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Abstract. Miami-Dade County (south-east Florida) is among

the most vulnerable regions to sea level rise in the United

States, due to a variety of natural and human factors. The co-

occurrence of multiple, often statistically dependent flood-

ing drivers – termed compound events – typically exacer-

bates impacts compared with their isolated occurrence. Ig-

noring dependencies between the drivers will potentially lead

to underestimation of flood risk and under-design of flood de-

fence structures. In Miami-Dade County water control struc-

tures were designed assuming full dependence between rain-

fall and Ocean-side Water Level (O-sWL), a conservative as-

sumption inducing large safety factors. Here, an analysis of

the dependence between the principal flooding drivers over

a range of lags at three locations across the county is car-

ried out. A two-dimensional analysis of rainfall and O-sWL

showed that the magnitude of the conservative assumption

in the original design is highly sensitive to the regional sea

level rise projection considered. Finally, the vine copula and

Heffernan and Tawn (2004) models are shown to outperform

five standard higher-dimensional copulas in capturing the de-

pendence between the principal drivers of compound flood-

ing: rainfall, O-sWL, and groundwater level. The work rep-

resents a first step towards the development of a new frame-

work capable of capturing dependencies between different

flood drivers that could potentially be incorporated into fu-

ture Flood Protection Level of Service (FPLOS) assessments

for coastal water control structures.

1 Introduction

Florida is more vulnerable to sea level rise (SLR) in terms of

housing and population relative to local mean high-tide lev-

els than any other state in the country (Strauss et al., 2012).

Miami-Dade County, located in the south-east of Florida,

is particularly vulnerable due to its gently sloped low-lying

topography, densely populated coastal areas, and economic

importance (Zhang, 2011). Miami, the county’s principal

metropolitan area, is consistently ranked among the world’s

most exposed and vulnerable cities to coastal flooding (e.g.

Hallegatte et al., 2013; Kulp and Strauss, 2017). While de-

bate surrounds the region’s vertical land motion (Parkinson

and Donoghue, 2010), the contribution of SLR to nuisance

or tidal flooding (Wdowinski et al., 2016) as well as its role

in escalating socio-economic impacts such as climate gen-

trification is becoming increasingly apparent (Keenan et al.,

2018). The future rates of SLR in the region are expected

to be greater than the global average due to variations in the

Florida Current and Gulf Stream (Southeast Florida Regional

Climate Change Compact, 2015). Higher baseline ocean lev-

els allow storm surges to propagate further inland whilst

also reducing pressure gradients in rivers hampering efficient

drainage; hence, SLR also increases the fluvial flood poten-

tial (Schedel et al., 2018).

In low-lying coastal areas flooding arises because of the

interplay between metrological, hydrological, and oceano-

graphic drivers including rainfall, river discharge, ground-

water table, storm surge, and waves. In Miami Beach, for
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instance, Wdowinski et al. (2016) found that most flood-

ing events between 1998 and 2013 occurred after heavy rain

(> 80 mm) during high-tide conditions. The co-occurrence

of multiple drivers can exacerbate the impacts of a flood and,

depending on the adopted definition, be classified as a com-

pound event (Seneviratne et. al., 2012; Leonard et al., 2014;

Zscheischler et al., 2018). For example, significant statisti-

cal dependence between heavy rainfall and storm surge (or

storm tide) has been identified over a range of spatial scales:

global (Bevaqua et al., 2019), continental (Zheng et al., 2013;

Wahl et al., 2015; Paprotny et al., 2018; Wu et al., 2018),

regional to national (Svensson and Jones, 2002, 2004, 2006;

Hendry et al., 2019), and local (Hawkes et al., 2002; Hawkes,

2008; White, 2009; van den Hurk, 2015; Lian et al., 2013;

Zheng et al., 2014; Bengtsson, 2016). The dependence may

arise due to common meteorological forcing (Pugh, 1987),

potentially enhanced through orographic effects (Svensson

and Jones, 2002, 2004; Martius et al., 2016), or simply by

chance (Kew et al., 2013; Martius et al., 2016; Couasnon

et al., 2019). Neglecting even weak dependence can result in

the underestimation of water levels (Kew et al., 2013; Zheng

et al., 2014; Ikeuchi et al., 2017) and consequently flood risk

estimates (Lian et al., 2013; Zheng et al., 2013) in estuarine

and tidal channels.

Miami-Dade County is underlined by the highly transmis-

sive and porous (predominantly limestone) Biscayne aquifer,

which is also the region’s main source of potable freshwa-

ter (Randazzo and Jones, 1997). The lateral intrusion of salt-

water into the unconfined aquifer as a recirculating saltwa-

ter wedge is widely acknowledged (Provost et al., 2018).

SLR along with an increased likelihood of recurring drought

during the winter–spring season, associated with changes in

the climate system, enhances the risk of contamination of

the water supply (Bloetscher et al., 2011). Furthermore, the

county’s population is expected to increase by nearly 20 %

in the next 20 years (Florida Office of Economic and De-

mographic Research, 2015), increasing flood exposure and

demand on water resources. The South Florida Water Man-

agement District (SFWMD) is responsible for managing and

protecting the water resources of south Florida. The SFWMD

must balance demand for potable water and agricultural and

landscape irrigation with flood mitigation, whilst ensuring

the water table remains sufficiently high to prevent saltwater

intrusion and achieve other ecological objectives (SFWMD,

2016). Their aim is to meet these objectives through the con-

tinuous operation of an extensive network of drainage canals,

storage areas, pumps, and other control structures. The Bis-

cayne aquifer has a direct hydraulic connection to the nat-

ural and man-made surface water bodies, a consequence of

its shallow depth and high porosity, and is therefore consid-

ered a part of this integrated hydrologic system (Randazzo

and Jones, 1997).

In heavily managed urbanized catchments, antecedent

groundwater conditions are an essential initial condition for

hydraulic–hydrological models for robust flood risk analysis

(Hettiarachchi et al., 2019). Rainfall is often employed as a

surrogate for river discharge (e.g. Zheng et al., 2013; Wahl

et al., 2015; Bevacqua et al., 2020). Physical properties such

as the size, gradient, and permeability of a catchment influ-

ence the river response to a given rainfall event (Svensson

and Jones, 2002; Zheng et al., 2013; Hendry et al., 2019).

Verhoest et al. (2010) demonstrated that the return period

of a rainfall event may differ significantly from that of the

corresponding discharge, depending on the antecedent wet-

ness of a catchment. In south-east Florida, approximately

half of the average annual rainfall is lost to evapotranspira-

tion (Bloetscher et al., 2011); hence rainfall is unlikely to

constitute a suitable proxy for discharge.

