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Abstract

The spread of an enteric pathogen in the human gut depends on many interacting factors,
including pathogen exposure, diet, host gut environment, and host microbiota, but how these
factors jointly influence infection outcomes remains poorly characterized. Here, we develop a
model of host-mediated resource-competition between mutualistic and pathogenic taxa in the gut
that aims to explain why similar hosts, exposed to the same pathogen, can have such different
infection outcomes. Our model successfully reproduces several empirically observed phenomena
related to transitions between healthy and infected states, including (1) the nonlinear relationship
between pathogen inoculum size and infection persistence, (2) the elevated risk of chronic
infection during or after treatment with broad-spectrum antibiotics, (3) the resolution of gut
dysbiosis with fecal microbiota transplants, and (4) the potential protection from infection
conferred by probiotics. We then use the model to explore how host-mediated interventions,
namely shifts in the supply rates of electron donors (e.g., dietary fiber) and respiratory electron
acceptors (e.g., oxygen), can potentially be used to direct gut community assembly. Our study
demonstrates how resource competition and ecological feedbacks between the host and the gut
microbiota can be critical determinants of human health outcomes. We identify several testable

model predictions ready for experimental validation.



Introduction
The human large intestine, hereafter referred to as the gut, harbors hundreds of microbial taxa,
some of which interact mutualistically with the host, while others, such as pathogens, thrive at
the host’s expense. The relative success of beneficial and harmful taxa in the gut depends on
their relative ability to compete for shared resources, which is modulated by gut environmental
parameters, most notably the concentration of strong electron acceptors such as oxygen (Rivera-
Chavez et al. 2017). Disturbances (e.g., antibiotics; Looft and Allen 2012), immigration events
(e.g., fecal transplants; Kang et al. 2019), and pathogen exposure (Black et al. 1988; Beatty et al.
2014) can all lead to swift changes in gut community composition (e.g., transitions from healthy
to infected states) that may persist indefinitely (Beatty et al. 2014). While such community shifts
in the gut are well documented, the mechanisms behind them remain poorly understood.
Progress in understanding community assembly of the gut microbiota has been limited in
part because host-microbial interactions are multifactorial and difficult to isolate, and in part
because experimentation in anaerobic guts is logistically challenging, especially in humans. One
way around these obstacles is to use mathematical modeling to explore how infection dynamics
are influenced by ecological interactions among the gut microbiota, pathogens and the gut
environment. An understanding of how key ecological parameters of the gut could be
manipulated to achieve particular community assembly outcomes may lead to novel treatments
that are complementary or even superior to traditional medical approaches. More broadly, a more
mechanistic framework for the relationship between infection and host-associated microbial
community assembly would add to our general understanding of the ecology and evolution of

microbial symbioses.



Enteric infections are underappreciated examples of species invasions, in which a rare
taxon undergoes rapid population growth and quickly becomes a dominant member of the local
community. As such, efforts to understand and treat enteric infections are opportunities to draw
upon the concepts and tools of invasion ecology and restoration. Invasiveness in well-studied
macrobiological systems is affected by several factors including the propagule pressure of the
invading species (Wilson et al. 2009), the local disturbance regime (Hierro et al. 2006; Liu et al.
2012) and local community structure (Miller et al. 2002; Von Holle and Simberloff 2004). In one
grassland, the establishment of an invasive species altered the local fire regime, necessitating a
qualitatively different management strategy (Brooks et al. 2004; Suding et al. 2004). Changes in
the abiotic conditions or resource supply rates in a community can even affect the range of
possible community assembly outcomes, transforming communities from uninvasible to
invasible, or from monostable to bistable (Meijer et al. 1994; Scheffer et al. 2001). It remains to
be seen which principles from invasion ecology and restoration ecology will extend to enteric
infections and other community imbalances in the human gut.

