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ABSTRACT

Top-k queries have been studied intensively in the database
community and they are an important means to reduce query
cost when only the “best” or “most interesting” results are
needed instead of the full output. While some optimality re-
sults exist, e.g., the famous Threshold Algorithm, they hold
only in a fairly limited model of computation that does not
account for the cost incurred by large intermediate results
and hence is not aligned with typical database-optimizer cost
models. On the other hand, the idea of avoiding large inter-
mediate results is arguably the main goal of recent work on
optimal join algorithms, which uses the standard RAM model
of computation to determine algorithm complexity. This re-
search has created a lot of excitement due to its promise of
reducing the time complexity of join queries with cycles, but
it has mostly focused on full-output computation. We argue
that the two areas can and should be studied from a unified
point of view in order to achieve optimality in the common
model of computation for a very general class of top-k-style
join queries. This tutorial has two main objectives. First, we
will explore and contrast the main assumptions, concepts,
and algorithmic achievements of the two research areas. Sec-
ond, we will cover recent, as well as some older, approaches
that emerged at the intersection to support efficient ranked
enumeration of join-query results. These are related to classic
work on k-shortest path algorithms and more general opti-
mization problems, some of which dates back to the 1950s.
We demonstrate that this line of research warrants renewed
attention in the challenging context of ranked enumeration
for general join queries.
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1 INTRODUCTION

Join-query evaluation is a fundamental problem in databases,
hence it is not surprising that recent work on worst-case-
optimal (WCO) join algorithms [76, 77] generated a lot of
excitement. The basic insight is that standard join algorithms
that treat multiway joins with cycles as a sequence of pair-
wise joins are provably suboptimal in that they may produce
intermediate results that are asymptotically larger than the
largest output this query may produce over any possible
input instance. By taking a “holistic” approach, WCO join al-
gorithms guarantee a running-time complexity that matches
the worst-case output size of a given query [77]. Interest-
ingly, recent work on factorized databases [82] and “optimal”
join algorithms [6]! has shown that the same and even better
time complexity can be achieved by decomposing a cyclic
join query into multiple acyclic join plans and routing dif-
ferent subsets of the input to different plans. A key insight
is that WCO join algorithms are not output sensitive: their
complexity guarantees do not improve when a query has
only a small output, e.g., when none of the input tuples in a
given database instance happen to form a result. Similarly,
the time-complexity guarantees of WCO join algorithms are
weak in the presence of projections (e.g., for Boolean join
queries, which ask if the join has any result).

Since worst-case optimality is defined with respect to the
largest output of the query over all possible inputs, it is not
a natural fit for top-k queries, which aim to reduce query
cost when only few results are needed. Consider a graph
with weighted edges, where lower weights represent greater
importance, and the problem of finding the top-k lightest
4-cycles, i.e., the k most important cycles consisting of 4
edges. This, as well as any other graph-pattern query, can
be expressed with self-joins of the edge set: here a 4-way
join with equality conditions on the endpoints of adjacent
edges.? Abstractly, all results are sorted according to a rank-
ing function and the query needs to return only the first k of
them. In a graph with n edges, there can be O(n?) 4-cycles,

'We will elaborate more on the distinction between optimal and worst-case-optimal
join algorithms in Section 3.

2For simplicity we ignore the issue of degenerate cycles, i.e., the same node or edge
can appear more than once in the cycle.
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therefore a WCO join algorithm would run in time O(n?).
On the other hand, it has been shown that the corresponding
Boolean query (“Is there any 4-cycle?”) can be answered in
O(n'9) [6]. It is tempting to assume that for small k, find-
ing the k lightest cycles will have complexity close to the
Boolean query, and as we will demonstrate this turns out to
be correct [90].

Interestingly, the above question had not been addressed
by the extensive literature on top-k queries in the database
context [50, 83]. There exist approaches with optimality guar-
antees, e.g., the Threshold Algorithm [30], but their optimal-
ity holds only in a restricted model of computation where
cost is measured in terms of the number of tuples accessed,
while the actual computation is essentially “free.”® We in-
stead will discuss and analyze all top-k algorithms from the
point of view of the standard RAM model of computation that
charges O(1) for each memory access, i.e., it also accounts
for cost incurred by large intermediate results and agrees
with the model used in the context of (worst-case) optimal
join algorithms.

