of unique exometabolites
that accumulate over stationary phase? What is a likely explanation (e.g. transport from
viable cells or lysis) for the accumulation of exometabolites? How does exometabolite
composition and production compare across strains and time, and what general insights
could these provide for understanding microbial metabolism and ecology of stationary

phase?

We found that exometabolite composition is dynamic through stationary phase,
and that accumulated exometabolites were likely released from intact cells. We also
found that a majority of released exometabolites were strain-specific, suggesting that
different bacterial strains have individualized responses to stationary phase. Finally, we

found that all three strains re-routed metabolism in stationary phase.

Results

Each strain had a distinct exometabolite profile in stationary phase

In total, 10,352 features were detected by mass spectral analysis (Fig. 1, Table
2) across the three strains. These features represent what we defined as released
exometabolites (see Methods: Mass spectrometry analysis section). Briefly, released

exometabolites were defined as those that had temporal accumulation (assessed via



141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

peak area) in stationary phase. Most features detected were strain-specific, and the
number of unique features from any one strain outhumbered the total number of
features shared by at least two strains (1494 features, ~16.9%). Of the 1494 shared
features, ~12.7% were shared among all three strains. Specifically, B. thailandensis had
the most unique detected features (~41.8%), followed by P. syringae (~25.2%) and C.
violaceum (~18.6%) compared to all detected features. These data suggest that,
despite monoculture growth in minimal medium initially containing one carbon source,
an abundance of strain-specific exometabolites are produced during stationary phase.
We were interested in understanding differences in exometabolite composition
and exometabolite temporal dynamics over stationary phase (Fig. 2). Comparing across
strains (Fig. 2A-D), each strain had strain-specific exometabolite profiles (Adonis 0.590
<r?><0.808, P value < 0.001, all pair-wise FDR-adjusted P values < 0.001).For each
strain, exometabolite profiles from exponential growth phase were distinct from
stationary phase profiles (Fig 2). Strain differences in released exometabolites were
more important than time in explaining variation in exometabolite composition on both
PCoA axes. As expected, strain identity explained = 57% of the variation while time
explained < 6% of the variation across all polarity/ionization modes (Supplementary
Table S1). However, the most variation was explained by the interaction effect of strain
x time (Supplementary Table S1).).Thus, exometabolite compositional differences were
mainly driven by the different released exometabolites by the different strains. This was

expected given the large number of unique features detected for each strain (Table 2).

Alternatively, we further looked at the influence of time on exometabolite profiles

by observing exometabolites released by each strain, separately. We considered only



164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

those exometabolites that met our stringent criteria for release and accumulation over
time (see Methods). Notably, with these criteria, some of the same exometabolites were
classified as released for some strains but not for others. In these cases,
exometabolites were excluded from the temporal analysis of any strains for which the
release criteria were not met. Directional temporal dynamics was observed for each
strain (Fig. 2E-G), though continued directionality was not observed in some of the
latest time points (e.g. Fig. 2F). We define directional as a progressive, step-wise
trajectory between time points, where each time point is distinguished from any of the
previous time points, and even more distinct from previous time points in PCoA space.
This ultimately reflects temporal changes in exometabolite composition. Temporal
trajectories in exometabolite profiles were highly reproducible for each strain across
biological replicates (Protest analyses, Supplementary Table S2). For all strains, the
difference between exometabolite profiles progressively increased when comparing
each stationary phase time point to the initial, exponential phase time point
(Supplementary Table S3). But, comparing successive time points revealed that the
greatest differences occurred between the first stationary phase time point and the
exponential phase time point. Notably, dissimilarity decreased between successive time
points in stationary phase such that the latest time points were more similar to each
other than the earliest time points (Supplementary Table S4). For each strain, the
exometabolite profile changed over time (Supplementary Table S5). However, this was
primarily due to differences in exometabolite profiles when comparing the exponential
phase time point to each of the stationary phase time points (Supplementary Table S6).

We note that hundreds to thousands of features were detected in late stationary phase
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but were excluded (see Methods: Mass spectrometry analysis section) from the final
dataset of released exometabolites. WWe maintained strict criteria for the detection of and
accumulation of released exometabolites over stationary phase. Taken together, these
data suggest that differences in exometabolite composition are largely driven by strain-
specific production of exometabolites. Accounting for all released exometabolites within
each strain, similar temporal patterns emerge, with the largest differences observed
between exponential phase and stationary phase and more subtle differences observed

over consecutive time points within stationary phase.

Hierarchal clustering analysis also revealed strain-specific features and their
dynamics (Fig. 3). Most features across all strains reached maximum accumulation in
late stationary phase. Notably, exometabolites accumulated despite generally steady
strain population levels (Supplementary Fig. S1). We did observe ~1 generation in B.
thailandensis and P. syringae over the course of stationary phase but the doubling took
20 h to complete. Dead cells across the time series remained consistent for both B.
thailandensis and C. violaceum but increased for P. syringae (Supplementary Fig. S1).
However, the quantity of live cells remained higher than the quantity of dead cells
across the time series for all strains. Largely consistent counts of viable cells and a lack
of death phase suggest that many exometabolites were released by intact cells rather
than by lysis. To add support to this hypothesis, transcriptomics data indicate multiple
organic molecule transporters were either consistently expressed throughout the time
series or differentially expressed (Table 3, Dataset 1). Notable examples for all strains
include various transporters related to dipeptide and C-4 dicarboxylate transport. In

summary, despite growth arrest, each bacterial strain continued to produce (and the
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media accumulated) a distinctive and dynamic profile of exometabolites into stationary

phase.

Identity of stationary phase exometabolites

Of the total set of exometabolite features, only 188 (~1.8%) could be identified
(Fig. 4, Supplementary Figs. S2-S4, Dataset 2). These were classified according to the
Metabolomics Standards Initiative (MSI): MSI level 1 (Identified compounds) and MSI
level 2 (putatively identified compounds). Most of the identified exometabolites were
uniquely produced by one strain under our experimental conditions, though there were
some exometabolites shared across strains, especially between C. violaceum and P.
syringae (Dataset 2). Many of the identified exometabolites, particularly those molecules
involved in central metabolism, such as amino acids, nucleotides/nucleosides, and
carboxylic acids, were classified using an in-house standard in accordance with MSI
level 1. In addition, MSI level 1 exometabolites such as ectoine, proline, trehalose, and

glutamate likely indicated a cellular stress (e.g. osmotic stress).