Due to the unusually high connectivity of ground and sur-

face water hydrology, south-east Florida has a high propen-

sity for pluvial flooding. The concurrence of heavy precipita-

tion and high antecedent soil moisture is the dominant flood-

generating mechanism for most catchments without signif-

icant snowmelt (Berghuijs et al., 2016, 2019). Many recent

studies (Moftakahri et al., 2017, 2019; Bevaqua et al., 2017;

Couasnon et al., 2018, 2019; Paprotny et al., 2018; Ward

et al., 2018; Serafin et al., 2019) statistically model river dis-

charge and surge (or coastal water level in the case of Gan-

guli and Merz, 2019), or their relevant proxies (Kew et al.,

2013), as opposed to rainfall and surge, implicitly account-

ing for catchment properties and pre-existing groundwater

level (Lamb et al., 2010). Not accounting for groundwater

level explicitly, especially in areas like Miami-Dade County

where groundwater levels are highly responsive (and poten-

tially correlated) to rainfall and O-sWL, precludes a robust

assessment of the risk of pluvial flooding. Therefore, in this

work, statistical models will be tested for their ability to

capture the joint probability distribution of rainfall, O-sWL

(tide + non-tidal residual), and groundwater level.

Traditional multivariate probability distributions are often

restrictive in terms of the choice of marginal distributions;

i.e. all the margins are required to be the same type of distri-

bution. For example, fitting a bivariate Gaussian distribution

to extreme tides and corresponding freshwater flows required

Loganathan et al. (1987) to assume Gaussian marginal distri-

butions. Copulas allow the dependence and marginal mod-

elling to be carried out independently, providing more flexi-

bility in the choice of marginal distributions than traditional

multivariate models (Patton, 2006). Consequently, bivariate

copulas have been used extensively in the modelling of com-

pound flooding induced by rainfall and surge (e.g. Wahl et al.,

2015) and from discharge in multiple rivers at their conflu-

ences (Wang et al., 2009; NCHRP, 2010; Chen et al., 2012;

Bender et al., 2016; Peng et al., 2017, 2018; Gilja et al.,

2018). Higher-dimensional multivariate parametric copulas

are limited in the sense that they assume homogeneity in the

type of dependence between each pair of variables (Aas et al.,

2009). Pair-copula constructions (PCCs) in contrast take ad-

vantage of the rich array of bivariate copulas and overcome

this limitation by decomposing higher-dimensional probabil-

Nat. Hazards Earth Syst. Sci., 20, 2681–2699, 2020 https://doi.org/10.5194/nhess-20-2681-2020



R. Jane et al.: Multivariate statistical modelling of the drivers of compound flood events in south Florida 2683

ity density functions (pdf’s) into a cascade of bivariate cop-

ulas (Bedford and Cooke, 2002). Bevacqua et al. (2017) im-

plemented PCC to model the conditional joint pdf of river

discharge and sea levels (given meteorological predictors) to

assess compound flood risk in Ravenna, Italy. The method

proposed by Heffernan and Tawn (2004; referred to hereafter

as HT04) is an alternative to higher-dimensional multivariate

parametric copulas requiring no assumptions regarding the

type of dependence between variable pairs.

Water control facilities for the Central and South Florida

Project (CSFP) authorized by the Flood Control Act (1948)

(Pub. L. 80-858, 46 Stat. 925, 1948). were designed by the

US Army Corps of Engineers in the 1950s and 1960s. The

project included hydrologic and hydraulic design for canals,

many of which terminate in flood–salinity control structures.

The control structures are operated by the SFWMD to main-

tain the water level to prevent saltwater intrusion and release

canal water to the sea (typically via tidally modulated chan-

nels), alleviating potential flooding. The design of the canal

saw a design O-sWL, typically obtained from tide tables,

paired with a design storm under the assumption of full de-

pendence; i.e. the bivariate design event associated with a

return period is obtained by pairing the O-sWL and peak

rainfall with the corresponding univariate return periods.

Groundwater level conditions were accounted for through

the rainfall input. For instance, in the Greater Miami area,

it was assumed that the first 0.1 m of rainfall of the design

storm would be used to replenish the groundwater storage.

The SFWMD’s Flood Protection Level of Service (FPLOS)

project is beginning to examine the flood protection existing

coastal water control structures afford to urban areas, adopt-

ing a more holistic approach compared with their original

design. FPLOS uses design storms, which are run through

hydrologic models with initial conditions given by ground-

water stages. For coastal structures, the O-sWL represents

an additional downstream boundary condition described by a

stage hydrograph. Peak stages in the boundary condition hy-

drographs are derived using frequency analysis, and hence in

FPLOS assessments rainfall, O-sWL, and groundwater level

are assumed to be fully dependent. Consequently, any cor-

relations < 1 between the drivers will potentially lead to an

overestimation of risk and conservative design.

The overall aim of the paper is to assess the different

drivers of compound flooding in coastal areas of Miami-

Dade County. This will be achieved by meeting three objec-

tives. The first objective is to determine whether there is any

statistically significant correlation between extreme rainfall,

O-sWL, and groundwater level, while accounting for rele-

vant time lags. The second objective is to assess the conser-

vative nature of the original design approach. This includes

a bivariate statistical analysis, akin to those in previous stud-

ies but also including regional SLR scenarios to assess how

long it will take for any safety margin (that is implicitly in-

cluded by assuming full dependence between drivers) to be

exhausted. The third and final objective is to incorporate an-

tecedent catchment conditions into the statistical model and

to provide robust estimates of the joint probabilities (using a

variety of approaches) of extreme rainfall, O-sWL, and the

groundwater table that can potentially be incorporated in fu-

ture FPLOS assessments.

2 Case study sites and data

Miami-Dade is situated in south-east Florida (Fig. 1a). The

Everglades Water Conservation Areas comprise the western

portion of the county whilst heavy engineered water infras-

tructure and flood control systems have facilitated agricul-

tural and urban development farther east. Three case study

sites, differentiated by the colours in Fig. 1b (named after the

structures where O-sWL is measured), were selected to allow

an assessment of the variation of the hydrological behaviour

with latitude. The study is undertaken using in situ observa-

tions with each site defined by a rainfall gauge, stage gauge

(to measure the O-sWL), and groundwater well.

Rainfall data consist of daily precipitation totals obtained

from the National Oceanic and Atmospheric Administra-

tion’s (NOAA’s) National Climatic Data Center’s archive

of global historical weather and climate data. The rainfall

record at Miami International Airport is complete, while the

records at Perrine and Miami Beach contain a substantial

number of missing values, constituting 22.85 % and 4.80 %

of the total time series, respectively. The highly localized

nature of individual rainfall events in the region along with

the spatial and temporal resolution of rainfall measurements

renders the estimation of missing daily rainfall values using

neighbouring gauges impractical (Pathak, 2001).

Stage gauges are attached to flood–salinity control struc-

tures operated by SFWMD. The stage time series down-

stream of the relevant structures (here termed O-sWL) were

extracted from DBHYDRO (SFWMD’s corporate environ-

mental database) and converted to daily maxima. O-sWL

refers to the still water level (i.e. the water level discount-

ing waves/wave set-up) that comprises mean sea level, the

astronomical tidal component, and non-tidal residual (Pugh,

1987). O-sWL values are given in metres above the National

Geodetic Vertical Datum of 1929 (NGVD 29).

