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Abstract

Tensors are becoming prevalent in modern applications such as medical imaging and digital
marketing. In this paper, we propose a sparse tensor additive regression (STAR) that models
a scalar response as a flexible nonparametric function of tensor covariates. The proposed
model effectively exploits the sparse and low-rank structures in the tensor additive regression.
We formulate the parameter estimation as a non-convex optimization problem, and propose
an efficient penalized alternating minimization algorithm. We establish a non-asymptotic
error bound for the estimator obtained from each iteration of the proposed algorithm, which
reveals an interplay between the optimization error and the statistical rate of convergence.
We demonstrate the efficacy of STAR through extensive comparative simulation studies,
and an application to the click-through-rate prediction in online advertising.
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1. Introduction

Tensor data have recently become popular in a wide range of applications such as medical
imaging (Zhou et al., 2013; Li and Zhang, 2017; Sun and Li, 2017), digital marketing (Zhe
et al., 2016; Sun et al., 2017), video processing (Guo et al., 2012), and social network analysis
(Park and Chu, 2009; Hoff, 2015), among many others. In such applications, a fundamental
statistical tool is tensor regression, a modern high-dimensional regression method that relates
a scalar response to tensor covariates. For example, in neuroimaging analysis, an important
objective is to predict clinical outcomes using subjects’ brain imaging data. This can be
formulated as a tensor regression problem by treating the clinical outcomes as the response
and the brain images as the tensor covariates. Another example is in the study of how
advertisement placement affect users’ clicking behavior in online advertising. This again can
be formulated as a tensor regression problem by treating the daily overall click-through rate
(CTR) as the response and the tensor that summarizes the impressions (i.e., view counts) of
different advertisements on different devices (e.g., phone, computer, etc.) as the covariate.
In Section 6, we consider such an online advertising application.

Denote yi as a scalar response and Xi ∈ Rp1×p2...×pm as an m-way tensor covariate,
i = 1, 2, . . . , n. A general tensor regression model can be formulated as

yi = T ∗(Xi) + εi, i = 1, 2, . . . , n,

where T ∗(·) : Rp1×p2...×pm → R is an unknown regression function, {εi}ni=1 are scalar
observation noises. Many existing methods assumed a linear relationship between the
response and the tensor covariates by considering T ∗(Xi) = 〈B,Xi〉 for some low-rank tensor
coefficient B (Zhou et al., 2013; Rabusseau and Kadri, 2016; Yu and Liu, 2016; Guhaniyogi
et al., 2017; Raskutti et al., 2019). In spite of its simplicity, the linear assumption could
be restrictive and difficult to satisfy in real applications. Consider the online advertising
data in Section 6 as an example. Figure 1 shows the marginal relationship between the
overall CTR and the impressions of an advertisement delivered on phone, tablet, and PC,
respectively. It is clear that the relationship between the response (i.e., the overall CTR)
and the covariate (i.e., impressions across three devices) departs notably from the linearity
assumption. A few work considered more flexible tensor regressions by treating T ∗(·) as a
nonparametric function (Suzuki et al., 2016; Kanagawa et al., 2016). In particular, Suzuki
et al. (2016) proposed a general nonlinear model where the true function T ∗(·) is consisted of
components from a reproducing kernel Hilbert space, and used an alternating minimization
estimation procedure; Kanagawa et al. (2016) considered a Bayesian approach that employed
a Gaussian process prior in learning the nonparametric function T ∗(·) on the reproducing
kernel Hilbert space. One serious limitation of both work is that they assume that the tensor
covariates are exact low-rank. This assumption is difficult to satisfy in practice, as most
tensor covariates are not exact low-rank. When the tensor covariates are not exact low-rank,
the performance of these two methods deteriorates dramatically; see Section 5.2 for more
details. In addition, the Gaussian process approach is computationally very expensive, which
severely limits its application in problems with high-dimensional tensor covariates.

In this paper, we develop a flexible and computationally feasible tensor regression
framework, which accommodates the nonlinear relationship between the response and the
tensor covariate, and is highly interpretable. Specifically, for an m-way tensor covariate
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Figure 1. The overall click-through rate v.s. the impression of a certain advertisement that is
delivered on phone (left plot), tablet (middle plot), and PC (right plot), respectively. The black solid
curves are the fitted locally weighted scatter-plot smoother (LOESS) curves.

Xi ∈ Rp1×...×pm , we consider a sparse tensor additive regression (STAR) model with

T ∗(Xi) =

p1∑
j1=1

· · ·
pm∑
jm=1

f∗j1...jm([Xi]j1...jm), (1)

where [Xi]j1...jm denotes the (j1, . . . , jm)-th element of Xi, and f∗j1...jm(·) is a nonparametric
additive component belonging to some smooth function class. Approximating the additive
component f∗j1...jm(·) using spline series expansions, T ∗(Xi) can be simplified to have a
compact tensor representation of spline coefficients. To reduce the number of parameters
and increase computational efficiency, we assume that the corresponding high-dimensional
coefficient tensors have low-rank and group sparsity structures. Both low-rankness and
sparsity are commonly used dimension reduction tools in recent tensor models (Li and Zhang,
2017; Sun et al., 2017; Sun and Li, 2017; Hao et al., 2018; Zhang, 2019; Zhang and Han, 2019).
Besides effectively reducing computational cost, the group sparsity structure also significantly
improves the model interpretability. For instance, in the online advertising example, when
the daily overall CTR is regressed on the impressions of different advertisements on different
devices, the group sparsity enables our STAR model to select effective advertisement and
device combinations. Such a type of advertisement selection is important for managerial
decision making and has been an active research area (Choi et al., 2010; Xu et al., 2016).
To efficiently estimate the model, we formulate the parameter estimation as a non-convex
optimization and propose a penalized alternating minimization algorithm. By fully exploiting
the low-rankness and group sparsity structures as well as developing an efficient algorithm,
our STAR model may run faster than the tensor linear regression in some experiments.
For example, in the online advertising application, our STAR model can reduce the CTR
prediction error by 50% while using 10% computational time of the linear or nonlinear tensor
regression benchmark models. See Section 6 for more details.

Besides methodological contributions, we also obtain some strong theoretical results
for our proposed method. In particular, we first establish a general theory for penalized
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alternating minimization in the context of tensor additive model. To the best of our knowl-
edge, this is the first statistical-versus-optimization guarantee for the penalized alternating
minimization. Previous work mostly focus on either the EM-type update (Wang et al., 2014;
Balakrishnan et al., 2017; Hao et al., 2017), or the truncation-based update (Sun et al.,
2017). Those techniques are not directly applicable to our scenario; see Section 4.1 for
detailed explanations. Next, we derive a non-asymptotic error bound for the estimator from
each iteration, which demonstrates the improvement of the estimation error in each update.
Finally, we apply this general theory to our STAR estimator with B-spline basis and the
group-lasso penalty, and show that the estimation error in the (t+ 1)-th iteration satisfies

E(t+1) ≤ ρt+1E(0)︸ ︷︷ ︸
optimization error

+
C1

1− ρ
n
−2κ−1
2κ+1 log(pdn)︸ ︷︷ ︸

statistical error

,

where 0 < ρ ≤ 1/2 is a contraction parameter, κ is the smoothness parameter of the function
class, p = max{p1, . . . , pm}, and dn is the number of spline series. The above error bound
reveals an interesting interplay between the optimization error and the statistical error. The
optimization error decays geometrically with the iteration number t, while the statistical
error remains the same as t grows. When the tensor covariate is of order one (i.e., a vector
covariate), our problem reduces to the vector nonparametric additive model. In that case,
our statistical error matches with that from the vector nonparametric additive model in
Huang et al. (2010).

1.1 Other related work

The problem we consider in our work is fundamentally different from those in tensor
decomposition and tensor response regression. As a result, the technical tools involved and
the theoretical results are quite different.

Tensor decomposition (Chi and Kolda, 2012; Anandkumar et al., 2014; Yuan and Zhang,
2016; Sun et al., 2017) is an unsupervised learning method that aims to find the best low-rank
approximation of a single tensor. In comparison, our STAR model is a supervised learning
method that seeks to capture the nonlinear relationship between the response and the tensor
covariate. Although the low-rank structure of the tensor coefficient is also employed in our
estimation, our objective and the technical tools involved are entirely different from the
typical tensor decomposition problem. Additionally, one fundamental difference is that our
model works with multiple tensor samples, while tensor decomposition works only with a
single tensor. As a result, our error bound is a function of the sample size, which is different
from that in tensor decomposition.

Another line of related work considers tensor response regression, where the response
is a tensor and the covariates are scalars (Zhu et al., 2009; Li and Zhang, 2017; Sun and
Li, 2017). These work also utilized the low-rank and/or sparse structures of the coefficient
tensors for dimension reduction. However, tensors are treated as the response in tensor
response regression, whereas they are treated as a covariates in our approach. These are
two very different types of models, motivated by different applications. The tensor response
regression aims to study the change of the tensor (e.g., the brain image) as the covariate
(e.g., disease status) varies. However, the tensor regression model focuses on understanding
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the change of a scalar outcome (e.g., the overall CTR) with the tensor covariates. As a
result, technical tools used for theoretical analysis are also largely different.

1.2 Notations and structure

Throughout this article, we denote scalars by lower case characters such as x, vectors
by lower-case bold characters such as x, matrices by upper-case bold characters such as
X and tensors by upper-case script characters such as X . Given a vector x ∈ Rp and
a set of indices T ⊂ {1, . . . , p}, we define xT such that xTj = xj if j ∈ T and xTj = 0,
otherwise. For a square matrix A, we denote σmin(A) and σmax(A) as its minimum and
maximum eigenvalues, respectively. For any function f on [a, b], we define its `2(P ) norm

by ‖f(x)‖2 =
√∫ b

a f
2(x)dP (x). Suppose X ,Y ∈ Rp1×p2×···×pm are m-way tensors. We

define tensor inner product 〈X ,Y〉 =
∑

j1,...,jm
Xj1...jmYj1...jm . The tensor Frobenius norm

is defined as ‖X‖F =
√∑p1

j1=1 · · ·
∑pm

jm=1X 2
j1...jm

. The notation a . b implies a ≤ C1b for

some constant C1 > 0. For any two sequences {an}∞n=1, {bn}∞n=1, we write an = O(bn) if
there exists some positive constant C2 and sufficiently large n such that an ≤ C2bn. We also
write an � bn if there exist constants C3, C4 > 0 such that C3an ≤ bn ≤ C4an for all n ≥ 1.

The rest of the article is organized as follows. Section 2 introduces our sparse tensor
additive regression model. Section 3 develops an efficient penalized alternating minimization
algorithm for model estimation. Section 4 investigates its theoretical properties, followed by
simulation studies in Section 5 and a real online advertising application in Section 6. The
appendix collects all technical proofs.

2. Sparse Tensor Additive Model

Given i.i.d. samples {yi,Xi}ni=1, our sparse tensor additive model assumes

yi = T ∗(Xi) + εi =

p1∑
j1=1

· · ·
pm∑
jm=1

f∗j1...jm([Xi]j1...jm) + εi, i = 1, . . . n, (2)

where f∗j1...jm(·) is the nonparametric additive function belonging to some smooth function
class H, and {εi}ni=1 are i.i.d. observation noises.

Our STAR model utilizes spline series expansion (Huang et al., 2010; Fan et al., 2011)
to approximate each individual nonparametric additive component. Let Sn be the space of
polynomial splines and {ψh(x)}dnh=1 be a normalized basis for Sn, where dn is the number
of spline series and supx |ψh(x)| ≤ 1. It is known that for any fn ∈ Sn, there always exists
some coefficients {β∗h}

dn
h=1 such that fn(x) =

∑dn
h=1 β

∗
hψh(x). In addition, under suitable

smoothness assumptions (see Lemma 28), each nonparametric additive component f∗j1...jm(·)
can be well approximated by functions in Sn. Applying the above approximation to each
individual component, the regression function T ∗(Xi) in (2) can be approximated by

T ∗(Xi) ≈
p1∑
j1=1

· · ·
pm∑
jm=1

dn∑
h=1

β∗j1...jmhψj1...jmh([Xi]j1...jm). (3)

The expression in (3) has a compact tensor representation. Define Fh(X ) ∈ Rp1×...×pm such
that [Fh(X )]j1...jm = ψj1...jmh([X ]j1...jm), and B∗h ∈ Rp1×...×pm such that [B∗h]j1...jm = β∗j1...jmh
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for h ∈ [dn], where [k] denotes {1, . . . , k} for an integer k ≥ 1. Consequently, we can write

p1∑
j1=1

· · ·
pm∑
jm=1

dn∑
h=1

β∗j1...jmhψj1...jmh([Xi]j1...jm) =

dn∑
h=1

〈
B∗h,Fh(Xi)

〉
. (4)

Therefore, the parameter estimation of the nonparametric additive model (2) reduces to the
estimation of unknown tensor coefficients B∗1, . . . ,B∗dn . The coefficients B∗1, . . . ,B∗dn include a
total number of O(dnΠm

j=1pj) free parameters, which could be much larger than the sample
size n. In such ultrahigh-dimensional scenario, it is important to employ dimension reduction
tools. A common tensor dimension reduction tool is the low-rank assumption (Chi and
Kolda, 2012; Anandkumar et al., 2014; Yuan and Zhang, 2016; Sun et al., 2017). Similarly,
we assume each coefficient tensor B∗1, . . . ,B∗dn satisfies the CP low-rank decomposition (Kolda
and Bader, 2009):

B∗h =

R∑
r=1

β∗1hr ◦ · · · ◦ β∗mhr, h = 1, . . . , dn, (5)

where ◦ is the vector outer product, β∗1hr ∈ Rp1 , . . . ,β∗mhr ∈ Rpm , and R� min{p1, . . . , pm}
is the CP-rank. This formulation reduces the effective number of the parameters from
O(dnΠm

j=1pj) to O(dnR
∑m

j=1 pj), and hence greatly improves computational efficiency.
Under this formulation, our model can be written as

T ∗(Xi) ≈
dn∑
h=1

〈
Fh(Xi),

R∑
r=1

β∗1hr ◦ · · · ◦ β∗mhr
〉
. (6)

Remark 1 Our model in (6) can be viewed as a generalization of several existing work.
When ψj1...jmh(·) in (4) is an identity basis function (ψj1...jmh([X ]j1...jm) = [X ]j1...jm) with
only one basis (dn = 1), (6) reduces to the bilinear form (Li et al., 2010; Hung and Wang,
2012) for a matrix covariate (m = 2), and the multilinear form for linear tensor regression
(Zhou et al., 2013; Hoff, 2015; Yu and Liu, 2016; Rabusseau and Kadri, 2016; Sun and Li,
2017; Guhaniyogi et al., 2017; Raskutti et al., 2019) for a tensor covariate (m ≥ 3).

