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Abstract
Extreme sea levels (ESLs) due to typhoon-induced storm surge threaten the societal security of densely populated coastal

China. Uncertainty in extreme value analysis (EVA) for ESL estimation has large implications for coastal communities’

adaptation to natural hazards. Here we evaluate uncertainties in ESL estimation and relevant driving factors based on

hourly observations from 13 tide gauge stations and a complementary dataset derived from a hydrodynamic model. Results

indicate significant uncertainties in ESL estimations stemming from using different EVA methods, which then propagate to

the inundation assessment. Amplification factors due to sea-level rise (SLR) are highly sensitive to local relative SLR and

the shape of the exceedance probability curve, which in turn depends on the selected EVA method. The hydrodynamic

model hindcast indicates that high ESLs mainly occurred in eastern coastal China due to typhoon-induced storm surge.

Larger uncertainties in the modelled ESLs are found for the coasts of the Yangtze River Delta, and particularly in the river

mouth region. Future research and adaptation planning should prioritize these regions given expected future rising sea

level, compound flood events, and human-induced factors (e.g. subsidence). This study provides theoretical and practical

references for adaptation to ESL-related hazards along coastal China, with implications for coastal regions worldwide.
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1 Introduction

Large populations and economic activities concentrate

along coastal China. The rapid socioeconomic develop-

ment in coastal China, with many megacities such as

Tianjin, Shanghai, and Guangzhou, plays a leading role in

China’s economic development. While coastal provinces in

China account for only 13% of the land area, they are home

to 40% of the national population and contribute to more

than 60% of the gross domestic product (Fang et al. 2017).

The low elevation coastal zone (LECZ: contiguous coastal

area less than 10 m elevation) in China is about 194,000

km2, and nearly 164 million people (in the year 2011) liveSupplementary information The online version of this article
(https://doi.org/10.1007/s00477-020-01964-0).
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in the LECZ (Liu et al. 2015). China experiences frequent

coastal flooding and has the world’s largest flood-induced

mortality (Hu et al. 2018). Between 1989 and 2019,

extreme sea level (ESL) events caused by typhoon-induced

storm surge led to more than $71 billion direct economic

losses, and about 4,392 fatalities (Fang et al. 2017). Several

studies have identified coastal China as the region with the

largest exposure to ESLs and as one of the most vulnerable

areas under climate change (McGranahan et al. 2007;

Hinkel et al. 2014; Muis et al. 2016; Fang et al. 2019).

Under the Belt and Road Initiative, it is foreseeable that

coastal exposure, such as ports, bridges and critical

infrastructure, will continue to experience significant

growth. Thus, an improved understanding of ESLs in

China, and especially the associated uncertainties and their

impacts, is important and essential for coastal disaster risk

reduction and adaptation planning.

Many studies have assessed spatial and temporal chan-

ges of ESLs and relevant driving factors, showing that

ESLs are increasing at most places across the globe

(Woodworth and Blackman 2004; Marcos et al. 2009;

Menéndez and Woodworth 2010), including coastal China

(Feng and Tsimplis 2014; Feng et al. 2015, 2019). These

changes are predominantly driven by mean sea level rise,

but are also affected by other factors such as changes in

storm surge activity (related to changes in storminess), or

modifications in tidal wave patterns (e.g. due to changes in

the bathymetry) (Wahl and Chambers 2015). The current

analysis framework for ESLs contains two categories:

statistical models (e.g. Obeysekera and Park 2012) and

hydrodynamic models (Muis et al. 2016; Vousdoukas et al.

2016a, b). Wahl et al. (2017) evaluated the uncertainties in

future global SLR projections and present-day ESL esti-

mates. When compared to SLR, the uncertainties of ESL

estimates may be higher, but are typically ignored, which

may lead to over- or underestimation and limited under-

standing of coastal flooding risk, even under present-day

climate conditions. Addressing this issue of robust calcu-

lation of ESLs, and related uncertainties, is of great

importance for the design and planning of offshore adap-

tation/defense facilities (Dixon and Tawn 1994).