Exometabolites putatively identified at MSI level 2 were annotated by matching
MS/MS fragmentation to a reference database. MSI level 2 exometabolites included
secondary metabolites such as bactobolin, yersiniabactin, and acyl homoserine
lactones (AHLs) produced by B. thailandensis, P. syringae, and C. violaceum,
respectively. Bactobolin and yersiniabactin are bioactive molecules, previously
characterized as a bacteriostatic antibiotic (29) and a siderophore/virulence factor (30),
respectively. AHLs induce quorum sensing in C. violaceum, and are linked to the
production of hydrogen cyanide, antibiotics, and proteases (31, 32). These putatively

identified secondary exometabolites suggest that stationary phase is coordinated with
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shifts in metabolism, priming strains for competition via chemical warfare or nutrient
scavenging. These data also suggest that a competitive phenotype may be standard
among bacteria even in the absence of non-kin competitors, suggesting either priming
for interspecific competition or engagement in intraspecific competition. This competitive
priming is also supported by the observation of increased transcripts for transport
systems involved in competition. For example, competitive transport systems included
the type lll secretion system in B. thailandensis and multidrug efflux systems for both C.
violaceum and P. syringae. When comparing transcripts between times 45h to 12.5h,
the aforementioned transport systems had a logz-fold change (LFC) in expression > 1. (
Dataset 1). Finally, a large proportion of MSI level 2 exometabolites were dipeptides,
suggesting either the degradation of proteins (14) or the formation of dipeptides by non-
ribosomal peptide synthetases (NRPS), found in biosynthetic gene clusters (Dataset 3).
In summary, there was a consistent accumulation of a diversity of exometabolites in
stationary phase, including exometabolites that were intermediates in central carbon

metabolism as well as secondary metabolites implicated in competition.

To maximize annotation of remaining unidentified MS/MS data, we performed
chemical ontology analysis to determine chemical classes of exometabolites produced
in stationary phase. Using in silico prediction of exometabolites by MS/MS
fragmentation patterns, we putatively characterized compound classes (MSI level 3
designation). Broadly, carboxylic acids and derivatives were the most abundant type of
exometabolite produced in stationary phase for all strains (Fig. 5A). This is expected
because carboxylic acid derivatives are prominent in cellular constituents and molecules

involved in primary metabolism (e.g. TCA cycle). Their excess production, and release

11



256 to relieve internal accumulation, may be due to stoichiometric constraints in metabolic
257  network topology (33). However, MSI level 3 exometabolites revealed considerable

258 quantification of exometabolites related to fatty acyls, organonitrogen compounds,

259  organooxygen compounds, and benzene and substituted derivatives, suggesting

260 additional classes of exometabolites contributing to the exometabolite pool that are

261 unable to be identified by MSI level 1 and level 2 standards. These chemical ontologies
262  were resolved further to the direct parent level (Fig. 5B). Amino acids and peptides were
263 the most abundant and common exometabolites across all identification levels. In

264  particular, dipeptides were the most abundant exometabolite. Transcriptomics data also
265 indicated that dipeptide transporters for each strain were either consistently expressed
266  or differentially expressed over time (Table 3, Dataset 1). In summary, chemical

267 ontology analysis revealed chemical classes represented in the exometabolite dataset
268  but lacking identification and, revealed that dipeptides were a common exometabolite

269 released by all strains.

270  Insights into stationary phase metabolic re-routing

271 We then aimed to interpret strain metabolism in stationary phase by focusing on
272 exometabolites most confidently identified (MSI level 1). For each strain, we examined
273  the 10 most abundant exometabolites that accumulated and were detected at the last
274  time point (45 h) for positive and negative polar exometabolites. We included all MSI
275 level 1 exometabolites in this analysis. Generally, the abundant, accumulated

276  exometabolites that were distinct for each strain were also uniquely detected in those
277  strains (Fig. 6, ANOVA, all Q-values < 0.01), with two exceptions: 5’-

278  methylthioadenosine and hypoxanthine were also abundant in Chromobacterium
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violaceum media but not within its top 10 accumulated exometabolites. Transporters
that had a logz-fold change (LFC) in expression (comparing times 45h to 12.5h) > 1
could be linked with their substrates for both C. violaceum and P. syringae (Dataset 1).
This included substrates such as succinate and cytosine for C. violaceum and P.
syringae, respectively. None of the most abundant exometabolites in B. thailandensis
could be linked to a transporter with a large LFC. The maijority of strain-specific
abundant exometabolites suggest that each strain released a set of unique metabolic
intermediates into the extracellular environment. This finding could have implications for
how bacterial populations maintain viability through interspecies interactions in periods
of nutrient exhaustion. Perhaps a simple explanation for differences in the types of
exometabolites released could result from differences in the alteration of stationary

phase metabolism.

Of the most accumulated exometabolites, succinate was a common
exometabolite detected in all strains, and this is unsurprising as it is directly involved in
central metabolism. Notably, succinate did not meet our stringent definition of released
and accumulating over stationary phase (Fig. 6). However, its abundance and
accumulation for all strains and its important role in central metabolism warranted
further investigation. We overlaid temporal log fold changes in gene expression onto
KEGG pathways involved in succinate production (Fig. 7). These data suggest that all
strains re-routed metabolism during stationary phase. For the most part, transcripts

involved in glycolysis and the TCA were decreased in all strains (KEGG Pathways).

With regard to succinate production, both B. thailandensis and C. violaceum appear to

have re-routed metabolism to use the glyoxylate cycle, as supported by the increase in
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transcripts for isocitrate lyase and increase in transcripts involved in the 3-oxidation of
fatty acids. P. syringae appears to have re-routed metabolism to use the methylcitrate
cycle to generate succinate, as evidenced by the increase in transcripts for 2-
methylisocitrate lyase. Other potential sources of succinate production include the
GABA shunt and succinyl-CoA:acetate CoA-transferase in both B. thailandensis and P.
syringae. In all strains, stationary phase results in exometabolite production that

appears to coincide with alterations in metabolism.

Discussion

Microbes can experience a feast-or-famine lifestyle in environments (e.g. soil,
activated sludge, in the gut) where long periods of starvation are punctuated by short
periods of nutrient flux (4—10). Thus, microbes in particular environments predominantly
exist in stationary phase. Understanding the metabolic response to stationary phase
can reveal generalities as well as strain-specific strategies to maintain viability in

nutrient-exhausted environments.

We studied exometabolite production in stationary phase across three bacterial
strains. We specifically focused our analyses on released exometabolites, metabolites
that accumulated in the medium over time. Even though we applied a very conservative
definition to identify features that accumulated over time, we detected and characterized
thousands of features that met our criteria. However, in the end, only a subset of these

features could be identified using standards, MS/MS databases, and computational
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predictions based on chemical characteristics (Fig. 4, Supplementary Figs. S2-S4,

Dataset 2).