In addition to the CP low-rank structure on the tensor coefficients, we further impose a
group-type sparsity constraint on the components β∗khr. This group sparsity structure not
only further reduces the effective parameter size, but also improves the model interpretability,
as it enables the variable selection of components in the tensor covariate. Recall that in
(6) we have β∗khr = (β∗khr1, . . . , β

∗
khrpk

)> for k ∈ [m], h ∈ [dn], r ∈ [R]. We define our group
sparsity constraint as∣∣∣ {j ∈ [pk]

∣∣∣ dn∑
h=1

R∑
r=1

β∗2khrj 6= 0
}

︸ ︷︷ ︸
Sk

∣∣∣ = sk � pk, for k ∈ [m]. (7)

where |Sk| refers to the cardinality of the set Sk. Figure 2 provides an illustration of the
low-rank (5) and group-sparse (7) coefficients when the order of the tensor is m = 3. When
m = 1, our model with the group sparsity constraint reduces to the vector sparse additive
model (Ravikumar et al., 2009; Meier et al., 2009; Huang et al., 2010).
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Figure 2. An illustration of the low-rank and group-sparsity structures in a collection of three-way
tensor coefficients (B∗1 , . . . ,B∗dn

). If one or more of the coefficients at the colored locations are
non-zero, the cardinality of S1 increases by one.

Remark 2 Consider the tensor order as 2. The model in (6) reduces to

T ∗(Xi) ≈
dn∑
h=1

〈
Fh(Xi),

R∑
r=1

β∗1hrβ
∗>
2hr

〉
∈ Rp1×p2 .

For instance, suppose
∑dn

h=1

∑R
r=1 β

∗2
1hr1 = 0. This implies the first row of RHS is all 0 and

thus encourages variable selection in T ∗(Xi) correspondingly.

3. Estimation

In this section, we describe our approach to estimate the parameters in our STAR model
via a penalized empirical risk minimization which simultaneously satisfies the low-rankness
and encourages the sparsity of decomposed components. In particular, we consider

min
β1hr,...,βmhr

1

n

n∑
i=1

(
yi −

dn∑
h=1

〈 R∑
r=1

β1hr ◦ · · · ◦ βmhr,Fh(Xi)
〉)2

︸ ︷︷ ︸
L(β1hr,...,βmhr)

+P(β1hr, . . . ,βmhr), (8)

where L(β1hr, . . . ,βmhr) is the empirical risk function, in which the low-rankness is guaran-
teed due to the CP decomposition, and P(·) is a penalty term that encourages sparsity. To
enforce the sparsity as defined in (7), we consider the group lasso penalty (Yuan and Lin,
2006), i.e.,

P(β1hr, . . . ,βmhr) =

m∑
k=1

(
λkn

pk∑
j=1

√√√√ dn∑
h=1

R∑
r=1

β2khrj

)
, (9)

where {λkn}mk=1 are tuning parameters. It is worth mentioning that our algorithm and
theoretical analysis can accommodate a general class of decomposable penalties (see Condition
12 for details), which includes lasso, ridge, fused lasso, and group lasso as special cases.

For a general tensor covariate (m > 1), the optimization problem in (8) is a non-
convex optimization. This is fundamentally different from the vector sparse additive model
(Ravikumar et al., 2009; Huang et al., 2010) whose optimization is convex. The non-convexity
in (8) brings significant challenges in both model estimation and theoretical development.
The key idea of our estimation procedure is to explore the bi-convex structure of the
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empirical risk function L(β1hr, . . . ,βmhr) since it is convex in one argument while fixing
all the other parameters. This motivates us to rewrite the empirical risk function into a
bi-convex representation, which in turn facilitates the introduction of an efficient alternating
minimization algorithm.

Denote ϑkrj = (βk1rj , βk2rj , . . . , βkdnrj)
> ∈ Rdn×1, ϑkj = (ϑ>k1j , . . . , ϑ

>
kRj)

> ∈ RRdn×1 for

k ∈ [m], j ∈ [pk], and bk = (ϑ>k1, . . . , ϑ
>
kpk

)>. We also define the operator
∏◦
k∈[m] ak =

a1 ◦ · · · ◦am. Remind that Fh(X ) ∈ Rp1×...×pm with [Fh(X )]j1...jm = ψj1...jmh([X ]j1...jm), see
(4). We use [Fkh (Xi)]j to refer to the m− 1 way tensor when we fix the index along the k-th
way of Fh(Xi) as j, e.g., [F1

h(Xi)]j ∈ Rp2×...×pm . Define

F kirj =
(〈 ◦∏

u∈[m]\k

βu1r, [Fk1 (Xi)]j
〉
, . . . ,

〈 ◦∏
u∈[m]\k

βudnr, [Fkdn(Xi)]j
〉)>

,

and denote F kij = (F k>i1j , . . . , F
k>
iRj)

> ∈ RRdn×1. In addition, we denote F k
j = (F k1j , . . . , F

k
nj)
>,

F k = (F k
1 , . . . ,F

k
pk

), and y = (y1, . . . , yn)>. Thus, when other parameters are fixed,
minimizing the empirical risk function (8) with respect to bk is equivalent to minimizing

L
(
b1, · · · , bm

)
=

1

n
‖y − F kbk‖22. (10)

Note that the expression of (10) holds for any k ∈ [m] with proper definitions on F k and bk.

Remark 3 Intuitively, ϑkj summarizes all the colored coefficients in Figure 2 and bk
summarizes all the coefficients along k-th mode. By this definition, we can more clearly
describe the effect of group sparsity: when ϑkj is a zero vector, the j-th variable in k-th mode
is irrelevant.

Based on this reformulation, we are ready to introduce the alternating minimization
algorithm that solves (8) by alternatively updating b1, · · · , bm. A desirable property of
our algorithm is that updating bk given others can be solved efficiently via the group-wise
coordinate descent based on the back-fitting algorithm (Ravikumar et al., 2009). The detailed
algorithm is summarized in Algorithm 1. With a little abuse of notations, we redefine the

penalty term P(b
(t)
k ) =

∑pk
j=1

√∑dn
h=1

∑R
r=1(β

(t)
khrj)

2.

In our implementation, we use ridge regression to initialize Algorithm 1, and set tuning
parameters λ = λkn for k = 1, . . . ,m for simplicity. When solving Problem (11), we use the
warm start and active set to accelerate the algorithm. The basic idea of the two tricks is

illustrated as follows: for each t, we use the solution b
(t−1)
k as the initial value to update

b
(t)
k , i.e., the warm start; when computing b

(t)
k , we may only consider an active set of k such

that b
(t−1)
k is nonzero. Those two tricks have shown great successes in the implementations

of the coordinate-descent-type algorithms such as the R package glmnet (Friedman et al.,
2010). The overall computational complexity of Algorithm 1 is O(Tmkn(Rp)m), where T is
the number of iterations for alternating minimization, m is the order the tensor, k is the
number of iteration for group-wise coordinate descent to solve Problem (11), n is the sample
size, R is the tensor rank and p is the maximum dimension of each tensor mode.
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Algorithm 1 Penalized Alternating Minimization for Solving (8)

1: Input: {yi}ni=1, {Xi}ni=1, initialization {b(0)1 , . . . , b
(0)
m }, the set of penalization parameters

{λ1n, . . . , λmn}, rank R, iteration t = 0, stopping error ε = 10−5.
2: Repeat t = t+ 1 and run penalized alternating minimization.
3: For k = 1 to m

b
(t+1)
k = argmin

bk

L(b
(t)
1 , . . . , b(t)m ) + λknP(b

(t)
k ), (11)

where L is defined in (10).
4: End for.
5: Until maxk ‖b(t+1)

k − b(t)k ‖2 ≤ ε , and let t = T ∗.

6: Output: the estimate of each component, {b(T
∗)

1 , . . . , b
(T∗)
m }.

4. Theory

In this section, we first establish a general theory for the penalized alternating minimization
in the context of the tensor additive model. Several sufficient conditions are proposed
to guarantee the optimization error and statistical error. Then, we apply our theory to
the STAR estimator with B-spline basis functions and the group-lasso penalty. To ease
the presentation, we consider a three-way tensor covariate (i.e, m = 3) in our theoretical
development, while its generalization to an m-way tensor is straightforward.

4.1 A general contract property

To bound the optimization error and statistical error of the proposed estimator, we introduce
three sufficient conditions: a Lipschitz-gradient condition, a sparse strongly convex condition,
and a generic statistical error condition. For the sake of brevity, we only present conditions
for the update of b1 in the main paper, and defer similar conditions for b2, b3 to Section 2
in the appendix.

For each vector x ∈ RpdnR×1, we divide it into p equal-length segments as in Figure 3. A
segment is colored if it contains at least one non-zero element, and a segment is uncolored if all
of its elements are zero. We let w(x) be the indices of colored segments in x and Es be the set
of all (pdnR)-dimensional vectors with less than C0s colored segments, for some constant C0.
Mathematically, for a vector x ∈ RpdnR×1, denote w(x) := {j ∈ [p]|

∑dnR
h=1 x

2
(j−1)dnR+h 6= 0}

and Es := {x ∈ RpdnR×1||w(x)| ≤ C0s}.

Figure 3. An illustration of the group sparse vector. A segment is colored if it contains at least
one non-zero element, and a segment is uncolored if all of its elements are zero.

Define a sparse ball Bα,s(b∗) := {b ∈ RpdnR : ‖b− b∗‖2 ≤ α, b ∈ Es} for a given constant
radius α. Moreover, the noisy gradient function and noiseless gradient function of empirical
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risk function L defined in (8) of order-3 with respect to b1 can be written as

∇1L(b1, b2, b3) =
2

n
F 1>

(
F 1b1 − y

)
(12)

∇1L̃(b1, b2, b3) =
2

n
F 1>

(
F 1b1 − F 1∗b∗1

)
,

where F 1∗
irj =

(
〈β∗21r ◦ β∗31r, [F1

1 (Xi)]j〉, . . . , 〈β∗2dnr ◦ β
∗
3dnr

, [F1
dn

(Xi)]j〉
)>
.

Condition 4 (Lipschitz-Gradient) For b2 ∈ Bα2,s2(b∗2), b3 ∈ Bα3,s3(b∗3), the noiseless

gradient function ∇1L̃(b∗1, ·, b∗3) satisfies µ2n-Lipschitz-gradient condition, and ∇1L̃(b∗1, b2, ·)
satisfies µ3n-Lipschitz-gradient condition with high probability. That is,〈

∇1L̃(b∗1, b2, b
∗
3)−∇1L̃(b∗1, b

∗
2, b
∗
3), b1 − b∗1

〉
≤ µ2n

∥∥b1 − b∗1∥∥2∥∥b2 − b∗2∥∥2〈
∇1L̃(b∗1, b2, b3)−∇1L̃(b∗1, b2, b

∗
3), b1 − b∗1

〉
≤ µ3n

∥∥b1 − b∗1∥∥2∥∥b3 − b∗3∥∥2,
with probability at least 1− δ1 for any 0 < δ1 < 1. Here, µ2n, µ3n may depend on δ1.

Remark 5 Condition 4 defines a variant of Lipschitz continuity for ∇1L̃(b∗1, ·, b∗3) and

∇1L̃(b∗1, b2, ·). Note that the gradient is always taken with respect to the first argument of
L(·, ·, ·) and the Lipschitz continuity is with respect to the second or the third argument.
Analogous Lipschitz-gradient conditions were also considered in Balakrishnan et al. (2017);
Hao et al. (2017) for the population-level Q-function in the EM-type update.

Next condition characterizes the curvature of noisy gradient function in a sparse ball. It
states that when the second and the third argument are fixed, L(·, ·, ·) is strongly convex
with parameter γ1n with high probability. As shown later in Section 4.2, this condition holds
for a broad family of basis functions.

Condition 6 (Sparse-Strong-Convexity) For any b2 ∈ Bα2,s2(b∗2), b3 ∈ Bα3,s3(b∗3), the
loss function L(·, ·, ·) is sparse strongly convex in its first argument, namely

L(b∗1, b2, b3)− L(b1, b2, b3)− 〈∇1L
(
b∗1, b2, b3), b

∗
1 − b1〉 ≥

γ1n
2
‖b1 − b∗1‖22,

with probability at least 1 − δ2 for any 0 < δ2 < 1. Here, γ1n > 0 is the strongly convex
parameter and may depend on δ2.

Next we present the definition for dual norm, which is a key measure for statistical error
condition. More details on the dual norm are referred to Negahban et al. (2012).

Definition 7 (Dual norm) For a given inner product 〈·, ·〉, the dual norm of P is given
by

P∗(v) := sup
u∈Rp\{0}

〈u,v〉
P(u)

.

As a concrete example, the dual of `1-norm is `∞-norm while the dual of `2-norm is
itself. Suppose v is a p-dimensional vector and the index set {1, 2, . . . , p} is partitioned
into NG disjoint groups, namely G = {G1, . . . , GNG}. The group norm for v is defined

10
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as P(v) =
∑NG

t=1 ‖vGt‖2. According to Definition (7), the dual of P(v) is defined as
P∗(v) = maxt ‖vGt‖2. For simplicity, we write ‖ · ‖P∗ = P∗(·).

The generic statistical error (SE) condition guarantees that the distance between noisy
gradient and noiseless gradient under P∗-norm is bounded.

Condition 8 (Statistical-Error) For any b2 ∈ Bα2,s2(b∗2), b3 ∈ Bα3,s3(b∗3), we have with
probability at least 1− δ3,∥∥∇1L(b∗1, b2, b3)−∇1L̃(b∗1, b2, b3)

∥∥
P∗ ≤ ε1.