Uncertainties in contemporary ESL estimations are

poorly understood in coastal China. Some relevant studies

using various definitions of extreme events and distribu-

tions for parametrization are displayed in Table 1. Most

research on ESLs in coastal China is limited to a specific

station or regional area due to a lack of publicly available

observational datasets. Meanwhile, large uncertainties exist

because of various assumptions that underlie the extreme

value analysis (EVA). Firstly, ESLs are affected by SLR,

introducing non-stationarity, which needs to be accounted

for, either by using non-stationary EVA methods or

detrending, to satisfy the assumption of independence and

stationarity (Arns et al. 2013). However, this assumption is

sometimes ignored or not fully included in statistical

analysis (e.g. Li and Li 2013). Secondly, the definition of

extremes is another critical issue. In general, the annual

maximum values were taken as extremes in previous

studies, in parts because local authorities only provide

annual maxima considering confidentiality of the full (high

frequency) sea level records (e.g. Wu et al. 2017). How-

ever, different sampling methods may result in heteroge-

neous estimates of ESL return periods even when the same

distribution functions are used. Moreover, various proba-

bility distributions are available for parameterization

(Haigh et al. 2010), and those can produce different results.

In China, the Gumbel distribution or the Pearson-III type

distribution were recommended for the design of sea dike

projects (MWR 2014). Those probability functions have a

rigorous requirement in the sample size and the results are

also dependent on the parameter estimation method.

Probability distribution functions used in relevant studies

in Table 1 were also constrained to specific EVA models

without considering sampling effects and selection of dis-

tributions. Different probability functions produce different

results which potentially leads to a lack of comparability or

greater uncertainty. To our knowledge, no comprehensive

assessment of ESL uncertainty, and how it affects flood

inundation estimates, has been conducted for coastal

China.

In this study, we evaluate the uncertainties in ESLs for

China by considering the sampling of extremes and the

selection of different probability distributions. Hourly

observations from 13 tide gauges are analyzed to quantify

uncertainties of ESLs. Considering the sparse spatial cov-

erage of the tide gauges, a hydrodynamic modeling dataset,

i.e. the Global Tide and Surge Reanalysis (GTSR), is also

analyzed. Subsequently, the impacts of ESLs on the

exposure assessment to coastal flooding for China are

evaluated by a GIS-approach. Finally, we assess the impact

of SLR on extremes using the concept of AFs (Buchanan

et al. 2017). The overall aim of this study is to enhance the

understanding of ESL uncertainties and associated impacts

(e.g. for inundation analysis) in coastal China, as a basis for

developing guidance for coastal engineers and relevant

stakeholders.

2 Data and methods

2.1 Data

In this study, two kinds of sea level datasets, observations

and hydrodynamic model output are analyzed. The

observed tide gauge data are collected from the GESLA-2

database (GESLSA-2 2017; Woodworth et al. 2017).
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Hourly sea level data with at least 20-year length from 13

tide gauges along coastal China are used. Locations and

data series lengths are illustrated in Fig. 1. The publicly

available time series at nine stations stop in 1997. For each

tide gauge, we assess the quality of the raw observational

data and remove suspicious outliers, datum shifts, and time

shifts. The observations at Hong Kong are obtained from

combining the records at North Point (1962–1986) and

Quarrybay (since 1986) after datum adjustment (Ding et al.

2001).

GTSR is the first global dataset comprising ESLs

derived from a hydrodynamic model (Muis et al. 2016).

ESLs were constructed by combining tidal levels and surge

levels for the period of 1979–2014. Tidal levels were

simulated with the Finite Element Solution model and

storm surge with the Global Tide and Surge Model, forced

by 6 hourly meteorological fields from the ERA-Interim

climate reanalysis (Muis et al. 2016). Numerical simula-

tions were carried out at a 10-min temporal resolution.

These simulations were resampled to daily maximum

values.

2.2 Methods

2.2.1 Extreme value analysis (EVA)

The procedure of EVA is shown in Fig. 2 with five main

analysis steps (following Arns et al. 2013; Wahl et al.

2017).