Exometabolites could accumulate over stationary phase by two mechanisms.
First, exometabolites could be transported passively or actively across viable cells’
membranes. Second, cells could lyse and spill primary metabolites and other debris into
extracellular environment (34). Our results suggest that a major contributing factor to
exometabolite accumulation for all three strains investigated here was exometabolite
release from intact cells. In fact, we did not observe a death phase over stationary
phase (Supplementary Fig. S1). Live cells generally remained at consistent levels
throughout stationary phase. One generation during stationary phase was observed for
both B. thailandensis and P. syringae. Given the decrease in transcripts observed for

multiple genes in central metabolism (KEGG Pathways), this generation was likely the

result of reductive cell division (35-37). Dead cells were present and in particular,
increased for P. syringae throughout the time course. While dead cells could leak
exometabolites, the accumulation of certain exometabolites (e.g. secondary
metabolites) were identified and have been previously associated with production from
viable cells in stationary phase cultures from each strain (29, 30, 32) Furthermore, our
results are consistent with a previous study in E. coli that observed the extracellular
accumulation of nucleobases upon entry into stationary phase (19). Ribosome
degradation is initiated in growth-limiting environments and is a likely source of
nucleobase accumulation due to the degradation of rRNA (38). We also observed the
accumulation of various nucleobases in the extracellular environment across all strains,

consistent with the concept of some common stationary phase phenomenon among

15
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bacteria. Additional evidence of exometabolite release from intact cells was provided by
RNA-seq analysis. Transcriptomics results indicated the increase in transcripts for or
consistent expression of transporters (Dataset 1). In a previous study, Paczia et al. also
observed similar patterns of exometabolite accumulation in stationary phase in various
strains (39). They were able to rule out lysis and determine that passive or active
diffusion could explain exometabolite production in growth limited conditions. In
integrating transcriptomics with exometabolomics, our study builds on the findings of
Paczia et al. to identify transporters likely involved in exometabolite accumulation and to
provide insights into alterations in stationary phase metabolism. Findings from our work
and from Paczia et al. in agreement with metabolic models that suggest that the
extracellular accumulation of central metabolites could be attributed to costless
metabolic secretions in resource poor environments (25). Unintuitively, the release of
exometabolites by viable cells, and, particularly, release of central carbon intermediates,
may be a common adaptation of bacteria in stationary phase. An interesting explanation
is that the stoichiometry of metabolites is constrained by evolved metabolic network
topology: some metabolites could be produced in excess to meet all metabolite
requirements for a bacterium. Fitness tradeoffs of metabolite overproduction (e.g. toxic

accumulation) could be alleviated through metabolite efflux (33).

In addition to the characterization of exometabolites implicated in cooperative
interactions (e.g. central carbon intermediates or quorum sensing molecules), we also
identified exometabolites implicated in competition. An antibiotic (bactobolin), with
previously described bioactivity (27, 29, 40), was produced by B. thailandensis and a

siderophore/virulence factor (yersiniabactin) was produced by P. syringae (30),
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representing interference (direct harm to neighbors) and exploitative (indirect negative
interaction) competition strategies, respectively (41, 42). These exometabolites are
involved in interspecies competition but, here, were produced in monoculture. While we
did not identify an exometabolite in C. violaceum involved in competition, we did identify
quorum sensing molecules, which are linked to the production of competitive
exometabolites in this strain (31, 32). Taken together, the metabolic profile in each
strain was altered in stationary phase and resulted in production of both cooperative
and competitive exometabolites. Simultaneous production of both cooperative and
competitive exometabolites may be an advantageous strategy to sustain kin while
maintaining competition for scarce resources (25, 43). Additional studies that include
co-coculturing experiments are needed to understand the impact that these
exometabolites may have on ecological dynamics and these interplay of biotic factors

under changing environmental conditions.

Putative (MSI level 2) exometabolite identifications provided evidence for the
release of dipeptides (Fig. 5B) and transcriptomics provided evidence for differentially
regulated or consistent expression of dipeptide transporters (Dataset 1). Hydrolysis by
dipeptidyl peptidases of ribosomal proteins or degradation of other polypeptide chains
can be one source of dipeptide production. Estimates in E. coli have shown that 50-80%
of ribosomes were degraded upon transition from exponential phase to stationary phase
(38). Interestingly, another source of dipeptides may be active production. Recent
studies have examined dipeptide formation by adenylation domains in nonribosomal
peptide synthetases (NRPS) (44, 45). All strains in our study have numerous NRPS that

could contribute to the production of dipeptides (Dataset 3). Furthermore, one dipeptide
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was characterized as a cyclic dipeptide. Cyclic dipeptides can be involved in cell
communication (46). Thus, the diverse chemical ecology that can be facilitated by
dipeptides points to the importance of understanding how dipeptides are formed and of

characterizing the environments that induce their production.

A clear limitation to our study is in the incomplete exometabolite annotations.
Only 1.8% of released exometabolites could be identified. While exact molecule
identifications are lagging behind the identification of new features, efforts have been
put forth to chemically classify all MS/MS data (47). We used the same approach to
computationally predict and classify the chemical ontology of MS/MS data not identified
at MSl level 1 or level 2 (Fig. 5). Differences between in silico predictions of MS/MS
data (MSI level 3) and MSI levels 1 and 2 was most apparent at the class level (Fig.
5A). This knowledge can be used to direct research efforts and analytical techniques to
identify underrepresented classes of compounds. Targeted identification efforts of
exometabolites will reveal uncharacterized biological phenomena occurring in

experimental systems.

Microbes in growth-arrested states can re-route metabolism to maintain the
proton motive force (PMF) and stabilize ATP levels (16). We used a combination of
exometabolomics and transcriptomics to shed light on metabolic re-routing in each
strain investigated. Notably, all three strains accumulated high levels of succinate, and
this was further supported by RNA-seq data that showed an increase in transcripts in
genes involved in succinate production (Fig. 7). We found that the major metabolic re-
routing in stationary phase included transitioning to the glyoxylate cycle in B.

thailandensis and C. violaceum and to the methylcitrate cycle in P. syringae. This
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finding, specifically for B. thailandensis, agrees with previous studies in B. thailandensis
and closely related strains. Previous studies found quorum-sensing mediated metabolic
re-routing to the glyoxylate cycle during stationary phase in B. thailandensis and
Burkholderia glumae as a mechanism to combat alkalinity toxicity (48, 49). Furthermore,
the greatest increase in isocitrate lyase was observed in Burkholderia cenocepacia
during stationary phase compared to other abiotic stressors (50). This supports the
notion that a re-routing metabolism to the glyoxylate cycle in stationary phase may be a
shared feature among members of the genus Burkholderia. Prior evidence for stationary
phase metabolic re-routing in both C. violaceum and P. syringae is lacking. However, a
metabolic model in C. violaceum ATCC 12472 suggested metabolic re-routing to the
glyoxylate cycle occurred in response to antibiotics in a streptomycin-resistant
population (51). In support of succinate extracellular accumulation, we found that C4-
dicarboxylic acid transporters were transcriptionally active in all three strains (Dataset
1). It could be that succinate export is facilitated by a succinate/proton symporter for
maintenance of the PMF. However, both cycles involved in succinate production do not
generate ATP, and the generation of ATP is are also necessary to maintain cell viability.
While ATP could be generated through the production of acetate (Fig. 7), we note that
we did not quantify acetate and therefore are unable to confirm this scenario. Additional
studies are needed to confirm the mechanisms of maintaining cell viability during
stationary phase. Regardless, combining exometabolomic and transcriptomic
approaches provided increased biological interpretation that could not have been
achieved by either approach in isolation. The characterization of exometabolite

production and metabolic response to stationary phase in monocultures sets the stage
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for understanding exometabolite-mediated interspecies interactions within a microbial

community.

