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ABSTRACT: Mass spectrometry (MS)-based denaturing top-

down proteomics (dTDP) requires high-capacity separation and ﬁ P
extensive gas-phase fragmentation of proteoforms. Herein, we 8 § %8 e ‘ AHa
coupled capillary zone electrophoresis (CZE) to electron-capture |— 00— AV
collision-induced dissociation (ECciD) on an Agilent 6545 XT CZE-MSIMS ECciD fragmentation
quadrupole time-of-flight (Q-TOF) mass spectrometer for dTDP
for the first time. During ECciD, the protein ions were first
fragmented using ECD, followed by further activation and TS R
fragmentation by applying a CID potential. In this pilot study,

we optimized the CZE-ECciD method for small proteins (lower
than 20 kDa) regarding the charge state of protein parent ions for
fragmentation and the CID potential applied to maximize the protein backbone cleavage coverage and the number of sequence-
informative fragment ions. The CZE-ECciD Q-TOF platform provided extensive backbone cleavage coverage for three standard
proteins lower than 20 kDa from only single charge states in a single CZE-MS/MS run in the targeted MS/MS mode, including
ubiquitin (97%, +7, 8.6 kDa), superoxide dismutase (SOD, 87%, +17, 16 kDa), and myoglobin (90%, +16, 17 kDa). The CZE-
ECciD method produced comparable cleavage coverage of small proteins (i.e., myoglobin) with direct-infusion MS studies using
electron transfer dissociation (ETD), activated ion-ETD, and combinations of ETD and collision-based fragmentation on high-end
orbitrap mass spectrometers. The results render CZE-ECciD a new tool for dTDP to enhance both separation and gas-phase
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fragmentation of proteoforms.
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B INTRODUCTION

Proteoforms represent all kinds of forms of protein molecules
derived from the same gene due to genetic variations,
alternative RNA splicing, and post-translational modifications
(PTMs)." Delineation of proteoforms in cells plays a central
role in accurate understanding of protein function in biological
processes because different proteoforms from the same gene
can have divergent functions.' ® Mass spectrometry (MS)
based denaturing top-down proteomics (dTDP) aims to
comprehensively characterize proteoforms in cells, which
needs high-capacity liquid-phase separation and extensive
gas-phase fragmentation of proteoforms.””

Liquid chromatography-MS (LC-MS), typically reversed-
phase LC (RPLC), is routinely used for dTDP.”~"" The
proteomes have extremely high complexity if we consider the
number of possible proteoforms in them. For example, over
one million proteoforms have been predicted in the human
proteome.'® The high sample complexity leads to a high need
for liquid-phase separation methods with much better
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separation capacity for proteoforms. Capillary zone electro-
phoresis (CZE)-MS has been investigated by our group and
others for high-capacity separation of proteoforms, enabling
large-scale delineation of proteoforms in complex biological
systems.'”~>” CZE-MS has been proven as an alternative tool
to RPLC-MS for dTDP due to several valuable features, such
as better sensitivity than RPLC-MS,”*’ high separation
efficiency for proteoforms,” and great potential for accurate
prediction of proteoforms’ electrophoretic mobility.’’~>* The
tremendous progress of developing robust and highly sensitive
CE-MS interfaces has laid a solid foundation for deploying
CZE-MS for dTDP.>~’
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nology Advances and Biomedical Applications

Received: December 31, 2020
Revised: ~ March 8, 2021
Accepted: March 8, 2021

https://doi.org/10.1021/jasms.0c00484
J. Am. Soc. Mass Spectrom. XXXX, XXX, XXX—=XXX


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaojing+Shen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tian+Xu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Blake+Hakkila"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mike+Hare"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qianjie+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qianyi+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joseph+S.+Beckman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Liangliang+Sun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Liangliang+Sun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/jasms.0c00484&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.0c00484?ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.0c00484?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.0c00484?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.0c00484?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/jasms.0c00484?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jamsef/current?ref=pdf
https://pubs.acs.org/toc/jamsef/current?ref=pdf
https://pubs.acs.org/toc/jamsef/current?ref=pdf
pubs.acs.org/jasms?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/jasms.0c00484?rel=cite-as&ref=PDF&jav=VoR
https://pubs.acs.org/jasms?ref=pdf
https://pubs.acs.org/jasms?ref=pdf
https://pubs.acs.org/ACS_partner_journals?ref=pdf