While the community assembly rules of the gut remain murky, the biochemical processes
underlying gut homeostasis are relatively well understood. The gut communities of healthy
individuals are generally dominated by two phyla, the gram-positive Firmicutes and the gram-
negative Bacteroidetes (The Human Microbiome Consortium 2012). Both phyla contain
obligately anaerobic taxa that form long-term relationships with their mammalian hosts and are
often transmitted vertically from parent to offspring, reflecting their close evolutionary
associations (Peeters et al. 2016). These anaerobic groups proliferate in the gut soon after birth
(Guittar et al. 2019) due in part to positive feedbacks with the host environment that deplete the

concentration of strong electron acceptors that can be used in respiration, such as oxygen, to



favor their continued dominance. For example, many taxa in Clostridia, a class of Firmicutes,
catabolize dietary fiber and release butyrate (Rivera-Chévez et al. 2016); host epithelial cells
then use this butyrate in aerobic respiration, consuming the oxygen that would otherwise diffuse
from the bloodstream into the lumen, thereby reinforcing the hypoxic conditions preferred by
Clostridia (Rivera-Chavez et al. 2016). Likewise, many taxa in Bacteroidetes encode cytochrome
bd oxidase, which reduces ambient oxygen levels (Wexler and Goodman 2017) and thereby
reinforces the hypoxic conditions preferred by Bacteroidetes.

Enteric pathogens, meanwhile, initiate countervailing positive feedbacks in the gut that
increase the concentration of respiratory electron acceptors (i.e., those used in aerobic or
anaerobic respiration, rather than fermentation), subverting gut homeostasis and promoting their
rapid expansion. For example, pathogens are known to trigger the host to release respiratory
electron acceptors (e.g., oxygen, nitrate, sulfur or nitrogen oxides) into the gut environment,
which are then used by the pathogens to gain an energetic advantage while simultaneously
imposing oxidative stress on anaerobic gut mutualists (Abt et al. 2016; Lopez et al. 2016; Rivera-
Chavez et al. 2016; Brooks and Mansfield 2017; Sorbara and Pamer 2019). Bacterial
gastroenteritis, a leading cause of child mortality and morbidity worldwide (Pires et al. 2015),
occurs when an enteric pathogen outcompetes resident gut mutualists for resources and the gut
system shifts from healthy to a diseased, pathogen-dominated state. An expansion of pathogens
is one manifestation of gut “dysbiosis,” a general term that describes a disruption to the structure
of the host microbial community that is associated with human health problems (Petersen and
Round 2014).

Previous modeling efforts to understand and predict the arrival and proliferation of

enteric pathogens in human hosts have used one of two approaches. The first, found primarily in
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the microbiological literature, is a detailed and highly mechanistic approach that draws on
laboratory experimental data to carefully reveal the cellular and biochemical steps enabling
pathogen transmission and rapid growth within a host. Such microbiological models (Fig. 1A)
are invaluable for understanding virulence factors and the granular mechanics of infection, but
poorly suited for predicting system dynamics over time or how infections might play out
differently among individuals due to historical contingencies. The second approach, found
primarily in the community ecology literature, is more phenomenological and uses classical
mathematical models like Lotka-Volterra competition (Stein et al. 2013; Fisher and Mehta 2014;
McGeachie et al. 2016) or network analysis (Wang et al. 2019) to study infection dynamics in
highly simplified ecological communities. Such competition models (Fig. 1C) capture the
dynamical nature of a system, but are too abstract to be of applied use in predicting and
preventing infections in a given host, as they include no mechanistic basis for species
interactions and do not account for how the gut environment modulates competitive outcomes
(O’Dwyer 2018).

Here we develop a modeling framework that strikes a balance between these two
approaches (Fig. 1B), with enough microbiological detail to meaningfully inform applied work
on the treatment and prevention of bacterial gastroenteritis, but not so much detail that it cannot
be modelled dynamically and understood by a general audience. We use our model to ask how
enteric infection outcomes can differ so strikingly even when hosts are similar. One possible
answer to this question is that the gut system has alternative stable states, such that minor
differences in the history of the system can cause hosts to diverge towards healthy or infected
states (Beisner et al. 2003; Scheffer and Carpenter 2003). If this is the case, it leads immediately

to another question: what ecological and physiological processes would underlie a system with
7



alternative stable states, and what triggers would induce switches between them? With this line
of inquiry in mind, we ask the following specific questions: (1) Under what assumptions do
alternative stable states arise in the gut, such that ecological dynamics can drive similar hosts to
experience divergent infection outcomes? (2) Under what circumstances do common
perturbations to the gut microbiota like pathogen ingestion, antibiotic treatment, fecal
transplants, and probiotic supplements lead to shifts between healthy and pathogen-infected
states? (3) How do shifts in resource supply rates, such as changes in oxygen availability or
dietary fiber, affect the likelihood of infection and/or recovery, and what implications does this