This tutorial will generally survey these two seemingly
different areas—optimal joins and top-k—from a unified
point of view. We intend to achieve this by highlighting
the underlying assumptions made by illustrating impor-
tant achievements and algorithmic ideas in the two lines
of work. By formally defining the common foundations, we
are able to reveal fruitful research directions at the inter-
section: How can we extend optimal join algorithms with
ideas from top-k query processing to create frameworks for
optimal ranked enumeration over general join queries? What
types of ranking functions can be supported efficiently? And
how can sorting be pushed deep into the join computation?
While some recent work has started to explore those ques-
tions [16, 21, 61, 90, 93, 94], much is still left to be done.

Audience. The tutorial targets researchers and practitioners
who desire an intuitive introduction to recent developments
in the theory of optimal join algorithms, including topics
such as generalized and fractional hypertree decompositions
of cyclic queries, different notions of query width, fractional
edge cover, factorized representation, increasingly tight no-
tions of optimality, and enumeration algorithms for join
queries. It is also suitable for those interested in a concise
comparison of major top-k approaches that were proposed
in the context of join queries.

Prerequisites. To make all material accessible to those in-
terested in the practical impact of the techniques, the tutorial
will heavily favor intuitive examples and explanations over
low-level technical details. In the same spirit, and in line
with much of the recent work on optimal join algorithms,

3The original motivation for this model are middleware settings where the algorithm
is charged for requests made to external input sources.
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we generally take a database-centric view and will present
asymptotic complexity results in terms of data complexity in
O-notation (read as “soft-O”). Data complexity treats query
size (i.e., the size of the query expression itself) as a con-
stant and focuses on scalability in the size of the data. The
O-notation abstracts away poly-logarithmic factors in input
size as those factors often clutter a formula and poly-log
grows asymptotically slower than a linear function (hence
those factors are considered small compared to even just
reading the input once). For instance, consider the following
case. Let f() denote some arbitrary computable function,
Q the query, n the size of its largest input relation and r
the size of its output. Then, a detailed complexity formula
such as O(£(|Q]) - nf19D + (log ny 19D . ) would simplify
to (j(nf (19D 4+ 7). Note how the exponent that depends on
|Q| does not disappear in the first term and how the entire
poly-log factor disappears in the second. Whenever we want
to analyze performance differences at finer granularity, we
will also show the detailed complexity formulas in standard
O-notation.

All material will be self-contained, i.e., we only assume
familiarity with fundamental database concepts that would
be covered in a typical undergraduate database course, and
we do not require previous knowledge of optimal join algo-
rithms or top-k queries.

Outline of the tutorial. This is a 90-minute tutorial con-
sisting of three main parts:

(1) Top-k algorithms for join queries

(2) (Worst-case) optimal join algorithms

(3) Ranked enumeration over join queries: optimality,
ranking functions, and empirical comparison of the
most promising approaches.

We will conclude with a variety of open research problems.
Slides and videos of the tutorial will be made available on
the tutorial web page.*

2 PART 1: TOP-K ALGORITHMS

The first part of the tutorial presents core techniques for
answering top-k queries in databases with a particular fo-
cus on those supporting joins [50, 64], while only briefly
touching on top-k problems in other contexts such as single-
table queries [83] that often have a geometric nature [68].
In general, top-k aims to prioritize input tuples that could
contribute to any of the k top-ranked results over those that
cannot, often pruning the latter as early as possible. Compli-
cations arise because the importance of a result tuple (often
captured by its aggregate weight) typically depends on the
weights of the input tuples that join to produce it. This limits

4https://northeastern-datalab.github.io/topk-join-tutorial/
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the choices of ranking functions for which efficient computa-
tion and effective pruning are possible.

