

ScienceDirect

Dynamical spectroscopy and microscopy of proteins in cells

Martin Gruebele¹ and Gary J Pielak²

With a strong understanding of how proteins fold in hand, it is now possible to ask how in-cell environments modulate their folding, binding and function. Studies accessing fast (ns to s) incell dynamics have accelerated over the past few years through a combination of in-cell NMR spectroscopy and time-resolved fluorescence microscopies. Here, we discuss this recent work and the emerging picture of protein surfaces as not just hydrophilic coats interfacing the solvent to the protein's core and functional regions, but as critical components in cells controlling protein mobility, function and communication with post-translational modifications.

Addresses

- ¹ Department of Chemistry, Department of Physics, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- ² Departments of Chemistry, Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA

Corresponding authors:

Gruebele, Martin (mgruebel@illinois.edu), Pielak, Gary J (gary_pielak@unc.edu)

Current Opinion in Structural Biology 2021, 70:1-7

This review comes from a themed issue on **Biophysical methods** Edited by **Jordan Chill** and **Marius Clore**

https://doi.org/10.1016/j.sbi.2021.02.001

0959-440X/© 2021 Elsevier Ltd. All rights reserved.

Introduction

During the past century, research in biochemistry, molecular biology and biophysics has shown that cells are highly hierarchical, from the large organelles to individual macromolecules, metabolites and inorganic ions [1]. It is not just a structural hierarchy, but a dynamical one as well, with slow phenomena such as cell division emerging from fast phenomena such as transcriptional regulation. Dynamical protein interactions in the cell play critical roles, and the weakest and most transient of these functional essential interactions have been labeled 'quinary structure' [2].

Multiple techniques have been applied to in-cell dynamics to study how proteins transiently interact or avoid

undesirable interactions in crowded environments [3], such as co-translational folding studies [4], in-cell NMR of proteins mis-matched with their cytoplasm [5], or temperature and volume jumps to control complex dissociation via heat or osmotic pressure [6]. We focus on in-cell NMR, in-cell dynamic microscopy and some of the conclusions about how proteins co-evolve to find or avoid one another in the cellular milieu.

In-cell nuclear magnetic resonance spectroscopy goes back nearly 50 years [7]. An early history [8], and two books covering efforts to 2019 are available [9,10]. Apropos this review, one of the first efforts focused on the viscosity in erythrocytes [7]. ¹⁵N-enrichment of proteins overexpressed in *E. coli* cells brought the technique to the fore in the early 2000s [11]. It was soon noticed that the cellular interior attenuates rotational motion compared to buffer [12]. ¹⁹F-relaxation studies showed that the attenuation arises from more than just increased viscosity — weak attractive interactions are invoked [13] — but until recently [14**] there was no model.

In-cell measurements of protein folding by microscopy originated in the early 2000s [15], and soon reached a short enough time scale to resolve kinetics [16]. Protein-binding dynamic microscopy followed [17], and current methods can compare protein dynamics among individual cells of different tissues *in vivo* [18°]. Fluorescence imaging in particular can quantify protein properties at cell-like concentrations and differentiate behavior in different organelles.

Understanding how cells work requires knowledge of structure, energetics and dynamics. Here, we focus on efforts from the past two years to find patterns in protein dynamics inside cells. Folding of globular proteins, unproductive sticking caused by attractive interactions with other macromolecules, as well as productive quinary interactions, and the dynamics of disordered proteins all depend on protein surfaces and interactions of their charge and hydrophobic patches with the surrounding matrix. Simple physico-chemical rules favoring productive interactions among the myriad possible are emerging.

Stability and dynamics in cells

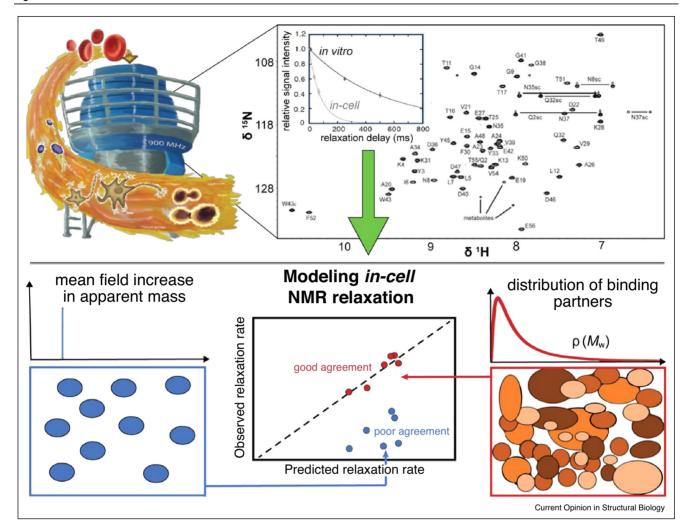
NMR exploits the ability of nuclear spins to report on their chemical environment. Here, we focus on NMR experiments in solution — so called high-resolution NMR — using stable spin-1/2 nuclei that are easily enriched (e.g. ¹H, ¹³C, ¹⁵N) or installed as minimally