have for preventing and treating enteric infections?
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Figure 1. A continuum of modeling approaches. Gut community modeling approaches range from A) a
microbiological perspective that focuses on specific genes, regulatory networks, and biochemical
reactions; B) a resource-competition-based model — our approach — that focuses on population dynamics,
environmental state variables (e.g., resource concentrations), and their interactions, using generalized
ecological mechanisms instead of physiological mechanisms; and C) a Lotka-Volterra model of two-
species competition where environmental parameters are implicit and do not influence competitive
dynamics. A is specific to Citrobacter rodentium (Rivera-Chavez et al. 2016, 2017), while B and C are
general to many enteric pathogens. Consistent with model variables, M and P are the abundances of
anaerobic mutualist and pathogens, C is shared carbon substrate, and O is pathogen-preferred electron

acceptors.



Model

Our model is rooted in resource competition theory (Tilman 1982; Smith 1993) and
contemporary niche theory (Chase and Leibold 2003) and explicitly incorporates the roles of
resource supply and environmental feedbacks in gut community assembly. Niche theory is based
on the idea that interactions between organisms are shaped by how they both respond to and
affect their biochemical environment (Chase and Leibold 2003). Our use of the term “resource”
includes both electron donors (e.g., dietary fiber) and respiratory electron acceptors (e.g.,
oxygen). We model the coupled dynamics of the gut community and its chemical environment
(i.e., local resource concentrations) using ordinary differential equations, tracking changes
through time in the abundance of anaerobic mutualists M and pathogens P, and concentrations of
shared carbon substrate C and pathogen-preferred electron acceptors 0. To do so, we make three

key simplifying assumptions, justified below.

Biological justifications for key model assumptions

Assumption 1: Pathogen success is determined by its ability to compete for carbon with a broad
group of anaerobic mutualists. Although the carbon substrates that reach the large intestine
comprise various forms of indigestible fiber (Sawicki et al. 2017), which are generally unusable
by enteric pathogens, these diverse fibers are broken down by anaerobic mutualists into
monosaccharides (Wexler and Goodman 2017), which are then usable by pathogens. Rapid cell
turnover due to viral lysis of anaerobic mutualists, as well as pathogen interception of
intermediate metabolic products (i.e., cheating; Allison et al. 2014, Welch et al. 2017), together

ensure that a substantive fraction of the fiber-derived carbon pool ultimately becomes available
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to pathogens in more labile forms (Weitz and Wilhelm 2012). While there is a broad range of
enteric pathogens with different life history traits (e.g., pathogenic strains in Salmonella,
Escherichia coli, Shigella, Campylobacter, etc.), their success generally hinges on their ability t
compete for carbon substrate with a broad group of anaerobic mutualists (e.g., Firmicutes and
Bacteroidetes). Hence, for modeling purposes, their populations are combined and designated
“mutualists” and “pathogens.”

Assumption 2: Competition for carbon between anaerobic mutualists and pathogens is
mediated by the availability of host-derived electron acceptors. Under hypoxic conditions,
anaerobic mutualists ferment carbon substrates for energy, outcompeting pathogens (Baumler
and Sperandio 2016). However, unlike most anaerobic mutualists, which lack the ability to
respire, many enteric pathogens can use oxygen as a terminal electron acceptor for aerobic
respiration, and/or use nitrate, S-oxides, and N-oxides as terminal electron acceptors for
anaerobic respiration (Bdumler and Sperandio 2016; Lopez et al. 2016; Rivera-Chavez et al.
2016; Wexler and Goodman 2017). Because respiration is more energetically efficient than
fermentation, pathogens gain a competitive edge over anaerobic mutualists in the presence of
these potent electron acceptors.

Assumption 3: Anaerobic mutualists and pathogens modify the gut environment to favor
their own growth while hampering the growth of the other. As described above, anaerobic
mutualists have direct and indirect methods of promoting hypoxia in the gut, favoring their
competitive dominance. Conversely, many enteric pathogens use virulence factors that result in
the release of host-derived respiratory electron acceptors that enable swift population growth
while exposing anaerobic mutualists to oxidative stress (Lopez et al. 2016; Rivera-Chavez et al.