Groundwater wells (maintained by the United States Geo-

logical Survey) closest to each stage gauge and with record

lengths similar to the O-sWL time series were identified and

daily maximum water level records extracted from DBHY-

DRO. An analysis of the distribution of the missing O-sWL

and groundwater observations indicated the presence of long

gaps in some of the records, prohibiting linear interpolation

of the record to infill missing values. However, both the O-

sWL and groundwater records showed a high degree of linear

correlation with corresponding records at nearby sites. Miss-

ing values were therefore imputed through a linear regres-

sion of the observations at the location of interest on those

at nearby sites (Fig. S1 in the Supplement), starting with the
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Figure 1. Study site location and data completeness. (a) Miami-Dade County in the state of Florida, USA. (b) Topographical map of the

eastern portion of the county showing the location of the measuring stations for the three case study sites. Principal stations are named, whilst

those used for data imputation are not labelled. (c) Completeness of the records at each site’s three principal stations along with the method

adopted to impute specific missing values.

closest site to the location of interest. Any remaining non-

consecutive missing values were imputed through linear in-

terpolation (see Figs. S2–S6).

A fundamental assumption of the standard extreme-value

theory statistical models is that the analysed datasets con-

sist of independent and identically distributed (IID) random

variables. The models thus require stationarity; i.e. the sta-

tistical parameters such as mean and variance should remain

constant over time and be free of “trends, shifts, or period-

icity” (Salas, 1993). It is standard practice to transform the

data to achieve stationarity through detrending (e.g. Wyncoll

et al., 2016). The long-term mean sea level signal is super-

imposed onto inter-annual to multi-decadal sea level vari-

ability caused by tidal modulations associated with the nodal

(18.61 year) and perigean (8.5 year) cycles, as well as other

oceanic–atmospheric processes (e.g. Valle-Levinson et al.,

2017). Here, a moving window approach is applied to the

O-sWL series to remove long-term sea level rise and season-

ality effects (Arns et al., 2013). In the procedure, the esti-

mate of the trend is subtracted from the original time series

value yielding a residual, which is then added to the mean

sea level derived from the last 5 years of data to represent

the most recent mean sea level conditions. The groundwater

level was detrended in an identical manner. The detrended

series are shown alongside the imputed observational records

in Figs. S7 to S12.

Nonstationarity in the dependence between rainfall and

O-sWL can occur as a consequence of a range of anthro-

pogenically and climatically induced stressors. In this study,

the dependence is assumed to be stationary, i.e. that the cop-

ula parameters remain unchanged over time. The overlapping

records at the three sites are of insufficient length to robustly

test the stationarity assumption. However, Wahl et al. (2015)

did not detect any significant change in Kendall’s τ between

rainfall and surge at either Key West or Mayport, the two

closest sites to Miami-Dade County, indicating stationarity

to be a reasonable assumption. Nevertheless, due to regional

and local effects, such as multi-decadal variation in the storm

surge climate, the possibility of statistically significant trends

in the dependence cannot be ruled out at the case study sites.

3 Methodology

Section 3.1 introduces the measures for assessing the

strength of the dependence between the drivers and identi-

fying the type of dependence in their joint tail regions. Sec-
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tion 3.2 describes methods employed for the bivariate anal-

ysis of rainfall and O-sWL, before the choice of hazard sce-

nario is scrutinized. Finally, Sect. 3.3 provides a description

and justification for the statistical models adopted for the

trivariate analysis including groundwater level.

3.1 Dependence analysis

Kendall’s rank correlation coefficient τ provides a measure

of the degree of the association between the variables. As

opposed to linear correlation, rank correlation is able to cap-

ture any non-linear relationships between a pair of variables,

whilst τ possesses several desirable properties over other

rank correlation measures (Li et al., 2012). The value for each

pair of variables will also be used here to determine whether

there is statistically significant correlation between them, i.e.

if the null hypothesis H0 : τ = 0 can be rejected.

Extremal dependence falls into one of two classes: asymp-

totic dependence or asymptotic independence (Ledford and

Tawn, 1997). If (X,Y) are a pair of variables with distri-

bution functions (Fx,Fy) transformed to common uniform

(0,1) distributions, i.e. (U = Fx(X),V = Fy(Y)), an intu-

itive measure of the extremal dependence of (X,Y) is χ

(Buishand, 1984; Coles et al., 1999):

χ = lim
u→1

P (V > u|U > u), (1)

where P (A|B) is the conditional probability of A given B.

For independent variables χ = 0, for asymptotically depen-

dent variables χ increases with dependence strength, and

χ = 1 signals perfect dependence. To obtain χ it is more con-

venient to consider

χ (u) = 2 − ln [P (U > u,V > u)]

ln [P (U > u)]
(2)

an asymptotically equivalent function; i.e. χ = lim
u→1

χ(u), for

0 ≤ u ≤ 1. Coles et al. (1999) introduced a second measure χ̄

to quantify the magnitude of the dependence between a pair

of asymptotically independent variables:

χ̄ (u) = 2ln[P (U > u)]

ln [P (U > u,V > u)]
− 1, (3)

where −1 < χ̄ ≤ 1, for 0 ≤ u ≤ 1 and χ̄ = lim
u→1

χ̄(u). In the

case of full dependence χ̄ = 1, whilst for the class of asymp-

totically independent variables χ̄ increases with dependence

strength. Empirical estimates of χ(u) and χ̄(u) are possible

by approximating the probabilities in Eqs. (2) and (3) with

the equivalent proportions observed in the data.

Svensson and Jones (2002) proposed a bootstrap proce-

dure to test for asymptotic dependence. The two records are

independently sampled with replacement using a sample size

the same length as the original concurrent record. The sam-

ples are subsequently paired to create a dataset identical in

size to the original but with the dependence removed. The

process is repeated to create a large number N of datasets.

For each dataset χ is calculated and denoted by χBooti , i =
1, . . .,N . If less than 5 % of χBooti values are greater than the

estimate of χ associated with the observed data, then there

is strong evidence against the null hypothesis H0 : χ = 0.

Zheng et al. (2013) used the procedures described here to

assess the asymptotic behaviour of rainfall and storm surge

along the Australian coastline, detecting the presence of both

dependence classes.

3.2 Bivariate analysis

Here, a two-sided sampling approach similar to that in Wahl

et al. (2015), which involves deriving two conditional sam-

ples where each variable is conditioned on in turn, is im-

plemented to identify bivariate extreme events. Due to the

relatively short length of the overlapping records and waste-

fulness of the block maxima approach, the threshold ex-

ceedance method is first used to identify univariate extremes.

In practice, the method of Smith and Weissman (1994) is ap-

plied to the rainfall time series to identify cluster maxima

which are paired with simultaneous O-sWL values and vice

versa to create two two-dimensional time series. For more

details on the choice of thresholds see Sect. 4.2.