Remark 9 Here, ε1 is only a generic quantity and its explicit form will be derived for a
specific loss function in Section 4.2.

Next we introduce two conditions for the penalization parameter (Condition 10) and
penalty (Condition 12). To illustrate Condition 10, we first introduce an quantity called
support space compatibility constant to measure the intrinsic dimensionality of S1 defined in
(7) with respect to penalty P. Specifically, it is defined as

Φ(S1) := sup
b∈S1\{0}

P(b)

‖b‖2
, (13)

which is a variant of subspace compatibility constant originally proposed by Negahban
et al. (2012) and Wainwright (2014). If P(b) is chosen as a group lasso penalty, we have
Φ(S ′) =

√
|S ′|, where S ′ is the index set of active groups. Similar definitions of Φ(S2),Φ(S3)

can be made accordingly.

Condition 10 (Penalization Parameter) We consider an iterative turning procedure
where tuning parameters in (11) are allowed to change with iteration. In particular, we

assume tuning parameters {λ(t)1n, λ
(t)
2n, λ

(t)
3n} satisfy

λ
(t)
1n = 4ε1 + (µ2n‖b(t)2 − b

∗
2‖2 + µ3n‖b(t)3 − b

∗
3‖2)/Φ(S1)

λ
(t)
2n = 4ε2 + (µ′1n‖b

(t)
1 − b

∗
1‖2 + µ

′
3n‖b

(t)
3 − b

∗
3‖2)/Φ(S2)

λ
(t)
3n = 4ε3 + (µ

′′
1n‖b

(t)
1 − b

∗
1‖2 + µ

′′
2n‖b

(t)
2 − b

∗
2‖2)/Φ(S3),

where {µ2n, µ3n}, {µ′1n, µ′3n}, {µ
′′
1n, µ

′′
2n} are Lipschitz-gradient parameter which are defined

in Condition 4 and Conditions 29-30.

Remark 11 Condition 10 considers an iterative sequence of regularization parameters.

Given reasonable initializations for b
(t)
1 , b

(t)
2 , b

(t)
3 , their estimation errors gradually decay

when the iteration t increases, which implies that λ
(t)
kn is a decreasing sequence. After

sufficiently many iterations, the rate of the λ
(t)
kn will be bounded by the statistical error εk, for

k = 1, 2, 3. This agrees with the theory of high-dimensional regularized M-estimator in that
suitable tuning parameter should be proportional to the target estimation error (Wainwright,
2014). Such iterative turning procedure plays a critical role in controlling statistical and
optimization error, and has been commonly used in other high-dimensional non-convex
optimization problems (Wang et al., 2014; Yi and Caramanis, 2015).

11
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Finally, we present a general condition on the penalty term.

Condition 12 (Decomposable Penalty) Given a space S, a norm-based penalty P is
assumed to be decomposable with respect to S such that it satisfies P(u+ v) = P(u) + P(v)
for any u ∈ S and v ∈ S⊥, where S⊥ is the complement pf S.

As shown in Negahban and Wainwright (2011), a broad class of penalties satisfies the
decomposable property, such as lasso, ridge, fused lasso, group lasso penalties. Next theorem
quantifies the error of one-step update for the estimator coming Algorithm 1.

Theorem 13 (Contraction Property) Suppose Conditions 4,6,8,10, 29-34 hold. As-

sume the update at t-th iteration of Algorithm 1, b
(t)
1 , b

(t)
2 , b

(t)
3 fall into sparse balls Bα1,s1(b∗1),Bα2,s2(b∗2),Bα3,s3(b∗3)

respectively, where α1, α2, α3 are some constants. Define E(t) = ‖b(t)1 − b∗1‖22 + ‖b(t)2 − b∗2‖22 +

‖b(t)3 − b∗3‖22. There exists absolute constant C0 > 1 such that, the estimation error of the
update at the t+ 1-th iteration satisfies,

E(t+1) ≤ ρE(t) + C0

(ε21Φ(S1)2

γ21n
+
ε22Φ(S2)2

γ22n
+
ε23Φ(S3)2

γ23n

)
, (14)

with probability at least 1− 3(δ1 + δ2 + δ3). Here, ρ is the contraction parameter defined as

ρ = C1 max{µ′21n, µ
′′2
1n, µ

2
2n, µ

′′2
2n, µ

2
3n, µ

′2
3n}/min{γ21n, γ22n, γ23n},

where C1 is some constant.

Theorem 13 demonstrates the mechanism of how the estimation error improves in the
one-step update. When the the contraction parameter ρ is strictly less than 1 (we will
prove that it holds for certain class of basis functions and penalties in next section), the
first term of RHS in (14) will gradually go towards zero and the second term will be stable.
The contraction parameter ρ is roughly the ratio of Lipschitz-gradient parameter and the
strongly convex parameter. Similar formulas of contraction parameter frequently appears in
the literature of statistical guarantees for low/high-dimensional non-convex optimization
(Balakrishnan et al., 2017; Hao et al., 2017).

Remark 14 Yi and Caramanis (2015) provided similar optimization and statistical guar-
antee for regularized EM algorithm based on mixture model. However, the source of non-
convexity in the mixture model comes from the latent variable while ours comes from the
bi-convex structure in the low-rank model. Thus their analysis is not directly applicable to
our case due to different verification of sparse-strong-convexity condition.

4.2 Application to STAR estimator

In this section, we apply the general contract property in Theorem 13 to STAR estimator
with B-spline basis functions. The formal definition of B-spline basis function is defined
in Section 1 of the appendix. To ensure Conditions 4-6 and 8 are satisfied, in our STAR
estimator we require conditions on the nonparametric component, the distribution of tensor
covariate and the noise distribution.

12
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Condition 15 (Function Class) Each nonparametric component in (1) is assumed to
belong to the function class H defined as follows,

H =
{
g(·) : |g(r)(s)− g(r)(t)| ≤ C|s− t|α, for s, t ∈ [a, b]

}
, (15)

where r is the order of the derivative. Let κ = r + α > 0.5 be the smoothness parameter
of function class H. For j ∈ [p1], k ∈ [p2], l ∈ [p3], there is a constant cf > 0 such that
minjkl ‖f∗jkl(x)‖2 ≥ cf and E(f∗jkl([X ]jkl)) = 0. Each component of the covariate tensor X
has an absolutely continuous distribution and its density function is bounded away from zero
and infinitely on C.

Condition 15 is classical for nonparametric additive model (Stone, 1985; Huang et al., 2010;
Fan et al., 2011). Such condition is required to optimally estimate each individual additive
component in `2-norm.

Condition 16 (Sub-Gaussian Noise) The noise {εi}ni=1 are i.i.d. randomly generated
with mean 0 and bounded variance σ2. Moreover, (εi/σ) is sub-Gaussian distributed, i.e.,
there exists constant Cε > 0 such that ‖(εi/σ)‖φ2 := supp≥1 p

−1/2(E|εi/σ|p)1/p ≤ Cε, and
independent of tensor covariates {Xi}ni=1.

Condition 17 (Parameter Space) We assume the absolute value of maximum entry of
(b∗>1 , b∗>2 , b∗>2 ) is upper bounded by some positive constant c∗, and the absolute value of
minimum non-zero entry of (b∗>1 , b∗>2 , b∗>2 ) is lower bounded by some positive constant
c∗. Here, c∗, c∗ not depending on n, p. Moreover, we assume the CP-rank R and sparsity
parameters s1, s2, s3 are bounded by some constants.

Remark 18 The condition of bounded elements of tensor coefficient widely appears in
tensor literature (Anandkumar et al., 2014; Sun et al., 2017). Here the bounded tensor rank
condition is imposed purely for simplifying the proofs and this condition is possible to relax
to allow slowly increased tensor rank (Sun and Li, 2019). The fixed sparsity assumption is
also required in the vector nonparametric additive regression (Huang et al., 2010). To relax
it, Meier et al. (2009) considered a diverging sparsity scenario but required a compatibility
condition which was hard to verify in practice. Thus, in this paper we consider a fixed
sparsity case and leave the extension of diverging sparsity as future work.

Since the penalized empirical risk minimization (8) is a highly non-convex optimization, we
require some conditions on the initial update in Algorithm 1.

Condition 19 (Initialization) The initialization of b1, b2, b3 is assumed to fall into a

sparse constant ball centered at b∗1, b
∗
2, b
∗
3, saying b

(0)
1 ∈ Bα1,s1(b∗1), b

(0)
2 ∈ Bα2,s1(b∗2), b

(0)
3 ∈

Bα3,s1(b∗3), where α1, α2, α3 are some constants that are not diverging with n or p.

Remark 20 Similar initialization conditions have been widely used in tensor decomposition
(Sun et al., 2017; Sun and Li, 2019), tensor regression (Suzuki et al., 2016; Sun and Li,
2017), and other non-convex optimization (Wang et al., 2014; Yi and Caramanis, 2015).
Once the initial values fall into the sparse ball, the contract property and group lasso ensure
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that the successive updates also fall into a sparse ball. Another line of work considers to
design spectral methods to initialize certain simple non-convex optimization, such as matrix
completion (Ma et al., 2017) and tensor sketching (Hao et al., 2018). The success of spectral
methods heavily relies on a simple non-convex geometry and explicit form of high-order
moment calculation, which is easy to achieve in previous work (Ma et al., 2017; Hao et al.,
2018) by assuming a Gaussian error assumption. However, the design of spectral method in
our tensor additive regression is substantially harder since the high-order moment calculation
has no explicit form in our context. We leave the design of spectral-based initialization as
future work.

Finally, we state the main theory on the estimation error of our STAR estimator with
B-spline basis functions and a group lasso penalty.

Theorem 21 Suppose Conditions 10, 15-17, 19 hold and consider the class of normalized
B-spline basis functions defined in (A1) and group-lasso penalty defined in (9). If one

chooses the number of spline series dn � n
1

2κ+1 and the tuning parameter λ
(t)
1n, λ

(t)
2n, λ

(t)
3n as

defined in Condition 10 with generic parameters specified in Lemmas 26-27, with probability

at least 1− C0(t+ 1)(Rsn
− 2κ
2κ+1 + 1/p), we have

E(t+1) ≤ ρt+1E(0)︸ ︷︷ ︸
optimization error

+
C1R

2

1− ρ
n
−2κ−1
2κ+1 log(pdn)︸ ︷︷ ︸

statistical error

, (16)

where 0 < ρ ≤ 1/2 is a contraction parameter, and κ is the smoothness parameter of
function class H in (15). Note that C1 may involve a smaller order term that is negligible
asymptotically. Consequently, when the total number of iterations is no smaller than

T ∗ = log

(
1− ρ
C1E(0)

n
2κ−1
2κ+1

log(pdn)

)
/ log(1/ρ),

and the sample size n ≥ C2(log p)
2κ+1
2κ−1 for sufficiently large C2, we have

E(T ∗) ≤ 2C1R
2

1− ρ
n−

2κ−1
2κ+1 log(pdn),

with probability at least 1− C0(T
∗ + 1)(Rsn

− 2κ
2κ+1 + 1/p).

The non-asymptotic estimation error bound (16) consists of two parts: an optimization
error which is incurred by the non-convexity and a statistical error which is incurred
by the observation noise and the spline approximation. Here, optimization error decays
geometrically with the iteration number t, while the statistical error remains the same when
t grows. When the tensor covariate is of order-one, i.e., a vector covariate, the overall
optimization problem reduces to classical vector nonparametric additive model. In that case,
we do not have the optimization error (ρt+1E(0)) any more since the whole optimization
is convex, and the statistical error term matches the state-of-the-art rate in Huang et al.
(2010).
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Lastly, let us define T̂ (X ) =
∑dn

h=1

∑R
r=1〈β

(T ∗)
1hr ◦β

(T ∗)
2hr ◦β

(T ∗)
3hr ,Fh(X )〉 as a final estimator

of the target function T ∗(X ). For any function f on [a, b], we define its `2(P ) norm by ‖f‖2 =√∫ b
a f

2(x)dP (x). The following corollary provides the final error rate for the estimation of

tensor additive nonparametric function T ∗(X ). It incorporates the approximation error of
nonparametric component incurred by the B-spline series expansion, and the estimation
error of unknown tensor parameter incurred by noises.

Corollary 22 Suppose Conditions 10, 15-17, 19 hold and the number of iterations t as well
as the sample size n satisfy the requirement in Theorem 21. Assume the non-zero elements
in T ∗(·) are the same as

∑dh
h=1〈B

∗
h,Fh(·)〉. Then, the final estimator satisfies

∥∥T̂ − T ∗∥∥2
2

= Op
(
n
− 2κ
2κ+1 log(pdn)

)
.

5. Simulations

In this section, we carry out intensive simulation studies to evaluate the performance of
our STAR method, and compare it with existing competing solutions including the tensor
linear regression (TLR) (Zhou et al., 2013), the Gaussian process based nonparametric
method (GP) (Kanagawa et al., 2016), and the nonlinear tensor regression via alternative
minimization procedure (AMP) (Suzuki et al., 2016). We find that STAR enjoys better
performance both in terms of prediction accuracy and computational efficiency.

Throughout our numerical studies, the natural cubic splines with B-spline basis are used
in STAR with the degree fixed to be five, which amounts to having four inner knots. For
both STAR and TLR, five-fold cross-validation is employed to select the best pair of the
tuning parameters R and λ, where the tensor rank R is chosen from {2, 3} and λ is selected
from a sequence that is uniformly distributed on the logarithm scale in an interval [10−5, 1].
For GP and AMP, as suggested by Kanagawa et al. (2016), the Gaussian kernel is used
and the bandwidth is set to be 100; five-fold cross-validation is used to select λ, where λ is
selected from the same range that is used for TLR and STAR.

5.1 Low-rank covariate structure

The simulated data are generated based on the following model,

yi = T ∗(Xi) + σεi, i = 1, . . . , n,

where εi ∼ N(0, 1). For each observation, yi ∈ R is the response and Xi ∈ Rp1×p2 is the
two-way tensor (matrix) covariate. We fix p2 = 8, and we vary n from {400, 600}, p1 from
{20, 50, 100}, and σ from {0.1, 1}. We assume that there are 10 and 4 important features
along the first and second way of X , respectively.

