Tractable Orders for Direct Access to
Ranked Answers of Conjunctive Queries

Nofar Carmeli
snofca@cs.technion.ac.il
Technion, Israel

Benny Kimelfeld
bennyk@cs.technion.ac.il
Technion, Israel

ABSTRACT

We study the question of when we can provide logarithmic-time
direct access to the k-th answer to a Conjunctive Query (CQ) with a
specified ordering over the answers, following a preprocessing step
that constructs a data structure in time quasilinear in the size of the
database. Specifically, we embark on the challenge of identifying
the tractable answer orderings that allow for ranked direct access
with such complexity guarantees.

We begin with lexicographic orderings and give a decidable char-
acterization (under conventional complexity assumptions) of the
class of tractable lexicographic orderings for every CQ without
self-joins. We then continue to the more general orderings by the
sum of attribute weights and show for it that ranked direct access
is tractable only in trivial cases. Hence, to better understand the
computational challenge at hand, we consider the more modest task
of providing access to only a single answer (i.e., finding the answer
at a given position) — a task that we refer to as the selection prob-
lem. We indeed achieve a quasilinear-time algorithm for a subset
of the class of full CQs without self-joins, by adopting a solution of
Frederickson and Johnson to the classic problem of selection over
sorted matrices. We further prove that none of the other queries in
this class admit such an algorithm.

CCS CONCEPTS

+ Theory of computation — Database theory; Complexity
classes; Database query languages (principles); Database query pro-
cessing and optimization (theory).

KEYWORDS

conjunctive queries, direct access, ranking function, answer order-
ings, query classification

ACM Reference Format:
Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld,
and Mirek Riedewald. 2021. Tractable Orders for Direct Access to Ranked

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS 21, June 20-25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8381-3/21/06...$15.00
https://doi.org/10.1145/3452021.3458331

Nikolaos Tziavelis
tziavelis.n@northeastern.edu
Northeastern University, USA

Wolfgang Gatterbauer
w.gatterbauer@northeastern.edu
Northeastern University, USA

Mirek Riedewald

m.riedewald@northeastern.edu
Northeastern University, USA

Answers of Conjunctive Queries. In Proceedings of the 40th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (PODS °21),
June 20-25, 2021, Virtual Event, China. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3452021.3458331

1 INTRODUCTION

When can we allow for direct access to a ranked list of answers to a
database query without (and considerably faster than) materializing
all answers? To illustrate the concrete instantiation of this question,
assume the following simple relational schema for information
about pandemic spread and relevant activity of residents:

Visits(person, age, city) Cases(city, date, #cases)

Here, Visits mentions, for each person, the cities that the person
visits regularly (e.g., for work and relatives) and the age of the
person (for risk assessment); the relation Cases specifies the number
of new infection cases in specific cities at specific dates (a measure
that is commonly used for spread assessment albeit being sensitive
to the amount of testing).

Suppose that we wish to efficiently compute the natural join
Visits b4 Cases based on equality of the city attribute, so that we
have all combinations of people (with their age), the cities they
regularly visit, and the city’s daily new cases. For example,

(Anna, 72,Boston, 12/7/2020,179) .

While the number of such answers could be quadratic in the size of
the database, the seminal work of Bagan, Durand, and Grandjean [3]
has established that it can be evaluated using an enumeration al-
gorithm with a constant delay between consecutive answers, after
a linear-time preprocessing phase. This is due to the fact that this
join is a special case of a free-connex Conjunctive Query (CQ). In
the case of CQs without self-joins, being free-connex is a sufficient
and necessary condition for such efficient evaluation [3, 8]. The
necessity requires conventional assumptions in fine-grained com-
plexity! and it holds even if we multiply the preprocessing time
and delay by a logarithmic factor in the size of the database.?

To realize the constant (or logarithmic) delay, the preprocessing
phase builds a data structure that allows for efficient iteration over
the answers in the enumeration phase. Brault-Baron [8] showed that
in the linear-time preprocessing phase, we can build a structure with
better guarantees: not only log-delay enumeration, but even log-
time direct access: a structure that, given k, allows to directly retrieve

!For the sake of simplicity, throughout this section we make all of these complexity
assumptions. We give their formal statements in Section 2.4.
2We refer to those as quasilinear preprocessing and log delay, respectively.

https://doi.org/10.1145/3452021.3458331
https://doi.org/10.1145/3452021.3458331

the k" answer in the enumeration without needing to enumerate
the preceding k — 1 answers first.> Later, Carmeli et al. [10] showed
how such a structure can be used for enumerating answers in a
random order (random permutation)* with the statistical guarantee
that the order is uniformly distributed. In particular, in the above
example we can enumerate the answers of Visits < Cases in a
provably uniform random permutation (hence, ensuring statistical
validity of each prefix) with logarithmic delay, after a linear-time
preprocessing phase. Their direct-access structure also allows for
inverted access: given an answer, return the index k of that answer
(or determine that it is not a valid answer). Recently, Keppeler [23]
proposed another direct-access structure with the additional ability
to allow efficient database updates, but at the cost of only supporting
a limited subset of free-connex CQs.

All known direct-access structures [8, 10, 23] allow the answers
to be sorted by some lexicographic order (even if they do not explic-
itly state it). For instance, in our Visits b Cases the structure could
be such that the tuples are in the (descending or ascending) order
of #cases and then by date, or in the order of city and then by age.
Hence, in logarithmic time we can evaluate quantile queries (find
the k™ answer in order) and determine the position of a tuple inside
the sorted list. From this we can also conclude (fairly easily) that we
can enumerate the answers ordered by age where ties are broken
randomly, again provably uniformly. Carmeli et al. [10] have also
shown how the order of the answers can be useful for generalizing
direct-access algorithms from CQs to UCQs. Note that direct access
to the sorted list of answers is a stronger requirement than ranked
enumeration that has been studied in recent work [7, 11, 31, 32, 34].

Yet, the choice of which lexicographic order is taken is an arte-
fact of the structure construction (e.g., the elimination order [8],
the join tree [10], or the g-tree [8]). If the application desires a
specific lexicographic order, we can only hope to find a matching
construction. However, this is not necessarily possible. For example,
could we construct in (quasi)linear time a direct-access structure for
Visits b4 Cases ordered by #cases and then by age? Interestingly,
we will show that the answer is negative: it is impossible to build in
quasilinear time a direct-access structure with logarithmic access
time for that lexicographic order.

Getting back to the question posed at the beginning of this sec-
tion, in this paper we embark on the challenge of identifying, for
each CQ, the orders that allow for efficiently constructing a direct-
access structure. We adopt the tractability yardstick of quasilinear
construction (preprocessing) time and logarithmic access time. In
addition, we focus on two types of orders: lexicographic orders, and
scoring by the sum of attribute weights.

Contributions. Our first main result is an algorithm for di-
rect access for lexicographic orders, including ones that are not
achievable by past structures. We further show that within the
class of CQs without self-joins, our algorithm covers all the
tractable cases (in the sense adopted here), and we establish a
decidable and easy to test classification of the lexicographic or-
ders over the free variables into tractable and intractable ones. For
instance, in the case of Visits > Cases the lexicographic order
(#cases, age, city, date, person) is intractable. It is classified as such
3“Direct access” is also widely known as “random access.” We prefer to use “direct

access” to avoid confusion with the problem of answering “in random order”
4Not to be confused with “random access.”

because #cases and age are non-neighbours (i.e., do not co-occur
in the same atom), but city, which comes after #cases and age in
the order, is a neighbour of both. This is what we call a disruptive
trio. The lexicographic order (#cases, age) is also intractable since
the query Visits > Cases is not {#cases, age}-connex. In contrast,
the lexicographic order (#cases, city, age) is tractable. We also show
that within the tractable side, the structure we construct allows for
inverted access in constant time.

Our classification is proved in two steps. We begin by considering
the complete lexicographic orders (that involve all free variables).
We show that for free-connex CQs without self-joins, the absence of
a disruptive trio is a sufficient and necessary condition for tractabil-
ity. We then generalize to partial lexicographic orders L where the
ordering is determined only by a subset of the free variables. There,
the condition is that there is no disruptive trio and that the query
is L-connex (a similar condition to being free-connex, but for the
subset of the variables that appear in L instead of the free ones). In-
terestingly, it turns out that a partial lexicographic order is tractable
if and only if it is the prefix of a complete tractable lexicographic
order.