Materials and Methods

Bacterial strains and culture conditions

Glycerol stocks of B. thailandensis, C. violaceum, and P. syringae (Table 1) were
plated on half-concentration Trypticase soy agar (TSAS50) at 27°C for at least 24 h.
Strains were inoculated in 7 ml of M9-0.2% glucose medium and grown for 16 h at
27°C, 200 rpm. Cultures were then back-diluted into 50 ml M9-0.2% glucose medium
such that exponential growth phase was achieved after 10 h of incubation at 27°C, 200
rpm. Strains were back-diluted in 50 ml M9-0.067% glucose medium to target ODs (B.
thailandensis 0.3 OD, C. violaceum: 0.035 OD, P. syringae 0.035 OD) such that
stationary phase was achieved after approximately 24 h of incubation in filter plates.

Filter plate experiments

We used the filter plate system to study each strain in monoculture over the
course of stationary phase. Filter plate preparation was performed as previously
described (28). Briefly, we used sterile filter plates with 0.22-um-pore polyvinylidene
difluoride (PVDF) filter bottoms (MultiScreen GV Filter Plate, 0.22 ym, MSGVS2210,
Millipore). Prior to use, filter plates were washed three times with sterile water using a
vacuum apparatus (NucleoVac 96 vacuum manifold; Clontech Laboratories). The filter
of well H12 was removed with a sterile pipette tip and forceps, and 31 ml of M9-0.067%
glucose medium was added to the reservoir through well H12. Each well was then filled
with 130 I of back-diluted culture in M9—-0.067% glucose medium or medium only. For

a given time series replicate, a custom R script (RandomArray.R [see the GitHub
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repository]) was used to randomize the placement of a strain in the wells so that a strain
occupied a total of 31 wells per plate and the remaining 64 wells were filled with
medium. Each monoculture time course was independently replicated four times for a
total of 12 experiments. The time course included 6 time points: an exponential phase
point (12.5 h) and 5 points assessed every 5 h over stationary phase (25 h — 45 h).
Plates were destructively sampled, comprising a total of 72 plates for the entire
experimental design of 3 strains x 6 timepoints x 4 replicates.

Filter plates were incubated at 27°C with gentle shaking (~0.32 rcf). We again
used our RandomArray.R script to randomize wells used for RNA extraction (16 wells,
pooled per plate) and flow cytometry (5 wells, pooled per plate). During destructive
sampling, first, the wells containing spent culture assigned to RNA-seq were pooled into
a 1.5 mL microcentrifuge tube, flash frozen in liquid nitrogen, and stored at -80°C for
RNA extraction. Next, wells containing spent culture assigned to flow cytometry were
pooled, and then 20 pL was initially diluted in 180 pL Tris-buffered saline (TBS; 20 mM
Tris, 0.8% NaCl [pH 7.4]), and then, after checking concentrations needed for accurate
flow cytometry counts, diluted further in TBS to reach final dilutions of 1,300-fold, 1,540-
fold, and 900-fold for B. thailandensis, C. violaceum, P. syringae, respectively. Finally,
spent medium (~31 ml) from the shared reservoir was transferred into 50 mL conical
tubes, flash-frozen in liquid nitrogen and stored at —80 °C for subsequent exometabolite
extraction.

Flow cytometry

Diluted cultures were stained with the Thermo Scientific LIVE/DEAD BacLight

bacterial viability kit at final concentrations of 1.5 yM Syto9 (live stain) and 2.5 yM
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propidium iodide (dead stain). Two hundred microliters of stained cultures were
transferred to a 96-well microtiter U-bottom microplate (Thermo Scientific). Twenty
microliters were analyzed on a BD Accuri C6 flow cytometer (BD Biosciences) at a
fluidics rate of 66 pl/min and a threshold of 500 on an FL2 gate. The instrument
contained the following optical filters: FL1-533, 30 nm; FL2-585, 40 nm; and FL3, 670-
nm longpass. The counting accuracy of the flow cytometer was periodically checked
with GFP beads. Data were analyzed using BD Accuri C6 software version 1.0.264.21
(BD Biosciences).

Metabolomics

LCMS sample preparation and data acquisition

The following methods were according to the Department of Energy Joint
Genome Institute (DOE JGI) standard operating protocols performed at the DOE JGI
facility. Spent medium samples from the monocultures were shipped from Michigan
State to the DOE JGI overnight on dry ice. Spent medium (ranging from 2.5 to 8 mL)
were lyophilized in a Labconoco FreeZone 2.5 lyophilizer (Labconco, Kansas City, MO).
Dried samples were resuspended in 700 uL methanol, vortexed, sonicated for 10
minutes in a water bath (VWR Scientific Aquasonic Water Bath, Model 150HT), and
then centrifuged for 2 minutes at 1200 g. Supernatant was transferred to 96 deep-well
plate (1.1 mL) and then dried in a speed-vac (SPD111V, Thermo Scientific). Samples
were stored at -80 °C until LC-MS analysis. Four extraction blanks were also prepared

using the same protocol.

Dried samples were resuspended in methanol containing internal standards

(ITSD). ITSD used for polar analysis were 3C,">N amino acid mixture (30 uM,
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767964,Sigma, Inc). ITSD for nonpolar analysis was 2-Amino-3-bromo-5-methylbenzoic
acid (ABMBA, 1 yg/mL). Additionally, a quality control (QC) sample containing ~20
common biomolecules was prepared. ITSD are used to check for injection errors, mass
accuracy, and RT shifts within a sample. The m/z accuracy and retention time shifts in
QC samples were assessed to check for instrument consistency and column
performance. Samples were analyzed for both polar and non-polar exometabolites.
Resuspended samples containing ITSD were vortexed, sonicated in a water bath for 2
minutes, transferred to transwell plates (MultiScreen GV Filter Plate, 0.22 pm,
MSGVS2210, Millipore) and centrifuged for 2 min at ~1200 g into a 96-well plate, and

then transferred into an LC-MS glass vial.