One of the best-known top-k approaches is the Thresh-
old Algorithm (TA) [30], for which Fagin, Lotem and Naor
received the 2014 Godel Prize, both for the algorithm’s sim-
plicity and its strong instance-optimality guarantee. Con-
ceptually, TA operates on a single table that was partitioned
vertically, with each partition being managed by a different
external service that knows the ranking only for its partition.
A middleware’s challenge is then to combine those individ-
ual rankings to find the global winners for the full table.
TA’s cost is measured in term of the number of tuple frag-
ments retrieved by the middleware from the external sources,
but it does not take the actual join cost into account. This is
acceptable in the target application, because TA supports
only a very limited type of join, also termed “top-k selection
query” [50], where tuple fragments from different partitions
join 1-to-1 on a unique object identifier to piece together a
row of the full table.

TA marks the culmination of a series of papers where Fa-
gin introduces the problem and proposes an algorithm, now
known as “Fagin’s algorithm” (FA) [27-29], which does not
have TA’s strong optimality guarantees. FA also motivated
several approaches that essentially proposed TA before the fa-
mous TA paper, but without identifying and proving the algo-
rithm’s instance optimality. This includes work by Nepal and
Ramakrishna [73] and Glntzer et al. [43], the latter of which
also incorporates heuristics for deciding which list to fetch
tuples from. TA in turn motivated various extensions of the
idea to more general join problems, including J* [71], Rank-
Join [48], LARA-J* [65], a-FRPA [31], SMART [92], among
others surveyed by Ilyas et al [50]. All these algorithms reg-
ister significant performance gains when the k top-ranked
join results depend on only “a few” top-ranked tuples from
the input tables. In general, they attempt to minimize how
deep down the list they have to go in each pre-sorted input
table until they can guarantee that the correct k results have
been determined. To achieve the latter, they derive a bound
on the score of possible join results containing yet-unseen
tuples and update this bound after accessing an input tuple.
Our intention here is to highlight the specific innovations
introduced by each algorithm, which mostly aim to navigate
the tradeoff between cost for accessing tuples [49, 88] and
computing improved bounds [87] for early termination.

Similar to TA, analytical results in this space are generally
stated in terms of the number of input tuples accessed. We re-
visit those results and analyze the algorithms in the standard
RAM model of computation. We are particularly interested
in their worst-case behavior when some of the input tuples
contributing to the top-ranked result are at the bottom of an
individual input relation and will generally explore to what
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degree they suffer from large intermediate results, especially
for cyclic joins.

3 PART 2: OPTIMAL JOIN ALGORITHMS

The second part of the tutorial presents both classic and
state-of-the-art results on optimal processing of join queries,
using minimal examples such as path, triangle, and 4-cycle
queries in graphs. We provide a brief summary of selected
approaches that will be discussed. In addition to algorithms,
we will also take a closer look at various competing notions of
optimality [6, 77]. For the following discussion, recall that n is
the size of the largest input relation, r is the size of the output
and we generally express complexity results in terms of data
complexity in O-notation. Furthermore, the cost analysis
makes no assumption about the existence of pre-computed
data structures on the input relations at query-submission
time, including any type of indexes or materialized views. If
the algorithm needs such a data structure, it has to create it
from scratch, i.e., this cost is reflected in the query time.
For a lower bound, notice that query Q has to examine
each input tuple at least once and has to write out each result.
This means that join evaluation has complexity at least

Q(n+r).

Somewhat amazingly, the Yannakakis algorithm [95]
achieves )

On+r)
for acyclic queries, essentially matching the lower bound.

Its secret of success is the property that after a full reducer
pass, consisting of semi-join reductions [13] between pairs
of joining input relations, the database is left in a state of
global consistency [19] , where any intermediate join result
can be extended to a valid output tuple.

Unfortunately, as Ngo et al. [77] convincingly argue, for
join queries with cycles the O(n + r) bound is unattainable
based on well-accepted complexity-theoretic assumptions.
They therefore propose the notion of worst-case-optimal
(WCO) join algorithms of time complexity

é(” + rwe),

where ryc denotes the size of the greatest possible output
of query Q over any database instance.

