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Abstract

Let A be an n × n positive definite Hermitian matrix with all eigenvalues
between 1 and 2. We represent the permanent of A as the integral of some ex-
plicit log-concave function on R2n. Consequently, there is a fully polynomial
randomized approximation scheme (FPRAS) for perA.
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1. Introduction and main results

Let A = (aij) be an n×n complex matrix. The permanent of A is defined
as

perA =
∑
σ∈Sn

n∏
k=1

akσ(k),

where Sn is the symmetric group of all n! permutations of the set {1, . . . , n}.
Recently, in particular because of connections with quantum optics, there
was some interest in efficiently computing (approximating) perA, when A is
a positive semidefinite Hermitian matrix, see [1], [4] and references therein.
As is known, in that case perA is real and non-negative, see, for example,
Chapter 2 of [9]. In [1], Anari, Gurvits, Oveis Gharan and Saberi constructed
a deterministic polynomial time algorithm approximating the permanent of a
positive semidefinite n×n Hermitian matrix A within a multiplicative factor
of cn for c = e1+γ ≈ 4.84, where γ ≈ 0.577 is the Euler constant. Similarly to
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the case of a non-negative real matrix A, the problem of exact computation
of perA for a positive semidefinite matrix A is #P-hard [4].

If A is a non-negative real matrix, a fully polynomial randomized approx-
imation scheme (FPRAS) for perA was constructed by Jerrum, Sinclair and
Vigoda [6]. Given an n × n matrix non-negative A and a real 0 < ε < 1,
the algorithm of [6] produces in (n/ε)O(1) time a number α approximating
perA within relative error ε. The algorithm is randomized, meaning that
the number α satisfies the desired condition with a sufficiently large proba-
bility p, for example, with p = 0.9 (then by running m independent copies of
the algorithm and taking the median of the computed αs, one can make the
probability of error exponentially small in m). No such algorithm is known in
the case of a positive semidefinite Hermitian A, and the question of existence
of an FPRAS in that case was asked in [1] and [4].

In this note, we show that that there is a fully polynomial randomized
approximation scheme (FPRAS) for permanents of positive definite matrices
with the eigenvalues between 1 and 2. Namely, we represent perA for such
an n × n matrix A as the integral of an explicitly constructed log-concave
function fA : R2n −→ R+, so that∫

R2n

fA(t) dt = perA.

There is an FPRAS for integrating log-concave functions, see [8] for the de-
tailed analysis and history of the Markov Chain Monte Carlo approach to the
problem of integrating log-concave functions and a closely related problem
of approximating volumes of convex bodies. Hence the above integral repre-
sentation and an integration algorithm from [8] instantly produce an FPRAS
for computing the permanent of a positive definite Hermitian matrix with all
eigenvalues between 1 and 2. We note that a standard interpolation argu-
ment implies that the problem of computing perA exactly remains #P-hard,
when restricted to positive definite matrices with eigenvalues between 1 and
2. Indeed, the set Xn of such n × n matrices has a non-empty interior in
the vector space of all n × n Hermitian matrices. Given an arbitrary n × n
Hermitian matrix B, one can draw a line L through B and an interior point
of Xn. Since the restriction of the permanent onto that line is a univariate
polynomial of degree at most n, by computing the permanent perAi for n+1
distinct matrices Ai ∈ (L∩Xn), we would be able to compute perB exactly
by interpolation, which is a #P-hard problem, cf. [4].
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We consider the space Cn with the standard norm

‖z‖2 = |z1|2 + . . .+ |zn|2, where z = (z1, . . . , zn) .

We identify Cn = R2n by identifying z = x + iy with (x, y). For a complex
matrix L = (ljk), we denote by L∗ =

(
l∗jk
)

its conjugate, so that

l∗jk = lkj for all j, k.

We prove the following main result.