Journal of the American Society for Mass Spectrometry

Research Article

pubs.acs.org/jasms

The need for more comprehensive gas-phase fragmentation
of proteoforms requires new fragmentation methods. Colli-
sion-based methods, i.e., collision-induced dissociation (CID)
and higher-energy collisional dissociation (HCD), are the
routine approaches for fragmentation of biomole-
cules."' ~'*"722 However, CID and HCD have some bias in
backbone cleavages, impeding complete cleavages of proteo-
forms’ backbones. Alternative gas-phase fragmentation techni-
ques have been developed to provide better characterization of
large biomolecules, includin% but not limited to electron-
transfer dissociation (ETD),"”**~* electron-capture dissocia-
tion (ECD),"' ™" and ultraviolet photodissociation
(UVPD).46749

ECD for protein fragmentation was pioneered by the
McLafferty group in the late 1990s.°”°" ECD-based protein
fragmentation is a nonergodic process, in which electrons are
captured at the protonated sites of positively charged protein
ions and energetic hydrogen atoms (H®) are ejected from the
protein ions and are captured at high-affinity sites of the
protein ions such as backbone amide, leading to backbone
cleavages with the production of ¢ and z* ions.”’ ECD
fragmentation can be improved by activating the ECD
fragment ions, e.g, collision with gas molecules, to break
their intramolecular noncovalent bonds, a process called
activated-ion ECD (AI-ECD).””>® Ge et al. obtained an
efficient characterization of large intact proteins (45 kDa)
using the AI-ECD method in 2002 on a Fourier transform
(FT) ion cyclotron resonance (ICR) mass spectrometer.53 The
FT-ICR mass spectrometer equipped with ECD has also been
employed for the characterization of integral membrane
proteins and large protein complexes.*”>* More recently, an
ECD cell has been integrated into QqQ,* Q-TOF,* ion
mobility,”* and orbitrap**>**” mass spectrometers for peptide,
protein, and protein complex fragmentation. Fort et al
demonstrated that ECD outperformed HCD for fragmentation
of ubiquitin and myoglobin on an orbitrap mass spectrometer
regarding the backbone cleavage coverage.’® Shaw et al.
reported a 93% backbone cleavage coverage for carbonic
anhydrase II (29 kDa) using ECD on an orbitrap mass
spectrometer with a direct-infusion approach,™ demonstrating
the great potential of ECD to advance dTDP via offering
extensive protein fragmentation. Direct-infusion MS is typically
deployed for ECD-based TDP, and in-front liquid-phase
separation is needed to analyze complex protein mixtures.

In this work, for the first time, we coupled CZE to ECD on a
Q-TOF mass spectrometer for highly eflicient liquid-phase
separation and extensive gas-phase fragmentation of small
intact proteins (lower than 20 kDa). An electron-capture
collision-induced dissociation (ECciD) was evaluated that
employed ECD and CID successively for protein fragmenta-
tion. We used the online CZE-ECciD Q-TOF platform to
characterize a standard protein mixture in the targeted MS/MS
mode. We optimized the charge states of protein precursor
ions and the CID potential to maximize the backbone cleavage
coverage of proteins from ECciD.

B EXPERIMENTAL PROCEDURES

Materials and Chemicals. All standard proteins, ammo-
nium acetate (NH,Ac), dithiothreitol (DTT), iodoacetamide
(IAA), and Microcon-30 kDa centrifugal filter units for buffer
exchange were purchased from Sigma-Aldrich (St. Louis, MO).
LC/MS grade water, methanol, formic acid (FA), and acetic
acid (AA) were purchased from Fisher Scientific (Pittsburgh,

PA). Urea was purchased from Alfa Aesar (Tewksbury, MA).
Hydrofluoric acid (HF) and acrylamide were purchased from
Acros Organics (Fair Lawn, NJ). The fused silica capillary (S0
pm id, 360 ym o.d.) was purchased from Polymicro
Technologies (Phoenix, AZ).