A lexicographic order is a special case of an ordering by the
sum of attribute weights, where every database value is mapped
to some number. Hence, a natural question is which CQs have
a tractable direct access by the order of sum. For example, what
about Visits > Cases with the order (a-#cases + f-age)? It is easy
to see that this order is intractable because the lexicographic or-
der (#cases, age) is intractable. In fact, it is easy to show that an
order by sum is intractable whenever any lexicographic order is
intractable (e.g., there is a disruptive trio). However, the situation is
worse: the only tractable case is the one where the CQ is acyclic and
there is an atom that contains all of the free variables. In particular,
ordering by sum is intractable already for the Cartesian product
Q(c1,d, x, p, a, cz) :— Visits(p, a, c1), Cases(ca, d, x), even though ev-
ery lexicographic order is tractable (according to our aforemen-
tioned classification). This daunting hardness also emphasizes how
ranked direct access is fundamentally harder than ranked enumer-
ation where, in the case of the sum of attributes, the answers of
every full acyclic CQ can be enumerated with logarithmic delay
after a linear preprocessing time [31].

To understand the root cause of the hardness of sum, we narrow
our question to a considerably weaker guarantee. Our notion of
tractability so far requires the construction of a structure in quasi-
linear time and a direct access in logarithmic time. In particular, if
our goal is to compute just a single quantile, say the kh
then it takes quasilinear time. Computing a single quantile is known
as the selection problem [6]. The question we ask is to what extent
is selection a weaker requirement than direct access in the case of
CQs. That is, how much larger is the class of CQs with quasilin-
ear selection than that of CQs with a quasilinear construction of a
logarithmic-access structure?

We answer the above question for the class of full CQs without
self-joins by establishing the following dichotomy for the order
by sum (again assuming fine-grained hypotheses): the selection
problem can be solved in O (nlog n) time, where n is the size of the
database, if and only if the hypergraph of the CQ contains at most
two maximal hyperedges (w.r.t. containment). The tractable side is

answer,

Direct Access
Tractable=(n polylog n, polylog n)

Selection
Tractable=(1, n polylog n)

S)-free
CQs

S)-free
CQs

Explored
Both intractable

Free-connex
Not L-connex L-connex
or and no
disruptive disruptive
trio trio

Not L-connex

Maximal
hyperedges < 2

LEX tractable,
SUM intractable

I Both tractable

Unexplored

SUM intractable

Both unexplored

N LEX tractable

Figure 1: Overview of our results for lexicographic (LEX) orders and sum-of-weights (SUM) orders. CQs without self-joins (S]-
free) are classified based on the tractability of the direct access problem (left) and the selection problem (right). Some regions
of the right figure are not explored in this paper. The L-connex property applies only to lexicographic orders L (the precise
definitions are given in Section 2). All tractable cases extend to CQs with self-joins. The sizes of the ellipses are arbitrary and

do not correspond to the size or importance of the classes.

applicable even in the presence of self-joins, and it is achieved by
adopting an algorithm by Frederickson and Johnson [15] originally
developed for selection on sorted matrices. For illustration, the
selection problem is solvable in quasilinear time for the query
Visits > Cases ordered by sum.

Overview of results. We summarize our results in Figure 1
with different colors indicating the tractability of the studied or-
derings. For direct access, we obtain the complete picture of the
orders and CQs without self-joins that admit O(n polylog n) pre-
processing and O(polylog n) per access (conveniently denoted as
(n polylog n, polylog n) for (preprocessing, access)). For selection,
the present paper explores only some of the possible orders and CQs
that admit an O (n polylog n) solution (denoted as (1, n polylog n)).
We depict the unexplored regions (when our results cover only one
or none of the problems) with a grid background pattern. Since sum
orderings are harder than any lexicographic order, there are only
three “Unexplored” cases: (1) SUM is known to be intractable but
LEX is yet unexplored, (2) LEX is known to be tractable but SUM is
yet unexplored, and (3) neither problem has been explored. Beyond
the cases directly covered in the formal statements of our paper,
we additionally infer (in)tractability for some other cases based on
the fact that selection is an easier problem than direct access.

Applicability. It is important to note that while our results are
stated over a limited class of queries (a fragment of acyclic CQs),
there are some implications beyond this class that are immediate
yet significant. In particular, we can use known techniques that re-
duce other CQs to a tractable form and then apply our direct-access
solutions. An example is the common case where the relations are
associated with functional dependencies; in this case, some queries

become easier since we can make assumptions on the internal struc-
ture of the input relations.” More specifically, FD-extensions can be
used to transform CQs with an otherwise intractable structure into
queries with a tractable structure [9]. As another example, a hyper-
tree decomposition can be used to transform a cyclic CQ to an acyclic
form by paying a non-linear overhead during preprocessing [20].
Outline. The remainder of the paper is organized as follows.
Section 2 gives the necessary background. In Section 3 we consider
direct access by lexicographic orders that include all the free vari-
ables, and Section 4 extends the results to partial ones. We move
on to the (for the most part) negative results for direct access by
sum orderings in Section 5 and then study the selection problem in
Section 6. Section 7 concludes and gives some directions for future
work. Due to space constraints, some proofs are in the Appendix.

2 PRELIMINARIES

2.1 Basic Notions

Database. A schema S is a set of relational symbols {Ry, ..., Rpy}.
We use ar(R) for the arity of a relational symbol R. A database
instance I contains a finite relation R! € dom™(® for each R € S,
where dom is a set of constant values called the domain. We use n
for the size of the database, i.e., the total number of tuples.
Queries. A conjunctive query (CQ) Q over schema S is an ex-
pression of the form Q()zf) =Ry ()21),...,Re ()2[), where the tuples

X s X oo ,)Z'[hold variables, every variable in X f appears in some

5Qur Visits » Cases example may also involve functional dependencies, such as
person — age, which could invalidate the lower bounds. Yet, all hardness statements
mentioned about this example in this section can be shown to follow from the results
of this paper.

)?1, .. .,)?g, and Ry,...,R; € S. Each Ri(;(i) is called an atom of
the query Q, and atoms(Q) denotes the set of all atoms. We use
var(e) or var(Q) for the set of variables that appear in an atom
e or query Q, respectively. The variables X r are called free and
are denoted by free(Q). A CQ is full if free(Q) = var(Q) and
Boolean if free(Q) = 0. Sometimes, we say that CQs that are not
full have projections. A repeated occurrence of a relational symbol
is a self-join and if no self-joins exist, a CQ is called self-join-free.
A homomorphism g from a CQ Q to a database I is a mapping of
var(Q) to constants from dom, such that every atom of Q maps to
a tuple in the database I. A query answer q is such a homomor-
phism followed by a projection of i on the free variables, denoted
by 7¢ree(g) (1). The answer to a Boolean CQ is whether such a
homomorphism exists. The set of query answers is Q(I).
Hypergraphs. A hypergraph H = (V,E) is a set V of vertices
and a set E of subsets of V called hyperedges. Two vertices in a
hypergraph are neighbors if they appear in the same edge. A path of
H is a sequence of vertices such that every two succeeding vertices
are neighbors. A chordless path is a path in which no two non-
succeeding vertices appear in the same hyperedge (in particular, no
vertex appears twice). A join tree of a hypergraph H = (V,E) isa
tree T where the nodes® are the hyperedges of and the running
intersection property holds, namely: for all u € V the set {e € E |
u € e} forms a (connected) subtree in T. An equivalent phrasing of
the running intersection property is that given two vertices ey, ez
of the tree, for any vertex e3 on the simple path between them, we
have that e; N ey C es. A hypergraph H is acyclic if there exists a
join tree for H. We associate a hypergraph H(Q) = (V, E) to a CQ
Q where the vertices are the variables of Q, and every atom of Q
corresponds to a hyperedge with the same set of variables. Stated
differently, V = var(Q) and E = {var(e)|e € atoms(Q)}. With a
slight abuse of notation, we identify atoms of Q with hyperedges of
H(Q). A CQ Q is acyclicif H(Q) is acyclic, otherwise it is cyclic.
Free-connex CQs. A hypergraph H’ is an inclusive extension
of H if every edge of H appears in H’, and every edge of H' is a
subset of some edge in . Given a subset S of the vertices of H, a
tree T is an ext-S-connex tree (i.e., extension-S-connex tree) for a
hypergraph H if: (1) T is a join tree of an inclusive extension of H,
and (2) there is a subtree’” T’ of T that contains exactly the vertices
S [3]. We say that a hypergraph is S-connex if it has an ext-S-connex
tree [3]. A hypergraph is S-connex iff it is acyclic and it remains
acyclic after the addition of a hyperedge containing exactly S [8].
Given a hypergraph H and a subset S of its vertices, an S-path is a
chordless path (x, z1, ..., 2, y) in H with k > 1, such that x,y € L,
and z1, ...,z ¢ L. A hypergraph is S-connex iff it has no S-path [3].
A CQ Q is free-connex if H(Q) is free(Q)-connex [3]. Note that
a free-connex CQ is necessarily acyclic.® An implication of the
characterization given above is that it suffices to find a join-tree
for an inclusive extension of a hypergraph H to infer that H is
acyclic. To simplify notation, we also say that a CQ is L-connex
for a (partial) lexicographic order L if the CQ is S-connex for the

To make a clear distinction between the vertices of a hypergraph and those of its join
tree, we call the latter nodes.