Since both GP and AMP models require a low-rank structure on the tensor covariates, in
this simulation we consider the low-rank covariate case which favors their models. For each
i = 1, . . . , n, we consider Xi = x

(1)
i ◦ x

(2)
i , where the elements of x

(1)
i ∈ Rp1 and x

(2)
i ∈ Rp2

are independently and identically distributed from uniform distribution. Following the
additive model that is considered in Ravikumar et al. (2009), we generate samples according

15



Hao, Wang, Wang, Zhang, Yang and Sun

Table 1. MSE of simulated data with low-rank covariate structure.

(n, σ) model p1 = 20 p1 = 50 p1 = 100

(400, 0.1) STAR 0.51 (0.01) 0.53 (0.01) 0.50 (0.01)

TLR 2.03 (0.17) 2.63 (0.17) 3.16 (0.48)

AMP 1.02 (0.02) 1.01 (0.02) 1.01 (0.02)

GP 1.02 (0.01) 1.03 (0.03) 1.02 (0.01)

(600, 0.1) STAR 0.50 (0.01) 0.50 (0.01) 0.52 (0.01)

TLR 2.11 (0.09) 2.81 (0.14) 3.19 (0.21)

AMP 0.99 (0.02) 1.01 (0.00) 1.00 (0.02)

GP 0.99 (0.02) 1.01 (0.01) 1.02 (0.01)

(400, 1) STAR 1.54 (0.02) 1.59 (0.03) 1.56 (0.01)

TLR 2.29 (0.17) 3.18 (0.40) 4.91 (0.56)

AMP 1.98 (0.02) 2.01 (0.01) 2.06 (0.03)

GP 2.05 (0.04) 2.04 (0.03) 2.07 (0.03)

(600, 1) STAR 1.55 (0.01) 1.53 (0.01) 1.54 (0.01)

TLR 2.89 (0.39) 3.90 (0.36) 4.69 (0.46)

AMP 2.02 (0.02) 2.03 (0.03) 2.04 (0.03)

GP 2.02 (0.01) 2.04 (0.04) 2.06 (0.03)

* The simulation compares sparse tensor additive regression (STAR), tensor
linear regression (TLR), alternative minimizing procedure (AMP), and
Gaussian process (GP). The reported errors are the medians over 20 inde-
pendent runs with the standard error given in parentheses.

to

yi =

10∑
j=1

4∑
k=1

T ∗j
(

[x
(1)
i ]j

)
· T ∗k

(
[x

(2)
i ]k

)
+ σεi, i = 1, . . . , n,

where the nonlinear functions T ∗j and T ∗k are given by

T ∗j (x) =

{
− sin(1.5x), if j is odd,

x3 + 1.5(x− 0.5)2, if j is even,
and T ∗k (x) =

{
−φ(x, 0.5, 0.82), if k is odd,

sin{exp(−0.5x)}, if k is even.

Here φ(·, 0.5, 0.82) is the probability density function of the normal distribution N(0.5, 0.82).
Table 1 compares the mean squared error (MSE) of all four models, where MSE is

assessed on an independently generated test data of 2, 000 samples. The STAR model shows
the lowest MSE in all cases. As expected, the TLR model has unsatisfactory performance,
as the true regression model is non-linear. The two nonparametric tensor regression models
GP and AMP can capture partial nonlinear structures, however, our method still outperform
theirs.

Next, we investigate the computational costs of all four methods. Table 2 compares
the computation time in the example with n = 400 and σ = 0.1. The results of other
scenarios are similar and hence omitted. All the computation time includes the model fitting
and the model tuning using five-fold cross-validation. Overall our STAR method is as fast
as AMP and is much faster than GP. When the tensor dimension is small, p1 = 20, the
linear model TLR is the fastest one, however, its computation cost dramatically increase
when the dimension p1 increases, and is even slower than other nonparametric models when
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Table 2. The computation time of all methods in Section 5.1 with n = 400 and σ = 0.1.

p1 20 50 100

STAR 353.30 227.65 391.90

TLR 156.19 738.96 1803.49

AMP 330.74 336.10 341.15

GP 1841.51 1913.27 1792.50

* All the time include five-fold cross-validation
procedures to tune the parameters. The results
are averaged over 20 independent runs. The ex-
periment was conducted using a single proces-
sor Inter(R) Xeon(R) CPU E5-2600@2.60GHz.

p1 = 100. On the other hand, the computation time of our model is less sensitive to the
dimensionality and is even faster than TLR when p1 is large. This indicates the importance
of fully exploiting the low-rankness and sparsity structures in order to improve computational
efficiency.

5.2 General covariate structure

The settings are similar as that in Section 5.1, except that the covariate is not low-rank.
Here, the elements of Xi ∈ Rp1×p2 are independently and identically distributed from uniform
distribution. In particular, we generate n observations according to

yi =
10∑
j=1

4∑
k=1

T ∗jk([Xi]jk) + σεi, i = 1, . . . , n,

where

T ∗jk(x) =


− sin(1.5x), if j is odd and k is odd,

x3 + 1.5(x− 0.5)2, if j is even and k is odd,

−φ(x, 0.5, 0.82), if j is odd and k is even,

sin{exp(−0.5x)}, if j is even and k is even.

To run GP and AMP models, we perform singular value decomposition in order to meet the
requirements of the low-rank tensor inputs.

The comparisons of the MSE are summarized in Table 3: the MSE of the STAR model is
much lower than that of all the other three models. Similar to the experiment in Section 5.1,
the large MSE of TLR is attributed to the incapability of capturing the nonlinear relationship
in the additive model. In this example, the GP and AMP models deliver relatively large MSE
because the assumption of low-rank covariate structure is violated. Importantly, the MSE
of our STAR model decreases, as the sample size increases or the noise level σ decreases.
These observations align with our theoretical finding in Theorem 21.

To test the adaptability of STAR, we further consider a linear data-generating model:

yi =
10∑
j=1

4∑
k=1

T ∗jk([Xi]jk) + σεi, i = 1, . . . , n,
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Table 3. MSE of simulated data with general covariate structure.

(n, σ) model p1 = 20 p1 = 50 p1 = 100

(400, 0.1) STAR 2.30 (0.06) 3.34 (0.22) 5.04 (0.33)

TLR 40.62 (0.53) 53.94 (0.71) 92.31 (1.60)

AMP 41.09 (0.31) 40.78 (0.35) 40.97 (0.30)

GP 41.62 (0.24) 41.35 (0.38) 41.18 (0.22)

(600, 0.1) STAR 1.76 (0.04) 2.14 (0.11) 2.53 (0.12)

TLR 37.12 (0.63) 43.74 (0.85) 58.75 (0.88)

AMP 40.39 (0.30) 40.35 (0.35) 41.00 (0.37)

GP 40.65 (0.66) 40.57 (0.64) 41.28 (0.44)

(400, 1) STAR 3.98 (0.11) 5.28 (0.26) 7.17 (0.50)

TLR 42.12 (0.51) 56.47 (0.78) 94.09 (2.38)

AMP 42.00 (0.38) 42.40 (0.47) 41.51 (0.28)

GP 42.56 (0.36) 42.19 (0.37) 42.08 (0.30)

(600, 1) STAR 3.13 (0.05) 3.63 (0.13) 4.10 (0.11)

TLR 38.06 (0.59) 45.43 (0.65) 60.20 (1.03)

AMP 41.44 (0.54) 41.99 (0.45) 41.76 (0.40)

GP 41.31 (0.50) 41.87 (0.44) 42.49 (0.53)

* The simulation compares sparse tensor additive regression (STAR), tensor
linear regression (TLR), alternative minimizing procedure (AMP), and Gaussian
process (GP). The reported errors are the medians over 20 independent runs
with the standard error given in parentheses.

Table 4. MSE of simulated data from linear models.

model p1 = 20 p1 = 50 p1 = 100

STAR 1.40 (0.03) 1.62 (0.13) 1.85 (0.06)

TLR 1.19 (0.01) 1.52 (0.02) 2.42 (0.04)

AMP 2.07 (0.02) 2.08 (0.02) 2.09 (0.03)

GP 2.10 (0.01) 2.10 (0.01) 2.10 (0.01)

* The simulation compares sparse tensor additive regression
(STAR), tensor linear regression (TLR), alternative minimizing
procedure (AMP), and Gaussian process (GP). The reported er-
rors are the medians over 20 independent runs with the standard
error given in parentheses.

where

T ∗jk(x) =

{
0.5x, if j is odd,

x, if j is even.

We use n = 400 and σ = 1 for illustration and summarize the result in Table 4. We
observe TLR delivers the lowest MSE and STAR is the second best when p1 = 20 and 50.
The MSE of STAR is the lowest when p1 = 100. Thus the STAR model is competitive with
TLR in general when the data generating model is truly linear.

5.3 Three-way covariate structure

We next extend the previous simulations to a three-way covariate structure. We consider
two cases in this section. In the first case, we generate the tensor covariate Xi ∈ Rp1×p2×2
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Table 5. MSE of simulated data with three-way tensor covariates.

p1 = 20 p1 = 50 p1 = 200

Case 1

(600, 0.1) STAR 0.34 (0.03) 1.33 (0.23) 1.10 (0.03)

TLR 10.69 (0.06) 10.86 (0.14) 13.47 (0.25)

(600, 1) STAR 1.45 (0.02) 1.71 (0.20) 1.99 (0.01)

TLR 11.93 (0.09) 12.45 (0.14) 18.14 (0.95)

(1000, 0.1) STAR 0.37 (0.02) 0.43 (0.03) 1.24 (0.25)

TLR 10.82 (0.10) 10.77 (0.12) 11.68 (0.11)

(1000, 1) STAR 1.40 (0.03) 1.47 (0.02) 2.02 (0.03)

TLR 11.90 (0.06) 11.98 (0.15) 13.58 (0.19)

Case 2

(600, 0.1) STAR 0.78 (0.01) 2.07 (1.10) 1.01 (0.00)

TLR 13.11 (0.11) 13.11 (0.17) 16.62 (0.33)

(600, 1) STAR 2.07 (0.08) 2.01 (0.02) 1.99 (0.02)

TLR 14.45 (0.17) 14.33 (0.14) 20.73 (0.66)

(1000, 0.1) STAR 0.75 (0.00) 0.78 (0.05) 1.35 (0.17)

TLR 13.15 (0.22) 12.98 (0.17) 13.52 (0.23)

(1000, 1) STAR 1.76 (0.02) 2.13 (0.12) 1.99 (0.02)

TLR 14.15 (0.29) 14.05 (0.19) 15.57 (0.27)

* The simulation compares sparse tensor additive regression (STAR) and tensor
linear regression (TLR). The reported errors are the medians over 20 independent
runs, and the standard error of the medians are given in parentheses. All the
methods use five-fold cross-validation procedures to tune the parameters.

whose elements are from i.i.d. uniform distribution, and then generate the response yi ∈ R
from

case 1: yi =

10∑
j=1

4∑
k=1

[
sin(T ∗jk1([Xi]jk1)) + log |T ∗jk2([Xi]jk2)|

]
+ σεi, i = 1, . . . , n,

where T ∗jkl with l = 1, 2 is defined the same as the expression (??). In the second case, we
generate the response from

case 2: yi = sin

 10∑
j=1

4∑
k=1

T ∗jk([Xi]jkl)

+ log

∣∣∣∣∣∣
10∑
j=1

4∑
k=1

T ∗jk([Xi]jkl)

∣∣∣∣∣∣+ σεi, i = 1, . . . , n.

It is worth noting that case 1 uses an additive model while case 2 does not. Therefore, the
additive model assumption in our STAR method is actually mis-specified in case 2.

Since the softwares of AMP and GP models for three-way tensor covariates are not
available, in this simulation we compare our STAR model only with TLR. We vary the
sample size n ∈ {600, 1000}, the first-way dimension p1 ∈ {20, 50, 200}, the noise level
σ ∈ {0.1, 1}, and fix the second-way dimension p2 = 10. Similar to previous simulations, we
assume that there are 10, 4, and 2 important features along the three modes of the tensor
Xi, respectively. As shown in Table 5, the MSE of the STAR model is consistently lower
than that of TLR, even in the case when the additive model is mis-specified.
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6. An Application to Online Advertising

In this section, we apply the STAR model to click-through rate (CTR) prediction in online
advertising. The CTR is defined to be the ratio between the number of clicks and the
number of impressions (ad views). In this study, we are interested in predicting the overall
CTR, which is the average CTR across different ad campaigns. The overall CTR is an
effective measure to evaluate the performance of online advertising. A low overall CTR
usually indicates that the ads are not effectively displayed or the wrong audience is being
targeted. As a reference, the across-industry overall CTR of display campaigns in the United
States from April 2016 to April 2017 is 0.08%.1 Importantly, the CTR is also closely related
to the revenue. Define the effective revenue per mile (eRPM) to be the amount of revenue
from every 1000 impressions, and we have eRPM = 1000× CPC× CTR, where CPC is the
cost per click. From this expression, we can see that a good CTR prediction is critical to ad
pricing, and the CTR prediction is a highly important task in online advertising.

We collect 136 ad campaign data during 28 days from a premium Internet media
company.2 The data from each day have been aggregated into six time periods and each
of the 136 campaigns involves ads delivered via three devices: phone, tablet, and personal
computer (PC). In total, we have 224 = 28 × 8 time periods. There are 153 million of users
in total, and we divide all the users into two groups, a younger group and an elder group,
which are partitioned by the median age. For each time period, we aggregate the number of
impressions of 136 advertising campaigns that are delivered on each of three types of devices
for each of the two age groups. Denoting the number of impressions by X , each data point
has Xi ∈ R136×3×2, and i = 1, 2, . . . , 224 represents the time period. In this study, we aim
to study the relationship between the overall CTR and the three-way tensor covariate of
impressions.