Sample Preparation. A mixture of standard proteins
consisting of ubiquitin (bovine, 8.6 kDa, 0.05 mg/mL),
myoglobin (equine, 17 kDa, 0.1 mg/mL), carbonic anhydrase
(CA, bovine, 29 kDa, 0.5 mg/mL), and bovine serum albumin
(BSA, 66 kDa, 2.0 mg/mL) was prepared in SO0 mM
NH,HCO;(pH 8.0) for the charge-state study using targeted
MS/MS. For the CID potential study using targeted MS/MS, a
standard protein mixture containing ubiquitin (0.05 mg/mL),
myoglobin (0.2 mg/mL), and CA (1 mg/mL) was used.
Carbonic anhydrase and its impurity superoxide dismutase
(SOD, bovine, 16 kDa)*' were denatured with 8 M urea at 37
°C, reduced with DTT, and alkylated with IAA, followed by
buffer exchange with a Microcon-30 kDa centrifugal filter unit.
For the buffer exchange, 200 ug protein material was loaded on
the membrane and centrifuged at 14000g to remove the sample
buffer. Then the sample was washed with 200 4L 50 mM
NH,HCO;(pH 8.0) for three times, followed by protein
recovery from the membrane using 30 uL 50 mM NH,HCO;
(pH 8.0) with pipetting and gentle vortexing.

CZE-ESI-MS/MS  Analysis. An EMASS-II CE-MS Ion
Source commercialized by CMP Scientific (Brooklyn, NY)
was used to couple CZE to a 6545XT AdvanceBio Q-TOF
(Agilent Technologies) mass spectrometer, Figure 1A% The
ECD fragmentation was achieved by a built-in electro-
magnetostatic ExD cell (e-MSion, Corvallis, OR) between
the quadrupole and the CID cell, Figure 1B.

A 7100 CE System from Agilent Technologies (Santa Clara,
CA) was used for automated operation of CZE. A 75 cm long
capillary (50 pm id, 360 um o.d.) coated with linear
polyacrylamide (LPA) with one end etched with hydrofluoric
acid was used for separation.”® " The background electrolyte
(BGE) for CZE was 5% (v/v) AA (pH ~ 2.4). The sheath
buffer was 0.2% (v/v) FA containing 10% (v/v) methanol.
High voltage (+30 kV) was applied for CZE separation. For
each CZE-MS/MS run, 120 nL of the sample was injected into
the capillary by applying 100 mbar air pressure for 56 s based
on Poiseuille’s law. The ESI emitters of the CE-MS interface
were pulled from borosilicate glass capillaries (1.0 mm o.d,,
0.75 mm id., 10 cm length) with a Sutter P-1000 flaming/
brown micropipette puller. The opening size of the ESI
emitters was 20—30 pm. The voltage for ESI ranged from +2.0
to +2.3 kV.

A 654SXT AdvanceBio Q-TOF (Agilent) was used for the
experiments. The gas temperature and flow rate of nitrogen
drying gas was 325 °C and 1 L/min. The voltage applied on
the ion transfer capillary was 0 V. The fragmentor was 175 V
and the skimmer was 65 V. The mass range was set to Standard
(3200 m/z). The slicer mode was High Resolution. The
instrument mode was Extended Dynamic Range (2 GHz). For
MS, the mass range was 600—3000 m/z, and the scan rate was
1 spectrum/s. For MS/MS, the mass range was 300—3000 m/
z, and the scan rate was set to accumulate 1 spectrum/s. The
isolation width for MS/MS was set to wide (~9 amu). For
targeted MS/MS, the max time between MS1 spectra was S s.
ECciD was used for fragmentation.

Electromagnetostatic ExD Cell. The e-MSion ExD cell
mounted on a shortened collision cell replaced Agilent’s
standard CID cell, Figure 1B. The ExD cell consists of a hot
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Figure 1. (A) Image of the CZE-MS system including a 7100 Agilent
CE system, an EMASS-II CE-MS interface from the CMP Scientific,
and an Agilent 6545XT Q-TOF mass spectrometer with an ECD cell.
The image was adapted from https://www.agilent.com/cs/library/
applications/application-nistmab-charge-variants-cief-ms-5994-
1079en-agilent.pdf. (B) Schematic of Agilent 6545XT AdvanceBio Q-
TOF mass spectrometer with built-in ExD cell (e-MSion). The inset
shows an image of the ExD cell installed between quadrupole and
shortened collision cell. The figure was kindly provided by e-MSion.

rhenium filament producing electrons and two high-temper-
ature magnets that restrain electrons radially to the central axis.
The analyte ions are guided through the cell without trapping
by seven DC electrostatic lens. An auxiliary electronics
controller for the ExD cell was interfaced to the instrument
computer.”® The ExD cell was tuned with a direct infusion of
substance P, ubiquitin, and CA using our CZE system. The
ExD cell was first tuned to achieve full ion transmission
without ECD in MS1 and saved as ECD off mode. Then the
ExD cell and filament current were optimized to achieve the
maximum ECD fragment ion intensity in MS/MS and saved as
ECD on mode. During the experiment, the ExD Controller
software communicated with the Agilent Mass Hunter software
and automatically switched the off and on modes for MS and
MS/MS. We empirically set the ECD filament current to 2.6 A
to maximize ECD fragmentation. The ECD filament stayed on
in both the ECD off and on modes. The optimized ECD
conditions, including electrostatic potentials and filament
current settings, are shown in Table 1.