Theorem 1.1. Let A be an n×n positive definite matrix with all eigenvalues
between 1 and 2. Let us write A = I+B, where I is the n×n identity matrix
and B is an n × n positive semidefinite Hermitian matrix with eigenvalues
between 0 and 1. Further, we write B = LL∗, where L = (ljk) is an n × n
complex matrix. We define linear functions `1, . . . , `n : Cn −→ C by

`j(z) =
n∑
k=1

ljkzk for z = (z1, . . . , zn) .

Let us define fA : Cn −→ R+ by

fA(z) =
1

πn
e−‖z‖

2
n∏
j=1

(
1 + |`j(z)|2

)
.

1. Identifying Cn = R2n, we have

perA =

∫
R2n

fA(x, y) dxdy.

2. The function fA : R2n −→ R+ is log-concave, that is,
if (x1, y1), (x2, y2) ∈ R2n and if

x = αx1 +(1−α)x2 and y = αy1 +(1−α)y2 for some 0 ≤ α ≤ 1

then
fA (x, y) ≥ fαA(x1, y1)f

1−α
A (x2, y2).

2. Proofs

We start with a known integral representation of the permanent of a
positive semidefinite matrix.
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2.1. The integral formula

Let µ be the Gaussian probability measure in Cn with density

1

πn
e−‖z‖

2

where ‖z‖2 = |z1|2 + . . .+ |zn|2 for z = (z1, . . . , zn) .

For the expectations of products of coordinates, we have

E zizj =

∫
Cn

zizj dµ(z) =

{
1 if i = j

0 if i 6= j.

Let f1, . . . , fm and g1, . . . , gm be linear functions Cn −→ C and let B = (bij)
be the m×m matrix with

bjk = E (fjgk) =

∫
Cn

fj(z)gk(z) dµ(z) for j, k = 1, . . . ,m.

Then the Wick formula states that

perB = E (f1 · · · fmg1 · · · gm) . (1)

The proof is based on the observation that each side of the formula (1) is
linear in each fj and anti-linear in each gk, so it suffices to check (1) when all
fj and all gk are coordinate linear functions zs, and then it readily follows,
see, for example, Section 3.1.4 of [3] for details or appendices B and C in [5]
for extensions.

Suppose now that fj = gj = `j, where `1, . . . , `m : Cn −→ C are linear
functions and let B = (bjk) be the m×m matrix,

bjk = E `j`k =

∫
Cn

`j(z)`k(z) dµ(z) for j, k = 1, . . . ,m.

Hence B is a positive semidefinite Hermitian matrix and (1) implies that

perB = E
(
|`1|2 · · · |`m|2

)
=

∫
Cn

|`1(z)|2 · · · |`m(z)|2 dµ(z). (2)

Next, we need a simple lemma.

Lemma 2.1. Let q : Rm −→ R+ be a positive semidefinite quadratic form.
Then the function

h(x) = ln
(
1 + q(x)

)
− q(x)

is concave.
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Proof. It suffices to check that the restriction of h onto any affine line x(τ) =
τa+ b with a, b ∈ Rm is concave. Thus we need to check that the univariate
function

G(τ) = ln
(
1 + (ατ + β)2 + γ2

)
− (ατ + β)2 − γ2 for τ ∈ R,

where α 6= 0, is concave, for which it suffices to check that G′′(τ) ≤ 0 for
all τ . Via the affine substitution τ := (τ − β)/α, it suffices to check that
g′′(τ) ≤ 0, where

g(τ) = ln
(
1 + τ 2 + γ2

)
−
(
τ 2 + γ2

)
.