perturbing labels (i.e. ¹⁹F). The strength of NMR lies in assessing kinetics on timescales from hours to nanoseconds and processes from reaction rates to internal dynamics and both translational and rotational diffusion. It is also important to bear in mind that NMR reports on ensembles of molecules.

Several challenges associated with in-cell NMR arise from its insensitivity. Acquiring high quality data even under ideal conditions, which the cellular interior is not, requires protein concentrations of 10 µM and acquisition times of seconds, or longer. Long data acquisition favors hardy cells like Escherichia coli, yeast or immortalized animal cells. Protein leakage from dying cells is a second problem because it is difficult to distinguish signals from the intracellular versus escaped proteins [19]. Also, nonphysiologically large quantities of protein are needed to obtain high quality NMR in the cell. For example, the natural stoichiometry of any binding partner is overwhelmed by the large amounts of protein required for detection. Currently, NMR is most useful for understanding the overall influence of the cellular environment on protein properties.

It is reasonable to expect that the viscosity of the crowded cytoplasm is greater than that of buffer. This expectation is borne out by NMR studies. The effect is larger in bacteria, whose bulk protein concentration is about twice that of eukaryotic cells [20]. The increased viscosity in both instances is attributed more to attractive interactions than just the packing, including complementary chargecharge interactions, hydrogen bonding and hydrophobic interactions between the protein being studied and other macromolecules in the cell.

Strong evidence for these interactions comes from experiments that alter surface charge. The average isoelectric point of proteins in eukaryotic and prokaryotic cells is less than the physiological pH (\sim 7.6), which means that the proteome carries a net negative charge [21°]. Increasing the positive surface charge of a macromolecule tends to slow diffusion, consistent with the idea of complementary charge-charge interactions.

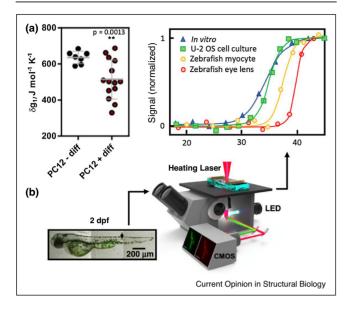

The key result from NMR-detected globular protein diffusion efforts in cells is simple to state, but until recently more difficult to explain: the increased viscosity assessed using transverse relaxation is larger than the increased viscosity as measured via longitudinal relaxation [13,22,23°]. This result has been reported several times in both E. coli and animal cells. Leeb et al. recently proposed a model that explains these observations [14**]. They posit fast exchange between the monomeric protein under study and nearby proteins in the cytoplasm (Figure 1).

Complementary to NMR, time resolved fluorescence microscopy misses the exquisite structural resolution, but can work at physiological concentrations. Choosing the label is key to avoiding label-induced sticking, which masks quinary interactions [6], or unwanted trafficking between organelles [25]. For detection, fluorescence lifetime-based probes such as FLIM and ratiometric (dualwavelength) probes such as FRET can be combined [26]. Rational design of brighter deep-red fluorescence probes for FRET [27] or long-lived luminescence resonance energy transfer reduce background from the cell [28].

Extant techniques capable of fast dynamics fall into two categories: steady state versus perturbation. Near equilibrium, the approaches are connected by the fluctuationdissipation theorem [29], which proves that the timescale of spontaneous fluctuations (e.g. the average rate of transitions in a single molecule experiment) is identical to the timescale of dissipation (e.g. the rate of exponential relaxation after a small perturbation). Wohland and coworkers developed fluorescence correlation spectroscopy [30] into a steady-state imaging technique [31] for whole cells and in vivo, looking recently at how protein diffusion gets stuck in the nucleus [32°]. The analysis of structured illumination methods is improving towards the msec regime, revealing, for example. how organelles such as the endoplasmic reticulum connect or disconnect different protein populations [33]. New perturbation techniques such as volume perturbation expand the regime from protein folding to protein interactions [6].