Data Analysis. Annotation of standard proteins used MS/
MS spectra manually averaged over each electrophoretic peak
with Agilent’s MassHunter Qualitative Navigator B.08.00.
About 20 MS/MS spectra were averaged for each protein. The

Table 1. Optimized ExD Cell Settings for the ECD (ECD
on) and Positive Transmission without ECD (ECD off)

settings ECD on ECD off
lens 1 (V) 28.0 20.0
lens 2 (V) -23.5 12
lens 3 (V) 33.0 25.8
lens 4 (V) 41.0 27.2
lens S (V) 315 29.3
lens 6 (V) 26.0 24.7
filament bias (V) 23.0 21.8
filament current (A) 2.6 2.6

information in the averaged MS/MS spectra for each protein
including m/z and intensity of ions were exported as an .mgf
file. After that, each .mgf file was loaded into the
LcMsSpectator (https://omics.pnl.gov/software/
lemsspectator) to match and annotate fragment ions. The
sequences of standard proteins were obtained from UniProt
(https://www.uniprot.org/). Fragmentation patterns and
backbone cleavage coverages were generated by the
LcMsSpectator. Matched fragment ion types were b, y, ¢, z
(z and z°*), and w with a 20 ppm mass tolerance and minimum
S/N threshold as 3. The data were also manually checked. The
matched fragment ions of proteins exported from the
LcMsSpectator are listed in the Supporting Information.

B RESULTS AND DISCUSSION

Five types of fragment ions (b, y, ¢, z, and w ions) were
considered for the ECciD in the data analysis using the
LcMsSpectator. The z ions in this work represent both z and z*
ions. The w ions are from the secondary fragmentation of z°
ions through side-chain neutral loss that allows isobaric amino
acid residues like leucine (L) and isoleucine (I) to be
distinguished in protein sequences.”’ In the human proteome,
these two amino acids constitute approximately 16% of the
human proteome. Isoleucine and leucine offer distinctive side
chain neutral loss, *C,H; (29 Da) and °C;H, (43 Da),
respectively.

We speculated that both the charge state of protein
precursor ions and CID potential could influence the overall
cleavage coverage of proteins from ECciD in our system. The
number of positive charges carried by protein ions affects the
positive charge density of proteins, impacting the electron
capture during ECD. Too high CID potential would produce
evident CID fragmentation of the ECD fragment ions, leading
to much more complicated MS/MS spectra and challenges for
data interpretation.

Optimization of the Charge State of Protein lons for
ECciD Fragmentation. We optimized the precursor
fragmentation from ECciD regarding the protein charge state
for the protein mixture using the CZE-Q-TOF system under
targeted MS/MS mode. A low CID potential (10 V) was used
in the ECciD experiment. The CZE achieved baseline and
reproducible separation of the standard proteins with relative
standard deviations (RSDs) of migration time less than 2%,
Figure S1, which facilitated the method set up for the targeted
MS/MS analyses of the protein mixture.

We observed that it was hard to achieve extensive
fragmentation of BSA (66 kDa) and CA (29 kDa) under our
current ECciD conditions due to their relatively high masses.
The backbone cleavage coverage of BSA and CA ranged from
15% to 30%. The CZE-ECciD achieved at least 96% backbone
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Figure 2. Number of matched fragment ions (A, B) and backbone cleavage coverage (C, D) from ECciD fragmentation of myoglobin and SOD as
a function of the precursor’s charge state. Myoglobin: low charge: 1060 m/z, +16; medium charge: 893 m/z, +19; high charge: 772 m/z, +22. SOD:
low charge: 928 m/z, +17; medium charge: 830 m/z,+19; high charge: 751 m/z, +21. The CID potential was 10 V.