2016, 2017; Zeng et al. 2017), thus favoring their competitive dominance. These environment-

(6}
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modifying mechanisms work as opposing positive feedbacks and each constitute forms of “niche

construction” (Odling-Smee et al. 1996; McNally and Brown 2015; Goldford et al. 2018).

Model Description

The mutualist M and pathogen P grow following classic population dynamics:

aM
ar = [gu(C) — BuO — my M (la)

dP
@ [9p(C,0) —mp]P (Ib)

where g and gp are the substrate-dependent growth rates, m,, and mp the background
mortality rates, and the term [0 models the extra mortality of the mutualist as a consequence of
oxidative stress at a rate [5,;. We model substrate-dependent growth of the two microbial
populations as being controlled by classic microbial uptake kinetics and substrate limitation

(Tilman 1982; Saito et al. 2008):
gm(€) = min(uy, acyC) (2a)
gP(C; 0) = min(,uPl Acp C' aOPO) (Zb)

where puy, and pp are the maximal growth rates, acy and a.p the growth affinities for carbon
substrate of the mutualist and pathogen bacteria, respectively, and a,p the growth affinity for the
respiratory electron acceptors O of the pathogen. The minimum function returns the metabolic
rate — either substrate uptake or maximal growth rates — that most limits population growth, a
modeling assumption commonly referred to as Liebig’s Law of the minimum (Tilman 1982,

Chase 2003, Saito 2008). Because it contains both the substrate-limited uptake rate and maximal
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growth rates, the minimum function effectively behaves like an extension of the classic Monod
function to multiple limiting resources (refer to Supplementary Information).

In turn, population growth affects C and O concentrations:

dac
- ac(Cin — C) = qem " gu(OOM — qcp - gp(C, 0)P (32)
do K 0
= ap(0in — 0) — qop - gp(C,0)P + YorZor P — Yon M (3b)

dt Kop + O Kom + O

Cin 1s the concentration of carbon substrate entering the gut through diet and mucus secretions
(Li et al. 2015) at rate a.. Similarly, O, is the concentration of respiratory electron acceptors
entering the gut with diffusion rate a,. Conversion coefficients gy, qcp and qop relate bacterial
growth and nutrient uptake according to mass balance. Mutualists deplete O at rate Y,y with a
saturating efficiency given by the half-saturation constant k. The pathogen induces gut
inflammation, triggering the host to release the respiratory electron acceptors (Zeng et al. 2017)
at a maximal rate y,p, with decreasing efficiency as respiratory electron acceptor concentrations
approach K p. Different pathogens have different mechanisms for triggering the release of
different respiratory electron acceptors, but they all depend on the same fundamental positive
feedback dynamic, so can be treated generally. Refer to Supplementary Information for a more
detailed justification of our mathematical approach to modeling the host release of respiratory
electron acceptors, including an example of how to mechanistically derive Y, and Koy in the
butyrate-producing Clostridia pathogen system. Importantly, we constrained our model
parameter estimates to fall within realistic ranges based on published literature; for a full list of

model parameters and their values refer to Table S1.

13



Model analysis

We used two complementary approaches to study and represent the dynamics and equilibrium
states of the gut ecosystem described by eqns. (1-3), and their response to shifts in resource
supplies by the host. In the first, we assume that the dynamics of the carbon substrate C and
terminal electron acceptors O in the gut happen faster than the population dynamics of the
mutualist and pathogen, a mathematical approach called Quasi-Steady State Approximation
(QSSA). When applied to eq. (3), QSSA reduces the model to a simplified competition system in
which its dynamics and equilibria can be represented and studied in the mutualist-pathogen
abundance phase plane (Fig. 2; refer to Supplementary Information for a more detailed
explanation of QSSA). The QSSA-reduced model is similar to Lotka-Volterra dynamics because
it focuses on the dynamics of the two competing species while abstracting the gut environment.
It differs from Lotka-Volterra in that it accounts for the changing states of the gut environment,
1.e., the concentrations of gut resources. The QSSA approach produces non-linear interactions
between the mutualists and pathogens that vary depending on the environmental context.