"By subtree, we mean any connected subgraph of the tree.

8Free-connex CQs are sometimes called in the literature free-connex acyclic CQs [3].
As free-connexity is not defined for cyclic CQs, we choose to omit the word acyclic
and simply call these CQs free-connex.

variables S that appear in L. Generalizing the notion of an inclusive
extension, we say that a hypergraph H’ is inclusion equivalent to
H if every hyperedge of H is a subset of some hyperedge of H’

and vice versa.

2.2 Problem Definitions

Orders of Answers. For a CQ Q and database instance I, a ranking
function rank : Q(I) X Q(I) — Q(I) compares two query answers
and returns the smaller one according to some underlying total
order.” We consider two types of orders in this paper. Assuming
that the domain values are ordered, a lexicographic order L is an
ordering of free(Q) such that rank(qi, g2) first compares q1, g2 on
the value of the first L variable, and if they are equal on the value
of the second L variable, and so on. A lexicographic order is called
partial if the variables in L are a subset of free(Q).

The second type of order assumes a given weight function that
assigns a real-valued weight to the domain values of each variable.
More precisely, for a variable x, we define wy : dom — R and
then the weight of a query answer is computed by aggregating the
weights of the assigned values of free variables. In a sum-of-weights
order, denoted by Zw, we have wo(q) = Yxefree(g) Wx(q(x)). q €
Q(I) and rank(qs, g2) compares wg(q1) with wo(gz). To simplify
notation, we refer to all wy and wg together as one weight function
w. If two query answers have the same weight, then we break ties
arbitrarily but consistently, e.g., according to a lexicographic order
on their assigned values.

Attribute Weights vs. Tuple Weights. Notice that in the defi-
nition above, we assume that the input weights are assigned to the
domain values of the attributes. Alternatively, the input weights
could be assigned to the relation tuples, a convention that has been
used in past work on ranked enumeration [31]. Since there are sev-
eral reasonable semantics for interpreting a tuple-weight ranking
for CQs with projections and/or self-joins [30], we elect to present
our results for the case of attribute weights. For self-join-free CQs,
attribute weights can easily be transformed to tuple weights in
linear time such that the weights of the query answers remain the
same. This works by assigning each variable to one of the atoms
that it appears in, and computing the weight of a tuple by aggre-
gating the weights of the assigned attribute values. Therefore, our
hardness results for sum-of-weights orders directly extend to the
case of tuple weights. Moreover, note that our positive results on di-
rect access (Section 5) and selection (Section 6.2) rely on algorithms
that innately operate on tuple weights, thus we cover that case too.

Direct Access vs. Selection. In the problem of direct access by
an underlying order, we are given as an input a query Q, and a
database I, and the goal is to construct a data structure which then
allows us to support accesses on the sorted array of query answers.
Specifically, an access asks for the query answer at index k on the
(implicit) array containing Q(I) sorted via rank comparisons, for
a given integer k. This data structure is built in a preprocessing
phase, after which we have to be able to support multiple such
accesses. Our goal is to achieve efficient access (in polylogarithmic
time) with a preprocessing phase that is significantly smaller than
Q(I) (quasilinear in the database size).

YWLOG, we assume that the order is ascending but all results hold if we rank returns
the bigger (max) instead of the smaller (min).

The problem of selection [6, 13, 14] is a computationally easier
task that requires only a single direct access, hence does not make
a distinction between preprocessing and access phases. A special
case of the problem is to find the median query result.

2.3 Complexity Framework and Sorting

We measure asymptotic complexity in terms of the size of the
database n, while the size of the query is considered constant. If
the time for preprocessing is O(f(n)) and the time for each access
is O(g(n)), we denote that as (f(n), g(n)), where f, g are functions
from N to R. Note that by definition, the problem of selection asks
for a (1, g(n)) solution.

The model of computation is the RAM model with uniform cost
measure. In particular, it allows for linear time construction of
lookup tables, which can be accessed in constant time. We would
like to point out that some past works [3, 10] have assumed that in
certain variants of the model, sorting can be done in linear time [21].
Since we consider problems related to summation and sorting [15]
where a linear-time sort would improve otherwise optimal bounds,
we adopt a more standard assumption that sorting is comparison-
based and possible only in quasilinear time. As a consequence, some
upper bounds mentioned in this paper are weaker than the original
sources which assumed linear-time sorting [8, 10].

2.4 Hardness Hypotheses

Denote by spARSEBMM the hypothesis that two Boolean matrices
A and B, represented as lists of their non-zero entries, cannot be
multiplied in time m”"(l), where m is the number of non-zero
entries in A, B, and AB. A consequence of this hypothesis is that we
cannot answer the query Q(x, z) :— R(x, y), S(y, z) with quasilinear
preprocessing and polylogarithmic delay. In more general terms,
any self-join-free acyclic non-free-connex CQ cannot be enumer-
ated with quasilinear'? preprocessing time and polylogarithmic
delay assuming the sPARSEBMM hypothesis [3, 5].

A (k+1, k)-hyperclique is a set of k+1 vertices in a hypergraph
such that every k-element subset is a hyperedge. Denote by Hy-
PERCLIQUE the hypothesis that for every k > 2 there is no
O(mpolylog m) algorithm for deciding the existence of a (k+1,k)-
hyperclique in a k-uniform hypergraph with m hyperedges. When
k = 2, this follows from the §-Triangle hypothesis [1] for any § > 0.
When k > 3, this is a special case of the (¢, k)— Hyperclique Hy-
pothesis [25]. A known consequence is that Boolean cyclic and
self-join-free CQs cannot be answered in quasilinear!® time [8].
Moreover, cyclic and self-join-free CQs do not admit enumeration
with quasilinear preprocessing time and polylogarithmic delay as-
suming the HYPERCLIQUE hypothesis [8].

In its simplest form, the 3SUM problem asks for three distinct real
numbers a, b, ¢ from a set S with n elements that satisfy a+ b + ¢ =
0. There is a simple O(n?) algorithm for the problem, but it is
conjectured that in general, no truly subquadratic solution exists
[29]. The significance of this conjecture has been highlighted by
many conditional lower bounds for problems in computational
geometry [17] and within the P class in general [33]. Note that
the problem remains hard even for integers provided that they are

10 Works in the literature typically phrase this as linear, yet any logarithmic factor
increase is still covered by the hypotheses.

sufficiently large (i.e., in the order of O(n?)) [29]. We denote by 3sum
the following equivalent hypothesis [4] that uses three different
sets of numbers: Deciding whether there exista € A,b € B,c € C
from three sets of integers A, B, C such that a + b + ¢ = 0 cannot be
done in time O(n?€) for any € > 0. This lower bound has been
confirmed in some restricted models of computation [2, 12].

2.5 Known Results for CQs

Eliminating Projection. We now provide some background that
relates to the efficient handling of CQs. For a query with projections,
a standard strategy is to reduce it to an equivalent one where
techniques for acyclic full CQs can be leveraged. The following
proposition, that is widely known and used [5], shows that this is
possible for free-connex CQs.