The five main steps of the EVA procedure include:

1. Detrending: annual average sea level is subtracted

year-by-year to remove interannual mean sea level

variability and rise. This approach has been widely

used in previous studies (e.g., Muis et al. 2016; Wahl

et al. 2017).

2. Sampling: two distinct approaches are used to sample

extreme events, i.e. the Block Maximum (BM) method,

which fits a Generalized Extreme Value (GEV) distri-

bution; and the Peaks Over Threshold (POT) method,

which fits a Generalized Pareto distribution (GPD).

The BM method selects the r largest values for each

time interval (r-largest). In this study, we select a range

from r = 1 value/yr to r = 10 values/yr. The POT

method uses threshold exceedances. To be able to

compare the two approaches, we select percentile

thresholds leading to sample sizes that match the ones

used in the r-largest analysis (i.e. 99.88% leads to r = 1

value/yr on average, 99.44% leads to r = 10 values/yr

on average). We also select other thresholds between

the 98th and 99.25th percentiles in 0.25 percentile

increments (98%, 98.25%, 98.5%, 98.75%, 99% and

99.25%). In addition to the GEV and GPD, we also use

the widely applied Gumbel distribution, fitted to annual

maxima values (GUM-AMAX), as reference.

3. Declustering: to ensure independence of all identified

extreme events, a decluster time of 3 days (72 h)

between events is adopted (Arns et al. 2013; Wahl et al.

2017; Feng and Tsimplis 2014). This is the approxi-

mate time most storm surge events influence sea levels

at the coast.

4. Parameter estimation: a range of parameter estimation

methods exist, such as L-Moments, least squares

method, Method of Moments, or Maximum Likelihood

Estimation (MLE). As the effects of choosing a certain

parameter estimation method are small compared to

other key uncertainties (Wahl et al. 2017), this study

uses MLE to estimate parameters.

5. Distributions: we fit GEV and GPD distributions for

the BM and POT sampling methods, respectively. In

the GEV (Eq. 1), when n = 0, it is the Type I

distribution, i.e. the Gumbel distribution; when n\ 0,

it is the Type III distribution, i.e. the Weibull

distribution; when n[ 0, it becomes the Type II

distribution, i.e. the Fréchet distribution. The GEV is

also used to fit the time series from r = 1 to r = 10

values per year (GEV-r1, GEV-r2, …, GEV-r10).

Table 1 Case studies of extreme sea levels (ESLs) in China

Reference Region Definition of extremes and distribution

Xu and Huang (2011) 1 TG near Shanghai Annual maximum; GEV

Li and Li (2013) 12 TGs of Guangdong Annual maximum; Gumbel and Pearson-III

Feng and Tsimplis (2014) 19 TGs along China POT: 99.9%; BM: 1, 3, 5, 7; GPD

Feng and Jiang (2015) Hong Kong, Xiamen Annual maximum; Gumbel, Weibull, GPD, and GEV

Feng et al. (2015) 12 TGs along China Percentile of 99.9%, 99%, 90%; GPD

Wu et al. (2017) 8 TGs of Shandong Annual maximum; Pearson-III

Wang and Zhou (2017) Hong Kong and Macau POT; GPD

TG tide gauge, GEV generalized extreme value, GPD generalized pareto distribution, POT Peaks of thresholds, BM block maxima
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Fig. 1 a Locations of 13 tide gauges and b the lengths of hourly records

Fig. 2 Analysis procedure of for extreme value analyses (modified after Arns et al. 2013)
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Where l is the location parameter, n is the shape param-

eter, and r is the scale parameter. As mentioned above, the

Gumbel distribution is also used to fit the annual maximum

sea levels (GUM-AMAX). The GPD distribution (Eq. 2),

where u is the threshold value, is used for the POT samples.

GPD ¼ 1� 1þ ny
r

� ��1=n

; ~r ¼ rþ n u� lð Þ ð2Þ

Thus, various EVA methods are used to estimate return

periods of ESLs by considering the uncertainties from

different sampling strategies and probability functions. The

Root Mean Square Error (RMSE), Akaike Information

Criterion (AIC), Bayesian Information Criterion (BIC), and

Nash-Sutcliff efficiency (NSE) are used to evaluate the

goodness-of-fit in a quantitative sense (Sadegh et al. 2017).