UHPLC chromatography was performed using and Agilent 1290 LC stack, with
MS and tandem mass spectrometry (MS2) data collected in both positive and negative
ion mode using a Thermo QExactive (for HILIC) or Thermo QExactive HF (for C18)
mass spectrometer (Thermo Scientific, San Jose, CA). Full MS spectra was collected
for m/z 80-1,200 at 60,000 resolution for C18, and m/z 70-1,050 at 70,000 resolution for
HILIC. MS/MS fragmentation data was acquired using stepped collision energies
between 10-40 eV at 17,500 resolution. Specifically, 1 MS1 scan was followed by 2
MS2 scans of the 2 most intense ions, then another MS1 scan followed by another 2
MS2 scans of the 2 most intense ions. If the 2 most intense ions were already
fragmented in the previous 10 seconds of analysis, the next 2 most intense ions were
fragmented. For MS2, 10,20 and 30eV collision energies were collected and averaged
with the exception of one biological replicate per condition, where 10, 20 and 40eV

collision energies were collected and averaged.
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For detection of nonpolar metabolites, reverse phase chromatography was
performed using a C18 column (Agilent ZORBAX Eclipse Plus C18, Rapid Resolution
HD, 2.1 x 50 mm, 1.8 ym) at a flow rate of 0.4 mL/min. Samples were run on the C18
column held at 60 °C equilibrated with 100% buffer A (100% LC-MS water with 0.1 %
formic acid) for 1 minute, followed by a linear gradient to 100% buffer B (100%
acetonitrile with 0.1% formic acid) over 7 minutes, and then an isocratic elution in 100%
buffer B for 1.5 minutes. A final re-equilibration to 100% buffer A over 1 minute and
isocratic hold for 1 minute was performed prior to the next sample injection. For
detection of polar metabolites, normal phase chromatography was performed using a
ZICHydrophilic Interaction Liquid Chromatography (HILIC) column (SeQuant ZIC-HILIC
3.5-um particle size, 200 A porosity, 150 mm x 2.1 mm, Millipore Sigma). Samples were
run on the ZIC-HILIC column held at 40 °C equilibrated with 100% buffer B (95:5
acetonitrile:water with 5mM ammonium acetate) at a flow rate of 0.45 mL/min for 1.5
minutes, diluting buffer B down to 65% with buffer A (100% water with 5mM ammonium
acetate) over 13.5 minutes, followed by a linear increase in flowrate to 0.6 mL/min as
buffer B approached 0% over 3 minutes, and then an isocratic elution in 100% A for 5
minutes. This was followed by a 2 minute linear gradient back to 100% B and decrease
in flowrate to 0.45 mL/min, and then a final 5 minute column re-equilibration at 100% B

prior to the next sample injection.

Sample injection order on the mass spectrometer was randomized and an
injection blank (2 uL of methanol) was run between each sample. For all samples,
resuspension volume (70 to 120 yL) and injection volume (2 pL to 8 uL) varied to

normalize by initial sample volume prior to extraction. A total of 257 samples were
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successfully analyzed (Dataset 4). Samples not included in downstream analyses were
removed either because they failed quality standards during mass spectrometry

analysis or the sample had low intragroup reproducibility.

Mass spectrometry analysis

Both MS and MS/MS data were used for untargeted metabolomics analysis. A
total of 257/288 metabolomic samples were used for analysis (Dataset 4); 30 samples
were removed due to failed injection and 1 sample was removed due to low intragroup
reproducibility in polar analysis (Pearson’s r < 0.14). MZmine (version 2.42) (52) was
used for peak picking, aligning features across samples, and peak integration for both
nonpolar and polar analyses and in both negative and positive ion mode. MZmine XML
parameter files for all analyses can be viewed and downloaded from GitHub (Dataset
7). For MS data, a feature by sample matrix was exported for additional feature filtering
steps. For MS/MS data, the GNPS feature was used to export data in addition to
performing a local spectra database search within MZmine (see Compound
identification section, below).

We used filter featuring steps to identify exometabolites released from each
strain in stationary phase. The feature filtering steps were performed as follows on a
per-strain basis: 1) Features were removed if the max peak area was found in one of
the replicates for the external control sample. 2) A noise filter: the minimum peak area
of a feature from a replicate at the last time point (45 hr) needed to be 3X the maximum
peak area of the same feature in one of the external control replicates. 3) Coefficient of
variation (CV) values for each feature calculated between replicates at each time point

needed to be less than 20% across the time series. 4) The minimum value of the
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576  average peak area needed to be observed in the first, exponential phase time point
577  (12.5h). 5) The log: fold change of the average peak areas observed between the last
578 (45 h) and first (12.5 h) timepoints needed to be greater than 1. 6) The time series

579  abundance of a feature needed to have a Pearson correlation greater than or equal to
580 0.7.

581 Four final feature datasets from polar and nonpolar analysis in both ionization
582 modes were analyzed in MetaboAnalyst 4.0 (53). Features were normalized by an

583 internal standard (ITSD) reference feature (Dataset 5) and cube root transformed.

584  Reference features for polar analysis in positive (13C-15N-proline) and negative (13C-
585 15N-alanine) was determined by the ITSD with the lowest CV value across all samples.
586  The reference feature for nonpolar datasets was the ITSD 2-Amino-3-bromo-5-

587 methylbenzoic acid (ABMBA). Heatmaps were generated in MetaboAnalyst using

588  Ward'’s clustering algorithm with Euclidean distances from Z-scored data. Normalized
589 and transformed datasets were exported from MetaboAnalyst to generate principal

590 coordinate analysis (PCoA) plots in R. Abundances for exometabolites that did not pass
591 release criteria in each strain were replaced with NAs prior to distance matrix

592  computation.

593  Compound identification

594 A three step process was used to identify compounds or characterize chemical
595 ontologies(47). Identification confidence was assigned according to the Metabolomics
596  Standards Initiative (MSI) (54). First, compounds were identified by an in-house

597 reference library at the Joint Genome Institute (JGI). This reference library was curated

598 to identify compounds based on m/z, retention time, and MS/MS spectra of standards. A
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compound passing the first two criteria were denoted MSI level 1. A compound passing
all three criteria exceeded MSI level 1. All compounds at or exceeding MSI level 1 were
identified using the reference library. This reference library was only available for polar
analysis. Ranges for m/z and retention time values for compounds in the reference
library were used to identify exometabolites from the MZmine analysis (Dataset 6).

We made an effort to identify as many of the remaining compounds from both
polar and nonpolar analyses that had MS/MS data. MS/MS data acquired during mass
spec analysis were used to putatively identify compounds that matched to fragmentation
patterns from libraries outside of JGI; these were assigned MSI level 2. First, MS/MS
data was exported to GNPS format and analyzed in GNPS (55) to match fragmentation
patterns against the NIST17 commercial library. Second, a local spectra database
search was performed within MZmine using the entire compound library from MassBank

of North American (MoNA- https://mona.fiehnlab.ucdavis.edu). For both approaches,

compounds were putatively identified if cosine scores were 0.7 or above. A subset of
the final feature datasets was created from compounds identified at MSI level 1 and
level 2 (Dataset 2). These datasets were processed in MetaboAnalyst (see Mass
spectrometry analysis section, above) to generate heat maps, perform pathway analysis
(see Pathway analysis section, below), and perform ANOVA analysis between strains
exometabolite abundances.

All remaining unidentified compounds with MS/MS data were analyzed with
CSl:Finger ID and assigned MSI level 3. This method provides the putative chemical
ontology of a compound. The top CSI:Finger ID match was used for each compound.

Then, InChl keys from all MSI levels were used to perform a chemical ontology analysis
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using ClassyFire version 1.0. SDF files from ClassfyFire were exported from each
analysis to extract both Class level and Direct Parent level ontologies. These data were

then exported to R for data visualization.