In our second, more graphical approach, we present equilibria between the bacterial
community and its physiochemical environment under a range of different resource supply rates
using tools and concepts from contemporary niche theory (Chase and Leibold 2003; Koffel et al.
2016; Fig. 3). Within this graphical framework, we delimit the biochemical niches of mutualists
and pathogens as regions of potential persistence (i.e., the red and blue shaded areas in Fig. 3).
These niches delineate the biochemical conditions under which each species can be found.
Furthermore, the baseline rates of resource supply (i.e., points a-e in Fig. 3), as determined by

host diet and host physiology, are graphically linked using solid lines to their corresponding set
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of realized gut environmental conditions at equilibrium (i.e., the filled red and blue circles in Fig.
3), after accounting for feedback with the gut microbiota. For a more rigorous exploration of this
graphical modeling approach and the community-level consequences of positive feedbacks, refer
to the Supplementary Information and Koffel et al. (in press). Mathematica 9.0 software was

used for all numerical calculations and to generate figures.

Results

Our model, based on ecological feedbacks between the gut microbiota and the host gut
environment, reproduces many observed phenomena related to gut homeostasis and enteric
infections. In particular, a core outcome of the model is a dynamical system with two alternative
stable states in which similar individuals can exhibit starkly divergent community assembly
outcomes. These two outcomes — a mutualist-dominated healthy state and a pathogen-dominated
gastroenteritic or dysbiotic state — can be visualized using a mutualist-pathogen abundance phase
plane (Fig. 2). In this phase plane, both mutualist-dominated and pathogen-dominated
community states are resistant to small perturbations because system dynamics create basins of
attraction that draw each community back towards its original equilibrium state. When
perturbations are sufficiently large, the system will traverse a critical boundary (i.e., a separatrix,
shown as a grey line in Fig. 2) into an alternative basin of attraction.

A gut system with alternative stable states provides a mechanistic explanation for how
common perturbations, such as the four described below, can lead to transitions between healthy
and pathogen-infected states. First, imagine a set of humans with similar gut communities
exposed to different quantities of a foodborne bacterium. In each individual, the influx of

pathogenic bacteria would result in an increase in their relative abundance (i.e., an upward shift
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in the phase plane of Fig. 2A), but only the individuals exposed to a sufficiently large inoculum
would become infected (i.e., those in which the community was pushed across the separatrix and
into a new, pathogen-dominant basin of attraction). Such a scenario would explain why the rates
of host infection increase with pathogen inoculum size (Black et al. 1988). An alternative
scenario with the same outcome would occur if individuals were exposed to the same influx of
pathogens but differed in the sizes of their mutualist populations. The size of the mutualist
population modulates community resistance to infection by increasing the distance between
equilibrium and the separatrix (Fig. 2A; see insets b and e in Fig. S7).

Second, a gut system with alternative stable states can explain why broad-spectrum
antibiotics sometimes have the paradoxical effect of increasing the risk of infection (Faber et al.
2016; Rivera-Chavez et al. 2016). Broad-spectrum antibiotics are prescribed by physicians to
eliminate an offending pathogen (not necessarily an enteric pathogen) and have the unwanted
side effect of decimating resident mutualist populations, drawing the community closer to the
origin of the mutualist-pathogen abundance phase plane (Fig. 2B). Increased proximity to the
origin makes the system more likely to traverse the separatrix into the infected basin of attraction
(Scheffer et al. 2012; Ng et al. 2014; Faber et al. 2016). That is, a regime shift into a pathogenic
state is now more likely to be triggered by exposure to a new pathogen, the presence of an
antibiotic-resistant pathogen, a minor disturbance, or potentially even demographic stochasticity.

Third, a gut system with alternative stable states can explain how fecal microbiota
transplants can swiftly rescue chronically dysbiotic systems (Kang et al. 2019), by first reducing
pathogen population density with a pre-procedural colonic purgation, and then increasing
mutualist population density with a large immigration event from a healthy stool donor, placing

the gut community into a new, healthy regime (Fig. 2C). Fourth and finally, a gut system with
16



alternative stable states provides a mechanistic explanation for why probiotics may decrease the
risk of and/or promote recovery from gastroenteritis (McFarland 2007; Ritchie and Romanuk
2012); increasing the mutualist population density through mass effects (Leibold et al. 2004)
increases the number of pathogen immigrants needed to cause an infection in a healthy