Lower RMSE/AIC/BIC indicate higher model quality.

NSE closer to 1 indicates a better fit.

2.2.2 Bias correction

Bias exists between observations and the hydrodynamic

model output from GTSR (Muis et al. 2016). We apply

quantile-mapping to quantify the bias at each tide gauge

station (e.g., Arns et al. 2015; Cid et al. 2018). Empirical

Cumulative Distribution Functions (CDFs) for the mod-

elled and observed values are obtained, and the differences

are added to the CDFs of the modelled values. The bias

correction is then interpolated from the 13 tide gauge

locations to the remainder of the GTSR output points. The

interpolation is performed by using the inverse distance

weighted (IDW) method (e.g. Arns et al. 2015). After

accounting (and correcting) for the model bias, we apply

the same EVA methods as outlined above to the GTSR

data. To validate the performance of the model dataset vs

the tide gauge data set, we only use the overlapping time

series of the modeled GTSR and observed tide gauge

records. The RMSE and Pearson correlation coefficient are

calculated based on daily maximum sea levels, before and

after bias correction.

2.2.3 Inundation analysis

Inundated areas due to coastal flooding are calculated using

a bath-tub method with a GIS-based approach (e.g. Kebede

and Nicholls 2012; Muis et al. 2017). The Digital Elevation

Model (DEM) used here is SRTM (Shuttle Radar Topog-

raphy Mission) with a spatial resolution of 90 m 9 90 m

(Rabus et al. 2003). Before inundation modeling, ESLs and

elevation should be referenced to the same vertical datum.

ESLs calculated here are referenced to mean sea level,

whereas global elevation datasets are generally referenced

to the EGM96 geoid. The datum offset is corrected using

the same approach as in Muis et al. (2017), by using mean

dynamic ocean topography to correct for the difference

between mean sea level and the geoid. Ignoring such datum

correction can significantly affect impact studies (Cheng

and Chen 2017), leading to over- or underestimation. We

quantify inundated areas as those lower than the estimated

ESLs and hydrologically connected to the sea. Flood pro-

tection measures are not included in this study.

2.2.4 Impacts of relative SLR on ESLs

SLR modulates extreme value distributions and can lead to

large changes in the frequencies with which certain critical

thresholds are exceeded (Buchanan et al. 2017; Vitousek

et al. 2017). To illuminate the impact of SLR on the

occurrence probability of ESLs for Coastal China, we

consider uniform SLR associated with two Representative

Concentration Pathway (RCP) scenarios for 2050 and

2100. For 2050 SLR is 18 cm for RCP2.6 and 23 cm for

RCP8.5; for 2100 SLR is 38 cm for RCP2.6 and 85 cm for

RCP8.5 (Church et al. 2013; Hinkel et al. 2014; Fang et al.

2019). We also account for land subsidence, but due to

missing data only for Hong Kong, as an example, where

observed subsidence was about 19.0–459.0 mm/yr in

coastal reclaimed lands (Wang et al. 2016); here we

assume subsidence will continue at this location at a rate of

10 mm/yr until 2050.

We follow the method by Buchanan et al. (2017) to

calculate AFs caused by SLR for the 13 tide gauges. The

AF is N z� dð Þ=N zð Þ, where N z� dð Þ refers to the new

expected number of exceedances of a specified level with

SLR. AFs are estimated (exemplarily) with the GPD-

99.75% method.