Recent applications illustrate the utility of dynamic microscopy (Figure 2). Ratiometric FRET of superoxide dismutase (SOD) in cells differentiating into neurons reveals that SOD is destabilized. Crowding remains similar during this process, suggesting the destabilization arises from changes in the chemical quality of the proteome [24]. In-cell binding of Hsp70 [34] and Hsc70 [35] to substrate phosphoglycerate kinase (PGK) reveals that the chaperones act differently under heat shock: the upregulated Hsp70 binds native protein on the verge of unfolding, whereas the latently expressed Hsc70 binds only at higher temperature. This difference is explained by their function: Hsc70 avoids folded proteins with transient hydrophobic exposure so as to increase its availability for other processes. Most importantly, neither protein functions as a heat shock protein in vitro, highlighting the importance of quinary structure for function. Other experiments on PGK [36], one of the most abundant cellular enzymes, shows that crowding produces an offset towards increased protein stability, as predicted [3], but sticking controls a trend towards increased or decreased stability. In highly crowded zebrafish eye-lens cells, sterics increases PGK stability compared to other tissues, but its folding kinetics remain similar even in this highly packed environment [18°]. As a final example, experiments reveal heterogeneous kinesin motion in cells

Figure 1


Pictorial explanation of in-cell NMR applied to sticking. In-cell NMR provides relaxation data on backbone amide groups that is used to assess models for protein diffusion. Simple mean field theories fail to reproduce the measured relaxation, but using proteomic data and a model based on fast exchange between the free-tumbling being studies and its transient complexes results in agreement [14**].

depending on the number and directionality of motors attached to its cargo [37].

Emerging rules for protein surfaces

Proteins are large for at least two reasons. First, they must precisely position functionally important residues using fairly low-resolution building blocks (amino acids) [38]. Second, they form surfaces capable of multiple useful interactions, while minimizing undesirable interactions [39]. Protein surfaces evolve with the cell just like globular protein cores evolve for folding, or active sites for catalysis. For example, flies require ATP-producing enzymes to associate with actin filaments to provide power [40], and in-cell measurements show that the cytoskeleton affects compactness of the ATP-producing enzyme PGK [41].

Evolution of protein surfaces and intrinsically disordered proteins (IDPs) requires descriptors more subtle than those usually associated with enzyme function (e.g. single critical sidechains). These descriptors include net charge and dipole [21°], hidden sequence complexity [42°] and hydrophobic patches [43]. Although cytoplasmic conditions differ among organisms such as prokaryotes and eukaryotes [20], NMR-analysis of genomes and protein sticking show that protein avoid clumping via net negative charge [21°]. For weakly interacting proteins frequently used for in-cell NMR (e.g. SOD [5]), charge and dipole are the major determinants of intracellular mobility. In addition, physiologically relevant in vitro environments differentially affect the diffusion of globular proteins compared to IDPs [20] with IDPs diffusing faster than expected [44]. This result has also been observed in living cells [45°].

(a) In non-differentiating (–diff) PC12 cells [24], the folding free energy of superoxide dismutase is more sensitive to temperature (greater δg_1) on average but has a narrower range than in differentiating cells (+diff). (b) Protein stability in zebrafish eye lens tissue *in vivo* is enhanced compared to muscle tissue, U-2 OS cells and buffer [18].

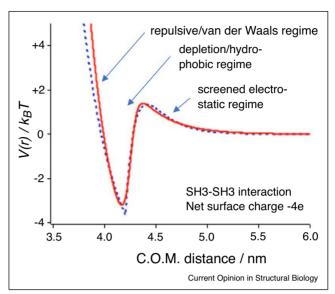
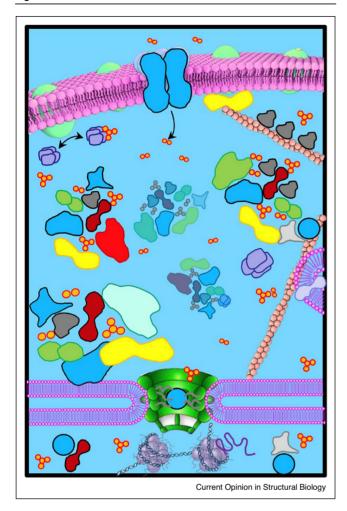

To enable more specific rejection of undesirable interactions and recognition of desirable ones, hydrophobic patches provide a shorter range interaction for quinary interaction than screened electrostatics alone [35]. Thus, charge-hydrophobic patterning is a likely candidate for a conserved feature of protein surfaces or IDPs that helps avoid general sticking in the cytoplasm while allowing recognition or binding-folding to improve cellular fitness [46]. Not coincidentally, folded proteins on average carry a net negative charge [47] even though they have positive/hydrophobic recognition motifs, whereas IDPs are as likely to carry a net positive charge to increase interaction with nucleic acids, a frequent binding partner of disordered sequences.