A copula is a multivariate probability distribution with

uniform marginal distributions. If X1, . . . , Xd are a set of

d continuous random variables with joint distribution func-

tion FX1, ..., Xd
(x1, . . . xd ), then according to Sklar’s theorem

(Sklar, 1959) there exists a unique copula C on [0,1]d such

that

FX1, ..., Xd (x1, . . ., xd) = C
(
FX1 (x1) , . . ., FXd (xd)

)
, (4)

where FXi
is the marginal distribution of Xi , i = 1, . . . d.

Hence, any multivariate joint distribution can be decomposed

into the set of univariate marginal distributions and a copula.

The latter contains all the information about the dependence

structure of the joint distribution.

For a range of thresholds, the best fitting of 40 competing

copulas plus the independence copula is determined via the

Akaike information criterion (AIC), using the VineCopula
R package (Schepsmeier et al., 2018). For the conditioned

variable, cluster maxima above a sufficiently high threshold

are fitted to a generalized Pareto distribution (GPD). The

marginal non-conditioned variables are modelled by para-

metric distributions. Two unbounded continuous distribu-

tions are fitted to O-sWL in the sample where rainfall is

conditioned to exceed a predetermined threshold. A range

of continuous distributions supported on [0,∞) are fitted to

rainfall in the sample where O-sWL is conditioned to exceed

a predetermined threshold. In each case, several parametric

tests and diagnostic plots are subsequently utilized to deter-

mine the best-fitting marginal distribution (see Supplement

for more details).
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Figure 2. Schematic illustrating the approach by Bender et al. (2016) for combining two isolines of level α. The (quantile-)isolines of the

joint distribution from the sample conditioning on (a) rainfall and (b) O-sWL, respectively. (c) A single (quantile-)isoline is given by the

envelope created by overlapping the isolines in (a) and (b).

As opposed to the univariate case where the region con-

taining dangerous events is uniquely defined, in the bivari-

ate and higher-dimensional settings hazard scenarios are re-

quired to specify this region. For a d-dimensional probability

distribution function F = C(F1, . . .,Fd) and α = (0,1), Sal-

vadori et al. (2011) define the critical layer LF
α of level α as

the following set:

LF
α =

{
x ∈ Rd : F(x) = α

}
. (5)

The critical layer is an iso-hyper-surface of dimension d −1.

Thus, it corresponds to a (iso)line (also referred to as a

contour line) in the bivariate case and to a (iso)surface in

the trivariate case. Each critical layer partitions Rd into

three non-overlapping exhaustive regions: a super critical

layer comprising the events considered dangerous, the criti-

cal layer itself, and a subcritical layer containing safe events.

There are several definitions of hazard scenarios, includ-

ing OR, AND, Kendall (Salvadori et al., 2004), and sur-

vival Kendall (Salvadori et al., 2013), each offering differ-

ent perceived strengths and limitations (e.g. bounded vs. un-

bounded subcritical layer, mathematical vs. physical valid in-

terpretation) (e.g. Salvadori et al., 2011; Gräler et al., 2016).

Due to the absence of any physical interpretation, Salvadori

et al. (2016) suggest the procedures à la Kendall be reserved

for preliminary assessments to gauge the expected proba-

bilities of multivariate occurrences. The OR scenario has

been extensively applied in the context of compound flood-

ing at river confluences (e.g. Wang et al., 2009; Bender et al.,

2016). Recently, Moftakhari et al. (2019) proposed incorpo-

rating the AND scenario to estimate the joint return period

of river discharge and ocean levels in the FEMA (2015) pro-

cedure for assessing compound flood hazard in tidal chan-

nels and estuaries. In line with this recommendation (and

many other previous applications where ocean levels and plu-

vial/fluvial flood drivers were analysed) the AND hazard sce-

nario is adopted in this study.

A methodology for deriving design events when adopt-

ing a conditional sampling method with two joint proba-

bility distribution functions, as proposed in this paper, is

put forward and implemented in Bender et al. (2016). The

approach exploits the strict monotonicity of the joint dis-

tribution functions, by defining the (quantile-)isoline func-

tions, for level α implicitly as FO-sWL|R(xR,qO-sWL|R(xR)) =
α and FR|O-sWL(xR,qR|O-sWL(xR)) = α, where FO-sWL|R and

FR|O-sWL are the joint distributions of the conditional sam-

ples, xR is rainfall, and qO-sWL|R(xR) and qR|O-sWL(xR) are

implicit functions of rainfall. The possible design events

comprise the outer envelope created by overlapping the two

isolines, i.e. x �−→ max{qO-sWL|R(xR),qR|O-sWL(xR)} (see

Fig. 2 for a hypothetical example illustrating the approach).

The choice of hazard scenario should reflect the type of

dangerous event, e.g. a mechanism of failure, but is often

an arbitrary and subjective choice (Serenaldi, 2015; Gouldby

et al., 2017). Volpi and Fiori (2014) noted the typical dispar-

ity in the return period of structural failure compared with

that of the loading variables and consequently proposed the

so-called structure-based return period. The structure-based

return period is derived by propagating the joint distribution

of the basic variables through a structure or response func-

tion, describing the physical dynamics of a system. Hence,

the return period of a response variable is calculated directly,

typically empirically from a (large) sample of the basic vari-

ables after fitting a multivariate statistical model (Gouldby

et al., 2017). The approach thus negates the need for a prac-

titioner to define a hazard scenario (Salvadori et al., 2016).

Serenaldi (2015) argues the concept of the return period in

univariate frequency analysis is prone to misconceptions,

only exacerbated in the multidimensional domain, and that

the risk of failure offers a more transparent and suitable mea-

sure of risk. A full risk analysis is beyond the scope of this

study but recommended as future work.

3.3 Trivariate analysis

This section provides a description of three types of multi-

variate statistical models – standard higher-dimensional cop-
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ulas (Sect. 3.3.1), pair-copula constructions (Sect. 3.3.2), and

the HT04 model (Sect. 3.3.3) – applied here to capture the

dependence between extreme rainfall, O-sWL, and ground-

water levels.

3.3.1 Standard higher-dimensional copulas

Copulas were first introduced to the field of hydrology in De

Michele and Salvadori (2003), where an Archimedean cop-

ula was used to describe the dependence between storm du-

ration and average rainfall intensity. The Archimedean cop-

ula family comprises a rich array of radially asymmetric

and symmetric copulas covering a diverse range of upper

and lower tail dependence. The strengths of all pairwise de-

pendencies are captured by a single parameter; thus stan-

dard Archimedean copulas are symmetric for any permu-

tation of indexes (exchangeability). The exchangeability of

Archimedean copulas is often considered strongly restric-

tive in higher-dimensional applications, as it implies all pair-

wise dependencies are identical (Di Bernardino and Rullière,

2016). Elliptical copulas, as the name suggests, are simply

copulas of elliptical distributions and consequently possess

many of the useful traceable properties of these multivari-

ate distributions (Fang et al., 1990). Elliptical copulas are

radially symmetric with a correlation matrix of parameters

describing the strength of the pairwise dependencies. Conse-

quently, they are non-exchangeable, only assuming the type

of dependence within each tail is identical. The trivariate

Gaussian copula CGauss is given by

CGauss (u1,u2,u3) = �R

(
�−1(u1),�

−1(u2),�
−1(u3)

)
, (6)

where �R is the joint cumulative distribution function (CDF)

of the standard trivariate normal distribution with correlation

matrix R, and �−1 is the inverse CDF of the univariate stan-

dard normal distribution. The Student t copula also possesses

a degrees of freedom parameter υ specifying the additional

probability density assigned to the joint tails compared with

the Gaussian copula ceteris paribus. The Student t copula ap-

proaches the Gaussian copula as υ → ∞. In contrast with

the Student t copula, which possesses tail dependence, the

Gaussian copula assumes asymptotic independence; i.e. the

Gaussian copula has zero tail dependence χ = 0.