AF zð Þ ¼ N z� dð Þ
N zð Þ

¼
1� d

r
n

� 	
þ z� l

0
BB@

1
CCA

�1
n

for n 6¼ 0
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d
r

� 	
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3 Results and discussion

3.1 Uncertainties in EVA results from different
sources

3.1.1 Sampling

To evaluate uncertainties stemming from the sampling

method, we apply the BM and POT methods. The size of

extreme samples depends on the sampling method and the

record length. We select thresholds in the POT analysis to

obtain similar sample sizes as with the BM method. Taking

the Kanmen station as an example (Fig. 3a), the extreme

events selected by POT are very different to the ones

selected with the annual maxima method (the most com-

monly applied BM approach). The latter often includes

lower events as it is forced to extract the maximum value

each year (or more if r-largest is used). By selecting annual

maxima, not necessarily all relevant extremes are used, as

multiple extreme events may have happened in a given

year (as shown in Fig. 3a). In this regard the POT method

has the advantage of including all events above a given

threshold. However, it is critical to select an appropriate

threshold. Threshold selection is a tradeoff between vari-

ance and bias. If the threshold is too low, the sample will

include non-extreme events, which may lead to poor fitting

of the extreme value distribution. If the threshold is too

high, the samples will be too small for robust estimation of

the distribution parameters. Different methods have been

proposed for selecting thresholds automatically, e.g.

Northrop et al. (2017) and Caballero-Megido et al. (2018).

Different sampling methods may result in different ESL

estimates, especially for long return periods. As POT

captures extremes better than BM for Kanmen, the esti-

mated return levels derived with the GPD distribution are

also higher than those derived with the GEV distribution

(Fig. 3b). For Lusi (Fig. 4a), the estimated ESLs with r = 2

values/yr and r = 3 values/yr and from fitting the GEV

distribution are higher than those from using annual max-

ima (r = 1 value/yr). These results imply that the BM

method (and annual maxima in particular) misses some

important extremes, leading to an underestimation of ESLs.

Fig. 3 a Sampling of the extreme values using the block maxima (BM) and peaks of thresholds (POT) methods for the Kanmen station; b the

resulting return sea levels for the Generalized Extreme Value (GEV) and Generalized Pareto Distribution (GPD)
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3.1.2 Distribution functions

To identify which sampling method and probability dis-

tribution leads to the highest and the lowest ESLs, Fig. 5

demonstrates the maximum and the minimum ESLs

including the underlying EVA method. The maximum

ESLs with a 100-year return period at 6 tide gauges are

obtained with the GUM-AMAX and the GEV-r1 methods

(Fig. 5c). Substantial differences occur at some stations.

For example, the 100-year ESLs at Kanmen are 4.69 m and

5.18 m derived with the GUM-AMAX and the GEV-r1

methods, respectively, a difference of * 0.5 m

Fig. 4 Results for the Generalized Extreme Value (GEV) distribution with r = 1–10 values/yr and the Generalized Pareto Distribution (GPD)

with thresholds leading to the same sample sizes as in the r-largest approach; results are shown for four tide gauges
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(Supplementary Figure S1). The differences across EVA

methods become larger for longer return period events

(Fig. 5a, b and Supplementary Figure S1). The estimated

minimum ESLs are obtained mainly by the GPD distribu-

tion with the threshold of 98% (Fig. 5d). For the POT

method, a lower threshold results in a larger sample, which

in turn tends to lead to lower ESLs associated with the

different return periods.

To examine the goodness-of-fit, four metrics are calcu-

lated between the empirical and theoretical distributions

(Supplementary Table S1). These measures are highly

sensitive to sample size; therefore, it is inappropriate to use

them if the sample size varies greatly. For example, RMSE

converges when sample sizes increase (lower thresholds).

Amidst all EVA methods, for most tide gauges the best fit

is derived with GPD-98% or GPD-98.25% as these have

the largest sample sizes. The goodness-of-fit can be directly

compared for GEV-r1, GUM-r1 and GPD-r1 as they have

similar sample sizes (Supplementary Table S1). When

subtracting the goodness-of-fit metrics derived with all

methods from those derived with GUM-r1, most tide

gauges have positive residual RMSE/NSE/AIC/BIC values,

indicating that Gumbel performs poorly compared to GEV

and GPD. For RMSE/AIC/BIC, 10 out 13 tide gauges show

better results for GPD than for GEV; in terms of NSE,

GEV and GPD perform similarly.