cleavage coverage of ubiquitin from one charge state (+7) due
to its small mass (8.6 kDa), Figure S2. Therefore, we focused
on myoglobin and SOD in this part. We selected three charge
states (low, medium, and high) for each protein to make sure
that these charge states were significantly different from each
other and had comparable intensity. The medium charge state
was the most abundant. We used the CZE-ECciD to separate
the standard protein mixture and fragment the specific charge
states of the proteins in the targeted MS/MS mode. About
20—60 MS/MS spectra were acquired for each charge state of
each protein. The MS/MS spectra were averaged, followed by
fragment identification using the LcMsSpectator software.
The protein charge state altered the number of sequence-
informative fragment ions (Figure 2A,B) and the backbone
cleavage coverage (Figure 2C,D) materially. The total number
of fragment ions dropped obviously as the charge state
changed from low to high for myoglobin and SOD. When we
examined the changes of the number of different types of
fragment ions as a function of precursor charge state, we
observed that the numbers of ¢, z, and w ions for the two
proteins all declined dramatically at the high charge states
compared to the low charge states. The result is different from
that in many other studies which generally showed increased
ECD/ETD fragmentation efficiency with higher precursor
charge states. This could be because ECD filament current was
set to the maximum value (2.6 A) in our experiment, causing
over fragmentation of precursors at high charge states.
However, the numbers of b and y ions for myoglobin show
different trends from the ¢, z, and w ions. The high charge state
of myoglobin produced more b and y ions than its low charge
state, providing clear evidence of secondary fragmentation
because the higher protein charge state benefited both the
electron capture for ECD and protein unfolding for CID. In

contrast, SOD generated fewer b and y ions at the high charge
state compared to the low charge state. Although myoglobin
(17 kDa) has a similar mass to SOD (16 kDa), it was not as
well denatured as SOD because SOD was treated with 8 M
urea, DTT and IAA before the analysis. Compared to
myoglobin ions, the complete unfolding of SOD ions most
likely resulted in a higher chance of over fragmentation of their
ECD ions during CID.

The backbone cleavage coverage data agree well with the
matched fragment ion data. Although the charge state of
precursors could influence their backbone cleavage coverage
from ECciD significantly, our CZE-ECciD Q-TOF system
provided reasonably extensive protein backbone cleavages for
the two proteins lower than 20 kDa across a wide range of
charge states, which is extremely useful for the dTDP of
complex protein mixtures in the widely used data-dependent
acquisition (DDA) mode. The system provided 66% (high,
+21) to 87% (low, +17) backbone cleavage coverage for SOD,
and 68% (high, +22) to 90% (low, +16) backbone cleavage
coverage for myoglobin. The optimized charge states of
myoglobin and SOD for ECciD in our following experiments
were +16 and +17, respectively.

Optimization of the CID Potential for ECciD
Fragmentation of Small Proteins. We further optimized
the CID potential for ECciD fragmentation of small proteins
using the CZE-ECciD system in the targeted MS/MS mode.
We focused on myoglobin (+16) and SOD (+17) in the
experiment. Six different CID potentials (0, S, 10, 15, 20, and
30 V) were studied, and triplicate. CZE-MS/MS runs were
performed for each CID potential.

When a low CID potential (0 or S V) was applied for
activating/fragmenting the ECD fragment ions, the ¢ and z
ions were the dominant types of fragment ions for the two
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Figure 3. Number of matched fragment ions and backbone cleavage coverage of myoglobin (A and C) and SOD (B and D) from CZE-ECciD as a
function of CID potential. The error bars represent the standard deviations of the number of matched fragment ions or the cleavage coverage from

triplicate CZE-MS/MS analyses.

Figure 4. Sequence and fragmentation pattern of myoglobin from CZE-ECciD with a 5-V CID potential. The matched b ions (blue color), y ions
(red color), c ions (light blue color), z ions (pink color), and w ions (gray color) were marked on the protein sequence. The four I and L amino
acids highlighted with blue circles were determined on the basis of the w ions.

proteins, Figure 3A,B. When the CID potential grew from 10
to 30 V, the b and y ions gradually replaced c and z ions and
became the dominant fragment ions. The data demonstrate a
clear transition of ECciD from ECD-like to CID-like as the
CID energy increased.