Whilst bivariate applications are extensive in hydrology,

trivariate applications of standard copulas are scarce. From

analysing the dependence between drought duration, inten-

sity, and severity in New South Wales (Australia), Wong

et al. (2008) found the Gumbel copula outperformed the

Gaussian copula. In a similar application in the Weihe River

basin (China), Ma et al. (2013) reported that the trivariate

Gaussian copula gave a better fit than the Student t copula,

with both outperforming six Archimedean copulas, half of

which possessed (radial) asymmetry. In other environmen-

tal applications, the Student t copula has been shown to of-

fer a superior fit to the Gaussian copula in the presence of

tail dependence (e.g. Jane et al., 2016; Wahl et al., 2016). In

this study two elliptical copulas and three Archimedean cop-

ulas (Gumbel, Clayton, and Frank) are considered. The three

Archimedean copulas comprise a range of tail-dependence

regimes, i.e. upper, lower, and no tail dependence, and are

consequently commonly applied together to assess the type

of dependence between a set of variables (e.g. Daneshkhah

et al., 2016).

3.3.2 Pair-copula constructions

Approaches to increase the flexibility of standard higher-

dimensional copulas include techniques to remove the ex-

changeability property of Archimedean copulas (e.g. Di

Bernardino and Rullière, 2016) as well as the development

of (meta-elliptical) copulas for various meta-elliptical distri-

butions (Fang et al., 2002). Pair-copula construction (PCC)

provides greater flexibility and a more intuitive way of ex-

tending bivariate copulas to higher dimensions than these ap-

proaches (Aas et al., 2009).

PCC, originally proposed by Joe (1996), decomposes a d-

dimensional probability distribution into the product of a cas-

cade of bivariate copulas and the marginal densities of each

variable. PCC permits the free specification of d(d−1)
2 copu-

las; the first d −1 copula densities are dependence structures

of unconditional bivariate distributions, while the remain-

ing are of conditional bivariate distributions. As d increases,

the number of mathematically equally valid decompositions

soon becomes large. To ensure consistent definitions of each

distribution in a PCC, Bedford and Cooke (2001, 2002) in-

troduced the regular vine, a graphical model for specifying

the conditional dependencies in a decomposition. In the d-

dimensional case a vine consists of a set of d − 1 nested

trees. The edges of tree Tj become the nodes of tree Tj+1,

i = 1, . . .,d −2, where nodes represent the variables, and the

labels of each edge denote the subscript of a pair-copula con-

struction. A regular vine is a vine in which two edges are

joined in tree Ti+1 only if they share a common node in tree

Tj .

The class of regular vines is considered relatively broad

and encompasses a range of possible pair-copula decomposi-

tions. The canonical (or C) vine and D vine are special cases

of regular vines, defining specific ways of decomposing a

multivariate probability density. Each of the three possible

decompositions of a three-dimensional copula density are si-

multaneously both a C and a D vine (see Fig. 3 for one ex-

ample).

Gräler et al. (2013) applied a bivariate copula to annual

maximum peak discharge and its volume, as well as a trivari-

ate vine copula, by also including duration, to investigate

the effect of different modelling choices on design events.

They found evidence of design quantiles shrinking as the

number of variables considered grows (bivariate vs. trivari-

ate), referred to as the dimensionality paradox (Salvadori and

De Michele, 2013). They concluded that practitioners should
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Figure 3. General structure of three-dimensional C/D-vine copula.

strive for a balance between the number of variables consid-

ered and (numerical) complexity of the copula. In a similar

study, Daneshkhah et al. (2016) showed a vine copula outper-

formed five tested standard higher-dimensional multivariate

copulas.

An alternative pair-copula decomposition of a higher-

dimensional joint probability distribution is the nested

Archimedean construction (NAC) (e.g. Embrechts et al.,

2003). In NAC, only d − 1 copulas are user specified, whilst

the remaining copula and parameters are defined implicitly

through the construction. In addition, the bivariate copulas

are required to be Archimedean copulas, and there are strong

restrictions on the parameters. After the application of PCC

and NAC to two four-dimensional financial and environmen-

tal datasets, Aas and Berg (2009) concluded that PCC is su-

perior in terms of both goodness of fit and computational ef-

ficiency.

3.3.3 Heffernan and Tawn (HT04) approach

The HT04 approach models the conditional distribution of

the remaining variables given a specified variable exceeds a

suitably high threshold. By repeating the procedure for each

variable in turn, the model captures the dependence struc-

ture between a set of variables when at least one takes on an

extreme value. The HT04 approach thus requires no assump-

tions regarding the nature of the dependence in the joint tail

regions between a set of variables.

As opposed to the standard copula methodology, the HT04

model is generally implemented using Gumbel marginal dis-

tributions given by Yi = − log(− log[F̂i(Xi)]), where F̂i is

an estimate of the cumulative distribution function of Xi .

Alternative scales can be invoked to transform the data to

common marginals. For instance, Keef et al. (2013) describe

the advantages of using Laplace scales, particularly if any

variables exhibit a negative association. To remain consis-

tent with HT04 and most other applications of the approach,

Gumbel scales are adopted in this work. If Y−i is the vec-

tor of all the (transformed) variables excluding Yi , the HT04

model is typically implemented via the following multivari-

ate non-linear regression model:

Y−i |Yi = aYi + Y b
i Z for Yi > υ, (7)

where υ is a suitably high threshold on Yi , a and b are vec-

tors of parameters, and Z is a vector of residuals. The param-

eters a and b are estimated using maximum likelihood under

the temporary assumption that Z is normally distributed with

unknown mean and variance. Recently, Towe et al. (2019) re-

moved the temporary Gaussian assumption on the joint resid-

ual distribution by instead modelling the distribution semi-

parametrically using a Gaussian copula and kernel-density-

estimated marginals. This alteration permits new combina-

tions of Z to arise, thus enabling non-deterministic extrapo-

lation of past events; in the context of the present study this

is to be considered in future work.

An outline of the steps involved in the well-established

Monte Carlo procedure for generating a realization Y (on the

transformed scale) from the fitted model is given below (e.g,.

Keef et al., 2009a; Gouldby et al., 2014):

1. sample Yi , conditional on Yi > υ;

2. independently sample a joint residual Z;

3. calculate Y−i from Eq. (9) using relevant regression pa-

rameters, Yi , Z;

4. reject sample Y , unless Yi is a maximum.