Figure 3 illustrates the different regimes based on small angle X-ray scattering measurements of how clusters of negatively charged proteins interact [48]: via screened repulsion with a Yukawa potential $V(r) \sim e^{-ar}/r$ at large separation, then via short-range attraction as the hydrophobic effects takes over (increasing water entropy by leaving the protein–protein gap and allowing hydrophobic patches to contact), and finally by repulsion again at the shortest distances where van der Waals contact becomes dominant.

Cell environment and quinary structure

Understanding how the crowded interior of cells affects globular protein stability and folding kinetics is important

Figure 3



When like charges attract: pairwise potential between equally negatively charged (-4e) SH3 domains. The blue curve is fitted from SAXS experiments to a piecewise potential of mean force, V(r), in units of k_BT at room temperature [48]. The red curve is fitted to the same data using a continuous sum of repulsive exponential (e^{-br} , short range)-potentials, Lennard-Jones (medium range)-potentials and screened Coulomb (e^{-ar}/r , long range)-potentials. The distance is between the centers of mass (C.O.M.) of the two proteins. The protein center-to-center contact distance is about 3.9 nm. The transition from long-range screened Coulomb repulsion, to medium-range attraction via water depletion and hydrophobic sticking at the protein surfaces, to short-range Pauli-exclusion repulsion can be seen.

for two reasons. First, only the native state of a protein enzyme is active. Second, unstable proteins are prone to aggregation. Some of the first evidence that there is more to physiologically relevant crowding effects than stabilizing hard core repulsive interactions came from *in vitro* studies [49]. A few years later, these same observations were made in cell lysates [50] and then in living cells by quantifying the temperature dependence of protein stability using ¹⁵N-¹H HSQC spectroscopy and ¹⁹F NMR [51,52]. There followed several NMR-based efforts to assess folding kinetics under physiologically relevant crowded conditions [53]. The *in vitro* data show the role of attractive interactions in slowing folding and accelerating unfolding, but there are insufficient data to provide a unifying picture in cells.

Protein–protein interactions drive signal transduction, and two-thirds of disease-associated missense mutations perturb protein complexes [54,55]. ¹⁹F NMR has been used to study two homodimers made by mutating the 6.2 kDa domain of protein G (GB1) [56–58]. One mutation yields a side-by-side dimer. Adding two more changes gives a domain-swapped dimer. The effects of charge

Figure 4

Quinary structures from membrane to nucleus. Shown, from the top, are signaling interactions at the membrane, metabolic enzyme complexes that increase processivity, interactions of disordered nuclear pore proteins that control nuclear access and IDPs interacting with histones.

changes in protein crowders has been studied in vitro. As expected, attractive interactions between the variants and crowders destabilize the complex. The side-by-side dimer has recently been examined in both E. coli cells and Xenopus laevis oocytes [59**]. The complex is more stable in both cell types than it is in buffer. Charge-charge variants were also investigated: the more anionic the homodimer, the stronger the intermolecular repulsion in cells and the more stable the complex.

Observations ranging from anomalous diffusion [60] to liquid phase-separated regions [61] show that the cytoplasm is structured on all length scales. The co-evolution of protein surfaces with the cytoplasm goes beyond the fine-tuning of solubility, sticking and function [62]. Quinary structure could also induce environment-sensitive proteins with more than one fold [63], such as lymphotactin [64], to switch folds. Similarly, IDP [20] folding is often templated by binding a specific partner, even in vitro [65], but many IDPs do not have known binding partners, yet they lie near the folding boundary of an Uversky plot (total charge versus sequence hydrophobicity) [66]. Shuttling between folded and extended states could be fertile ground for protein evolution in eukaryotic cells, bridging the worlds of highly variable IDPs and globular proteins. In that regard the fly-casting (binding-folding) mechanism [67] may be generalizable to multiple quinary interactions of an IDP with other proteins in the cell (Figure 4).