Figure 1 delineates the marginal relationship between the overall CTR and the impression
of one advertisement that is delivered on phone, tablet, and PC, respectively. In this
example, the overall CTR clearly reveals a non-linear pattern across all devices. Moreover,
it is generally believed that not all ads have significant impacts on the overall CTR and
hence ad selection is an active research area (Choi et al., 2010; Xu et al., 2016). To fulfill
both tasks of capturing the nonlinear relationship and selecting important ads, we apply
the proposed STAR model to predict the overall CTR. The logarithm transformations are
applied to both the CTR and the number of impressions. We train and tune each method on
the data obtained on the first 24 days, and use the remaining data as the test data to assess
the prediction accuracy. The MSE of our STAR model is 0.51, which is much lower than
5.44, the MSE of the TLR. This result shows the effectiveness of capturing the non-linear
relationship as well as assuming the low-rankness and group sparsity structures both in
increasing the CTR prediction accuracy and the algorithm efficiency. The AMP and GP
models are not compared due to the lack of implementation for three-way covariates.

In terms of ad selection, the STAR model with group lasso penalty selects 60 out of
136 ads, as well as all three devices and two age groups as active variables for the CTR
prediction. As a comparison, TLR selects 114 ads, 46 of which are also selected by our STAR

1. The data are from http://www.richmediagallery.com/learn/benchmarks.
2. The reported data and results in this section are deliberately incomplete and subject to anonymization,

and thus do not necessarily reflect the real portfolio at any particular time.
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Heat Map: One Impression on Ad/Device Combination for Younger Group
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Heat Map: One Impression on Ad/Device Combination for Elder Group

Figure 4. Heatmaps for the overall CTR. The left panel is the mean change in the overall CTR
if the test data have one additional impression on each ad and device combination for the younger
group and the right panel is for the elder group. Darker tiles indicate greater positive mean change in
the overall CTR and lighter tiles indicate greater negative mean change. The IDs of ads have been
renumbered for concerns of confidentiality.

method. Besides the prediction on the overall CTR and the ad selection performance, we are
also able to see which combination of ad, device, and age group yields the most significant
impact on the overall CTR. In the left panel of Figure 4, each tile represents a combination
of ad and device for the younger group, and the darkness of the tile implies the sensitivity
of the overall CTR associated with one more impression on this combination; the right
panel of Figure 4 shows the heatmap for the elder group. Displayed on phones of the elder
users, the ad with ID 98 has the most positive effect on the overall CTR. Figure 5 is plotted
similarly except that the change is due to every 1000 additional impressions on the certain
combinations. The overall CTR has the largest growth when 1000 additional impressions
are allocated to the ad with ID 73 displaying on phones of the younger users. The different
patterns between Figure 4 and 5 indicate the nonlinear relationship between the overall CTR
and the number of impressions. This result is important for managerial decision making.
Under a specific budget, our STAR model facilitates ad placement targeting based on the
best ad/device/age combination to maximize the ad revenue.

Appendix

In this appendix, we present the detailed proofs for Theorem 13, 21 and Corollary 22.

A1 Proof of Theorem 13

First, we state a key lemma which quantifies the estimation error of each component
individually within one iteration step.
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Heat Map: 1000 Impressions on Ad/Device Combination for Younger Group
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Heat Map: 1000 Impressions on Ad/Device Combination for Elder Group

Figure 5. Heatmaps for the overall CTR. The left panel is the mean change in the overall CTR if
the test data have 1000 additional impressions on each ad and device combination for the younger
group and the right panel is for the elder group. Darker tiles indicate greater positive mean change in
the overall CTR and lighter tiles indicate greater negative mean change. The IDs of ads have been
renumbered for concerns of confidentiality.

Lemma 23 Suppose Conditions 4-6 and 8 hold, and the updates at time t satisfy b
(t)
2 ∈

Bα2,s2(b∗2), b
(t)
3 ∈ Bα3,s3(b∗3). Let the penalty P fulfills the decomposable property (See

Definition 7 for details), and the regularization parameter λ
(t)
1n ≥ 4ε1 + (µ2n‖b(t)2 − b∗2‖2 +

µ3n‖b(t)3 − b∗3‖2)/Φ(S1) where µ2n, µ3n and ε1 are defined in Condition 4 and 8 respectively.
Then the update of b1 at time t+ 1 satisfies

‖b(t+1)
1 − b∗1‖2 ≤ 4λ

(t)
1nΦ(S1)/γ1n, (A17)

with probability at least 1− (δ1 + δ2 + δ3), where γ1n is defined in Condition 6 and Φ(S1) is
the support space compatibility constant defined in (13).

Proof. For notation simplicity, we will drop the superscript of b
(t)
1 , b

(t)
2 , b

(t)
3 , λ

(t)
1n and

replace the superscript of b
(t+1)
1 , b

(t+1)
2 , b

(t+1)
3 by b+1 , b

+
2 , b

+
3 in the rest of the proof for Lemma

23.
First of all, the loss function (10) enjoys a bi-convex structure, in the sense that

L(b1, b2, b3) is convex in one argument when fixing the other two. Then, given current
update b2, b3, the penalized alternating minimization with respect to b1 takes the form of

b+1 = argmin
b1

L(b1, b2, b3) + λ1nP(b1).

As b+1 minimizes the loss function, we have

L(b+1 , b2, b3) + λ1nP(b+1 ) ≤ L(b∗1, b2, b3) + λ1nP(b∗1), (A18)
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which further implies the following inequality by the convexity of L(·, b2, b3),

λ1n(P(b+1 )− P(b∗1)) ≤ L(b∗1, b2, b3)− L(b+1 , b2, b3)

≤ |〈∇1L(b∗1, b2, b3), b
+
1 − b

∗
1〉|︸ ︷︷ ︸

RHS

. (A19)

Recall that ∇1L is the noisy gradient function with respect to b1 defined in (12). To
separate the statistical error and optimization error, we utilize noiseless gradient function
∇1L̃(b∗1, b2, b3) defined in (12) as a bridge. The detail decomposition is presented as follows,

RHS ≤ |〈∇1L(b∗1, b2, b3)−∇1L̃(b∗1, b2, b3), b
+
1 − b

∗
1〉|︸ ︷︷ ︸

statistical error

+ |〈∇1L̃(b∗1, b2, b3)−∇1L̃(b∗1, b
∗
2, b
∗
3), b

+
1 − b

∗
1〉|︸ ︷︷ ︸

optimization error

,

where ∇1L̃(b∗1, b
∗
2, b
∗
3) = 0. Moreover, based on the decomposability of penalty P (See

Condition 12),

RHS ≤ ‖∇1L(b∗1, b2, b3)−∇1L̃(b∗1, b2, b3)‖P∗‖b+1 − b
∗
1‖P

+〈∇1L̃(b∗1, b2, b3)−∇1L̃(b∗1, b2, b
∗
3), b

+
1 − b

∗
1〉

+〈∇1L̃(b∗1, b2, b
∗
3)−∇1L̃(b∗1, b

∗
2, b
∗
3), b

+
1 − b

∗
1〉,

where P∗ is the dual norm of P. We write P(b+1 − b∗1) = ‖b+1 − b∗1‖P . In addition, putting
(A19) and Conditions 4 and 8 together, we have

|〈∇1L(b∗1, b2, b3), b
+
1 − b

∗
1〉|

≤ ε1P(b+1 − b
∗
1) +

(
µ2n‖b2 − b∗2‖2 + µ3n‖b3 − b∗3‖2

)
‖b+1 − b

∗
1‖2,

(A20)

with probability at least 1 − (δ1 + δ3). Together with (A18),

λ1n(P(b+1 )− P(b∗1)) ≤ ε1P(b+1 − b
∗
1) +

(
µ2n‖b2 − b∗2‖2 + µ3n‖b3 − b∗3‖2

)
‖b+1 − b

∗
1‖2.

Since λ1n ≥ 4ε1 +
(
µ2n‖b2 − b∗2‖2 + µ3n‖b3 − b∗3‖2

)
/Φ(S1), we have

P(b+1 )− P(b∗1) ≤
1

4
P(b+1 − b

∗
1) + Φ(S1)‖b+1 − b

∗
1‖2. (A21)

Again, using the decomposability of P, the LHS of (A21) can be decomposed by

P(b+1 )− P(b∗1) = P(b+1 − b
∗
1 + b∗1)− P(b∗1)

= P((b+1 − b
∗
1)S⊥1

+ b∗1 + (b+1 − b
∗
1)S1)− P(b∗1)

≥ P((b+1 − b
∗
1)S⊥1

) + P(b∗1 + (b+1 − b
∗
1)S1)− P(b∗1)

≥ P((b+1 − b
∗
1)S⊥1

)− P((b+1 − b
∗
1)S1), (A22)

where S⊥1 is the complement set of S1. Equipped with (A21),

3P((b+1 − b
∗
1)S⊥1

) ≤ 5P((b+1 − b
∗
1)S1) + 4Φ(S1)‖b+1 − b

∗
1‖2. (A23)
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By the definition of support space compatibility constant (13),

P((b+1 − b
∗
1)S1) ≤ Φ(S1)‖(b+1 − b

∗
1)S1‖2 ≤ Φ(S1)‖b+1 − b

∗
1‖2.

Together with P(b+1 − b∗1) ≤ P((b+1 − b∗1)S1) + P((b+1 − b∗1)S⊥1 ) and (A23), we obtain

P(b+1 − b
∗
1) ≤ 4Φ(S1)‖b+1 − b

∗
1‖2. (A24)

On the other hand, based on sparse strongly convex Condition 6,

L(b∗1, b2, b3)− L(b+1 , b2, b3)− 〈∇1L(b∗1, b2, b3), b
∗
1 − b+1 〉 ≤ −

γ1n
2
‖b+1 − b

∗
1‖22.

with probability at least 1 − δ2. Plugging in (A20), we obtain with probability at least
1− (δ1 + δ2 + δ3),

γ1n
2
‖b+1 − b

∗
1‖22 ≤ 〈∇1L(b∗1, b2, b3), b

∗
1 − b+1 〉+ L(b+1 , b2, b3)− L(b∗1, b2, b3)

≤ ε1P(b+1 − b
∗
1) +

(
µ2n‖b2 − b∗2‖2 + µ3n‖b3 − b∗3‖2

)
‖b+1 − b

∗
1‖2 + λ1n(P(b∗1)− P(b+1 )).

(A25)

From (A22),

λ1n(P(b∗1)− P(b+1 )) ≤ λ1n

(
P((b+1 − b

∗
1)S1)− P((b+1 − b

∗
1)S⊥1

)
)

≤ λ1nP((b+1 − b
∗
1)S1).

Together with (A24) and (A25),

γ1n
2
‖b+1 − b

∗
1‖22 ≤ λ1nΦ(S1)‖b+1 − b

∗
1‖2 + 4ε1Φ(S1)‖b+1 − b

∗
1‖2

+
(
µ2n‖b2 − b∗2‖2 + µ3n‖b3 − b∗3‖2

)
‖b+1 − b

∗
1‖2.

Dividing by ‖b+1 − b∗1‖2 in both sides and plugging in the lower bound of λ1n, it yields that

‖b+1 − b
∗
1‖2 ≤ 4λ1nΦ(S1)

γ1n
,

with probability at least 1 − (δ1 + δ2 + δ3). This ends the proof. �

Note that (A17) is a generic result since we have not provided a detail form for certain

parameters. Similar results also hold for the update of b
(t)
2 , b

(t)
3 (see next corollary) and

detailed proofs are omitted here.

Corollary 24 Suppose Conditions 29-34 hold, and the updates at time t satisfy b
(t)
1 ∈

Bα1,s1(b∗1), b
(t)
2 ∈ Bα2,s2(b∗2), b

(t)
3 ∈ Bα3,s3(b∗3). With the regularization parameters λ

(t)
2n, λ

(t)
3n

satisfy

λ
(t)
2n ≥ 4ε2 + (µ′1n‖b

(t)
1 − b

∗
1‖2 + µ′3n‖b

(t)
3 − b

∗
3‖2)/Φ(S2)

λ
(t)
3n ≥ 4ε3 + (µ

′′
1n‖b

(t)
1 − b

∗
2‖2 + µ

′′
2n‖b

(t)
2 − b

∗
3‖2)/Φ(S3)
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and penalty P fulfills the decomposable property, then the updates of b2, b3 at time t + 1
satisfy

‖b(t+1)
2 − b∗2‖2 ≤ 4λ

(t)
2nΦ(S2)/γ2n

‖b(t+1)
3 − b∗3‖2 ≤ 4λ

(t)
3nΦ(S3)/γ3n,

with probability at least 1− (δ1 + δ2 + δ3).

Now we are ready to prove the main theorem. Applying the result in Lemma 23, and

plugging in the lower bound of λ
(t)
1n, we have

‖b(t+1)
1 − b∗1‖2 ≤

4µ2n
γ1n
‖b(t)2 − b

∗
2‖2 +

4µ3n
γ1n
‖b(t)3 − b

∗
3‖2 +

16ε1Φ(S1)
γ1n

.

Taking the square in both sides and noticing that (a+ b+ c)2 ≤ 3(a2 + b2 + c2),

‖b(t+1)
1 − b∗1‖22 ≤ 3

(4µ2n
γ1n

)2
‖b(t)2 − b

∗
2‖22 + 3

(4µ3n
γ1n

)2
‖b(t)3 − b

∗
3‖22 + 3

(16ε1Φ(S1)
γ1n

)2
,

with probability at least 1 − (δ1 + δ2 + δ3). Similarly, applying Corollary 24, we have

‖b(t+1)
2 − b∗2‖22 ≤ 3

(4µ′1n
γ2n

)2
‖b(t)1 − b

∗
1‖22 + 3

(4µ′3n
γ2n

)2
‖b(t)3 − b

∗
3‖22 + 3

(16ε2Φ(S2)
γ2n

)2
‖b(t+1)

3 − b∗3‖22 ≤ 3
(4µ

′′
1n

γ3n

)2
‖b(t)1 − b

∗
1‖22 + 3

(4µ
′′
2n

γ3n

)2
‖b(t)2 − b

∗
2‖22 + 3

(16ε3Φ(S3)
γ3n

)2
,

with probability at least 1− (δ1 + δ2 + δ3). Denote E(t+1) = ‖b(t+1)
1 − b∗1‖22 + ‖b(t+1)

2 − b∗2‖22 +

‖b(t+1)
3 − b∗3‖22. Adding the above three bounds together, it implies

E(t+1) ≤ 48
([µ′21n
γ22n

+
µ
′′2
1n

γ23n

]
‖b(t)1 − b

∗
1‖22 +

[µ22n
γ21n

+
µ
′′2
2n

γ23n

]
‖b(t)2 − b

∗
2‖22 +

[µ23n
γ21n

+
µ
′2
3n

γ22n

]
‖b(t)3 − b

∗
3‖22
)

+768
(ε21Φ(S1)2

γ21n
+
ε22Φ(S2)2

γ22n
+
ε23Φ(S3)2

γ23n

)
.