ProrosITION 2.1 (FOLKLORE). Given a database instance I, a CQ
Q, a join tree T of an inclusive extension of Q, and a subtree T' of T
that contains all the free variables, we can compute in linear time a
database instance I’ over the schema of a CQ Q’ that consists of the
nodes of T’ such that Q(I) = Q’(I’) and |I'| < |1|.

This reduction is done by first creating a relation for every node
in T using projections of existing relations, then performing the
classic semi-join reduction by Yannakakis [35] to filter the relations
of T according to the relations of T, and then we can simply ignore
all relations that do not appear in T’ and obtain the same answers.
Afterwards, they can be handled efficiently, e.g. their answers can
be enumerated with constant delay [3].

Ranked enumeration. Enumerating the answers to a CQ in
ranked order is a special case of direct access where the accessed
indexes are consecutive integers starting from 0. In contrast to
direct access, ranked enumeration by sum orderings (thus also
lexicographic orderings) is possible with logarithmic delay after a
linear-time preprocessing phase for all full acyclic CQs [31]. This
result has also been extended to free-connex CQs [30]. Existing
ranked-enumeration algorithms rely on priority queue structures
that compare a minimal number of candidate answers to produce
the ranked answers one-by-one in order. There is no straightfor-
ward way to extend them to the task of direct access where we may
skip over a large number of answers to get to an arbitrary index k.

Direct Access. Past work on direct access identified the tractable
queries without guarantees on the order of the query answers.

THEOREM 2.2 ([8, 10]). Let Q be a CQ. If Q is free-connex, then
direct access (in some order) is possible in (nlog n, log n). Otherwise,
if it is also self-join-free, then direct access (in any order) is not possible
in {n polylog n, polylog n), assuming sPARSEBMM and HYPERCLIQUE.

Even though these algorithms do not explicitly discuss the order
of the answers, a closer look shows that they internally use and
produce some lexicographic order.

Recent work by Keppeler [23] suggests another direct-access
solution by lexicographic order, which also supports efficient in-
sertion and deletion of input tuples. Given these additional re-
quirements, the supported CQs are more limited, and are only
a subset of free-connex CQs called g-hierarchical. This is a sub-
class of the well-known hierarchical queries with an additional
restriction on the existential variables. As an example, the follow-
ing CQs are not g-hierarchical even though they are free-connex:

Q1(x,y) = Ri(x), R2(x, y), R3(y) and Q2(x) = Ri(x, y), Rz (y). For
these queries, direct access is not supported by the solution of
Keppeler [23], even though it is possible without the update re-
quirements.

All previous direct-access solutions of which we are aware have
two gaps compared to this work: (1) they do not discuss which
lexicographic orders (given by orderings of the free variables) are
supported; (2) they do not support all possible lexicographic orders.
We conclude this section with a short survey of existing solutions
and their supported orders.

All prior direct-access solutions use some underlying component
that depends on the query structure and constrains the supported
orders. The algorithm of Carmeli et al. [10, Algorithm 3] assumes
that a join tree is given with the CQ, and the lexicographic order
is imposed by the join tree. Specifically, it is an ordering of the
variables achieved by a preorder depth-first traversal of the tree.
As a result, it does not support any order that requires jumping
back-and-forth between different branches of the tree. In particular,
it does not support Q3(v1,v2, v3,04) :— R(0v1,03), S(v2, v4) with the
lexicographic order given by the increasing variable indices (we
adopt this convention for all the examples below). We show how to
handle this CQ and order in detail in Example 3.5. The algorithm of
Brault-Baron [8, Algorithm 4.3] assumes that an elimination order
is given along with the CQ. The resulting lexicographic order is
affected by that elimination order, but is not exactly the same. This
solution suffers from similar restrictions, and it does not support Q3
either. The algorithm of Keppeler [23] assumes that a g-tree is given
with the CQ, and the possible lexicographic orders are affected by
this tree. Unlike the previous ones, this algorithm can interleave
variables from different atoms, yet cannot support some orders that
are possible for the previous algorithms. As an example, it does
not support Q4(v1,v2, v3) :i— R1 (v1,02), Ra2(v2,v3) as vy is highest in
the hierarchy (the atoms containing it strictly subsume the atoms
containing any other variable) and so it is necessarily the first
variable in the g-tree and in the ordering produced.

Finally, we should mention that there are query-ordering pairs
that require both jumping back-and-forth in the join tree and vis-
iting the variables in an order different than any hierarchy. As a
result, these are not supported by any previous solution. Two such
examples are Qs (v1, 02,3, 04, 05) :— Ry (v1,03), R2(v3, v4), R3(v2, U5)
and Qg (v1,v2, 03, v4,05) :— Ry (01, v2,v4), Ra (02, v3,v5). In Section 3,
we provide an algorithm that supports both of these CQs.

3 DIRECT ACCESS BY LEXICOGRAPHIC
ORDERS

In this section, we answer the following question: for which un-
derlying lexicographic orders can we achieve “tractable” direct
access to ranked CQ answers, i.e. with quasilinear preprocessing
and polylogarithmic time per answer?

Example 3.1 (No direct access). Consider the lexicographic or-
der L = (v, v,v3) for the query Q(v1,v2,0v3) :— R(v1,03), S(v3,02).
Direct access to the query answers according to that order would
allow us to “jump over” the v3 values via binary search and es-
sentially enumerate the answers to Q’ (v1, v2) :— R(v1, v3), S(v3, v2).
However, we know that Q” is not free-connex and that is impossible

to achieve enumeration with quasilinear preprocessing and poly-
logarithmic delay (if spARSEBMM holds). Therefore, the bounds we
are hoping for are out of reach for the given query and order. The
core difficulty is that the joining variable v3 appears after the other
two in the lexicographic order.

We formalize this notion of “variable in the middle” in order to
detect similar situations in more complex queries.

Definition 3.2 (Disruptive Trio). Let Q be a CQ and L a lexico-
graphic order of its free variables. We say that three free variables
u1, up, u3 are a disruptive trio in Q with respect to L if u1 and uy are
not neighbors (i.e. they don’t appear together in an atom), u3 is a
neighbor of both u; and uy, and u3 appears after u; and uz in L.

As it turns out, when considering free-connex and self-join-
free CQs, the tractable CQs are precisely captured by this simple
criterion. Regarding self-join-free CQs that are not free-connex,
their known intractability of enumeration implies that direct access
is also intractable. This leads to the following dichotomy:

THEOREM 3.3. Let Q be a CQ and L be a lexicographic order.

o If Q is free-connex and does not have a disruptive trio with
respect to L, then direct access by L is possible in {(nlog n,log n).

o Otherwise, if Q is also self-join-free, then direct access by L is
not possible in (n polylog n, polylog n) assuming sPARSEBMM
and HYPERCLIQUE.

REMARK 1. On the positive side of Theorem 3.3, the preprocessing
time is dominated by sorting the input relations, which we assume
requires O(nlogn) time. If we assume instead that sorting takes
linear time (as assumed in some related work [8, 10, 21]), then the
time required for preprocessing is only O(n) instead of O(nlogn).

In Section 3.1, we provide an algorithm for this problem for full
acyclic CQs that have a particular join tree that we call layered.
Then, we show how to find such a layered join tree whenever there
is no disruptive trio in Section 3.2. In Section 3.3, we explain how to
adapt our solution for CQs with projections, and in Section 3.4 we
prove a lower bound which establishes that our algorithm applies
to all cases where direct access is tractable.

3.1 Layer-Based Algorithm

Before we explain the algorithm, we first define one of its main
components. A layered join tree is a join tree where each node
belongs to a layer. The layer number matches the position in the
lexicographic order of the last variable that the node contains. Intu-
itively, “peeling” off the outermost (largest) layers must result in
a valid join tree (for a hypergraph with fewer variables). To find
such a join tree for a CQ Q, we may have to introduce hyperedges
that are contained in those of H(Q) (this corresponds to taking
the projection of a relation) or remove hyperedges of H(Q) that
are contained in others (this corresponds to filtering relations that
contain a superset of the variables). Thus, we define the layered
join tree with respect to a hypergraph that is inclusion equivalent.