Outlook

Cells differ from one another in many ways: eukaryotic cells are less crowded and harbor about twice as many disordered proteins/regions as [20,68,69], and as a result protein surfaces have diverged. Specific interactions such as those between chaperones and client proteins [70], and generic ones such as charge-patterning or charge hydrophobe-patterning could drive evolution as much as the classic optimization of side chains for reactivity or core packing for foldability, particularly for disordered sequences. As discussed, tissues within a single organism can affect the same protein differently, an effect of quinary structure that may be important in development by providing even more protein variety between tissues than sequence or post-translation modification allow on their own.

New spectroscopies will enable in-cell studies of the coevolved proteome in its natural environment. For example, in vitro single molecule spectroscopy of IDPs [71°°] will soon be applied in cells and a simple and robust fluorecence based diffusion techniqe has been developed [72]. Correlated spectroscopies — such as fluorescence dynamics plus super resolution structure [73], will reveal structural information about 'quinary structure', complementing results from efforts including in-cell NMR that provide quantitative information about equilibrium thermodynamics, and kinetics, and more biological efforts that address fitness. The combination of these endeavors will reveal how protein homeostasis works in terms of both structure and energy in complex cellular environments, from specific molecular chaperoning to co-solutes creating a chaperoned environment.

Conflict of interest statement

Nothing declared.

CRediT authorship contribution statement

Martin Gruebele: Conceptualization, Visualization, Writing - review & editing. Gary J Pielak: Conceptualization, Visualization, Writing - review & editing.

Acknowledgements

Our research is supported by the National Science Foundation (grant number MCB-180378 to MG and MCB-1410854 to GJP) and by United States-Israel Binational Science Foundation (BSF 2017063 to GIP). We thank Jhoan Aguilar for the drawing in Figure 1, Jens Danielsson and Mikael Oliveberg for the schematic, and Candice Crilly for help preparing the figure, Prof. Seung Joong Kim for preparing the data in Figure 3, as well as Simon Ebbinghaus for permission to use data in Figure 2 and Elizabeth Pielak for helpful comments.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- •• of outstanding interest
- Srere PA: Macromolecular interactions: tracing the roots. Trends Biochem Sci 2000, 25:150-153.
- Cohen RD, Pielak GJ: A cell is more than the sum of its (dilute) parts: a brief history of quinary structure. Protein Sci 2017,
- Rivas G, Minton AP: Toward an understanding of biochemical 3. equilibria within living cells. Biophys Rev 2018, 10:241-253.
- Komar AA: Unraveling co-translational protein folding: concepts and methods. Methods 2018, 137:71-81
- Mu X, Choi S, Lang L, Mowray D, Dokholyan NV, Danielsson J, Oliveberg M: Physicochemical code for quinary protein interactions in Escherichia coli. Proc Natl Acad Sci U S A 2017, 114:E4556-E4563
- Sukenik S, Ren P, Gruebele M: Weak protein-protein interactions in live cells are quantified by cell-volume modulation. Proc Natl Acad Sci USA 2017, 114:6776-6781 http:// dx.doi.org/10.1073/pnas.1700818114.
- London RE, Gregg CT, Matwiyoff NA: Nuclear magnetic resonance of rotational mobility of mouse hemoglobin labeled with [2-13C] histidine. Science 1975, 188:266-268.
- Stadmiller SS, Pielak GJ: The expanding zoo of in-cell protein NMR. Biophys J 2018, 115:1628-1629.
- Shekhtman A, Burz DS: In-Cell NMR Spectroscopy: Biomolecular Structure and Function. Wuhan: Multidisciplinary Digital Publishing Institute; 2020.
- Ito Y, Dötsch V, Shirakawa M: In-Cell NMR Spectroscopy. The 10. Royal Society of Chemistry; 2020.
- 11. Serber Z, Dötsch V: In-cell NMR spectroscopy. Biochemistry 2001. 40:14317-14323
- 12. Li C, Charlton LM, Lakkavaram A, Seagle C, Wang G, Young GB, Macdonald JM, Pielak GJ: Differential dynamical effects of macromolecular crowding on an intrinsically disordered protein and a globular protein: implications for in-cell NMR. Am Chem Soc 2008, 130:6310-6311.
- Ye Y, Liu X, Zhang Z, Wu Q, Jiang B, Jiang L, Zhang X, Liu M, Pielak Gary J, Li C: ¹⁹F NMR spectroscopy as a probe of cytoplasmic viscosity and weak protein interactions in living cells. Chemistry 2013, 19:12705-12710.
- Leeb S, Yang F, Oliveberg M, Danielsson J: Connecting
 longitudinal and transverse relaxation rates in live-cell NMR. J
- Phys Chem B 2020, 47:10698-10707

Simple theories cannot reproduce NMR relaxation data, but using proteomic data and a model based on fast exchange between a freetumbling protein and its transient complexes yields agreement.