RNA-Seq

RNA sample prep, sequencing, and QC

At Michigan State, RNA was extracted using the E.Z.N.A. Bacterial RNA kit
(Omega Bio-tek, Inc.). An in-tube DNase | (Ambion, Inc AM2222, 2U) digestion was
performed to remove DNA from RNA samples. RNA samples were purified and
concentrated using the Qiagen RNAeasy MinElute Clean up Kit (Qiagen, Inc). Ten

random samples were chosen to assess RNA integrity on an Agilent 2100 Bioanalyzer.

The following methods were according to DOE JGI standard operating protocols
and performed at the DOE JGI facility. RNA samples were shipped from Michigan State
to DOE JGI overnight on dry ice. RNA samples were placed into 4, 96-well plates- 1
plate for each species containing all stationary phase time points and 1 plate containing
exponential phase time points. Plate-based RNA sample prep, including the Ribo-Zero
rRNA Removal Kit (lllumina, for Bacteria) and the TruSeq Stranded Total RNA HT
sample prep kit, was performed on the PerkinElmer Sciclone NGS robotic liquid
handling system with the following conditions: total RNA starting material of 100 ng per
sample and 10 cycles of PCR for library amplification. The prepared libraries were
quantified using KAPA Biosystem's next-generation sequencing library gPCR kit and
run on a Roche LightCycler 480 real-time PCR instrument. The quantified libraries were
then prepared for sequencing on the lllumina HiSeq sequencing platform utilizing a

TruSeq Rapid paired-end cluster kit, v4. Sequencing of the flowcell was performed on
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the lllumina HiSeq2500 sequencer using HiSeq TruSeq SBS sequencing kits, v4,

following a 2x100nt indexed run.

Read preprocessing and filtering

BBDuk (56) was used on raw fastq files to filter contaminants and trim both
adaptor sequence and right quality trim reads where quality dropped to 0. Using BBDuk,
raw reads were evaluated for artifact sequences by kmer matching (kmer=25), allowing
1 mismatch and detected artifacts were trimmed from the 3' end of the reads. BBDuk
was used to remove reads that contained 1 or more 'N' bases, had an average quality
score across the read less than 10 or had a minimum length <= 51 bp or 33% of the full
read length. Reads mapped with BBMap (56) to masked human, cat, dog and mouse
references at 93% identity were removed. Reads aligned to common microbial

contaminants were also removed. Ribosomal RNA reads were also removed.

Pseudo-alignment and counting

The reads from each library were pseudo-aligned to the transcriptome of each strain
with kallisto (57). Raw counts from each library were combined into gene count matrix
for each strain. The gene count matrix was used for downstream analyses.

Transcriptomics

RNA quality filtering and differential gene expression (DGE) analysis

Count matrices for each strain were quality filtered in two steps prior to DGE: genes
containing 0 counts in all samples were removed and genes with a count < 10 in more
than 90% of samples were removed. DGE was performed in DESeq2 version 1.22.1

(58). We tested for differential gene expression by evaluating genes that changed at
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any time point (FDR < 0.01). Genes with differential expression were then evaluated for
log2 fold changes >1. Specifically, we focused on genes involved in transport (see
Transporter analysis section, below).Defining expression minimums

A cumulative abundance plot was generated for each strain by organizing locus
IDs from low transcript counts to high transcript counts and plotting the % of total
transcripts against the % of total read counts (59, 60). The 25" quantile was calculated
to obtain the transcript count value that defined a low expression minimum. That is, all
genes with transcript counts above this minimum were considered to be expressed in
the cell, regardless of longitudinal differential expression.
Transporter analysis

TransportDB 2.0 (http://www.membranetransport.org/transportDB2/index.html)

was used to annotate transporters in each strain (61). Annotated transporters were then
evaluated to determine differential expression or expression above the low expression

minimum.

KEGG pathway analysis

We extracted log: fold change (LFC) values from transcripts in each strain from
DESeq analysis. Log. fold change were obtained by comparing each stationary phase
time point to the exponential time point 1 (12.5 h). We then mapped longitudinal LFCs
onto KEGG pathways for each strain using the pathview package in R. First, K numbers
were assigned to genes for both C. violaceum and P. syringae using BlastKOALA
(version 2.2). K numbers were not assigned to B. thailandensis because KEGG

identifiers were available. KEGG identifiers for B. thailandensis and K numbers
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assigned to C. violaceum and P. syringae were used to map longitudinal LFCs onto
KEGG pathways. Pathways of interest were curated and manually edited in Inkscape
(verision 0.92.4) using a colorblind palette.

Annotation of biosynthetic gene clusters (BSGC)

BSGC were annotated using antismash bacterial version 5.0 (62). Annotated
genome files for each strain were submitted to the online server. Default parameters
included a relaxed detection strictness and extra features such as KnownClusterBlast,

SubClusterBlast, and ActiveSiteFinder.

Code availability

Computing code and workflows and datasets are available at

https://qithub.com/ShadelLab/Paper Chodkowski MonocultureExometabolites 2020. R

packages used during computing analyses included vegan (63), ggplot2 (64),
VennDiagram (65), RVAideMemoire (66), patchwork (67), DESeqg2 (58), pathview (68),

KEGGREST (69), and helper functions (70-73).

Data availability

Genomes for B. thailandensis, C. violaceum, and P. syringae are available at JGI
Genome Portal under project IDs 1133672, 1133669, and 1133674, respectively. An
improved annotated draft genome of C. violaceum is available under NCBI BioProject
number PRINA402426 (Genbank Accession ID: PKBZ00000000). Re-sequencing
efforts for B. thailandensis and P. syringae are under NCBI BioProject numbers

PRJNA402425 and PRINA402424, respectively. Metabolomics data and
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transcriptomics data are also available at JGI Genome Portal (74) under JGI Proposal

ID 502921. MZmine XML parameter files for all analyses can be viewed and

downloaded from GitHub (Dataset 7). Large data files (e.g. MZmine project files) are

available upon request. Other datasets are also available on GitHub (Datasets).
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Figure legends

Figure 1. Quantification of all features that fit criteria for released in all strains across all

polarity/ionization modes.

Figure 2. Exometabolite profiles differ by strain and time. PCoA plots for polar positive
(A), polar negative (B), nonpolar positive (C), nonpolar negative (D), and combined
polar positive + polar negative exometabolites (accounting for 72-77% of released
exometabolites per strain) for B. thailandensis (E), C. violaceum (F), and P. syringae
(G). Each point represents the exometabolite profile (relative contributions assessed by
peak area) for a particular strain at a particular time point. Features were normalized by
an internal standard (ITSD) reference feature and cube root transformed. Bray-Curtis
distance metric was used to calculate dissimilarities between exometabolite profiles.
Strain is indicated by shape (B. thailandensis (e), C. violaceum (A ), P. syringae (m))
and timepoint is indicated by a color gradient. Error bars are 1 standard deviation
around the mean axis scores of n = 2 to 4 replicates destructively sampled from the

same strain/time point condition.