Definition 3.4 (Layered Join Tree). Let Q be a full acyclic CQ, and
let L = (v1,...,vr) be alexicographic order. A layered join tree for
Q with respect to L is a join tree of a hypergraph that is inclusion
equivalent to H (Q) where (1) every node V of the tree is assigned

(a) A hypergraph that is inclu-
sion equivalent to H(Qs).

(b) A layered join tree for Qs
w.r.t. the lexicographic order.

Figure 2: Constructing a layered join tree for the query
Q3(v1,v2,03,04) :— R(v1,03), S(v2,v4) and order (vy,v2,v3,04).

to layer max{i | v; € V'}, (2) there is exactly one node for each layer,
and (3) for all j < f the induced subgraph with only the nodes that
belong to the first j layers is a tree.

Example 3.5. Consider the CQ
Q3(01,02,v3,04) = R(01,03), S (02, 04)

and the lexicographic order (v1, v2, v3, v4). To support that order, we
first find an inclusion equivalent hypergraph, shown in Figure 2a.
Notice that we added two hyperegdes that are strictly contained
in the existing ones. A layered join tree constructed from that
hypergraph is depicted in Figure 2b. There are four layers, one
for each node of the join tree. The layer of the node containing
{v1,v3} is 3 because v3 appears after v; in the order and it is the
third variable. If we remove the last layer, then we obtain a join tree
for the induced hypergraph where the last variable v4 is removed.

We now describe an algorithm that takes as an input a CQ Q, a
lexicographic order L, and a corresponding layered join tree and
provides direct access to the query answers after a preprocessing
phase. For preprocessing, we leverage a construction from Carmeli
et al. [10, Algorithm 2] and apply it to our layered join tree. For
completeness, we briefly explain how it works below. Subsequently,
we describe the access phase that takes into account the layers
of the tree to accommodate the provided lexicographic order. We
emphasize that the way we access the structure is different than that
of the past work [10], and that this allows support of lexicographic
orders that were impossible for the previous access routine (e.g. the
order in Example 3.5).

Preprocessing. The preprocessing phase (1) creates a relation
for every node of the tree, (2) removes dangling tuples, (3) sorts
the relations, (4) partitions the relations into buckets, and (5) uses
dynamic programming on the tree to compute and store certain
counts. After preprocessing, we are guaranteed that for all i, the
node of layer i has a corresponding relation where each tuple par-
ticipates in at least one query answer; this relation is partitioned
into buckets by the assignment of the variables preceding i. In each
bucket, we sort the tuples lexicographically by v;. Each tuple is
given a weight that indicates the number of different answers this
tuple agrees with when only joining its subtree. The weight of each
bucket is the sum of its tuple weights. We denote both by the func-
tion weight. Moreover, for every tuple t, we compute the sum of

R|w| s S|wls R w s S w s
a | 8 b330 la | 1]0]| b a]|1]o0
|88 |b|1]3|]a o|l1|1|]b d&|1]1
a, ¢ | 1]0 by d3| 1| 2
a, ¢ [1]1 b, dy| 1|0

Figure 3: Example 3.6: The result of the preprocessing phase
on Qs3, the layered join tree (Figure 2b) and an example data-
base. The weight and start index for each tuple are abbrevi-
ated in the figure as w and s respectively.

weights of the preceding tuples in the bucket, denoted by start(t).
We use end(t) for the sum that corresponds to the tuple following
t in the same bucket; if ¢ is last, we set this to be the bucket weight.
If we think of the query answers in the subtree sorted in the order
of v; values, then start and end distribute the indices between 0
and the bucket weight to tuples. The number of indices within the
range of each tuple corresponds to its weight.

Example 3.6 (Continued). The result of the preprocessing phase
on an example database for our query Qs is shown in Figure 3.
Notice that R has been split into two buckets according to the values
of its parent R’, one for value a; and one for ay. For tuple (a1) € R/,
we have weight((a1)) = 8 because this is the number of answers
that agree on that value in its subtree: the left subtree has 2 such
answers which can be combined with any of the 4 possible answers
of the right subtree. The start index of tuple (b1,d3) € S is the
sum of the previous weights within the bucket: start((b1,d3)) =
weight((by,d1)) + weight((b1,d2)) =1+ 1 = 2. Not shown in the
figure is that every bucket stores the sum of weights it contains.

Access. The access phase works by going through the tree layer
by layer. When resolving a layer i, we select a tuple from its corre-
sponding relation, which sets a value for the ith variable in L, and
also determines a bucket for each child. Then, we erase the node of
layer i and its outgoing edges.

The access algorithm maintains a directed forest and an assign-
ment to a prefix of the variables. Each tree in the forest represents
the answers obtained by joining its relations. Each root contains
a single bucket that agrees with the already assigned values, thus
every answer agrees on the prefix. Due to the running intersection
property, different trees cannot share unassigned variables. As a
consequence, any combination of answers from different trees can
be added to the prefix assignment to form an answer to Q. The
answers obtained this way are exactly the answers to Q that agree
with the already set assignment. Since we start with a layered join
tree, we are guaranteed that at each step, the next layer (which
corresponds to the variable following the prefix for which we have
an assignment) appears as a root in the forest.

Recall that from the preprocessing phase, the weight of each
root is the number of answers in its tree. When we are at layer
i, we have to take into account the weights of all the other roots
in order to compute the number of query answers for a particular
tuple. More specifically, the number of answers to Q containing
the already selected attributes (smaller than i) and some v; value
contained in a tuple is found by multiplying the tuple weight with
the weights of all other roots. That is because the answers from all

trees can be combined into a query answer. Let ¢ be the selected
tuple when resolving the i layer. The number of answers to Q
that have a value of L[i] smaller than that of ¢ and a value of L]
equal to that of ¢ for all j < i is then:

Z(weight(t’) 1_[weight(r))

t re€roots

where t’ ranges over tuples preceding ¢ in its bucket. Denote by
factor the product of all root weights. Then we can rewrite as:

(Z weight(t')) (1_[weight(r)) = start(t) - factor.

t r €roots

Therefore, when resolving layer i we select the last tuple t such
that the index we want to access is at least start(t) - factor.

Algorithm 1 Lexicographic Direct-Access

1: if k > weight(root) then

2 return out-of-bound

3: bucket[1] = root

4: factor = weight(root)

5. fori=1,...,f do

6: factor = factor/weight(bucket[i])

7 pick t € bucket[i] s.t. start(¢)-factor < k < end(¢)-factor
8 k =k — start(t) - factor

9 for child V of layer i do

10: get the bucket b € V agreeing with the selected tuples
11: bucket[layer(V)] =b

12: factor = factor - weight(b)

13: return the answer agreeing with the selected tuples

Algorithm 1 summarizes the process we described where k is
the index to be accessed and f is the number of variables. Iteration
i resolves layer i. Pointers to the selected buckets from the roots
are kept in a bucket array. The product of the weights of all roots is
kept in a factor variable. In each iteration, the variable k is updated
to the index that should be accessed among the answers that agree
with the already selected attribute values. Note that bucket[i] is
always initialized when accessed since layer i is guaranteed to be a
child of a smaller layer.

Example 3.7 (Continued). We demonstrate how the access algo-
rithm works for index k = 12. When resolving R’, the tuple (a2)
is chosen since 8 - 1 < 12 < 16 - 1; then, the single bucket in S’
and the bucket containing ay in R are selected. The next iteration
resolves S’. When it reaches line 7, k = 12 — 8 = 4 and factor = 2.
As0-2 <4 < 3-2, the tuple (by) is selected. Next, R is resolved,
which we depict in Figure 4. The current index is k =4 -0 = 4.
The weights of the other roots (only S here) gives us factor = 3.
To make our choice in R, we multiply the weights of the tuples by
factor = 3. Then, we find that the index k we are looking for falls
into the range of (ag, ¢3) because 1-3 < 4 < 2-3. Next, S is resolved,
k=4-1-3=1,and factor = 1. As1-1 <1 < 2-1, the tuple
(b1, dy) is selected. Overall, answer number 12 (the 13" answer) is
(az, by, c3,dz).

a; ¢ | 1| 0 |1x3answers I

a, 3 1 1 |1 * 3 answers S w s
(;v =4 by di| 1|0
Weight of bucket by dy| 1 1
=1+1+1=
by d3| 1| 2

Figure 4: Example 3.7: Illustration of an iteration of the ac-
cess phase where layer 3 corresponding to R is resolved.