Define the contraction parameter

ρ = 288 max{µ′21n, µ
′′2
1n, µ

2
2n, µ

′′2
2n, µ

2
3n, µ

′2
3n}/min{γ21n, γ22n, γ23n},

then

E(t+1) ≤ ρE(t) + C0

(ε21Φ(S1)2

γ21n
+
ε22Φ(S2)2

γ22n
+
ε23Φ(S3)2

γ23n

)
,

with probability at least 1 − 3(δ1 + δ2 + δ3). This ends the proof. �

25



Hao, Wang, Wang, Zhang, Yang and Sun

A2 Proof of Theorem 21

Moreover, let α = min{α1, α2, α3}, p = max{p1, p2, p3} and s = max{s1, s2, s3}, where si is
the cardinality of Si defined in (7).

Our proof consists of three steps. First, we verify Conditions 4-6 and 8 in Lemma 25-27
for B-spline basis function and give explicit forms of Lipschitz-gradient parameter, sparse-
strongly-convex parameter and statistical error. Second, we prove a generic contraction
result by the induction argument. Last, we combine results in first two steps and achieve
the final estimation rate.

At first, Lemma 25 and 26 show that the loss function in (8) with B-spline basis function
is sparse strongly convex and Lipschitz continuous. The proofs are deferred to Sections 3.1
and 3.2.

Lemma 25 Consider {ψjklh(x)}dnh=1 introduced in (3) are normalized B-spline basis func-
tions and suppose Conditions Conditions 15-16 and 17 hold. When b1 ∈ Bα,s(b∗1), b2 ∈
Bα,s(b∗2), b3 ∈ Bα,s(b∗3), the loss function L(·, ·, ·) is sparse strongly convex in its first
argument, namely

L(b∗1, b2, b3)− L(b1, b2, b3)− 〈∇1L
(
b∗1, b2, b3), b

∗
1 − b1〉 ≤ −

γ1n
2
‖b1 − b∗1‖22, (A26)

where γ1n = C1(1 + o(1))Rd−1n s2c4∗.

Lemma 26 Suppose b2 ∈ Bα,s(b∗2), b3 ∈ Bα,s(b∗3) and Conditions Conditions 15-16 and 17
hold. Considering the B-spline basis function, we have with probability at least 1− 12/p,

T1 =
〈
∇1L̃(b∗1, b2, b

∗
3)−∇1L̃(b∗1, b

∗
2, b
∗
3), b1 − b∗1

〉
≤ µ2n

∥∥b1 − b∗1∥∥2∥∥b2 − b∗2∥∥2
T2 =

〈
∇1L̃(b∗1, b2, b3)−∇1L̃(b∗1, b2, b

∗
3), b1 − b∗1

〉
≤ µ3n

∥∥b1 − b∗1∥∥2∥∥b3 − b∗3∥∥2,
where µ2n = µ3n = 12(s3R2/d2n + C0

√
log p/n)R2s2c∗4.

The verification of Conditions 31-34 and derivation of γ2n, γ3n, µ
′
1n, µ

′
3n, µ

′′
1n, µ

′′
2n remain

the same and only differ in some constants. Thus, we let

max{µ2n, µ3n, µ′1n, µ
′
3n, µ

′′
1n, µ

′′
2n} = C3(s

3R2/d2n +
√

log p/n)R2s2c∗4

min{γ1n, γ2n, γ3n} = C4(1 + o(1))Rd−1n s2c4∗
(A27)

for some absolute constant C3, C4.
Next lemma gives an explicit bound on statistical error for the update of b1 when we

utilize B-spline basis and choose the penalty P to be group lasso penalty.

Lemma 27 Suppose Conditions 15-16 and 17 hold and Consider {ψjklh(x)}dnh=1 introduced
in (3) to be normalized B-spline basis function. For b2 ∈ Bα,s(b∗2), b3 ∈ Bα,s(b∗3), we have
with probability at least 1− C0Rdns/n,∥∥∇1L(b∗1, b2, b3)−∇1L̃(b∗1, b2, b3)

∥∥
P∗

≤ C1Rc
∗4
( s5

d
κ−1/2
n

√
log(en)

n
+

s6

d
κ+1/2
n

+ σ

√
s4 log(pdn)

n

)
.

for some absolute constants C0, C1, where 0 < κ < 1 describes the smoothness of function
class H defined in (15).
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We complete the proof of Theorem 21 by the induction argument. When t = 1,

the initialization condition naturally holds by Condition 19. Suppose ‖b(t)1 − b∗1‖2 ≤ α,

‖b(t)2 − b∗2‖2 ≤ α, ‖b(t)3 − b∗3‖2 ≤ α holds for some t ≥ 1. For t = t + 1, first we utilize the

result in Lemma 23 and plug in the lower bound of λ
(t)
1n,

‖b(t+1)
1 − b∗1‖2 ≤ 4λ

(t)
1nΦ(S1)
γ1n

≤ 4Φ(S1)
γ1n

(
4ε1 +

(
µ2n‖b(t)2 − b

∗
2‖2 + µ3n‖b(t)3 − b

∗
3‖2
)
/Φ(S1)

)
≤ 16Φ(S1)ε1

γ1n
+

4µ2n
γ1n
‖b(t)2 − b

∗
2‖2 +

4µ3n
γ1n
‖b(t)3 − b

∗
3‖2

≤ 16Φ(S1)ε1
γ1n

+
4

γ1n

(
µ2nα+ µ3nα

)
.

As long as the statistical error ε1 satisfies

ε1 ≤
(

1− 4(µ2n + µ3n)

γ1n

) αγ1n
40Φ(S1)

, (A28)

we have ‖b(t+1)
1 − b∗1‖2 ≤ α. The proofs for ‖b(t+1)

2 − b∗2‖2 ≤ α and ‖b(t+1)
3 − b∗3‖2 ≤ α are

similar when ε2, ε3 satisfy

ε2 ≤
(

1− 4(µ1n + µ3n)

γ2n

) αγ2n
16Φ(S2)

, (A29)

ε3 ≤
(

1− 4(µ1n + µ2n)

γ3n

) αγ3n
16Φ(S3)

.

Second, when b2, b3 are fixed, the update scheme for b1 exactly fits the one in Huang
et al. (2010) with group lasso penalty under B-spline basis function expansion. Define

S(t)1 = {j ∈ [p1]|‖β(t)
1j ‖2 6= 0}. Similar to the proof of first part in Theorem 1 in Huang et al.

(2010), we could obtain |S(t)1 | ≤ C0|S1| = C0s for a finite constant C0 > 1 with probability
converging to 1. That means the number of non-zero elements in the estimator from group-
lasso-type penalization is comparable with the size of true support. The guarantee for

b
(t)
2 , b

(t)
3 remains the same.

Therefore, we can conclude that b
(t)
1 ∈ Bα,s(b∗1), b

(t)
2 ∈ Bα,s(b∗2), b

(t)
3 ∈ Bα,s(b∗3) hold

for any iteration t = 1, 2, . . . as long as the statistical error is sufficiently small such that

(A28)-(A29) hold. We choose the tuning parameter λ
(t)
1n, λ

(t)
2n, λ

(t)
3n as defined in Condition

10 with generic parameters specified in Lemma 26, 27. Repeatedly applying the result in
Theorem 13 and summing from t = 1 to t = t+ 1, one can provide a generic form of error
updates,

E(t+1) ≤ ρt+1E(0) +
1− ρt+1

1− ρ
C0

(ε21Φ(S1)2

γ21n
+
ε22Φ(S2)2

γ22n
+
ε23Φ(S3)2

γ23n

)
, (A30)

with probability at least 1 − 2(t+ 1)(δ1 + δ2 + δ3). As before, (A30) still provides a generic
form of error updates.
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Finally, we combine results from Lemmas 25-27. According to (A27), the contraction
parameter is upper bounded by

ρ ≤ 288C2
3c
∗8

C2
4c

8
∗

( s6
d2n

+
d2n log p

n

)
.

When the sample size n is large enough such that

d2n ≥
1

4

288C2
3c
∗8s6

C2
4c

8
∗

, n ≥ 1

4

288C2
3d

2
n(log p)c∗8

c8∗C
2
4

, (A31)

one can guarantee ρ ≤ 1/2. For group lasso penalty (9), it has been shown in Wainwright
(2014) that max{Φ(S1),Φ(S2),Φ(S3)} = s. Then, we can have an explicit form for the
upper bound in (A30),

E(t+1) ≤ ρt+1E(0) +
1− ρt+1

1− ρ
3C0

max(ε21, ε
2
2, ε

2
3) max(Φ(S1)2,Φ(S2)2,Φ(S3)2)
min(γ21n, γ

2
2n, γ

2
3n)

≤ ρt+1E(0) +
1− ρt+1

1− ρ
3

C0R
2

(1 + o(1))

( s2

d−2n s4c8∗

)
c∗83

( s10

d2κ−1n

log ep

n
+

s12

d2κ+1
n

+
σ2 log(pdn)

n

)
= ρt+1E(0) +

1− ρt+1

1− ρ
9C0c

∗8R2

c8∗(1 + o(1))

( s8

d2κ−3n

log ep

n
+

s10

d2κ−1n
+ σ2

d2n
s2

log(pdn)

n

)
, (A32)

with probability at least 1 − C0(t+ 1)(Rdns/n+ 1/p). From Conditions 16-17, we known
that s, σ, c∗, c

∗ are all bounded by some absolute constants. Then (A32) can be further
simplified as

E(t+1) ≤ ρt+1E(0) +
C1R

2

(1 + o(1))

1− ρt+1

1− ρ

( log ep

d2κ−3n n
+

1

d2κ−1n
+ σ2

d2n log(pdn)

s2n

)
.

To trade-off the statistical error part (σ2d2n
log pdn
s2n

) and approximation error part ( log ep

d2κ−3
n n

+

1
d2κ−1
n

), one can take dn � n
1

2κ+1 . Then the above bound will reduce to

E(t+1) ≤ ρt+1E(0) +
C1R

2

(1− ρ)(1 + o(1))
n
−2κ−1
2κ+1 log(pdn),

with proper adjustments for the constant C1. Moreover, when the total number of iterations
is no smaller than

T ∗ = log
((1− ρ)(1 + o(1))

C1E(0)
n
2κ−1
2κ+1

log(pdn)

)
/ log(1/ρ),

we have with probability at least 1 − C0(T
∗ + 1)(Rsn

− 2κ
2κ+2 + 1/p),

E(T ∗) ≤ 2C1R
2

(1− ρ)(1 + o(1))
n
−2κ−1
2κ+1 log(pdn),

as long as n ≥ C2(log p)
2κ+1
2κ−1 for sufficiently large C2. This sample complexity is sufficient to

guarantee that (A28)-(A29) and (A31) hold under Conditions 16-17. This ends the proof. �
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A3 Proof of Corollary 22

Recall that T̃ (X ) =
∑dn

h=1〈B∗h,Fh(X )〉, where B∗h =
∑R

r=1 β
∗
1hr ◦ β∗2hr ◦ β∗3hr, and T̂ (X ) =∑dn

h=1〈B̂h,Fh(X )〉, where B̂h =
∑R

r=1 β
(T ∗)
1hr ◦ β

(T ∗)
2hr ◦ β

(T ∗)
3hr . We make the following decom-

position, ∥∥∥T̂ − T ∗∥∥∥2
2
≤ 2

∥∥∥T̂ − T̃ ∥∥∥2
2︸ ︷︷ ︸

I1

+2
∥∥∥T̃ − T ∗∥∥∥2

2︸ ︷︷ ︸
I2

,

where ‖f‖2 =
√∫ b

a f
2(x)dP (x). Intuitively, I1 quantifies the estimation error of {B∗h}

dn
h=1,

while I2 measures the overall approximation error by using B-spline basis function expansion.
We bound I1 and I2 in two steps.

1. By the definition, it’s easy to see

dn∑
h=1

∥∥∥B̂h − B∗h∥∥∥2
F
≤ 3R

R∑
r=1

dn∑
h=1

(
‖β(T ∗)

1hr − β
∗
1hr‖22 + ‖β(T ∗)

2hr − β
∗
2hr‖22 + ‖β(T ∗)

3hr − β
∗
3hr‖22

)
.

According to the basis property of spline expansions (De Boor et al., 1978), we reach
that

I1 ≤ C1d
−1
n

dn∑
h=1

∥∥∥B̂h − B∗h∥∥∥2
F

≤ 3C1Rd
−1
n

R∑
r=1

dn∑
h=1

(
‖β(T ∗)

1hr − β
∗
1hr‖22 + ‖β(T ∗)

2hr − β
∗
2hr‖22 + ‖β(T ∗)

3hr − β
∗
3hr‖22

)
= 3C1Rd

−1
n E(T

∗).

According to Theorem 21,

I1 ≤ 3C1Rd
−1
n n

−2κ−1
2κ+1 log pdn, (A33)

with probability at least 1 − C0(T
∗ + 1)(sn

− 2κ
2κ+1 + 1/p).

2. By the assumption of CP-low-rankness, we have

I2 =
∥∥∥ dn∑
h=1

〈B∗h,Fh(X )〉 − T ∗(X )
∥∥∥2
2

=
∥∥∥ p1∑
j=1

p2∑
k=1

p3∑
l=1

(fdnjkl(Xjkl)− f
∗
jkl(Xjkl))

∥∥∥2
2
.

According to Lemma 28, we have

I2 ≤ C2s
6d−2κn . (A34)
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Putting (A33) and (A34) together, we reach∥∥∥T̂ − T ∗∥∥∥2
2
≤ 3C1Rd

−1
n n

−2κ−1
2κ+1 log pdn + C2s

6d−2κn .