- 15. Ignatova Z, Gierasch LM: Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc Natl Acad Sci U S A 2004, 101:523-528.
- 16. Ebbinghaus S, Dhar A, McDonald JD, Gruebele M: Protein folding stability and dynamics imaged in a living cell. Nat Methods 2010, **7**:319-323
- 17. Phillip Y, Kiss V, Schreiber G: Protein-binding dynamics imaged in a living cell. Proc Natl Acad Sci U S A 2012, 109:1461-1466.
- 18. Feng R, Gruebele M, Davis CM: Quantifying protein dynamics and stability in a living organism. Nat Commun 2019, 10:1179

Meganuclease I-Scel is used to make individual transgenic cells in specific tissues of zebrafish express fluorescent protein, allowing comparison of stability of a metabolic enzyme on a cell by cell-basis and tissue by tissue-basis.

- 19. Barnes CO, Pielak GJ: In-cell protein NMR and protein leakage. Proteins Struct Funct Bioinforma 2011, 79:347-351.
- Theillet F-X, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley P, Gierasch L, Pielak GJ et al.: Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014, **114**:6661-6714.
- 21. Wennerström H. Vallina Estrada E. Danielsson J. Oliveberg M: Colloidal stability of the living cell. Proc Natl Acad Sci U S A 2020, 117:10113-10121 http://dx.doi.org/10.1073/ pnas.1914599117

Analysis of the electrostatic interactions in cells shows that polyions play a unique role to stabilize the proteome against excessive sticking via a net negative charge.

- 22. Ye Y, Wu Q, Zheng W, Jiang B, Pielak GJ, Liu M, Li C: Quantification of size effect on protein rotational mobility in cells by ¹⁹F NMR spectroscopy. Anal Bioanal Chem 2017, **410**:869-874.
- 23. Ye Y, Wu Q, Zheng W, Jiang B, Pielak G, Liu M, Li C: Positivelycharged tags impede protein mobility in cells as quantified by ¹⁹F NMR. J Phys Chem 2019, **123**:4527-4533

NMR relaxation data highlight the role of sticking in prokaryotic and eukaryotic cells and show that increased viscosity and sticking are different.

- 24. Gnutt D, Sistemich L, Ebbinghaus S: Protein folding modulation in cells subject to differentiation and stress. Front Mol Biosci 2019. 6:38.
- 25. Davis CM, Gruebele M: Labeling for quantitative comparison of imaging measurements in vitro and in cells. Biochemistry 2018,
- 26. Long Y, Stahl Y, Weidtkamp-Peters S, Postma M, Zhou W, Goedhart J, Sánchez-Pérez M-I, Gadella TWJ, Simon R, Scheres B et al.: In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots. Nature 2017, 548:97-102.
- 27. Shemetov AA, Oliinyk OS, Verkhusha VV: How to increase brightness of near-infrared fluorescent proteins in mammalian cells. Cell Chem Biol 2017, 24:758-766.e3.
- 28. Rajapakse HE, Gahlaut N, Mohandessi S, Yu D, Turner JR, Miller LW: Time-resolved luminescence resonance energy transfer imaging of protein-protein interactions in living cells. Proc Natl Acad Sci U S A 2010, 107:13582-13587.
- 29. Callen HB, Welton TA: Irreversibility and generalized noise. Phys Rev 1951. 83:34-40.
- 30. Bacia K, Schwille P: Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2007. 2:2842-2856
- 31. Krieger JW, Singh AP, Bag N, Garbe CS, Saunders TE, Langowski J, Wohland T: Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat Protoc 2015, 10:1948-1974.
- 32. Furlan A, Gonzalez-Pisfil M, Leray A, Champelovier D, Henry M, Le Nézet C, Bensaude O, Lefranc M, Wohland T, Vandenbunder B et al.: HEXIM1 diffusion in the nucleus is regulated by its interactions with both 7SK and P-TEFb. Biophys J 2019, **117**:1615-1625

A combination of simulation and fluorescence microscopy applied to interaction-deficient mutants reveals how anomalous diffusion of HEXIM1, which creates a pause after transcription, is controlled by its weak clustering and interaction with several other nuclear macromolecules

- 33. Ma Y, Li D, Smith ZJ, Li D, Chu K: Structured illumination microscopy with interleaved reconstruction (SIMILR). ${\it J}$ Biophotonics 2018, 11:e201700090.
- 34. Guin D, Gelman H, Wang Y, Gruebele M: Heat shock-induced chaperoning by Hsp70 is enabled in-cell. PLoS One 2019, 14: e0222990.