individual, and makes it easier to clear the pathogen in an uninfected individual (Fig. 2D).
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Figure 2. Disturbances and immigrations underlie regime shifts. In a gut community with bistable
dynamics, immigration events or disturbances can qualitatively alter community assembly outcomes,
moving the system to a different state (e.g., between healthy and gastroenteritis). A) A pathogen
immigration event must be sufficiently large to lead to an infected state. B) Antibiotics decimate mutualist

populations, increasing the proximity to the boundary between basins of attraction and thus sensitivity to
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infection. C) Fecal microbiota transplants show promise in resolving chronic infection by reducing
pathogen abundance through a pre-procedural colonic purgation, and then increasing mutualist
populations with a large immigration from a stool of a healthy donor. D) Probiotics promote recovery
and/or increase resistance to infection by increasing mutualist population density through mass effects.
Note that the bistable dynamics displayed here are only one of three possible dynamical outcomes that
depend on resource supply rates — in this case, the supply rates (C:35; O:1.375) are similar to those of d in

Fig. 3A.

Not only does our model detail how sudden shifts in the abundances of pathogens or
mutualists can trigger regime shifts under fixed environmental conditions (Fig. 2), but it also
provides an opportunity to explore how changes in the underlying parameters of the gut
environment can alter the behavior of the system. Changes in resource supply rates can affect
both quantitative behavior (e.g., a change in the resistance to a regime shift) and qualitative
behavior (e.g., a conversion of a bistable system to a monostable one). Fig. 3 provides a visual
summary of how changes in resource supply affect the number of possible community assembly
outcomes. For example, in the white region of Fig. 3A, there are no non-trivial stable state
outcomes; in the red region, the pathogen always dominates (i.e., monostability); in the blue
region, the mutualist always dominates; and in the area with overlapping red and blue, either the
pathogen or the mutualist can dominate depending on the history of the system (i.e., bistability).
If the supply rate of dietary fiber is increased, the size of the shared carbon pool increases and
the system becomes more resistant to change because it is now further from a tipping point (e.g.,
moving from b to ¢ in Fig. 3A, B). This is easily visualized using a bifurcation diagram, wherein
moving from b to ¢ increases the environmental distance between the two alternative stable
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states (Fig. 3B), also pulling the two equilibria further apart in their associated phase planes (Fig.
S7) and making the transition from one state to the other less likely. In a healthy individual, such
a shift would lower the risk of infection by supporting larger mutualist populations and depleting
oxygen concentrations, thereby depriving pathogens of respiratory electron acceptors.

Even when the supply rate of carbon substrate is held constant, variation in the supply
rate of respiratory electron acceptors, such as oxygen, can qualitatively alter gut community
dynamics in a similar fashion (Fig. 3C, D). For example, an increase in the supply rate of oxygen
(e.g., a shift from b to d in Fig. 3C, D and S7) increases susceptibility to infection in a healthy
individual, and increases resistance to recovery in an infected individual. Our model suggests
that the supply rate of respiratory electron acceptors can — at least in theory — be so high that
obligately anaerobic mutualists cannot invade an infected gut due to oxidative stress, and so low
that pathogens cannot invade a healthy gut due to competitive inferiority in hypoxic conditions (e

in Fig. 3C and D).

Discussion

Returning to our central motivating question, our model provides a mechanistic explanation for
how similar individuals can differ dramatically in their responses to pathogen exposures and
medical treatments. Individuals that differ in their densities of resident gut mutualists and/or
pathogens — potentially due to differences in dietary fiber intake, oxygen diffusion from the
bloodstream, and/or epithelial mucin production (Hansson 2012) — will have different tipping
points or system equilibria, and thus will differ in their resistance to shifting into alternative
stable states. Even small differences in the numbers of arriving pathogens or mutualists (e.g.,

after exposure to an infected food source, or a fecal microbiota transplant), or in the ecological
20



parameters of the gut system, can lead to highly divergent responses if some gut communities are
pushed over tipping points into alternative basins of attraction while others are not. It is
important to note that our model seeks to explain why individuals differ in their response to
ecological events like immigrations, disturbances, or shifts in resource supply rates; we do not
seek to understand why individuals differ in their rates of autonomous recovery from
gastroenteritis, which are likely governed by slower-acting immunological mechanisms that
defend the gut system from infection through more targeted means, e.g., through the use of