Note that under Condition 15-19, both R and s are bounded. By taking dn � n−
1

2κ+1 , we
have ∥∥∥T̂ − T ∗∥∥∥2

2
= Op

(
n
− 2κ
2κ+1 log pdn

)
.

This ends the proof. �
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Supplementary Materials
Sparse Tensor Additive Regression

Botao Hao, Boxiang Wang, Pengyuan Wang,
Jingfei Zhang, Jian Yang, Will Wei Sun

In the supplementary, we present the definition and properties of the B-spline basis,
some additional conditions for our theoretical results and the detailed proofs of Lemmas
25-27.

1. Properties of B-spline

We formally define the q-th order B-splines with a set of m internal knot sequences k =
{0 = k0 < k1 < . . . < km < km+1 = 1} recursively,

b1l (x) =

{
1, kl ≤ x < kl+1

0, otherwise

and

bql (x) =
x− kl

kl+q−1 − kl
bq−1l (x) +

kl+q − x
kl+q − kl+1

bq−1l+1 . (A1)

Then under some smoothness conditions, f(x) ≈ s(x) =
∑

l b
q
l (x)βl = b(x)>β, where

βi ∈ Rp with p = m + q. For the random variable X satisfying Condition 15, we have
E[bql (X)] ≤ C1d

−1
n ,E[bql (X)]2 ≤ C2d

−1
n for some constants C1 and C2. The detailed proofs

refer to Stone (1985); Huang et al. (2010); Fan et al. (2011).
Additionally, we restate the result in Huang et al. (2010) for the approximation error

rate under B-spline basis function.

Lemma 28 (Stone (1985); Huang et al. (2010)) Suppose Condition 15 holds and if
the number of spline series is chosen by dn = O(n1/(2κ+1)). Then there exists an fdnjkl ∈ Sn
satisfying ∥∥fdnjkl − f∗jkl∥∥22 = Op(d−2κn ) = Op(n−2κ/(2κ+1)). (A2)

2. Additional conditions for Section 4.1

In this section, we present addition conditions for Lipschitz-gradient (Conditions 29-30),
sparse strongly convex (Conditions 31-32), and statistical error (Conditions 33-34) for the
update of b2 and b3. We define ∇2L(·, ·, ·) and ∇3L(·, ·, ·) are the gradient taken with respect
to the second and the third argument.

Condition 29 () For b1 ∈ Bα1,s1(b∗1), b3 ∈ Bα3,s3(b∗3), the noiseless gradient function

∇2L̃(·, b∗2, b3) satisfies µ′1n-Lipschitz-gradient condition, and ∇2L̃(b∗1, b
∗
2, ·) satisfies µ′3n-

Lipschitz-gradient condition. That is,〈
∇2L̃(b1, b

∗
2, b3)−∇2L̃(b∗1, b

∗
2, b3), b2 − b∗2

〉
≤ µ′1n

∥∥b2 − b∗2∥∥2∥∥b1 − b∗1∥∥2〈
∇2L̃(b∗1, b

∗
2, b3)−∇2L̃(b∗1, b

∗
2, b
∗
3), b2 − b∗2

〉
≤ µ′3n

∥∥b2 − b∗2∥∥2∥∥b3 − b∗3∥∥2,
with probability at least 1− δ1.
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Condition 30 () For b1 ∈ Bα1,s1(b∗1), b2 ∈ Bα2,s2(b∗2), the noiseless gradient function

∇3L̃(b1, ·, b∗3) satisfies µ
′′
2n-Lipschitz-gradient condition, and ∇3L̃(·, b∗2, b∗3) satisfies µ

′′
1n-

Lipschitz-gradient condition. That is,〈
∇3L̃(b1, b2, b

∗
3)−∇3L̃(b1, b

∗
2, b
∗
3), b3 − b∗3

〉
≤ µ′′2n

∥∥b3 − b∗3∥∥2∥∥b2 − b∗2∥∥2〈
∇3L̃(b1, b

∗
2, b
∗
3)−∇3L̃(b∗1, b

∗
2, b
∗
3), b3 − b∗3

〉
≤ µ′′1n

∥∥b3 − b∗3∥∥2∥∥b1 − b∗1∥∥2,
with probability at least 1− δ1.

Condition 31 () For any b1 ∈ Bα1,s1(b∗1), b3 ∈ Bα3,s3(b∗3), the loss function L(·, ·, ·) is
sparse strongly convex in its first variable, namely

L(b1, b
∗
2, b3)− L(b1, b2, b3)− 〈∇2L

(
b1, b

∗
2, b3), b

∗
2 − b2〉 ≥

γ2n
2
‖b2 − b∗2‖22,

with probability at least 1− δ2. Here, γ2n > 0 is the strongly convex parameter.

Condition 32 () For any b1 ∈ Bα1,s1(b∗1), b2 ∈ Bα2,s2(b∗2), the loss function L(·, ·, ·) is
sparse strongly convex in its first variable, namely

L(b1, b2, b
∗
3)− L(b1, b2, b3)− 〈∇3L

(
b1, b2, b

∗
3), b3 ∗ −b3〉 ≥

γ3n
2
‖b3 − b∗3‖22,

with probability at least 1− δ2. Here, γ3n > 0 is the strongly convex parameter.

Condition 33 () For any b1 ∈ Bα1,s1(b∗1), b3 ∈ Bα3,s3(b∗3), we have with probability at least
1− δ3, ∥∥∇2L(b1, b

∗
2, b3)−∇2L̃(b1, b

∗
2, b3)

∥∥
P∗ ≤ ε2.

Condition 34 () For any b1 ∈ Bα1,s1(b∗1), b2 ∈ Bα2,s2(b∗2), we have with probability at least
1− δ3, ∥∥∇3L(b1, b2, b

∗
3)− 3L̃(b1, b2, b

∗
3)
∥∥
P∗ ≤ ε3.

3. Proofs of Lemmas 25-27

In this section, we present the proof of Lemmas 25-27. If X is sub-Gaussian random variable,
then its φ2-Orlicz norm can be bounded such that ‖X‖φ2 ≤ C1 for some absolute constant.
If X is sub-exponential random variable, then its φ1-Orlicz norm can be bounded such that
‖X‖φ1 ≤ C2 for some absolute constant C2.

3.1 Proof of Lemma 25

Recall that b1 = (ϑ>11, . . . , ϑ
>
1p1

)> ∈ RRdnp1×1. Define S ′1 = {j ∈ [p]|‖ϑ1j‖2 6= 0∪‖ϑ∗1j‖2 6= 0},
F 1
S′1

= (F 1
j ∈ Rn×Rdn , j ∈ S ′1), b1S′1 = (β1j ∈ RRdn×1, j ∈ S ′1). Since b1 ∈ Bα,s(b∗1), we know

that |S ′1| = C0s for some positive constant C0 ≥ 1 not depending on s. Without loss of
generality, assume |S ′1| = {1, · · · , C0s}. First, we do some simplifications for the left side of
(A26). According to the derivation in (12), we have

L(b∗1, b2, b3)− L(b1, b2, b3)

=
1

n

(
b∗>1 F

1>F 1b∗1 − b>1 F 1>F 1b1 − 2y>F 1b∗1 + 2y>F 1b1

)
=

1

n

(
b∗>1S′1

F 1>
S′1
F 1
S′1
b∗1S′1

− b>1S′1F
1>
S′1
F 1
S′1
b1S′1 − 2y>F 1

S′1
b∗1S′1

+ 2y>F 1
S′1
b1S′1

)
,
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and

〈∇1L
(
b∗1, b2, b3), b

∗
1 − b1〉

=
2

n

(
b∗>1 F

1>F 1b∗1 − b∗>1 F 1>F 1b1 − y>F 1b∗1 + y>F 1b1

)
=

2

n

(
b∗>1S′1

F 1>
S′1
F 1
S′1
b∗1S′1

− b∗>1S′1F
1>
S′1
F 1
S′1
b1S′1 − y

>F 1
S′1
b∗1S′1

+ y>F 1
S′1
b1S′1

)
.

Putting the above two equations together, we reach

L(b∗1, b2, b3)− L(b1, b2, b3)− 〈∇1L
(
b∗1, b2, b3), b

∗
1 − b1〉

= (b1S′1 − b
∗
1S′1

)>
(
−
F 1>
S′1
F 1
S′1

n

)
(b1S′1 − b

∗
1S′1

).

It remains to prove

(b1S1 − b∗1S1
)>
(F 1>

S1
F 1
S1

n

)
(b1S1 − b∗1S1

) ≥ γ1n
2
‖b1S1 − b∗1S1

‖22.

If one can show that F 1>
S1
F 1
S1
/n � m̃IC0s i.e. the minimal eigenvalue σmin(F 1>

S1
F 1
S1
/n) ≥ m̃

for some positive m̃ ∈ R, then we have the strongly convex parameter γ1n = m̃. Let
a = (a>1 , . . . ,a

>
C0s

)> where aj = (a>j1, . . . ,a
>
jR)> ∈ RRdn×1 and ajr ∈ Rdn×1. Our proof

consists of two steps.
Step One. Consider a single coordinate F 1

j . For k ∈ [p] and j ∈ [p], define

Zjkl =

ψjkl1([X1]jkl) · · · ψjkldn([X1]jkl)
...

. . .
...

ψjkl1([Xn]jkl) · · · ψjkldn([Xn]jkl)

 ∈ Rn×dn ,

Dklr =

β21rkβ31rl . . .

β2dnrkβ3dnrl

 ∈ Rdn×dn .

By using the triangle inequality and Lemma 3 in Stone (1985), we have for j ∈ [C0s],

C1

p∑
k=1

p∑
l=1

R∑
r=1

∥∥∥ZjklDklrajr

∥∥∥2
2
≤ ‖F 1

j aj‖22, (A3)

where C1 is some positive constant. Divided by n in both sides, we have

C1

p∑
k=1

p∑
l=1

R∑
r=1

a>jrD
>
klr

Z>jklZjkl

n
Dklrajr ≤ a>j

F 1>
j F 1

j

n
aj .

According to Lemma 6.2 in Zhou et al. (1998), there exists certain constants C2 and C3

such that

C2(1 + o(1))d−1n ≤ σmin

(Z>jklZjkl
n

)
≤ σmax

(Z>jklZjkl
n

)
≤ C3(1 + o(1))d−1n . (A4)

36



Sparse Tensor Additive Regression

holds for any k, l. Since σmin(AB) ≥ σmin(A)σmin(B), we can bound the minimum eigen-
value of the weighted B-spline design matrix,

σmin

(
D>klr

Z>jklZjkl

n
Dklr

)
≥ C2(1 + o(1))d−1n (min

h
β2hkβ3hl)

2.

This will enable us to bound the smallest eigenvalue of F 1>
j F 1

j /n as follows,

a>j
F 1>
j Fj/n

‖aj‖22
aj ≥ C1

p∑
k=1

p∑
l=1

R∑
r=1

a>jr
(D>klrZ

>
jklZjklDklr)/n

‖ajr‖22
ajr

≥ C1C2(1 + o(1))d−1n

R∑
r=1

min
h

( p∑
k=1

β∗22hrk − α2
)

min
h

( p∑
l=1

β∗23hrl − α2
)

≥ C1C2(1 + o(1))Rd−1n (sc2∗ − α2)2

≥ 1

4
C1C2(1 + o(1))Rd−1n s2c4∗,

where last inequality is due to b2 ∈ Bα,s(b∗2), b3 ∈ Bα,s(b∗3) for α ≤ c∗
√
s/2 and Condition

17. Let C1 = C1/4. Therefore, for every j ∈ [C0s],

σmin

(F 1>
j F 1

j

n

)
≥ C1C2(1 + o(1))Rd−1n s2c4∗. (A5)

Step Two. By the triangle inequality,

C4

( C0s∑
j=1

‖F 1
j bj‖22

)
≤ ‖F 1

S1
b‖22 = b>F 1>

S1
F 1
S1
b,

for some constant C4, which implies

a>
F 1>
S1
F 1
S1
/n

‖a‖22
a ≥ C4

(∑C0s
j=1 ‖F 1

j aj‖22
n‖a‖22

)
.

Together with (A5), we have

a>
F 1>
S1
F 1
S1
/n

‖a‖22
a ≥ C1C2C4(1 + o(1))d−1n s2c4∗

holds for any a. Setting C1 = C1C2C4, it essentially implies

σmin(
1

n
F 1>
S1
FS1) ≥ C1(1 + o(1))Rd−1n s2c4∗,

for some constant C1. We can say the sparse strong convexity holds with γ1n = C1(1 +
o(1))Rd−1n s2c4∗. �
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3.2 Proof of Lemma 26

For notation simplicity, we denote

gi(b1, b2, b3) =

dn∑
h=1

〈Fh(Xi),
R∑
r=1

β1hr ◦ β2hr ◦ β3hr〉,

where Fh(Xi) is defined in (4). According to the definition of the gradient function, we can
rewrite the following inner product as〈

∇1L̃(b1, b2, b3), b
+
1 − b

∗
1

〉
=

2

n

n∑
i=1

[
gi(b1, b2, b3)gi(b

+
1 − b

∗
1, b2, b3)− gi(b∗1, b∗2, b∗3)gi(b+1 − b

∗
1, b2, b3)

]
. (A6)

We will bound T1 first. The bound for T2 remains similar. Let’s decompose T1 by three
parts,

T1 =
〈
∇1L̃(b∗1, b2, b

∗
3)−∇1L̃(b∗1, b

∗
2, b
∗
3), b1 − b∗1

〉
=

2

n

n∑
i=1

[
gi(b

∗
1, b2, b3)gi(b

+
1 − b

∗
1, b2, b3)− gi(b∗1, b∗2, b∗3)gi(b+1 − b

∗
1, b2, b3)

−gi(b∗1, b∗2, b3)gi(b+1 − b
∗
1, b
∗
2, b3) + gi(b

∗
1, b
∗
2, b
∗
3)gi(b

+
1 − b

∗
1, b
∗
2, b3)

]
=

2

n

n∑
i=1

[
gi(b

∗
1, b2 − b∗2, b3)gi(b+1 − b

∗
1, b2, b3)

]
︸ ︷︷ ︸

T11

+
2

n

n∑
i=1

[
gi(b

∗
1, b
∗
2, b3)gi(b

+
1 − b

∗
1, b2 − b∗2, b3)

]
︸ ︷︷ ︸

T12

− 2

n

n∑
i=1

[
gi(b

∗
1, b
∗
2, b
∗
3)gi(b

+
1 − b

∗
1, b2 − b∗2, b3)

]
︸ ︷︷ ︸

T13

.