Figure 3. Released exometabolites and their temporal dynamics. A heat map of all
released exometabolites is shown for A) polar positive, B) polar negative, C) nonpolar
positive, and D) nonpolar negative modes, where samples are columns are
exometabolites are in rows. Each sample is the average of independent time point

replicates (n = 2 to 4). Euclidean distance was calculated from Z-scored mass spectral
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profiles (containing peak areas). Prior to Z-scoring, features were normalized by an
internal standard (ITSD) reference feature and cube root transformed. Features were

clustered by Ward’s method.

Figure 4. Released and identified exometabolites and their temporal dynamics. A heat
map of identified exometabolites in polar positive mode is shown, where samples are
columns are exometabolites are in rows. Each sample is the average of independent
time point replicates (n = 3 or 4). Euclidean distance was calculated from Z-scored
mass spectral profiles (containing peak areas). Prior to Z-scoring, features were
normalized by an internal standard (ITSD) reference feature and cube root transformed.

Features were clustered by Ward’'s method.

Figure 5. Chemical ontologies at different MSI levels. ClassyFire was used to
categorize identified (MSI level 1 and level 2) and in silico predicted MS/MS data (MSI
level 3) at the a) class and b) direct parent levels. |dentification confidence 1,2, and 3
refers to Metabolomics Standards Initiative (MSI) identification levels 1, 2, and 3,
respectively. The top ten chemical ontologies are provided for each classification level.
Chemical ontologies for panel A: 1) Azoles, 2) Benzene and substituted derivatives, 3)
Carboxylic acids and derivatives, 4) Diazines, 5) Fatty Acyls, 6) Imidazopyrimidines, 7)
Organonitrogen compounds, 8) Organooxygen compounds, 9) Purine nucleosides, 10)
Pyridines and derivatives. Chemical ontologies for panel B: 1) Alpha amino acids, 2)

Dipeptides, 3) Hydroxybenzoic acid derivatives, 4) Hydroxypyrimidines, 5) Medium-
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chain fatty acids, 6) N-acyl-alpha amino acids, 7) N-acyl-alpha amino acids and

derivatives, 8) Peptides, 9) Purine nucleosides, 10) 6-alkylaminopurines.

Figure 6. Distinctions and overlaps between the most abundant exometabolites in each
strain. Exometabolites in bold passed criteria for released. Exometabolites in italics are

isomers and could not be resolved to determine the exact identification.

Figure 7. Temporal changes in transcriptomics reveal re-routing of metabolism towards
succinate production. Logz-fold change (LFC) values were mapped onto pathways
involved in succinate production for a) B. thailandensis, b) C. violaceum, and c) P.
syringae. LFC values are represented by rectangles alongside each reaction in the
pathway map. Each column represents the 5 stationary phase time points. Colors within
each rectangle represent LFC (green-increased transcripts, red-decreased transcripts)

compared to the exponential phase time point.
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Table captions

Table 1. Bacterial strains used in this study.

Table 2: Summary of released exometabolites for each strain. Bt is B. thailandensis, Cv

is C. violaceum, and Ps is P. syringae.

Table 3: Summary of RNA-Seq results with focus on genes annotated as transporters.
Criteria included genes that were a) above the low expression minimum (LEM), b)
genes that were differentially expressed, and c) genes with a stationary phase time
point that had a log: fold change (LFC) > 1 compared to the exponential phase time

point.
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Supplemental figure legends

Supplementary Figure S1. Counts of live (green) and dead (blue) cells throughout the
time course. Cells were obtained from 5 wells in the transwell plate for 5 technical
replicates/independent replicate at each time point. Syto9 and propidium iodide-stained

cells were counted using flow cytometry.

Supplementary Figure S2. Released and identified exometabolites and their temporal
dynamics. A heat map of identified exometabolites in polar negative mode is shown,
where samples are columns and exometabolites are in rows. Each sample is the
average of independent time point replicates (n = 3 or 4). Euclidean distance was
calculated from Z-scored mass spectral profiles (containing peak areas). Prior to Z-
scoring, features were normalized by an internal standard (ITSD) reference feature and

cube root transformed. Features were clustered by Ward’s method.

Supplementary Figure S3. Released and identified exometabolites and their temporal
dynamics. A heat map of identified exometabolites in nonpolar positive mode is shown,
where samples are columns and exometabolites are in rows. Each sample is the
average of independent time point replicates (n = 2 to 4). Euclidean distance was
calculated from Z-scored mass spectral profiles (containing peak areas). Prior to Z-
scoring, features were normalized by an internal standard (ITSD) reference feature and

cube root transformed. Features were clustered by Ward’s method.
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Supplementary Figure S4. Released and identified exometabolites and their temporal
dynamics. A heat map of identified exometabolites in nonpolar negative mode is shown,
where samples are columns and exometabolites are in rows. Each sample is the
average of independent time point replicates (n = 2 to 4). Euclidean distance was
calculated from Z-scored mass spectral profiles (containing peak areas). Prior to Z-
scoring, features were normalized by an internal standard (ITSD) reference feature and

cube root transformed. Features were clustered by Ward’s method.
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Supplemental table captions

Supplementary Table S1. Percent variation explained on the effect of strain, time, and
their interaction on exometabolite profiles. Permanova revealed strain-specific

differences in exometabolite composition (all P < 0.001).

Supplementary Table S2. Summary of Protest analyses comparing exometabolite
composition through time across independent replicates. Coordinates of the first two
PCoA axes were used to perform Protest analyses. Ranges reflect separate Protest
analyses performed for each polarity (polar/nonpolar) and ionization mode

(positive/negative).

Supplementary Table S3. Average Bray-Curtis dissimilarity between group centroids
when comparing each stationary phase time point to the initial, exponential phase time
point (12.5 h). Ranges reflect separate analyses performed for each polarity

(polar/nonpolar) and ionization mode (positive/negative).

Supplementary Table S4. Average Bray-Curtis dissimilarity between group centroids
when comparing time points in a step-wise manner. Ranges reflect separate analyses

performed for each polarity (polar/nonpolar) and ionization mode (positive/negative).
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Supplementary Table S5. Repeated measures permanova performed on
independently replicated time series within each strain. P values are listed followed by

R2 values in parenthesis.

Supplementary Table S6. Q-values from pairwise adonis tests comparing all time
points within a strain. Ranges reflect separate analyses performed for each polarity

(polar/nonpolar) and ionization mode (positive/negative).
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Table 1.

Family Genome ORFs
size (Mb)
Burkholderia thailandensis Burkholderiaceae 6.72 5,641
E264 (68)
Chromobacterium violaceum Neisseriaceae 4.75 4,371
ATCC 31532 (69)
Pseudomonas syringae pathovar Pseudomonadaceae 6.53 5,853

tomato DC3000 (70)




Table 2.