For ryc, Atserias, Grohe, and Marx [7] provide a tight
upper bound by connecting join-output size to the fractional
edge cover of the corresponding query hypergraph. This is
now known as the AGM bound, and it is tight in the sense
that there exist database instances for which the output size
indeed matches the bound. Follow-up work extended the
AGM bound to general conjunctive queries with projections
and/or functional dependencies [35] as well as degree con-
straints [5, 6], which generalize the concept of functional
dependencies.
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A variety of WCO join algorithms have been proposed
to match the AGM bound [54, 72, 77, 78, 91]. In contrast
to the common “two-relations-at-a-time” approach, i.e., bi-
nary join plans, favored by database optimizers, they take
a more “holistic” approach by computing a multiway join
directly. Consider the often used triangle query, a natural
join over input relations R(A,B) = S(B,C) = T(C,A) =
{(1,1),(2,1),...,(n/2,1),(1,2),(1,3),...,(1,n/2)}. No mat-
ter the join order for a binary join plan,’ the first binary
join produces O(n?) intermediate results, even though the
AGM bound shows that final output size cannot exceed n'->.
As a consequence, the binary-join approach has complexity
O(n?), while a WCO join algorithm like GENERIC-JOIN [78]
or NPRR [77] computes the output in time O(n!-%).

Unfortunately, WCO join algorithms are not output-
sensitive, i.e., their complexity does not improve for database
instances resulting in small output. Consider again the tri-
angle query. If there are indeed ®(n!->) results, then (j(nl's)
join time is the best one can hope for. On the other hand, if
there are zero triangles for a given database instance, then
one would hope to be able to achieve running time closer to
O(n), i.e., the time it takes to read the input. This applies also
to the Boolean version of the query, which asks if there are
any triangles, but does not need to return any of them. These
issues are addressed by a different notion of optimality that
requires the join algorithm to have time complexity

(j(nd +7r)

for the smallest value of parameter d possible [6]. In contrast
to WCO join algorithms, this complexity depends on the
output size on the given database instance, not the largest
output over any database instance. Here d is a width pa-
rameter that captures the “degree of acyclicity” of the join
hypergraph. Intuitively, the smallest possible d for a given
query establishes its intrinsic difficulty. For acyclic queries,
d = 1 and hence the ideal complexity O(n +r) is achievable
with the Yannakis algorithm as we discussed above.

For cyclic queries, the situation is more complicated and
different notions of width have been explored [33]. From
a practical point of view, algorithms with O(n? + r) com-
plexity all follow the same high-level approach. They first
decompose a cyclic join query into a tree-shaped acyclic join
query and materialize the derived relations needed as input
for each tree node. Then they run the Yannakakis algorithm
on the acyclic join over the derived relations. The total time
complexity is generally determined by the size of the largest
derived relation. We will survey the different decomposition
methods that have been proposed [36-38, 40-42, 67, 84] and
highlight their relationships. The current frontier has been
established by the submodular width [67]. Its key innovation,

5The three possible join orders are: (R >« S) »a T, (R >« T) »a S, or (S <« T) >« R.
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from a practical point of view, is that it decomposes a cyclic
query into a union of multiple trees, each one receiving a
subset of the input. This enables lower widths compared to
decompositions to a single tree. For example, on the 4-cycle
query both the WCO Generic-JoIn [78] and approaches
based on single-tree decompositions have complexity O(n?),
the former due to worst-case output size being quadratic in
input size and the latter due to the fractional hypertree width
being d = 2. In contrast, submodular width is 1.5 and hence
algorithms like PANDA [6] that rely on decompositions into
multiple trees achieve complexity O(n'5 +r), which is better
for small output size r = O(n'->).

Decomposition techniques for cyclic queries also play a
role in factorised databases, which aim to reduce query com-
plexity by cleverly representing (intermediate) results in a
factorised format [10, 80-82]. We will survey the key in-
sights of this line of work and then conclude this part of the
tutorial with an overview of extensions providing support
for aggregates [4, 9, 60]. Due to time constraints, we will
only provide pointers to other exciting extensions, including
those to machine learning [3, 57, 62, 79, 85, 86], degree in-
formation [6, 53], inequalities [2], negation [58], result com-
pression [20], dynamic settings [46, 47, 56], and approaches
aiming for stronger notions of optimality [59, 75]. It is also
worth noting that some of these novel join algorithms have
been implemented in prototype systems for graph process-
ing [1, 45, 55]. A historical perspective on WCO join algo-
rithms together with open problems in the area have recently
been summarized by Ngo [74].