By writing explicitly of gi(b1, b2, b3),

gi(b1, b2, b3) =

dn∑
h=1

( p∑
j=1

p∑
k=1

p∑
l=1

[Fh(Xi)jkl]
R∑
r=1

β1hrjβ2hrkβ3hrl

)

=

dn∑
h=1

( p∑
j=1

p∑
k=1

p∑
l=1

ψjklh([Xi]jkl)
R∑
r=1

β1hrjβ2hrkβ3hrl

)
.

Since supx |ψjklh(x)| ≤ 1, the φ2-Orlicz norm for each individual component can be bounded
by ∥∥∥ψjklh([Xi]jkl)

R∑
r=1

β1hrjβ2hrkβ3hrl

∥∥∥
φ2
≤ |

R∑
r=1

β1hrjβ2hrkβ3hrl|, for j, k, l ∈ [p].
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Based on rotation invariance, we obtain

∥∥∥gi(b1, b2, b3)∥∥∥
φ2
≤
( dn∑
h=1

p∑
j=1

p∑
k=1

p∑
l=1

(

R∑
r=1

β1hrjβ2hrkβ3hrl)
2
)1
2
.

In the following, we will bound the expectation of gi(b
∗
1, b2 − b∗2, b3)gi(b

+
1 − b∗1, b2, b3).

By the property of B-spline basis function (See Section 1) and Cathy-Schwarz inequality,

E
(
gi(b1, b2, b3)

)
=

dn∑
h=1

( p∑
j=1

p∑
k=1

p∑
l=1

E[Fh(Xi)jkl]
R∑
r=1

β1hrjβ2hrkβ3hrl

)

≤ 1

dn

dn∑
h=1

p∑
j=1

p∑
k=1

p∑
l=1

R∑
r=1

β1hrjβ2hrkβ3hrl

≤ s
3
2R

dn

( dn∑
h=1

p∑
j=1

p∑
k=1

p∑
l=1

R∑
r=1

β21hrjβ
2
2hrkβ

2
3hrl

)1
2
.

Combining the above ingredients together with Hoeffding’s inequality (See Lemma 35), we
obtain with probability at least 1 − 1/p,

T11 ≤ 2
[s3R2

d2n
+ C0

√
log p

n

]( dn∑
h=1

p∑
j=1

p∑
k=1

p∑
l=1

R∑
r=1

β∗21hrj(β2hrk − β∗2hrk)2β23hrl
)1
2

×
( dn∑
h=1

p∑
j=1

p∑
k=1

p∑
l=1

R∑
r=1

(β+1hrj − β
∗
1hrj)β

2
2hrkβ

2
3hrl

)1
2
.

Noting that b2 ∈ Bα,s(b∗2), b3 ∈ Bα,s(b∗3), we have

T11 ≤ 2
[s3R2

d2n
+ C0

√
log p

n

]
max
h

(

p∑
j=1

β∗21hrj)
1
2 max

h
(

p∑
k=1

β∗22hrk)
1
2 max

h
(

p∑
l=1

β∗23hrl)
∥∥b2 − b∗2∥∥2∥∥b+1 − b∗1∥∥2

≤ 2
[s3R2

d2n
+ C0

√
log p

n

]
s2R2c∗4

∥∥b2 − b∗2∥∥2∥∥b+1 − b∗1∥∥2,
where the last inequality is from Condition 17. The upper bounds for T12 and T13 are
similar. Putting them together, with probability at least 1 − 6/p,

|T1| ≤ 6
[s3R2

d2n
+ C0

√
log p

n

]
R2s2c∗4‖b2 − b∗2‖2‖b+1 − b

∗
1‖2.

Similarly, we can get the bound for T2. This ends the proof. �

3.3 Proof of Lemma 27

Recall that P∗ is the dual norm of group lasso penalty P . With a little abuse of notations,
we define ε = (ε1, . . . , εn)> and T ∗(X ) = (T ∗(X1), . . . , T ∗(Xn))> in this section. According
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to the derivation of the gradient function in (12), we decompose the error by an spline
approximation error term (T1) and a statistical term (T2) as follows,∥∥∥∇1L(b∗1, b2, b3)−∇1L̃(b∗1, b2, b3)

∥∥∥
P∗

=
∥∥∥ 2

n
F 1>(F 1b∗1 − y)− 2

n
F 1>(F 1b∗1 − F 1∗b∗1)

∥∥∥
P∗

=
∥∥∥ 2

n
F 1>(y − F 1∗b∗1)

∥∥∥
P∗

=
∥∥∥ 2

n
F 1>(T ∗(X )− F 1∗b∗1 + ε)

∥∥∥
P∗

≤
∥∥∥ 2

n
F 1>(T ∗(X )− F 1∗b∗1)

∥∥∥
P∗︸ ︷︷ ︸

T1

+
∥∥∥ 2

n
F 1>ε

∥∥∥
P∗︸ ︷︷ ︸

T2

.

Step One: Bounding T1. Denote A1 = {j ∈ [p]|‖F 1
j ‖2 6= 0}. Since b2 ∈ Bα,s(b∗2),

b3 ∈ Bα,s(b∗3), it’s easy to see |A1| ≤ C0s for some constant C0 not depending on n, p, s. By
the definition of dual norm P∗ (See Definition 7), we obtain

T1 =
∥∥∥ 2

n

n∑
i=1

F 1
i

(
T ∗(Xi)− [F 1∗b∗1]i

)∥∥∥
P∗

= max
j∈A1

∥∥∥ 2

n

n∑
i=1

F 1
ij

(
T ∗(Xi)− [F 1∗b∗1]i

)∥∥∥
2

≤ max
i∈[n]

∣∣∣T ∗(Xi)− [F 1∗b∗1]i

∣∣∣max
j∈A1

∥∥∥ 2

n

n∑
i=1

F 1
ij

∥∥∥
2
. (A7)

Note that the first part of (A7) fully comes from the approximation error using B-spline
basis functions for the nonparametric component. We bound T1 in three steps as follows.

1. To bound the first part, we use Lemma 28 which quantifies the approximation error
for a single component. To ses this, there exists a positive constant C1 such that∣∣∣fdnjkl([Xi]jkl)− f∗jkl([Xi]jkl)∣∣∣ ≤ C1d

−κ
n , j, k, l ∈ [p].

For the whole nonparametric function T ∗, we utilize the CP-low-rankness assumption
(5) and group sparse assumption (7), which indicates

max
i∈[n]

∣∣∣T ∗(Xi)− [F 1∗b∗1]i

∣∣∣ = max
i∈[n]

∣∣∣ p∑
j=1

p∑
k=1

p∑
l=1

(
fdnjkl([Xi]jkl)− f

∗
jkl([Xi]jkl)

)∣∣∣ ≤ C1s
3d−κn .

(A8)

2. To bound the second part, by the definition of F 1
ij , we have

1

n

n∑
i=1

F 1
ij =

( 1

n

n∑
i=1

〈β211 ◦ β311, [F1(Xi)]j..〉, . . . ,
1

n

n∑
i=1

〈β2dn1 ◦ β3dn1, [Fdn(Xi)]j..〉

. . . ,
1

n

n∑
i=1

〈β21R ◦ β31R, [F1(Xi)]j..〉, . . . ,
1

n

n∑
i=1

〈β2dnR ◦ β3dnR, [Fdn(Xi)]j..〉
)
,
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which implies that∥∥∥ 2

n

n∑
i=1

F 1
ij

∥∥∥
2

=
( dn∑
h=1

R∑
r=1

( 2

n

n∑
i=1

〈β2hr ◦ β3hr, [Fh(Xi)]j..〉
)2)1

2
.

According to the property of B-spline basis function in Section 1, we have

E
〈
β2hr ◦ β3hr, [Fh(Xi)]j..

〉
≤ d−1n

p∑
k=1

p∑
l=1

β2hrkβ3hrl ≤
C0s

dn

( p∑
k=1

p∑
l=1

β22hrkβ
2
3hrl

)1
2
,

(A9)
where the second inequality comes from Cathy-Schwarz inequality and sparsity assump-
tion on b2, b3. On the other hand, recall that supx |ψjklh(x)| ≤ 1 for all j, k, l ∈ [p].
With the rotation invariance, the φ2-Orlicz norm of 〈β2hr ◦ β3hr, [Fh(Xi)]j..〉 can be

bounded by (
∑p

k=1

∑p
l=1 β

2
2hrkβ

2
3hrl)

1
2 . Combining (A9) and Hoeffding-type concen-

tration inequality (See Lemma 35), we have with probability at least 1 − 1/n,

2

n

n∑
i=1

〈β2hr ◦ β3hr, [Fh(Xi)]j..〉 ≤ 2
(C0s

dn
+

√
log(en)

n

)( p∑
k=1

p∑
l=1

β22hrkβ
2
3hrl

)1
2
, (A10)

which implies

max
j∈A1

∥∥∥ 2

n

n∑
i=1

F 1
ij

∥∥∥
2
≤ 2
(C0s

dn
+

√
log(en)

n

)( dn∑
h=1

R∑
r=1

p∑
k=1

p∑
l=1

β22hrkβ
2
3hrl

)1
2
, (A11)

with probability at least 1 −Rdns/n.

3. Putting (A8)-(A11) together, we obtain

T1 ≤ 2C1s
3d−κn

(C0s

dn
+

√
log(en)

n

)( dn∑
h=1

R∑
r=1

p∑
k=1

p∑
l=1

β22hrkβ
2
3hrl

)1
2
. (A12)

with probability at least 1 −Rdns/n for some absolute constant C0, C1.

Step Two: Bounding T2. Recall that F 1>ε = (F 1>
1 ε, . . . ,F 1>

p ε)> ∈ Rpdn×1. Then,

T2 = max
j∈A1

∥∥∥ 2

n
F 1
j ε
∥∥∥
2

= max
j∈A1

∥∥∥ 2

n

n∑
i=1

F 1
ijεi

∥∥∥
2

≤ 1√
n

max
j∈A1,h∈[dn],r∈[R]

√
dn
n

n∑
i=1

εi〈β2hr ◦ β3hr, [Fh(Xi)]j..〉

=
1√
n

max
j∈A1,h∈[dn],r∈[R]

∑
k∈w(b2)

∑
l∈w(b3)

√
dn
n

n∑
i=1

εiψjklh(Xi)β2hrkβ2hrl.

where the definition of w(x) is presented in the beginning of Section 4.1. From initial value
assumption and Condition 17, we have

|β2hrk − β∗2jrk| ≤ max
h,k
|β2hrk − β∗2hrk| ≤ ‖β2hrk − β∗2hrk‖2 ≤ α,
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and thus β2hrk ≤ β∗2hrk + c∗. The same result holds for β3hk. Therefore, by applying Lemma
36, we have

T2 ≤ s2√
n

(α+ c∗)2 max
j∈A1,h∈[dn],r∈[R]

√
dn
n

n∑
i=1

εiψjklh(Xi)

≤ C3σ
s2
√

log(pdn)√
n

, (A13)

with probability at least 1 − 4C0Rs/n, where σ is the noise level.

Step Three: Summary. Putting the bounds (A12) and (A13) together, we obtain
that with probability at least 1 − C0Rdns/n,∥∥∥∇1L(b∗1, b2, b3)−∇1L̃(b∗1, b2, b3)

∥∥∥
P∗

≤
[
C1s

3d−κn

(C0s

dn
+

√
log ep

n

)]( dn∑
h=1

R∑
r=1

p∑
k=1

p∑
l=1

β22hrkβ
2
3hrl

)1
2

+ C3σ
s2
√

log(pdn)√
n

≤
[C1s

3

dκn

√
log ep

n
+
C2s

4

dκ+1
n

]( dn∑
h=1

R∑
r=1

p∑
k=1

p∑
l=1

β22hrkβ
2
3hrl

)1
2

+ C3σ
s2
√

log(pdn)√
n

,

where C1, C2, C3 are some positive constants. According to Condition 17 and b2 ∈ Bα,s(b∗2),
b3 ∈ Bα,s(b∗3),

dn∑
h=1

R∑
r=1

p∑
k=1

p∑
l=1

β22hrkβ
2
3hrl =

dn∑
h=1

( p∑
k=1

β2jhk

)( p∑
l=1

β23hl

)
≤ Rd1/2n s2c∗4.

By setting C1 = max{C1, C2, C2}, we have with probability at least 1 − C0Rdns/n,∥∥∥∇1L(b∗1, b2, b3)−∇1L̃(b∗1, b2, b3)
∥∥∥
P∗

≤ C1Rc
∗4
[ s5

d
κ−1/2
n

√
log(en)

n
+

s6

d
κ+1/2
n

+ σ

√
s4 log(pdn)

n

]
.

This ends the proof. �

4. Supporting Lemmas

Lemma 35 (Hoeffding-type inequality) Suppose {Xi}ni=1 are i.i.d sub-Gaussian ran-
dom variable with ‖Xi‖φ2 ≤ K, where K is an absolute constant. For fixed a ∈ Rn, we have
w.p.a 1− δ, ∣∣∣ n∑

i=1

aiXi − E(

n∑
i=1

aiXi)
∣∣∣ ≤ C0K‖a‖2

√
log(e/δ).
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Lemma 36 (Lemma 2 in Huang et al. (2010)) Suppose that Condition 15-16 hold.
Let

Tjkl =

√
dn
n

n∑
i=1

ψjklh([Xi]jkl)εi, for j ∈ [p], k ∈ [p], l ∈ [p], h ∈ [dn],

and Tn = maxj,k,l∈[p],h∈[dn] |Tjkl|. When dn
√
pdn/n→ 0, we have for some constant C1,

E(Tn) = C1

√
log(pdn).
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