We have

g′(τ) =
2τ

1 + τ 2 + γ2
− 2τ

and

g′′(τ) =
2(1 + τ 2 + γ2)− 4τ 2

(1 + τ 2 + γ2)2
− 2

=
2(1 + τ 2 + γ2)− 4τ 2 − 2 (1 + τ 2 + γ2)

2

(1 + τ 2 + γ2)2

=
2 + 2τ 2 + 2γ2 − 4τ 2 − 2− 2τ 4 − 2γ4 − 4τ 2 − 4γ2 − 4τ 2γ2

(1 + τ 2 + γ2)2

=− 6τ 2 + 2γ2 + 2τ 4 + 2γ4 + 4τ 2γ2

(1 + τ 2 + γ2)2
≤ 0

and the proof follows.

2.2. Proof of Theorem 1.1

We have
perA = per (I +B) =

∑
J⊂{1,...,n}

perBJ ,

where BJ is the principal |J | × |J | submatrix of B with row and column
indices in J and where we agree that perB∅ = 1. Let us consider the Gaussian
probability measure in Cn with density π−ne−‖z‖

2
. By (2), we have

perBJ = E
∏
j∈J

|`j(z)|2
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and hence

perA = E
n∏
j=1

(
1 + |`j(z)|2

)
=

∫
R2n

fA(x, y) dxdy,

and the proof of Part 1 follows.
We write

e−‖z‖
2

n∏
j=1

(
1 + |`j(z)|2

)
= e−q(z)

n∏
j=1

(
1 + |`j(z)|2

)
e−|`j(z)|

2

,

where q(z) = ‖z‖2 −
n∑
j=1

|`j(z)|2.

By Lemma 2.1 each function (1+ |`j(z)|2)e−|`j(z)|2 is log-concave on R2n = Cn

and hence to complete the proof of Part 2 it suffices to show that q is a positive
semidefinite Hermitian form. To this end, we consider the Hermitian form

p(z) =
n∑
j=1

|`j(z)|2 =
n∑
j=1

∣∣∣∣∣
n∑
k=1

ljkzk

∣∣∣∣∣
2

=
n∑
j=1

∑
1≤k1,k2≤n

ljk1ljk2zk1zk2

=
∑

1≤k1,k2≤n

ck1k2zk1zk2 ,

where

ck1k2 =
n∑
j=1

ljk1ljk2 for 1 ≤ k1, k2 ≤ n.

Hence for the matrix C = (ck1k2) of p, we have C = L∗L. We note that
B = LL∗ and that the eigenvalues of B lie between 0 and 1. Therefore, the
eigenvalues of L∗L lie between 0 and 1 (in the generic case, when L is invert-
ible, the matrices LL∗ and L∗L are similar). Consequently, the eigenvalues
of C lie between 0 and 1 and hence the Hermitian form q(z) with matrix
I − C is positive semidefinite, which completes the proof of Part 2.

2.3. Concluding remarks

The computational complexity status of the problem of approximating
the permanent of a given positive semidefinite matrix remains somewhat
mysterious, in particular when compared to the approximation problem for
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the permanent of a non-negative matrix. On one hand, there is an indication
that the positive semidefinite case should be the easier one. Namely, as
it follows from the Wick formula (Section 2.1), we have perB = 0 for a
positive semidefinite matrix B if and only if B has a zero row (and hence a
zero column), so to decide whether perB = 0 is trivial in this case. There
are classical efficient algorithms to decide whether perB = 0 for a non-
negative matrix B, see, for example, Chapter 1 of [7], but none of those
algorithms can be called trivial. On the other hand, the currently known
deterministic polynomial time approximation algorithms, while achieving an
exponential multiplicative factor of cn approximation in both cases, achieve
a better constant c for non-negative matrices: c =

√
2 ≈ 1.41 in the non-

negative case [2] and c = e1+γ ≈ 4.84 in the positive semidefinite case.
There is a randomized polynomial time approximation algorithm in the

non-negative case [6], but no such algorithm is currently known in the positive
semidefinite case. An anonymous referee suggested that a natural next step
would be to find an FPRAS for positive definite matrices with condition
numbers bounded from above by a constant, fixed in advance. It is not clear
whether the method of this paper can be extended to that more general case.
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