Fig. 5 Maximum and minimum estimated extreme sea levels (ESLs)

at individual tide gauges among 29 sampling methods and distribu-

tions: a ESLs of 50-year return period; b ESLs of 100-year return

period; c method leading to maximum 100-year return period ESLs;

d methods leading to minimum 100-year return period ESLs
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3.2 Spatial patterns of ESLs and associated
uncertainties

To validate the modeled GTSR dataset with observed tide

gauge data, Supplementary Figure S2 shows scatter density

plots of modeled and observed daily maximum sea levels

for 13 China tide gauges. The majority of the daily maxima

lie close to the perfect-fit line, indicating good model

performance. However, at all 13 tide gauges, the slope of

the least-squares line is lower than the perfect-fit line,

indicating that the modeled sea levels are lower than

observed sea levels. The RMSE, based on the modeled and

observed daily maximum sea levels, is between 0.12 and

0.47 m with an average of 0.28 m (Std. is 0.12 m) (Sup-

plementary Table S2). The Pearson correlation coefficients

for modeled and observed daily maximum sea levels are

between 0.55 and 0.85, the average correlation coefficient

is 0.71 (Std. is 0.1). The correlation coefficients at the

Kanmen, Zhapo and Xiamen stations are higher than 0.8

(p\ 0.05). Compared to the average RMSE of 0.17 m

based on 472 tide gauges globally (Muis et al. 2016), the

average RMSE of 0.28 m over eastern China is larger.

Similarly, the average correlation coefficient for modeled

and observed daily maximum sea levels of China is 0.71,

which is lower than the average correlation coefficient of

0.77 in tropical regions (Muis et al. 2016). The underesti-

mation of ESLs and poorer performance are primarily due

to those regions being prone to tropical cyclones. It is also

inevitable due to the relatively coarse resolution of

bathymetry and meteorological forcing (Muis et al. 2016).

As outlined above, we apply a bias correction to improve

the model results. After the bias correction, the average

RMSE is 0.27 m (Std. is 0.1 m), indicating an improve-

ment of the hindcast dataset (Supplementary Table S2). We

also validate ESLs for various return periods between

modeled and observed ESLs (Supplementary Figure S3).

After bias correction, we apply the same EVA methods

as were applied to the observed dataset to the modeled and

corrected GTSR dataset. As shown in Fig. 6a, ESLs in

coastal China present high spatial heterogeneity and large

uncertainty. High ESLs are mainly found in the eastern

coastal China, such as Fujian, Zhejiang, Shanghai, Jiangsu

and the southern coastal areas of Guangxi and Guangdong.

The high ESLs along the southeastern coasts are mainly

caused by typhoon-induced storm surge (Shi et al. 2015).

Figure 6b shows the difference of the maximum and

minimum values of 100-year return period ESLs for the

different EVA methods. Large differences of up to 1.0 m

exist along the coasts of the Yangtze River Delta, espe-

cially in the river mouth of the Yangtze River and the

Qiantang River. In many places, the differences caused by

using different EVA methods are larger than the projected

SLR by the middle of the century (18 cm and 23 cm for

RCP2.6 and 8.5) and in some cases even larger than the

projected SLR for the end of the century (38 cm and 85 cm

for RCP2.6 and 8.5).

Fig. 6 a Difference of the maximum minus the minimum value of

100-year return period ESLs; b maximum extreme sea levels of

100-year return period ESLs along coastal China; c spatial

distribution of potentially inundated areas from 100-year return

period ESLs (based on maximum values) at the county level
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3.3 Effects of uncertainties in ESLs
on inundation assessment

As discussed before, large uncertainties exist in estimated

ESLs by applying various EVA methods, which also leads

to uncertainties in the estimation of inundation. To assess

the sensitivity of inundation under various EVA methods,

inundation is calculated by using the EVA method leading

to maximum and minimum ESLs. The results show the

potential inundated areas under maximum 100-year return

period ESLs along coastal China is about 58,549 km2

(* 0.62% of the national land area), while inundated areas

under minimum 100-year return period ESLs reduce to

about 54,568 km2 (* 0.58% of the national land area).