Lemma 3.8. Let Q be a full acyclic CQ, and L = (v1,...,v5) bea
lexicographic order. If there is a layered join tree for Q with respect to
L, then direct access is possible in (nlog n,log n).

ProoF. The correctness of Algorithm 1 follows from the discus-
sion above. For the time complexity, note that it contains a constant
number of operations (assuming the number of attributes f is fixed).
Line 7 can be done in logarithmic time using binary search, while
all other operations only require constant time in the RAM model.
Thus, we obtain direct access in logarithmic time per answer after
the quasilinear preprocessing (dominated by sorting). O

With minor modifications, the algorithm we presented in this
section can be used for the (reverse) task of inverted access. We
describe this variation in Appendix B.

3.2 Finding Layered Join Trees

We now have an algorithm that can be applied whenever we have
a layered join tree. We next show that the existence of such a join
tree relies on the disruptive trio condition we introduced earlier.
In particular, if no disruptive trio exists, we are able to construct a
layered join tree for full acyclic CQs.

LEMMA 3.9. Let Q be a full acyclic CQ, and L be a lexicographic
order. If Q does not have a disruptive trio with respect to L, then there
is a layered join tree for Q with respect to L.

Proor. We show by induction on i that there exists a lay-
ered join tree for the hypergraph containing the hyperedges
{Vn{oy,...,0;} | V € atoms(Q)} with respect to the prefix of
L containing its first i elements. The induction base is the tree that
contains the node {01} and no edges.

In the inductive step, we assume a layered join tree with i — 1
layers for {V N {v1,...,0;-1} | V € atoms(Q)}, and we build a
layer on top of it. Denote by V the sets of {V N {v1,...,0;} |
V € atoms(Q)} that contain v; (these are the sets that need to be
included in the new layer). First note that V is acyclic. Indeed, by
the running intersection property, the join tree for H(Q) has a
subtree with all the nodes that contain v;. By taking this subtree
and projecting out all variables that occur after v; in L, we get a join

tree for an inclusion equivalent hypergraph to V', and its existence
proves that V is acyclic.

We next claim that some set in “V contains all the others; that is,
there exists V;;; € V such that for all V € V, we have that V C V,,.
Consider a join-tree for V. Every variable of ‘V defines a subtree
induced by the nodes that contain this variable. If two variables
are neighbors, their subtrees share a node. It is known that every
collection of subtrees of a tree satisfies the Helly property [19]: if
every two subtrees share a node, then some node is shared by all
subtrees. In particular, since V is acyclic, if every two variables of
V are neighbors, then some element of V' contains all variables that
appear in (elements of) V. Thus, if, by way of contradiction, there
is no such Vj,, there exist two non-neighboring variables v, and
up, that appear in (elements of) V. Since v; appears in all elements
of V, this means that there exist V,, V;, € V with {vg4,0;} C V,
and {vp,v;} C V},. Since v, and v, are not neighbors, these three
variables are a disruptive trio with respect to L: v, and v, are both
neighbors of the later variable v;. The existence of a disruptive trio
contradicts the assumption of the lemma we are proving, and so
we conclude that there is V;;, € V such that for all V € V, we have
that V C V.

With V;,, at hand, we can now add the additional layer to the
tree given by the inductive hypothesis. By the inductive hypothesis,
the layered join tree with i — 1 layers contains the hyperedge V;;; N
{01, ...,0i—1} = Viu \ {vi}. We insert V};, with an edge to the node
containing Vy,, \ {v;}. This results in the join tree we need: (1) the
hyperedges {V N {v1,...,0;} | V € atoms(Q)} are all contained
in nodes, since the ones that do not appear in the tree from the
inductive hypothesis are contained in the new node; (2) it is a
tree since we add one leaf to an existing tree; and (3) the running
intersection property holds since the added node is connected to
all of its variables that already appear in the tree. O

Lemmas 3.8 and 3.9 give a direct-access algorithm for full acyclic
CQs and lexicographic orders without disruptive trios.

3.3 Supporting Projection

Next, we show how to support CQs that have projections. A free-
connex CQ can be efficiently reduced to a full acyclic CQ using
Proposition 2.1. We next show that the resulting CQ contains no
disruptive trio if the original CQ does not.

LEMMA 3.10. Given a database instance I, a free-connex CQ Q,
and a lexicographic order L with no disruptive trio with respect to
L, we can compute in linear time a database instance I’ and a full
acyclic CQ Q’ with no disruptive trio with respect to L such that
Q' (I"y =Q(), |I'] < ||, and Q’ does not depend on I or I’.

PRrOOF. See Appendix A.1. O

By combining Lemmas 3.8 to 3.10, we conclude an efficient algo-
rithm for CQs and orders with no disruptive trios. The next lemma
summarizes our results so far.

LEMMA 3.11. Let Q be a CQ, and L be a lexicographic order. If Q
does not have a disruptive trio with respect to L, direct access by L is
possible in (nlogn,log n).

3.4 Lower Bound for Conjunctive Queries

Next, we show that our algorithm supports all tractable cases (for
self-join-free CQs); we prove that all unsupported cases are in-
tractable.

LEmMMA 3.12. Let Q be a self-join-free CQ, and L be a lexicographic
order. If Q has a disruptive trio with respect to L, then direct access by
L is not possible in (n polylog n, polylog n), assuming SPARSEBMM.

Lemma 3.12 is a special case of the more general Lemma 4.5 that
we prove later when we discuss partial lexicographic orders. Since Q
has a disruptive trio, two non-neighboring variables u1, up are both
neighbors of a later variable usz in L. Thus, uy, u3, uz is a chordless
path, and Lemma 4.5 implies the correctness of Lemma 3.12.

By combining Lemma 3.11 and Lemma 3.12 together with the
known hardness results for non-free-connex CQs (Theorem 2.2),
we prove the dichotomy given in Theorem 3.3: direct access by a
lexicographic order for a self-join-free CQ is possible with quasilin-
ear preprocessing and polylogarithmic time per answer if and only
if the query is free-connex and does not have a disruptive trio with
respect to the required order.

4 PARTIAL LEXICOGRAPHIC ORDERS

We now investigate the case where the desired lexicographic order
is partial, i.e., it contains only some of the free variables. This
means that there is no particular order requirement for the rest of
the variables. One way to achieve direct access to a partial order is
to complete it into a full lexicographic order and then leverage the
results of the previous section. If such a completion is impossible, we
have to consider cases where tie breaking between the non-ordered
variables is done in an arbitrary way. However, we will show in this
section that the tractable partial orders are precisely those that can
be completed into a full lexicographic order. In particular, we will
prove the following dichotomy which also gives an easy-to-detect
criterion for the tractability of direct access.

THEOREM 4.1. Let Q be a CQ and L be a partial lexicographic
order.

o IfQ is free-connex and L-connex and does not have a disruptive
trio with respect to L, then direct access by L is possible in
(nlogn,logn).

o Otherwise, if Q is also self-join-free, then direct access by L is
not possible in (n polylog n, polylog n), assuming sPARSEBMM
and HYPERCLIQUE.

Example 4.2. Consider the CQ Q7 :— (x,y),S(y, z). If the free
variables are exactly x and z, then the query is not free-connex,
and so it is intractable. Next assume that all variables are free. If
L = (x, z), then the query is not L-connex, and so it is intractable.
If L = (x,zy), then x,z,y is a disruptive trio, thus the query is
intractable. However, if L = (x, y, z) or L = (z,y), then the query is
free-connex, L-connex and has no disruptive trio, so it is tractable.

4.1 Tractable Cases

For the positive side, we can solve our problem efficiently if the CQ
is free-connex and there is a completion of the lexicographic order
to all free variables with no disruptive trio. Lemma 4.4 identifies
these cases with a connexity criterion. To prove it, we first need a

way to combine two different connexity properties. The proof of the
following proposition uses ideas from a proof of the characterization
of free-connex CQs in terms of the acyclicity of the hypergraph
obtained by including a hyperedge with the free variables [5].

ProrosITION 4.3. If a CQ Q is both Li-connex and Ly-connex
where Ly C Ly, then there exists a join tree T of an inclusive extension
of Q with a subtree Ty containing exactly the variables L1 and a
subtree T of Ty contains exactly the variables L.