B. thailandensis C. violaceum P. syringae
Total features 5216 3083 3736
Unique features 4327 1922 2609
Features in common with Bt - 367 333
Features in common with Cv 367 - 605
Features in common with Ps 333 605 -
Features detected in all strains 189 189 189
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Strain Time Strain x Time
Polar Positive 0.578 0.061 0.685
Polar Negative 0.670 0.026 0.749
Nonpolar Positive 0.762 0.024 0.858
Nonpolar Negative 0.800 0.000 0.865




m12 R P

B. thailandensis 0.019-0.389 0.782 - 0.990 0.001—-0.040
C. violaceum 0.008 — 0.190 0.900 - 0.996 0.001-0.035
P. syringae 0.016 — 0.300 0.837 — 0.992 0.001-0.075




Time (h) B. thailandensis C. violaceum P. syringae
25 0.132-0.181 0.232-0.378 0.233-0.374
30 0.148 - 0.215 0.298 — 0.382 0.303 — 0.436
35 0.179 - 0.265 0.326 — 0.442 0.339 - 0.458
40 0.218 - 0.323 0.381 - 0.521 0.370 — 0.506
45 0.242 - 0.333 0.361 — 0.526 0.391 -0.519




Time comparisons B. thailandensis C. violaceum P. syringae
(h)
25t012.5 0.132-0.181 0.232 -0.378 0.233-0.374
30to 25 0.036 — 0.056 0.035-0.112 0.070 — 0.096
3510 30 0.041 - 0.064 0.042 -0.078 0.032 -0.058
40 to 35 0.029- 0.083 0.066 — 0.097 0.049 - 0.075
45t0 40 0.023 - 0.052 0.023 — 0.052 0.036 — 0.057




B. thailandensis C. violaceum P. syringae
Polar Positive 0.001 (0.553) 0.001 (0.644) 0.001 (0.626)
Polar Negative 0.068 (0.363) 0.001 (0.650) 0.002 (0.630)
Nonpolar Positive 0.003 (0.744) 0.002 (0.746) 0.001 (0.892)
Nonpolar Negative  0.001 (0.849) 0.001 (0.877) 0.001 (0.893)




Time comparisons B. thailandensis C. violaceum P. syringae
(h)

25t012.5 0.093-0.21 0.088 - 0.15 0.075-0.17
30to 12.5 0.093-0.21 0.088-0.13 0.075-0.17
35t012.5 0.093-0.21 0.088-0.13 0.075-0.17
40t0 12.5 0.093-0.21 0.088 - 0.15 0.075-0.17
45t012.5 0.093-0.21 0.088 -0.15 0.075-0.17
30to 25 0.75-0.89 0.38-1.0 0.15-0.79
3510 25 0.15-0.86 0.16 -0.28 0.15-0.72
40 to 25 0.098 — 0.69 0.088-0.2 0.075-0.59
45to 25 0.12-0.69 0.088-0.2 0.086 — 0.40
3510 30 0.75-0.89 0.49-0.98 0.64-1.0
40 to 30 0.15-0.75 0.13-0.45 0.15-0.79
45 to 30 0.15-0.75 0.11-0.59 0.15-0.60
40 to 35 0.38 -0.96 0.16 — 0.56 0.46 - 0.97
45 to 35 0.27 - 0.96 0.15-0.88 0.38-0.83
45 t0 40 0.90 - 0.96 0.87-1.0 0.94-1.0




Strain Time Strain x Time
Polar Positive 0.578 0.061 0.685
Polar Negative 0.670 0.026 0.749
Nonpolar Positive 0.762 0.024 0.858
Nonpolar Negative 0.800 0.000 0.865




m12 R P

B. thailandensis 0.019-0.389 0.782 - 0.990 0.001 -0.040
C. violaceum 0.008 - 0.190 0.900 - 0.996 0.001 -0.035
P. syringae 0.016 —0.300 0.837 —0.992 0.001 -0.075




Time (h) B. thailandensis C. violaceum P. syringae
25 0.132-0.181 0.232-0.378 0.233 -0.374
30 0.148 - 0.215 0.298 — 0.382 0.303 - 0.436
35 0.179 - 0.265 0.326 — 0.442 0.339 - 0.458
40 0.218 - 0.323 0.381 —0.521 0.370 — 0.506
45 0.242 - 0.333 0.361 —0.526 0.391 - 0.519




Time comparisons

(h)

B. thailandensis

C. violaceum

P. syringae

25t012.5
30to 25
35t0 30
40 to 35
45 to 40

0.132 - 0.181
0.036 - 0.056
0.041 - 0.064
0.029- 0.083
0.023 - 0.052

0.232-0.378
0.035-0.112
0.042 -0.078
0.066 — 0.097
0.023 — 0.052

0.233-0.374
0.070 - 0.096
0.032 -0.058
0.049 -0.075
0.036 — 0.057




B. thailandensis

C. violaceum

P. syringae

Polar Positive
Polar Negative
Nonpolar Positive
Nonpolar Negative

0.001 (0.553)
0.068 (0.363)
0.003 (0.744)
0.001 (0.849)

0.001 (0.644)
0.001 (0.650)
0.002 (0.746)
0.001 (0.877)

0.001 (0.626)
0.002 (0.630)
0.001 (0.892)
0.001 (0.893)




Time comparisons

(h)

B. thailandensis

C. violaceum

P. syringae

25t012.5
30to 12.5
35t012.5
40t0 12.5
45t012.5
30to 25
35t0 25
40 to 25
45 to 25
35t0 30
40 to 30
45 to 30
40 to 35
45 t0 35
45 to 40

0.093 -0.21
0.093 - 0.21
0.093 - 0.21
0.093 -0.21
0.093 - 0.21
0.75-0.89
0.15-0.86
0.098 - 0.69
0.12-0.69
0.75-0.89
0.15-0.75
0.15-0.75
0.38 - 0.96
0.27 — 0.96
0.90 — 0.96

0.088 -0.15
0.088 -0.13
0.088 -0.13
0.088 -0.15
0.088 -0.15
0.38-1.0
0.16 - 0.28
0.088 -0.2
0.088 -0.2
0.49 -0.98
0.13-0.45
0.11-0.59
0.16 - 0.56
0.15-0.88
0.87-1.0

0.075-0.17
0.075-0.17
0.075-0.17
0.075-0.17
0.075-0.17
0.15-0.79
0.15-0.72
0.075-0.59
0.086 - 0.40
0.64-1.0
0.15-0.79
0.15-0.60
0.46 - 0.97
0.38 -0.83
0.94-1.0




Table 3.

B. thailandensis

C. violaceum

P. syringae

Genes
involved in
transport

669

465

689

4472 | 1032 | 208b°

3547 | 1692 | 53abe

4614

13620 | 12abe

Genes
annotated as
transporters
related to
dipeptide/C4-
dicarboxylate
transport

26

22

43

172 4a,b Oa,b,c

29a 7ab 1aﬁp

2079

1025

Oaac

Genes
annotated as
transporters
related to
dipeptide/C4-
dicarboxylate
transport
(transcripts
below LEM)

23

aAbove LEM

bDifferentially expressed (Q-value < 0.01)

‘LFC >1
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