Given the desired sample dimension, the sequence of steps

is repeated until the expected number of events where vari-

able Yi is a maximum, conditioned to exceed the threshold,

is consistent with the empirical distribution. The procedure is

repeated, conditioning on each variable in turn to ensure the

appropriate proportion of events are simulated. The sample

can then be transformed to original scales using the marginal

distributions and the inverse probability integral transform.

The extremes observed during such temporal dependent

and spatially varying events may not occur concurrently.

Keef et al. (2009a) addressed this limitation by fitting the

HT04 model to the distribution of the variable at location j

at a lag of τ in relation to an extreme value observed at loca-

tion i; i.e. the model is fitted to Yj,t+τ |Yi,t for Yi,t > u, for a

range of τ and each i �= j . Subsequently, Keef et al. (2009b)

applied the method to investigate the spatial dependence of

rainfall and river flow in Great Britain and found that both

types of extreme events become increasingly localized with

increasing return period. Similarly, multi-site, single-variable

applications are common in the literature (e.g. Lamb et al.,

2010; Diederen et al., 2019). The model has also been ap-

plied to capture the dependence in the variables contributing

to extreme sea states at a single location (e.g. Gouldby et al.,

2014) and at multiple sites (Wyncoll et al., 2016).
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4 Results

In this section, the results of the correlation analysis

(Sect. 4.1), bivariate analysis (Sect. 4.2), and trivariate anal-

ysis (Sect. 4.3) are discussed in turn. In Sect. 4.2 and 4.3 re-

sults pertain to site S22; analogous results for the other two

sites are provided in the Supplement.

4.1 Dependence analysis

Rainfall, O-sWL, and groundwater level exhibit small (τ <

0.3) but generally statistically significant correlations over a

range of time lags (Fig. 4a–c). The strength of the correla-

tion of rainfall and O-sWL with groundwater level decreases

with distance north across study sites. In addition, the peaks

in the correlations are situated at zero lag at site S20 but at

lags in the groundwater level of between 2 and 4 d at sites

S22 and S28, respectively. The peaks in these correlations

also become increasingly shallow with distance north, indi-

cating that the water table is more responsive at S20 than at

the other sites. This is likely a consequence of the lower el-

evation at S20, resulting in the water table typically laying

closest to the ground surface. Rainfall and O-sWL are the

least correlated of the variable pairs, exhibiting little varia-

tion in correlation strength or variation with lag between the

sites. To ensure that temporally coherent combinations of the

drivers are simulated, no lags are considered in either the bi-

variate or trivariate analysis. For instance, applying a lag to

the groundwater level will account for its maximum correla-

tion with O-sWL and rainfall at sites S22 and S28. However,

by the time the elevated groundwater level arises, the high

O-sWL may have dissipated and rainfall potentially ceased;

thus it is possible the drivers do not produce any compound-

ing effects.

The empirical estimates of χ(u) and χ̄(u) as u → 1

(Fig. 4d–i) provide an informal assessment of the asymp-

totic behaviour of the joint distribution of the drivers. The

informal analysis failed to provide conclusive evidence of

asymptotic dependence or asymptotic independence, an is-

sue also highlighted in Coles et al. (1999). For instance, at

site S20 the best estimate of χ for each pair of drivers is pos-

itive once u > 0.4, indicating asymptotic dependence. How-

ever, the confidence intervals for χ always include zero and

0 < χ̄(u) < 1, contradicting the conclusion of asymptotic de-

pendence. On the other hand, all pairs of drivers at all sites

returned statistically significant results in the hypothesis test

proposed in Svensson and Jones (2002), providing strong

evidence against the null hypothesis of asymptotic indepen-

dence.

4.2 Bivariate analysis

To capture the dependence between rainfall and O-sWL,

the approach outlined in Sect. 3.2 was applied for a range

of thresholds. The choice of copula family is relatively in-

sensitive to the selected threshold (see Figs. S13 to S15).

The threshold is selected as a trade-off between the bias

and variance in the copula parameter estimates. For each

of the conditioned samples a threshold of the 0.98 quan-

tile of the conditioning variable was deemed appropriate at

each of the sites. Attention from hereon in focuses on site

S22 (detailed results for the other sites are included in the

Supplement), where the 0.98 quantile threshold gives an av-

erage of 6.3 and 5.2 events per year when conditioning on

O-sWL and rainfall, respectively. The conditioning variable

was fitted to a GPD while relevant non-extreme paramet-

ric distributions were fitted to the non-conditioning variable.

The Birnbaum–Saunders(logistic) distribution was selected

to model the rainfall(O-sWL) data in the sample where O-

sWL(rainfall) is conditioned to exceed its 0.98 quantile, as it

was consistently among the best fitting of the candidate dis-

tributions at the three sites (see Figs. S16 to S18).

The quantile isolines for several return periods are shown

alongside the observations in Fig. 5. The coloured contours

on the isolines represent the relative likelihood of events. The

most-likely strategy is used as a simple way to derive pos-

sible design events associated with a given return period T

(Salvadori et al., 2011, 2013). Practically, the design event is

given by the point of maximum relative probability density

on the isoline associated with return period T . In this work,

the relative probabilities are estimated non-parametrically

via a kernel density estimate (KDE), using the ks R pack-

age (Duong, 2007). Initially KDE was applied to the obser-

vations; however, particularly for larger return periods the

design event proved highly sensitive to a small number of

observations. Hence, design events were determined by ap-

plying KDE to a large sample (N = 10000) from the two fit-

ted copulas, with sample proportions consistent with the em-

pirical distributions, and transformed back to original scales.

The probability density given by the KDE at points along the

isoline are extracted and the probabilities scaled to lie within

[0,1], hence yielding relative probabilities.

Figure 5 illustrates two types of design events, indicating

that the system experiences a change in behaviour between

20- and 50-year return periods. To further investigate the re-

turn period at which the change in design event type occurs,

design events were calculated for return periods from 1 to

100 years at a yearly interval. The processes of simulating

samples from the fitted copulas, estimating the relative like-

lihood along the isolines and extracting the most-likely event,

was then repeated to give 100 design events associated with

the 1- to 100-year return periods. The results showed that the

change occurs for return periods between approximately 20

and 40 years. For small return periods (≤ 20 years), design

event rainfall remained < 1 mm; thus they may be consid-

ered “surge-only” events. Consequently, the original design

events are only marginally conservative in terms of O-sWL

yet highly conservative with respect to rainfall. For return

periods, greater than say 40 years, design events resemble

compound events. As the return period increases, rainfall val-
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Figure 4. Assessment of correlation between the flooding drivers at site S20 (a, d, g), S22 (b, e, h) and S28 (c, f, i). (a–c) Measure

of the pairwise association τ between the drivers over various lags. Filled dots indicate the presence of statistically significant correlations

(p value < 0.05). The lag is applied to the quantity shown in bold. (d–i) Estimates of χ(u) and χ̄(u) along with the associated 95 % confidence

intervals.

ues given by the bivariate approach increasingly resemble the

corresponding univariate return period rainfall (i.e. the most-

likely event moves to the right along the x axis). Conversely,

the O-sWL of the design event given by the new and original

design approaches diverge as return periods increase (i.e. the

most-likely design event moves down along the y axis). For

instance, the O-sWL in the design event given by the bivari-

ate approach in Fig. 5 is 0.47 m less than that in the original

design approach for a 50-year return period, and the differ-

ence increases to 0.61 m for the 100-year return period event.