This is a difference of 7.3% compared to the minimum,

equivalent to about 0.04% of the national land areas. The

inundated areas are mainly located in the Yangtze River

Delta, north plain in Jiangsu Province, the Pearl River

Delta and coastal areas along the Bohai Sea (Fig. 6c). The

Yangtze River Delta (including Shanghai, northern Zhe-

jiang and southern Jiangsu) and the northern plain of

Jiangsu are the largest continuous inundated areas, because

of the wide flat areas along the Yangtze River Delta coasts.

Other potential inundated areas (but smaller depth) are

mainly distributed along the coastal areas of Zhejiang and

Fujian, Shandong peninsula, and Liaodong peninsula.

3.4 Effects of SLR on ESL estimates

The amplification of critical ESL frequencies is highly

sensitive to local relative SLR and characteristics of the

ESL frequency curves (Hunter 2012). SLR not only

amplifies ESL probabilities but also changes the relation of

critical thresholds (e.g. tied to flood levels) and the asso-

ciated frequency (Buchanan et al. 2017). As shown in

Fig. 7, under the RCP8.5 scenario, the 100-year return

period ESL at the Haikou station is shortened to about

22-years to a 50-year return period by the end of this

century. A similar pattern is also observed for Hong Kong,

where the 100-year return period ESL is shortened to

23-years by 2050, and to 1-year by 2100 due to SLR.

Human-induced subsidence will exacerbate this situation.

If subsidence is considered, the 100-year return period ESL

will shorten to nearly 1-year by 2050 already (Supple-

mentary Table. S3). Apart from Hong Kong, subsidence

has been widely observed in other coastal cities, such as

Shanghai and Tianjin (Hu et al. 2004), but good estimates

of the actual rates are missing and hence not included here.

The reduction in return periods (or increase in frequency of

exceedances) will decrease the efficiency of coastal pro-

tection, assuming that no adaptation takes place.

Figure 8 shows AFs of 50-year and 200-year ESLs and

the ratio between them for the two SLR scenarios. Under

RCP8.5, a median sixfold increase (range: 2–98) in the

annual number of 50-year ESL events is expected by 2050.

These values increase significantly with a median

1614-fold increase (range: 16–292,680) by 2100.

3.5 Sources of uncertainty

In this study, we focus on inter-model uncertainties in EVA

methods for ESL estimation stemming from sampling of

extreme events and probability distributions. The results

show substantial uncertainties exist in the ESL estimation

and results from assessing inundation can vary when dif-

ferent ESL input is used. However, there are still other

sources of uncertainty involved which could be further

analyzed in future works.

First, the parameters involved in EVA analysis have

their own range of uncertainty, usually expressed as

Fig. 7 ESLs for the Hong Kong

and Haikou tide gauge stations

under SLR scenarios and

subsidence scenario (for Hong

Kong) (dashed grey line for

display purpose, sampling

method is annual maximum and

distribution is GEV)
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confidence levels; these intra-model uncertainties may be

even larger than the inter-model uncertainties considered

here. Regional frequency analysis (Weiss and Bernardara

2013) and Monte Carlo or Bayesian modelling (Coles and

Tawn 2005) approaches make better use of the available

information and can lead to a reduction of the uncertainties

in the ESL estimation.

Second, in this study we assume ESLs to be stationary.

For coastal China, mean sea level rise was 3.4 mm/yr

between 1980 and 2019 (SOA 2020). SLR is removed

through the detrending procedure based on the annual

mean. This has been shown to be inappropriate in areas

where the changes in ESLs are not caused by changes in

mean sea level alone, but also due to other factors such as

changes in the tides (Mudersbach et al. 2013) or due to

changes in storm tracks (Lai et al., 2020). It has been

observed that the frequency of tropical cyclones has

increased over southeastern China (Yeh et al. 2010). The

northwestward-moving track, which indicates likely land-

fall on the southeastern coasts of China, has become the

most dominant track mode after the late 1990s (He et al.