The backbone cleavage coverage data (Figure 3C,D) agree
reasonably well with the fragment ion data. The 0 and 5 V CID
potentials produced comparable overall cleavage coverage from
all fragment ions for myoglobin and SOD (~80%), which is
significantly higher than that generated by 10—30 V CID
potentials. We noted that the overall cleavage coverage of
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ubiquitin (8.6 kDa, +7) was maintained at about 90% when the
CID potential varied from 0 to 30 V. The data suggest that
ECciD with a 0—5 V CID potential on the Q-TOF is most
likely sufficient enough for extensive fragmentation of proteins
lower than 20 kDa.

We note that the backbone cleavage coverage data of
ubiquitin, myoglobin and SOD from the charge-state and CID-
potential experiments are significantly different even with the
same CID potential (10 V) and the same charge states. For
example, the ECciD with a 10-V CID potential produced 90%
and 73% cleavage coverage of myoglobin (+16) in the two
experiments. The phenomenon is because the two experiments
were performed several months apart, and it is challenging to
maintain the same performance of ECD and Q-TOF in the
two experiments.

The w ions from ECciD facilitate the distinguishment of
isobaric I and L amino acids in protein sequences. For
instance, we identified on average 219 fragment ions (c, z, w, b,
and y) of myoglobin using ECciD (5-V CID potential),
including 18 + 3 w ions from triplicate CZE-MS/MS analyses.
As shown in Figure 4, the ECciD with a 5-V CID potential
produced a comprehensive cleavage coverage of myoglobin,
and the w ions distinguished the I and L amino acids at
multiple positions in the protein sequence.

Comparison of the CZE-ECciD Data and the Liter-
ature Data Regarding Protein Cleavage Coverage. We
further compared our CZE-ECciD data with the literature data
regarding backbone cleavage coverage of proteins. Our CZE-
ECciD system produced 80—90% cleavage coverage of
myoglobin. Weisbrod et al. achieved about 70% cleavage
coverage of myoglobin by direct-infusion MS using ETD on a
21 T FT-ICR mass spectrometer.”” Riley et al. observed about
90% and 80% cleavage coverage of myoglobin on an Orbitrap
Fusion Lumos mass spectrometer using AI-ETD and a
combination of ETD and HCD (EThcD), respectively,
through a direct infusion.”” Brunner et al. obtained nearly
80% cleavage coverage of a 17.5-kDa protein using EThcD on
an Orbitrap Fusion mass spectrometer via direct infusion.”*
The data suggest that our CZE-ECciD on a Q-TOF mass
spectrometer can achieve comparable cleavage coverage of
small proteins (i.e., myoglobin) with direct-infusion MS
studies using ETD, AI-ETD, and EThcD on high-end orbitrap
mass spectrometers.

The literature direct-infusion studies mentioned above
typically employed extensive spectral averaging, while our
study only averaged the MS/MS spectra across the 1—2 min
protein peaks (myoglobin and SOD), Figure S1. In addition, in
our study, less than 200 ng of the protein mixture were
consumed for each CZE-ECciD analysis, and only a couple of
UL of the sample solution was needed in the sample vial for
sample injection for CZE-ECciD. Specifically, only 6 ng and 24
ng of ubiquitin and myoglobin were consumed in each run.
The data suggest that the CZE-ECciD platform has high
fragmentation sensitivity, which is vital for top-down
proteomics analysis of low-abundance proteoforms in complex
biological samples.

B CONCLUSIONS

We presented a novel analytical tool for dTDP of small
proteins (lower than 20 kDa) by combining highly efficient
CZE separation and extensive ECciD fragmentation of proteins
on an Agilent 6545XT Q-TOF mass spectrometer.

Some improvement in the technique and data analysis
software still needs to be done to allow routine and large-scale
dTDP using the CZE-ECciD Q-TOF system. First, we need to
enable real-time mass calibration during CZE-MS on the
Agilent Q-TOF system, which will ensure high mass accuracy
of fragment ions, improving the confidence of fragment ion
matching. Second, spectral averaging is extremely useful for
enhancing the cleavage coverage of proteins from ECD.
Incorporating some spectral averaging function in the available
dTDP software packages will allow the automated analysis of
the ECD data. Third, the widely used dTDP software packages
for proteoform identification via database search were
developed mainly based on data from Orbitrap and FT-ICR
mass spectrometers. Some efforts need to be made to modify
the current software tools for analyzing the CZE-ECciD Q-
TOF data of complex proteomes. Lastly, we need to improve
the ECciD on the Q-TOF system for extensive fragmentation
of proteins larger than 30 kDa.
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