For return periods between 20 and 40 years both surge-only

and compound events arise, depending on the sample simu-

lated from the fitted copulas.

Most-likely design events that are surge only (for smaller

bivariate return periods) will potentially produce very dif-

ferent water levels at a structure (response variable) com-

pared to compound events (for higher bivariate return pe-

riods), ultimately resulting in substantially different design

conditions. For several flood defences in England, Gouldby

et al. (2017) illustrated the sensitivity of the return period of

a response variable – overtopping discharge – to the choice

of return period definition. To account for the variability in

design event selection, approaches have been developed to

replace single design events with ensembles of possible de-

sign realizations (Gräler et al., 2013). Testing an ensemble of

design events or adopting a structurally based return period,

where extremes are defined in terms of response variables

directly, will produce a more robust analysis. Implementa-

tion of these approaches would be particularly beneficial at

sites S20 and S28, where, although all design events can be
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Figure 5. Comparison of the design events (diamonds) obtained using the two-sided conditional sampling approach and the approach used in

the original design (triangles) for return periods of (a) 10, (b) 20, (c) 50, and (d) 100 years. Quantile-isolines are superimposed onto plots of

the observations, with blue circles (red crosses) denoting observations exceeding the rainfall (O-sWL) threshold and those exceeding neither

threshold plotted in grey. Coloured contours signify the relative likelihood of events along an isoline, where the point with the highest density

is selected as the most-likely design event. Insets in (a) and (b) magnify the isoline about the associated most-likely design event.

classified as surge only, probability density is non-zero along

other parts of the isolines (see Figs. S19 and S20). In many

cases implementing these approaches requires running com-

plex and computationally expensive process-based models

and is therefore beyond the scope of our analysis.

The conservative nature of the original design approach is

further explored by assessing how long it will take under a

given SLR for the 100-year design events selected with the

two different methods (i.e. full dependence assumption vs.

bivariate dependence modelling) to intersect. In other words,

the amount of SLR and how long it will take under differ-

ent emission scenarios, for the diamonds (i.e. bivariate de-

sign events) in Fig. 5 to move vertically and close the gap

to the triangles (i.e. design events under full dependence as-

sumption, used in the original design), is assessed. The low,

intermediate, and high scenarios from Sweet et al. (2017) are

considered (see Fig. 6, top).

The results are highly sensitive to the SLR scenario con-

sidered. For instance, the time before the O-sWL in the 50-

year bivariate approach reaches that of the corresponding

event derived using original design approach ranges from

16 years to greater than 80 years (Fig. 6, bottom). The times

before the O-sWL in the design events given by the original

design and bivariate approaches with return periods from 1

to 100 years become equal according to the three scenarios

shown in Fig. 7. The change in the characteristic of the design

events (i.e. the shift from O-sWL dominated to compound

driven) between return periods of around 20 to 40 years is

apparent. For events with return periods > 40 years, the time

required for the O-sWL of the design events given by the two

approaches to coincide increases linearly with the return pe-

riod. According to the low-SLR scenario the bivariate copula

analysis combined with the most-likely design point suggests

the currently employed assumption of full dependence be-

tween drivers is highly conservative, inadvertently incorpo-

rating safety factors sufficient to account for SLR beyond the

year 2100. Conversely, under the high-SLR scenario the bi-

variate design assessment implies that the current approach is

less conservative, with safety factors being exhausted within
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Figure 6. The top shows regional SLR projections for Miami Beach

given in Sweet et al. (2017). The bottom shows the number of years

before the O-sWL in the 50-year design event derived using the

bivariate approach reaches the corresponding value obtained using

the original design approach according to the three SLR scenarios.

approximately 30 years for all return periods considered here

(up to 100 years).

The disparity of the rainfall totals composing the design

events given by the bivariate and original design approaches

is greatest for low return periods (< 20 years), as demon-

strated in Fig. 5. It is possible that the rainfall totals will

equate in the future due to changes in rainfall patterns. How-

ever, rainfall projections were not examined here due to their

large uncertainties and the lack of guidance regarding their

coupling with SLR scenarios. Moreover, low-return-period

events (< 20 years) are not typically used in structural de-

sign.

4.3 Trivariate analysis

In this section, the bivariate analysis is extended by also in-

corporating groundwater level into the analysis. First, the

marginal extremes are analysed separately for each flood-

ing driver. The method of Smith and Weissman (1994) was

applied to each time series to identify cluster maxima. For

each variable, cluster maxima and excesses above a suffi-

ciently high threshold were fitted to a GPD. The GPD was

combined with the empirical distribution below the thresh-

old. The threshold choice was guided by appropriate criteria,

predominantly mean residual life plots (Coles, 2001). Di-

agnostic goodness of fit demonstrated the adequacy of the

Figure 7. Time before the O-sWL in the bivariate design event

derived from the two-sided sampling approach reaches the corre-

sponding value obtained from the original design approach (i.e. full

dependence assumption) under the low (green), intermediate (blue),

and high (red) SLR scenarios given in Sweet et al. (2017). Shaded

regions denote 95 % (basic) bootstrap confidence intervals.

fit plots of the GPD for the rainfall and groundwater level

series, whilst the fit to the O-sWL series was less robust

(see Figs. S21 to S29). The study area is exposed to sev-

eral flood-generating mechanisms including storms associ-

ated with tropical cyclones, mesoscale convective systems,

and extratropical systems. Hence, a single distribution is fit-

ted to events that are likely coming from several different

populations. The fit of the GPD was particularly poor for

the three largest O-sWL events. The five highest recorded

O-sWL values are associated with tropical cyclones, consis-

tent with an analysis by Villarini and Smith (2010). Never-

theless, observational records of the length available for this

study contain relatively few tropical cyclone events. Con-

sequently, risk assessments in areas exposed to tropical cy-

clone storm surges commonly utilize synthetic records of

such events, generated based on historical observations (e.g.

Nott, 2016). To generate synthetic records, wind and pressure

fields simulated from statistical models of tropical cyclone

behaviours are used to drive hydrodynamic storm surge mod-

els (Haigh et al., 2014). Replacing the observational record

with a longer synthetic record could thus be an avenue to

improve the marginal fit of the O-sWL distribution and ulti-

mately the robustness of the proposed approach. This is be-

yond the scope of the present study, where the focus is on

developing appropriate frameworks for capturing and mod-

elling dependence between the different flood drivers.