- 35. Guin D, Gruebele M: Chaperones Hsc70 and Hsp70 bind to the protein PGK differently inside living cells. J Phys Chem B 2020,
- 36. Davis CM, Gruebele M: Non-steric interactions predict the trend and steric interactions the offset of protein stability in cells. ChemPhysChem 2018, 19:2290-2294.
- Reddy BJN, Tripathy S, Vershinin M, Tanenbaum ME, Xu J, Mattson-Hoss M, Arabi K, Chapman D, Doolin T, Hyeon C et al.: Heterogeneity in kinesin function. Traffic 2017, 18:658-671.
- 38. Martin G: Protein folding and surface interaction phase diagrams in vitro and in cells. FEBS Lett 2021. in press.
- Srere PA: Why are enzymes so big? Trends Biochem Sci 1984, 9:387-390.
- 40. Woitas K. Slepecky N. von Kalm L. Sullivan D: Flight muscle function in *Drosophila* requires colocalization of glycolytic enzymes. *Mol Biol Cell* 1997, **8**:1665-1675.
- 41. Davis CM, Gruebele M: Cytoskeletal drugs modulate off-target protein folding landscapes inside cells. Biochemistry 2020, **59**:2650-2659
- 42. Huihui J, Ghosh K: An analytical theory to describe sequencespecific inter-residue distance profiles for polyampholytes and intrinsically disordered proteins. J Chem Phys 2020,

A new algorithm for compactness of disordered regions promises to identify disordered proteins that compact or gain structure in the cellular milieu, defining a potential gateway to accelerate globular protein evolution with assistance from disorder.

- 43. Rickard MM, Zhang Y, Gruebele M, Pogorelov TV: In-cell proteinprotein contacts: transient interactions in the crowd. J Phys Chem Lett 2019, 10:5667-5673.
- 44. Wang Y, Benton LA, Singh V, Pielak GJ: Disordered protein diffusion under crowded conditions. J Phys Chem Lett 2012, **3**:2703-2706.
- Schuler B, König I, Soranno A, Nettels D: Impact of in-cell and invitro crowding on the conformations and dynamics of an intrinsically disordered protein. Angew Chem Int Ed 2021. in

Intrinsically disordered proteins can diffuse faster in cells than similarly sized globular proteins, suggesting another function of this protein class.

- 46. Bhattacharyya S, Bershtein S, Yan J, Argun T, Gilson Al, Trauger SA, Shakhnovich El: **Transient protein-protein** interactions perturb *E. coli* metabolome and cause gene dosage toxicity. eLife 2016, 5:e20309.
- 47. Kozlowski LP: Proteome-pl: proteome isoelectric point database. Nucleic Acids Res 2017, 45:1112-1116.
- Kim SJ, Dumont C, Gruebele M: Simulation-based fitting of protein-protein interaction potentials to SAXS experiments. Biophys J 2008, 94:4924-4931.
- 49. Crowley PB, Brett K, Muldoon J: NMR spectroscopy reveals cytochrome c-poly(ethylene glycol) interactions. ChemBiochem 2008, 9:685-688
- 50. Wang Y, Sarkar M, Smith A, Krois A, Pielak GJ: Macromolecular crowding and protein stability. J Am Chem Soc 2012, **134**:16614-16618.
- 51. Monteith WB, Pielak GJ: Residue level quantification of protein stability in living cells. Proc Natl Acad Sci USA 2014, 111:11335-
- 52. Danielsson J, Mu X, Lang L, Wang H, Binolfi A, Theillet FX, Bekei B, Logan DT, Selenko P, Wennerstrom H et al.: Thermodynamics of protein destabilization in live cells. Proc Natl Acad Sci U S A 2015, **112**:12402-12407.
- 53. Gorensek-Benitez AH, Smith AE, Stadmiller SS, Perez Goncalves GM, Pielak GJ: Cosolutes, crowding and protein folding kinetics. *J Phys Chem B* 2017, **121**:6527-6537.
- Sahni N, Yi S, Taipale M, Fuxman Bass JI, Coulombe-Huntington J, Yang F, Peng J, Weile J, Karras GI, Wang Y et al.:

- Widespread macromolecular interaction perturbations in human genetic disorders. Cell 2015, 161:647-660
- 55. Stadmiller SS, Pielak GJ: Protein-complex stability in cells and in vitro under crowded conditions. Curr Opin Struct Biol 2021, 66:183-192
- 56. Guseman AJ, Pielak GJ: Cosolute and crowding effects on a side-by-side protein dimer. Biochemistry 2017, 56:971-976.
- 57. Guseman AJ, Speer SL, Perez Goncalves GM, Pielak GJ: Surface charge modulates protein-protein interactions in physiologically relevant environments. Biochemistry 2018, **57**:1681-1684.
- 58. Guseman AJ, Perez Goncalves GM, Speer SL, Young GB, Pielak GJ: Protein shape modulates crowding effects. Proc Natl Acad Sci U S A 2018, 115:10965-10970.
- Speer SL, Zhang W, Jiang X, Chu I-T, Guseman AJ, Liu M, Pielak GJ, Li C: *The Intracellular Environment Affects Protein-Protein Interactions*. 2020. in press

¹⁹F NMR was used to quantify the stability of a dimer and several chargechange variant in E. coli cells and X. laevis oocytes. The results show the key role of charge in controlling protein-protein interactions in living cells.

- 60. Guo M, Gelman H, Gruebele M: Coupled protein diffusion and folding in the cell. PLoS One 2014, 9:e113040.
- 61. Zhou H-X, Pang X: Electrostatic interactions in protein structure, folding, binding, and condensation. Chem Rev 2018, **118**:1691-1741.
- 62. Echave J, Spielman SJ, Wilke CO: Causes of evolutionary rate variation among protein sites. Nat Rev Genet 2016, 17:109-121.
- 63. Porter LL, Looger LL: Extant fold-switching proteins are widespread. Proc Natl Acad Sci U S A 2018, 115:5968.
- Tuinstra RL, Peterson FC, Kutlesa S, Elgin ES, Kron MA, Volkman BF: Interconversion between two unrelated protein folds in the lymphotactin native state. Proc Natl Acad Sci USA 2008. **105**:5057-5062.
- Toto A, Malagrinò F, Visconti L, Troilo F, Pagano L, Brunori M, Jemth P, Gianni S: Templated folding of intrinsically disordered proteins. J Biol Chem 2020, 295:6586-6593.
- Huang F, Oldfield CJ, Xue B, Hsu W-L, Meng J, Liu X, Shen L, Romero P, Uversky VN, Dunker A: Improving protein orderdisorder classification using charge-hydropathy plots. BMC Bioinformatics 2014, 15:S4.
- 67. Shoemaker BA, Portman JJ, Wolynes PG: Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci U S A 2000, 97:8868-8873.
- 68. Panda A, Tuller T: Exploring potential signals of selection for disordered residues in prokaryotic and eukaryotic proteins. Genomics Proteomics Bioinformatics 2020 http://dx.doi.org/ 10.1016/j.gpb.2020.06.005. in press.
- 69. Basile W, Salvatore M, Bassot C, Elofsson A: Why do eukaryotic proteins contain more intrinsically disordered regions? PLOS Comput Biol 2019, 15:e1007186.
- Agozzino L, Dill KA: Protein evolution speed depends on its stability and abundance and on chaperone concentrations. Proc Natl Acad Sci U S A 2018, 115:9092-9097.
- 71. Zosel F, Soranno A, Buholzer KJ, Nettels D, Schuler B: Depletion interactions modulate the binding between disordered proteins in crowded environments. Proc Natl Acad Sci U S A . 2020, **117**:13480-13489

Highlights the importance of depletion interactions between disordered proteins, which can form high affinity and specific interactions even without folding upon binding.

- 72. Dey D, Marciano S, Nunes-Alves A, Wade RC, Schreiber G: Line-FRAP, a versatile method to measure diffusion rates in vitro and in vivo. J Mol Biol 2021, in press.
- 73. Prigozhin MB, Maurer PC, Courtis AM, Liu N, Wisser MD, Siefe C, Tian B, Chan E, Song G, Fischer S et al.: Bright sub-20-nm cathodoluminescent nanoprobes for electron microscopy. Nat Nanotechnol 2019, 14:420-425.