Proor. See Appendix A.2. O

We are now in position to show the following:

LEMMA 4.4. Let Q be a CQ and L be a partial lexicographic order.
IfQ is free-connex and L-connex and does not have a disruptive trio
with respect to L, then there is an ordering L* of free(Q) that starts
with L such that Q has no disruptive trio with respect to L.

PRrOOF. According to Proposition 4.3, there is a join tree T (of an
inclusive extension of Q) with a subtree Tfr¢e containing exactly
the free variables, and a subtree T, of Tfpee containing exactly the L
variables. We assume that Tj, contains at least one node; otherwise
(this can only happen in case L is empty), we can introduce a node
with no variables to all of T, Tfree and T and connect it to any
one node of Tfree. We describe a process of extending L while
traversing Trrqe. Consider the nodes of Ty as handled, and initialize
L* = L. Then, repeatedly handle a neighbor of a handled node until
all nodes are handled. When handling a node, append to L* all of
its variables that are not already there. We prove by induction that
O has no disruptive trio w.r.t any prefix of L*. The base case is
guaranteed by the premises of this lemma since L (hence all of its
prefixes) have no disruptive trio.

Let vy be a new variable added to a prefix vy, .. S Up-1 of L*. Let
T* be the subtree of Trree With the handled nodes when adding v,
to L* and let V ¢ T* be the node being handled. Note that, since
up is being added, vp €V but vp is not in any node of T*.

We first claim that every neighbor v; of v, with i < p is in
V. Our arguments are illustrated in Figure 5. Since v; and v, are
neighbors, they appear together in a node V;;, outside of T*. Let V;
be a node in T* containing v; (such a node exists since v; appears
before v, in L"). Consider the path from Vip to V;. Let V¢ be the
last node of this path not in T*. If V; # V, the path between V; and
V goes only through nodes of T* (except for the end-points). Thus,
concatenating the path from V; to V; with the path from V; to V
results in a simple path. By the running intersection property, all
nodes on this path contain v). In particular, the node following V;
contains v, in contradiction to the fact that v, does not appear in
T*. Therefore, V; = V. By the running intersection property, since
V is on the path between V; and V; p, we have that V contains v;.

We now prove the induction step. We know by the inductive
hypothesis that v, ..., Up-1 have no disruptive trio. Assume by
way of contradiction that appending v, introduces a disruptive trio.
Then, there are two variables v;,v; with i < j < p such that v;, vp
are neighbors, vj, up are neighbors, but v;,v; are not neighbors. As
we proved, since v; and v are neighbors of v, preceding it, we
have that all three of them appear in the handled node V. This is a
contradiction to the fact that v; and v; are not neighbors.]

The positive side of Theorem 4.1 is obtained by combining
Lemma 4.4 with Theorem 3.3.

4.2 Intractable Cases

For the negative part, we prove a generalization of Lemma 3.12.
For that, we use the hardness of Boolean matrix multiplication
with a construction that is similar to that of Bagan et al. [3] for the
hardness of enumeration on acyclic CQs that are not free-connex.

LEMMA 4.5. Let Q be a self-join-free CQ and L be a partial lexico-
graphic order. If there is a chordless path uy, z1, . . ., zx, uz such that
u1 and up appear in L and no variable z; appears in L before any of
them, then direct access by L is not possible in {n polylog n, polylog n),
assuming SPARSEBMM.

ProOF. Let Us = {z1, ..., z;}. We encode Boolean matrix multi-
plication with Q such that, in the answers to Q, the assignments
to u; and up form the answers to the given matrix multiplication
instance, the assignments to variables of Us can be skipped us-
ing binary search (given direct access), and all other variables are
assigned a constant value L.

Let A and B be Boolean n X n matrices represented as binary
relations. That is, A C {1,...,n}?, and (a,b) € A means that the
entry in the ath row and bth column is 1. We define a partition of the
atoms of Q where R 4 is the set of all atoms that contain u1, and Rg
holds all other atoms. Note that no atom in R 4 contains uy (since
uy and uy are not neighbors) and no atom in Rp contains u;. Given
three values (a, b, c), we define a function (44 @ var(Q) —
{a, b, c, L} as follows:

a ifo=u,
b ifo e Us,
¢ ifo=uy,
1 otherwise,

T(a,b,c) (v) =

For a vector 4, we denote by 7(,4¢)(7) the vector obtained by
element-wise application of 7,5,). We define a database instance
I over Q as follows: For every atom R(9), if R(J) € R4 we set
Rl = {1(4p,1)(@) | (a.b) € A}, and if R() € Rp we set Rl =

(o)
T+ -
Vw’

We get a contradiction in the

If v; is a neighbor of v, with
case where V # V. i <n,thenov; € V.

Figure 5: The induction step in Lemma 4.4

{t(Lb,c) (@) | (b,c) € B}. Note that we do not define relations twice
since R4 and Rp are disjoint and Q is self-join-free.

Since Us is connected, our construction guarantees that in every
answer to Q all Us variables are assigned the same value. Since
u1 and z; € Us are neighbors, we are guaranteed that there is an
atom that contains them both in R4. The same holds for z; € Us
and uy in Rpg. Therefore, the answers to Q(I) describe the matrix
multiplication. Consider a query answer gq. We have that q(u1) = a,
q(z;) = b for all z; € Uz and q(uz) = ¢ for some (a,b) € A and
(b, c) € B. All other variables are mapped to the constant L. Note
that the answers projected to u; and uy are the answers to the
matrix multiplication problem.

Assume, by way of contradiction, that direct access to the an-
swers of Q by a lexicographic order in which no variable of u3
occurs before any of u; and uj is possible with O (n polylog n) pre-
processing and O (polylog n) delay. We show how to find all the
unique values of u; and uy in the answers efficiently. Perform the
following starting with i = 1 and until there are no more answers.
Access answer number i and print its assignment to (u1, u2). Then,
set i to be the index of the next answer which assigns (u1, uz) to dif-
ferent values and repeat. Finding the next index can be done using
binary search with a logarithmic number of direct accesses, each
taking polylogarithmic time. Overall, we solve Boolean matrix mul-
tiplication in O(n polylog n) time, contradicting SPARSEBMM. O

The negative part of the dichotomy has three cases. First, if Q is
not free-connex, then we know that direct access by any order is
intractable according to Theorem 2.2. Next, if Q has a disruptive
trio uy, ug, uz with respect to L, then uj, us, uz is a chordless path
satisfying the conditions of Lemma 4.5. The last case is that Q is
not L-connex. In this case, there is an L-path, and this path satisfies
the conditions of Lemma 4.5. Therefore, we obtain that the last two
cases are hard too, assuming the sPARSEBMM hypothesis.

5 DIRECT ACCESS BY SUM OF WEIGHTS

We now consider direct access for the more general orderings based
on 2w (the sum of attribute weights). As with lexicographic or-
derings, we are able to exhaustively classify the self-join-free CQs,
even those with projections, in terms of tractability. We will show
that direct access for Zw is significantly harder and tractable only
for a small class of queries.

5.1 Overview of Results

The main result of this section is a dichotomy for direct access by
w ordering:

THEOREM 5.1. Let Q be a CQ and w be a weight function.

e IfQ is acyclic and an atom of Q contains all the free variables,
then direct access by Zw is possible in (nlogn, 1).

o Otherwise, if Q is also self-join-free, direct access by Tw is
not possible in (npolylog n, polylog n), assuming 3sum and
HYPERCLIQUE.

The proof of the negative part of the above theorem requires the
query answers to express certain combinations of weights. If the
query contains independent free variables, then its answers may
contain all possible combinations of their corresponding attribute

weights. We will thus rely on this independence measure to identify
hard cases.

Definition 5.2 (Independent free variables). A set of vertices V7 C
V of a hypergraph H (V, E) is called independent iff no pair of these
vertices appears in the same hyperedge, ie., [V; Ne| < 1 for all
e € E. For a CQ Q, we denote by tfee(Q) the maximum number of
variables among free(Q) that are independent in H (Q).

Intuitively, we can construct a database instance where each
independent free variable is assigned to n different domain values
with n different weights. By appropriately choosing the assignment
of the other variables, all possible n%iee(Q) combinations of these
weights will appear in the query answers. Providing direct access
then implies that we can retrieve these sums in ranked order.