The multivariate model fitting also requires sets of inde-

pendent events. Gouldby et al. (2014) used a notional flood-

ing level, a function of the primary variables of interest, to

de-cluster the offshore loading time series data before fit-

ting the HT04 model. In other applications of the HT04 ap-
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Figure 8. (First row) Observed events at site S22 (black dots) superimposed with the T year return levels (grey lines) obtained from the

marginal distributions and corresponding design events under the full dependence assumption (red dots). Kendall’s τ coefficients are also

displayed. Observed events (black dots) alongside 10 000-year synthetic event records (red dots) generated using the (second row) Gaussian

copula, (third row) Vine copula, and (fourth row) HT04 models.
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proach, marginal de-clustered excesses of the conditioning

variable are paired with concurrent values of the remaining

variables. The nonlinear regression model (Eq. 7) is then fit-

ted to the set of events and the process is repeated condi-

tioning on each variable in turn. In the absence of a suit-

able response function that can be evaluated without employ-

ing hydraulic–hydrologic models, this is also the approach

adopted here in the application of the HT04 model. Standard

higher-dimensional copulas and vine copula models are of-

ten applied conditioning on a single variable to derive a set of

independent events. However, only conditioning on a single

variable may result in the removal of the most extreme val-

ues of the other variables. Therefore, in this work the mod-

els are applied to the entire dataset, as implemented before

for higher-dimensional copulas in Wong et al. (2008) and for

vine copulas in Bevacqua et al. (2017), among others.

At all three sites, the Gaussian and Student t copula pro-

vided a similar fit in terms of AIC, which is far superior to

that of the Archimedean copulas. The Gumbel copula was

the only one of the considered Archimedean copulas to ex-

hibit positive upper tail dependence and resulted in the best

fit among the three tested Archimedean copulas. For the three

sites, scatter plots of the observations against 10 000 years

worth of simulated data and Kendall’s τ correlation coeffi-

cients indicate the vine copula offers a superior fit compared

to the Gaussian copula (see Fig. 8 for the results at site S22

and Figs. S30 and S31 for the corresponding plots at the

other two sites). The plots also show that the HT04 model

appears the most adept of the three approaches at capturing

the dependence, particularly between O-sWL and the other

variables. Overall the sparsity of simulation data near the de-

sign events (with return periods greater than 1 year) obtained

under the assumption of full dependence demonstrates the

importance of accounting for the dependencies between the

drivers when assessing the compound flood hazard.

The return periods conditional on a range of antecedent

groundwater levels for the four bivariate (most-likely) design

events, accounting for the dependence between rainfall and

O-sWL (diamonds in Fig. 5), according to the three types of

trivariate models are shown in Fig. 9. The trivariate return pe-

riods are calculated empirically from the samples in Fig. 8.

The bivariate events with return periods of 50 and 100 years

were assigned return periods of > 1000 years by the Gaus-

sian and vine copulas for the groundwater levels considered

and hence do not appear in Fig. 9. In the case of the vine cop-

ula and Gaussian copula, the 10- and 20-year bivariate design

events exhibit sharp increases in return period about a narrow

band of groundwater levels around 1 mNGVD 29. Given that

the rainfall component of these bivariate design events is neg-

ligible (see Fig. 5a and b), the steep increases in return peri-

ods are consistent with the spike in simulations centred on

this narrow band of groundwater levels seen in the two mid-

dle plots in the middle column of Fig. 8. When extending the

original design approach to include groundwater level, the

annual exceedance event (i.e. trivariate event comprising the

Figure 9. Sensitivity of the return period of the four bivariate design

events, derived using the approach described in Sect. 3.1 and dis-

played in Fig. 4, to the antecedent catchment condition. The trivari-

ate return periods are calculated using the Gaussian copula (green),

vine copula (blue), and HT04 (red) approach.

rainfall, O-sWL, and groundwater level with univariate re-

turn periods of 1 year) possesses return periods of 2000, 227,

and 116 years according to the Gaussian copula, vine copula,

and HT04 approaches, respectively. Similar patterns emerge

when considering the co-occurrence of groundwater level

and either rainfall or O-sWL (see Figs. S32 and S33). Hence,

differences between joint probabilities under the full depen-

dence assumption currently used in FPLOS assessments and

when accounting for actual dependencies increases further in

the trivariate domain.

5 Conclusions

This paper puts forward a framework for assessing the dif-

ferent drivers of compound flooding in coastal areas of south

Florida in Miami-Dade County. The framework was derived

through a gradual transition from the original structural de-

sign approach (based on the assumption of full dependence

between rainfall and O-sWL and ignoring groundwater lev-

els) by meeting three objectives. The first objective was to

determine whether there is any statistically significant cor-

relation between extreme rainfall, O-sWL, and groundwater

level in the area. At all three study sites, rainfall, O-sWL,

and groundwater level exhibit small but statistically signifi-

cant pairwise correlations over a range of relevant time lags.

The second objective was to assess the conservative nature

of the original structural design approach that assumes full

dependence. This was achieved by combining a bivariate

analysis of the two flooding drivers rainfall and O-sWL with

regional relative SLR scenarios. In the bivariate analysis, at

site S22, low-return-period (< 20 year) design events consti-
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tuted surge-only events; hence the original design approach

is deemed highly conservative with respect to rainfall but less

so in terms of O-sWL. The approach was shown to become

ever more conservative in terms of O-sWL as return periods

increase. The overall magnitude of the conservative assump-

tion was found to be highly dependent on the SLR scenario

considered. For instance, any safety margin in the design ac-

cording to the original approach for design events with re-

turn periods greater than 35 years is exhausted in less than

32 years under the high-SLR scenario. Conversely, for events

with return periods up to 100 years, this is expected to take

more than 80 years under the low-SLR scenario. At sites S20

and S28, although the bivariate design events for return peri-

ods 1 and 100 years were surge events, probability density is

non-zero along other parts of the isoline. The final objective

was to provide robust estimates of the joint probabilities of

extreme rainfall, O-sWL, and groundwater table for imple-

mentation in future FPLOS assessments. Three types of mul-

tivariate statistical models – five standard higher-dimensional

copulas, the vine copula, and the HT04 model – were ap-

plied to capture the dependence structure in the extremes of

rainfall, O-sWL, and groundwater level. The vine copula and

HT04 models capture the dependence better than any of the

five tested standard higher-dimensional copulas.

The output of the bivariate and particularly trivariate ap-

plications can also act as boundary conditions for coupled

hydrologic–hydraulic models for assessing flood risk and de-

signing flood defence structures, among other purposes (e.g.

Serafin et al., 2019). Rigorous implementation of the bivari-

ate and trivariate methodologies, e.g. by adopting a structure-

based return period approach or using an ensemble of events,

will potentially facilitate more effective flood risk manage-

ment in low-lying coastal catchments. A natural next step

would be to explore the influence of the more robust bound-

ary conditions on the design specifications of the water con-

trol structures at the three sites. Meanwhile, the accuracy of

the GPD fit to O-sWL at the study sites (especially in the

trivariate analysis; see Figs. S22, S25 and S28) could also be

improved by utilizing synthetic tropical cyclone events and

associated storm surges. The methodologies introduced here

are readily transferable and applicable to other locations, as-

suming sufficiently long overlapping records of the different

variables are available.
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