4 PART 3: RANKED ENUMERATION
OVER JOINS (“ANY-K”)

The third part of the tutorial focuses on optimal ranked enu-
meration over both acyclic and cyclic joins, which has started
to attract attention recently [16, 21, 61, 90, 93, 94]. A ranked-
enumeration algorithm returns the join results in the order
of importance as imposed by a ranking function. Its goal is to
minimize the time for returning the k top-ranked results for
every value of k. Stated differently, the algorithm must return
query results one-by-one in ranking order without know-
ing the value of k in advance. While some top-k approaches
support this functionality or can easily be extended to do so,
others rely on knowing k for pruning lower-ranked results.
In order to more clearly distinguish between them, we will
refer to ranked-enumeration algorithms also as “any-k” join
algorithms as a shorthand for “anytime top-k”

Despite being reminiscent of the general concept of an
anytime algorithm [15, 22, 32, 96], any-k algorithms are not
approximating the query result [69]. Instead, they reside
squarely at the intersection of top-k and optimal joins, and
we will discuss how they are impacted by ideas from both.



Tutorials

This tutorial will also highlight an interesting connection
to constant-delay join enumeration algorithms [8, 12, 24, 89],
which produce all query results in quick succession after
a short pre-processing phase, albeit in no particular order.
Specifically, if an algorithm returns join results with con-
stant delay after spending time ¢, on pre-processing, then

it guarantees join time Cj(tPrep +r) and hence gives an output-
sensitive complexity guarantee. It therefore would seem nat-
ural to extend such approaches to ranked enumeration by
investing “a little more” into the pre-processing phase in
order to return the results in the right order with constant
or logarithmic delay in input size. (The latter is also (5(1).)

The center piece of this part of the tutorial are recent
results showing that any-k algorithms, for a very general
definition of the join query, can be modeled as extensions
of non-serial dynamic programming (DP) [90]. This view
reveals common foundations between a variety of solutions
for problems that had been studied in isolation, often re-
inventing the wheel: k-shortest paths [26] and their relation-
ship to DP [14, 17, 18], graph-pattern search [16, 93], and
earlier approaches to ranked enumeration over joins [21, 61].
We will demonstrate how these approaches rely on two dif-
ferent major techniques to support the any-k property.

The first is the Lawler-Murty procedure [63, 70] that
has been used in the database community to design algo-
rithms for ranked enumeration [61] and for graph-pattern
search [16, 93]. After identifying the top-ranked result, it
cleverly partitions the problem space in order to find the
second-best result as the best solution in one of those sub-
spaces; then it recursively proceeds by further partitioning
that “winning” subspace. A direct application of the proce-
dure that solves each partition from scratch leads to a delay
that is polynomial in the size of the input [61]. Similar at-
tempts with polynomial-delay results have also been made
for the equivalent Constraint Satisfaction Problem (CSP)
[34, 39]. However, it was recently shown that by exploiting
the inherent structure of the join problem, the delay can be
reduced to O(log k) = (5(1) [90].

The second approach for adding ranked-enumeration ca-
pabilities to a standard DP algorithm originates from k-
shortest-path solutions [25, 44, 52, 66] and it relies on a
recursive enumeration algorithm that exploits a generaliza-
tion of the DP principle of optimality [11, 23, 51]. The same
recursive call structure appears to have been rediscovered
in recent work on ranked enumeration for conjunctive join
queries [21].

We will present recent theoretical and empirical evidence
[90] that neither of the two major approaches (Lawler-Murty
vs. recursive enumeration) dominates the other. In general,
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these deeper relationships between seemingly different prob-
lems and algorithms are fascinating in their own right. Be-
sides, we argue that they are essential for the design of op-
timal ranked-enumeration algorithms over joins, including
generalizations that go beyond natural and Boolean conjunc-
tive queries.

We conclude with an overview of interesting open prob-
lems at the intersection of joins and top-k queries.
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