2015). Trends of ESLs range from 2.0 to 14.1 mm/yr

between 1954 and 2012 (Feng and Tsimplis 2014) with

large differences across tide gauges. This suggests that in

some places, in addition to changes in mean sea level,

storm surge climate has also changed. Hence, although

here we use the annual mean to detrend the timeseries,

future research could explore the effect of different

detrending methods, for example based on mean high water

(Arns 2013), on the estimation of ESLs.

In addition to differences in the ESL estimation by using

different EVA methods, uncertainties in inundation

assessment could also result from the applied GIS method

and quality of the elevation and water level datasets. The

bath-tub approach employed here may overestimate the

flooded areas. Dynamic models usually exhibit a higher

accuracy but at much higher computational cost, which is

not feasible at the large spatial scale considered in this

study (Vousdoukas et al. 2016a, b). Thus, the bath-tub

approach is still widely used for large-scale coastal flood

mapping (Muis et al. 2016; Kulp and Strauss 2019). There

is likely also an overestimation of potentially inundated

areas due to ignoring existing flood protection. On the other

hand, some coastal mega-cities are suffering serious land

Fig. 8 AFs for 50-year (a, e) and 200-year (b, f) ESLs estimated by GPD-99.75% for 2050 (a, b) and 2100 (e, f) assuming SLR associated with

RCP8.5; AF ratio between the 200-year to 50-year ESLs for 2050 (c) and 2100 (g)
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subsidence due to over-exploitation of underground fluids

(e.g. Tianjin and Shanghai), causing underestimation of

flood extent. Furthermore, the GTSR dataset underesti-

mates ESLs in areas prone to tropical cyclones. Only

limited number of tide gauge sites and limited length of

observational time-series are available. Thus, there is an

urgent need for longer open-accessible observational

datasets to better understand ESLs along coastal China.

Other threats, such as waves, precipitation (Wahl et al.

2015) and riverine floods (Ikeuchi et al. 2017) may com-

pound in coastal cities, especially for those located in delta

areas (e.g. Shanghai), which will lead to more serious flood

impacts.

4 Conclusions

In conclusion, based on observations from 13 tide gauges

we showed that the use of various EVA methods consid-

ering different sampling methods and probability distribu-

tions leads to large uncertainties in the ESL estimation.

Uncertainties and spatial variations of ESLs were further

explored using the GTSR dataset derived from hydrody-

namic modeling. High ESLs are found mainly along the

eastern coastal China due to typhoon-induced storm surge.

Large differences of ESLs derived from different EVA

methods exist along the coasts of the Yangtze River Delta,

especially in the river mouth. Areas exposed to coastal

flooding in China are also assessed by a GIS-approach

(ignoring coastal protection measures). Results show that

potentially inundated areas when using minimum or max-

imum 100-year return period ESLs are 54,568 km2 and

58,549 km2, respectively. This is a difference of 7.3%

compared to the minimum, equivalent to about 0.04% of

the national land area, and shows that the uncertainties of

ESL propagate to the inundation assessment. The largest

potentially inundated areas are located in the Yangtze

River Delta (including Shanghai, northern of Zhejiang and

southern of Jiangsu) and the north plain of Jiangsu. Those

coastlines with wide flat areas (e.g. Jiangsu Province) are

more prone to flooding associated with ESL events.

SLR leads to an amplification of the probabilities (or

frequencies) with which given critical water level thresh-

olds are exceeded; AF values are highly sensitive to the

SLR scenario considered and the shape of the probability

distribution. SLR and subsidence will significantly shorten

the return periods of given ESLs, which will decrease the

efficiency of coastal protection, assuming that no adapta-

tion takes place. Hotspots identified here need more

attention considering future SLR, compound flood events,

and human-induced factors.

This study highlights the necessity to carefully assess

present-day ESLs with appropriate EVA methods. If more

observations would be available, a more detailed and

robust analysis could be carried out. Given the existing

data constraints our analysis provides important insights

into the existing uncertainties and a baseline for future

assessments to set the protection standards and give a better

understanding of ESLs for coastal engineers and relevant

stakeholders.
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