antimicrobial peptides and secretory immunoglobulin A (Muniz et al. 2012).
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Figure 3. Resource supply rates shape community assembly. In the gut, pathogen-preferred respiratory
electron acceptors O and carbon substrate C enter the gut at baseline supply rates, which can be
subsequently altered through host physiological mechanisms and/or diet. Each supply point leads to a
community with different characteristics and different underlying dynamics, and its corresponding phase
plane. For example, Fig. 2 is associated with a supply point qualitatively similar to supply point d (see
Fig. S7 for the phase planes corresponding to supply points a — e). The red areas in panels A and C
delineate the combinations of O and C that allow the pathogen to persist, and the blue areas delineate
where mutualists can persist. The areas with overlapping blue and red are bistable regions, i.e., those in
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which either mutualists or pathogens dominate, depending on the history of the system. Red and blue
arrows are the impact vectors on O and C exerted by pathogens and mutualists, respectively. O and C
are drawn towards the specific equilibria that are shown as filled circles on the Zero Net Growth Isoclines
(solid lines); these equilibria are also shown in panels B and D. Note that for many given values on the x-
axis, there can be two equilibria, with either pathogen or mutualist dominance (i.e., alternative stable
states). (A, B) An increase in dietary fiber (e.g., from b to ¢) increases the stability of both healthy and
pathogenic equilibria by shifting the oxygen concentration of the gut to be further from the preferred
oxygen concentration of its competitor, and a large decrease in fiber (e.g., from b to a) can eliminate the
pathogen altogether. The y-axis reflects the percent composition of the gut environment that comprises
respiratory electron acceptors; the x-axis reflects the percent composition of the gut environment that
comprises the shared pool of carbon substrate. (C, D) A decrease in the supply of respiratory electron
acceptors such as oxygen (e.g., from d to b) can reinforce stability in healthy systems, or, more

dramatically (e.g., from b to e), eliminate the pathogen entirely.

Our results show how resource manipulation offers a distinct and possibly
complementary approach to preventing and treating enteric infections, in concert with traditional
approaches that directly attack the pathogen (Smith 1993). An increase in dietary fiber, for
example, increases the stability of both healthy and pathogenic equilibria by shifting the oxygen
concentration of the gut to be further from the preferred oxygen concentration of its competitor
(b to ¢ in Fig. 3A, B). This prediction is supported by experiments showing dietary fiber to
benefit healthy mice but exacerbate colitis in mice with enteric pathogen infections (Miles et al.
2017), demonstrating the context-dependent effects of fiber addition on gut function. Meanwhile,
a decrease in fiber would decrease the stability of both healthy and pathogenic equilibria.

Corroborating this theoretical prediction, healthy mice deprived of dietary fiber proved to be
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more susceptible to pathogen colonization and subsequent epithelial tissue damage (Desai et al.
2016). Counterintuitively, our model also predicts that an infected person could reduce their
resistance to recovery by decreasing their dietary fiber (e.g., ¢ to b in Fig. 3A, B), and even more
intriguingly, that a very large decrease in fiber could eliminate the possibility of infection
altogether (b to a in Fig. 3A, B).

Such predictions, along with the assumptions of our model, warrant further experimental
validation. In particular, one important experiment could be to expose a cohort of healthy mice to
a low but steady immigration rate of a foodborne pathogen, and then vary dietary fiber; if the
system is bistable, the tipping point of runaway infection should increase monotonically with
fiber intake. Conversely, pathogen-infected mice could be provided a range of dietary fiber; if
fiber derivatives are indeed used by the pathogen, then the duration and/or severity of infection
should increase monotonically with fiber intake.

Although the supply of respiratory electron acceptors like oxygen in the gut is less easily
manipulated than fiber intake, there are still some important considerations for human health.
Patients with ileostomies (i.e., feeding tubes inserted into their small intestines), for example, are
one instance in which oxygen exposure can be directly controlled and observed. In one study,
Hartman et al. (Hartman et al. 2009) observed that the gut communities of patients with
ileostomies exhibited persistent shifts from obligate anaerobes to facultative anaerobes, until the
ileostomies were removed and the communities returned to being dominated by obligate
anaerobes. Such observational studies underscore the medical relevance of basic niche theory
and illustrate how changes in the supply rates of resources lead to dramatically different gut
community assembly outcomes. Intriguingly, the mammalian body appears to leverage these

same ecological principles to defend itself against enteric infection. For example, shortly after a
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pathogen is detected in the gastrointestinal tract, the host deploys a localized burst of neutrophils
which temporarily lowers the concentration of oxygen through NADPH oxidase activity
(Campbell et al. 2014), preventing pathogens from using oxygen to gain a competitive advantage
and reducing the risk of transitioning to an infected state (Fig. 3A, B). Over longer time scales,
mice have been shown to directly reduce oxygen diffusion rates into the lumen through unknown
physiological mechanisms, possibly to promote colonization of benign anaerobic mutualists
during gut primary succession (Friedman et al. 2018). Indeed, healthy individuals evidently may
tolerate small populations of facultative anaerobes (e.g., some taxa in Enterobacteriaceae)
because they consume oxygen released after community disturbances, thus impeding pathogen
expansion and/or expediting the recovery of gut mutualists populations (Palleja et al. 2018;
Litvak et al. 2019).

In this study we show how ecological theory can be applied to better understand the
drivers of infection and dysbiosis in the human gut. Niche theory, in particular, offers a
productive framework to think about how microbial fundamental niches, i.e., the physiochemical
conditions required by each microbial species to thrive, combine with the abilities of microbes to
modify these conditions to their liking through niche construction (Odling-Smee et al. 1996;
McNally and Brown 2015; Goldford et al. 2018). In addition to modifying the concentration of
respiratory electron acceptors such as oxygen, microbes are known to manipulate other aspects
of their environment to affect their fitness relative to their competitors. For example, some
microbes can elicit an immune response against their competitors, similar to how plants draw
herbivores to their competitors, a phenomenon known as apparent competition (Holt 1977).
Alternatively, some microbes produce allelopathic compounds, such as narrow-spectrum

antibiotics, that directly attack other community members (Garcia-Gutierrez et al. 2019). In the
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gut, the ability of key microbial populations like Clostridia to enhance their growth while
suppressing the growth of their competitor contributes to the overall strength of homeostasis.
Ecological models like ours offer the opportunity to identify the mechanisms driving community
assembly as well as the resulting physiochemical state of the gut, simultaneously elucidating gut
ecological functioning and its consequences for the host (Smith and Holt 1996).

Our model comes with limitations that could be addressed in future studies. First, it omits
biochemical details involved in substrate usage differences among taxa; explicit consideration of
additional niche differentiation among gut microbial taxa could shed light on microbial
community assembly and community response to infection (Levy and Borenstein 2013; Goldford
et al. 2018; Dubinkina et al. 2019). To this end, future work could consider more than two
functional groups of microbial taxa, e.g., by subdividing facultative anaerobes into benign taxa
and pathogenic taxa. Second, we considered only two resources (respiratory electron acceptors
and shared carbon substrate), even though other environmental parameters (e.g., pH, toxins, viral
dynamics, other electron acceptors) may significantly affect community dynamics. Third, spatial
structure and environmental heterogeneity could be considered; the gut has a radial gradient in
oxygen from the epithelium to the center of the lumen (Albenberg et al. 2014), and longitudinal
gradients in carbon substrate availability and quality along the digestive tract (Donaldson et al.
2015). Future modeling work could explore how these gradients may affect system-wide
competitive dynamics between mutualists and pathogens, and their consequences for shifts
between alternative stable states.

The ecological perspective of bacterial gastroenteritis developed here provides a simple
yet robust set of explanations for many empirical observations related to enteric infection and

recovery, and advocates for an increased focus on managing resource availability in the gut. Our
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ecological model further emphasizes the risks of broad-spectrum antibiotics (Faber et al. 2016;
Rivera-Chévez et al. 2016), and how they paradoxically increase host vulnerability to enteric
infection by placing the community closer to a tipping point. Finally, our framework constitutes
an ecologically informed and mathematically rigorous starting point for developing guidelines
for the prevention and treatment of a range of enteric pathogens, including rare and emergent

pathogens with mechanisms of infection and transmission not yet fully understood.
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