Example 5.3. For Qg(x,y,z):—R(x,z2),5(z,y), T(y,u), we have
Afree (Q3) = 2, namely for variables {x, y}. If the database instance
isR=[1,n] x {0}, S = {0} x [1,n], T = [1,n] x {0}, then the n?
query answers are [1,n] X [1,n] X {0}. The n values of x and y can
be respectively assigned to any real-valued weights such that direct

access on Qg retrieves their it sum in ranked order.

Our independence measure afee (Q) is related to the classifica-
tion of Theorem 5.1 in the following way:

LEmMMA 5.4. For an acyclic CQ Q, an atom contains all the free
variables iff & (Q) < 1.

ProOF. See Appendix A.3. O

Therefore, the dichotomy of Theorem 5.1 can equivalently be
stated using afee (Q) < 1 as a criterion. We chose to use the other
criterion (all free variables contained in one atom) in the statement
of our theorem statement as it is more straightforward to check.
In the next section, we proceed to prove our theorem by showing
intractability for all queries with afee(Q) > 1.

5.2 Proofs

For the hardness results, we rely mainly on the 3sum hypothesis.
To more easily relate our direct-access problem to 3sum, which asks
for the existence of a particular sum of weights, it is useful to define
an auxiliary problem:

Definition 5.5 (weight lookup). Given a CQ Q, weight function
w, and A € R, weight lookup by Zw returns the first position of a
query answer g of weight w(q) = A in the sorted array of answers.

The following lemma associates direct access with weight lookup
via binary search on the query answers:

LEMMA 5.6. If the kth query answer according to some ranking
function can be directly accessed in O(Ty(n)) time for every k, then
weight lookup can be performed in O(Ty(n) log n).

PRrooF. See Appendix A 4. O

Lemma 5.6 implies that whenever we are able to support efficient
direct access on the sorted array of query answers, weight lookup
increases time complexity only by a logarithmic factor, i.e., it is also
efficient. The main idea behind our reductions is that via weight
lookups on a CQ with an appropriately constructed database, we

can decide the existence of a zero-sum triplet over three distinct sets
of numbers, thus hardness follows from 3sum. First, we consider
the case of three independent variables that are free. These three
variables are able to simulate a three-way Cartesian product in the
query answers. This allows us to directly encode the 3sum triplets
using attribute weights, obtaining a lower bound for direct access.

LemMA 5.7. Ifa CQQ is self-join-free and afree(Q) = 3, then direct
access by Sw is not possible in (n?~€,n’>~€) for any € > 0 assuming
3suMm.

Proor. Assume for the sake of contradiction that the lemma
does not hold. We show that this would imply an O(n?~€)-time
algorithm for 3sum. To this end, consider an instance of 3sum with
integer sets A, B, and C of size n, given as arrays. We reduce 3sum
to direct access over the appropriate query and input instance by
using a construction similar to Example 5.3. Let x, y, and z be free
and independent variables of Q, which exist because dfee (Q) > 3.
We create a database instance where x, y, and z take on each value
in [1, n], while all the other attributes have value 0. This ensures
that Q has exactly n® answers—one for each (x, y, z) combination
in [1,7]3, no matter the number of atoms and the variables they
contain. To see this, note that since x, y, and z are independent, they
never appear together in an atom. Also, since Q is self-join-free,
each relation appears once in the query, hence contains at most one
of x, y, and z. Thus each relation either contains 1 tuple (if neither
X, y, nor z is present) or n tuples (if one of x, y, or z is present).
No matter on which attributes these relations are joined (including
Cartesian products), the output result is always the “same” set
[1,7]3 x {0}/ of size n3, where f is the number of free variables
other than x, y, and z. (We use the term “same” loosely for the
sake of simplicity. Clearly, for different values of f the query-result
schema changes, e.g., consider Example 5.3 with z removed from
the head. However, this only affects the number of additional 0s
in each of the n® answer tuples, therefore it does not impact our
construction.)

For the reduction from 3sum, weights are assigned to the attribute
values as wy (i) = A[i], wy(i) = B[i], w2 (i) = C[i], i € [1,n], and
wy, (0) = 0 for all other attributes u. By our weight assignment,
the weights of the answers are A[i] + B[j] + C[k], i, j,k € [1,n],
and thus in one-to-one correspondence with the possible value
combinations in the 3sum problem. We first perform the prepro-
cessing for direct access in O(n®~€), which enables direct access to
any position in the sorted array of query answers in O(n?>~€). By
Lemma 5.6, weight lookup for a query result with zero weight is pos-
sible in O(n?~€ log n). Thus, we answer the original 3sum problem
in O(n?=¢) for any 0 < €’ < ¢, violating the 3sum hypothesis. O

For queries that do not have three independent free variables
we need a slightly different construction. We show next that two
variables are sufficient to encode partial 3sum solutions (i.e., pairs of
elements), enabling a full solution of 3sum via weight lookups. This
yields a weaker lower bound than Lemma 5.7, but still is sufficient
to prove intractability according to our yardstick.

LemMa 5.8. Ifa CQQ is self-join-free and atfree(Q) = 2, then direct
access by Sw is not possible in (n®>~€,n'~€) for any e > 0 assuming
3sum.

Proor. See Appendix A.5. O

A special case of Lemma 5.8 is closely related to the problem of
selection in X+Y [22], where we want to access the k™" smallest sum
of pairs between two sets X and Y. This is equivalent to accessing
the answers to Qxy (x, y) :— R(x), S(y) by Zw ordering. It has been
shown that if X and Y are given sorted, then selection (a single
access) is possible even in linear time [15, 26]. Thus, for Qxy direct
access by 2w is possible with O(nlogn) preprocessing (where we
simply sort the input relations) and O(n) per access.

So far, we have covered all self-join-free CQs with afe (Q) > 1,
which, by Lemma 5.4, proves the negative part of Theorem 5.1. Next,
we show that the remaining acyclic CQs (those with afee (Q) < 10r
equivalently, an atom containing all the free variables) are tractable.
For these queries, a single relation contains all the answers, and so
direct access can easily be supported by reducing and sorting that
relation.

LEMMA 5.9. Ifa CQ Q is acyclic and an atom contains all the free
variables, then direct access by Zw is possible in (nlogn, 1).

ProoOF. See Appendix A.6. O

Combining these lemmas with the hardness of Boolean self-
join-free cyclic CQs based on HYPERCLIQUE, gives a proof of Theo-
rem 5.1.

6 SELECTION BY SUM OF WEIGHTS

Given that direct access by Zw order with quasilinear preprocessing
and polylogarithmic delay is possible only in very few cases, we
next investigate the tractability of a simpler version of the problem:
When is selection, i.e., direct access to a single query answer, pos-
sible in quasilinear time? We further simplify the problem by not
allowing any projections in the query, i.e., we limit our attention to
full CQs. Our main result is a dichotomy theorem that covers all
full self-join-free CQs.

6.1 Overview of Results

We show that the simplifications move only a narrow class
of queries to the tractable side. For example, the 2-path query
Q7(x,y,2) :— R(x,y), S(y, z) is tractable for selection (a single direct
access), even though it is not for direct access. Still, the 3-path query
Qo(x,y,z,u) :—R(x,y),S(y, z), T(z,u) remains intractable. Given
that Q7 and Qg both have two free and independent variables, a
different criterion than afee (Q) is needed for classification.

Definition 6.1 (Maximal Hyperedges). For a CQ Q with hyper-
graph H(Q) = (V, E), the maximal number of hyperedges w.r.t. con-
tainment is mh(Q), i.e., mh(Q) =max|{e € E| Be’ € RAe C e'}|.

Note that for full CQs, afree (Q) < mh(Q) since each independent
variable can be associated with a distinct maximal hyperedge. We
summarize the results of this section in the following theorem,
which classifies full CQs Q based on mh(Q):

THEOREM 6.2. Let Q be a full CQ and w be a weight function.

o Ifmh(Q) < 2, then selection by Xw is possible in (1, nlog n).
o Otherwise, if Q is also self-join-free, then selection by Zw is not
possible in (1, n polylog n). assuming 3sum and HYPERCLIQUE.

We prove the positive part of the theorem in Section 6.2 and the
negative part in Section 6.3.

Example 6.3. For the query Q7(x, y, z) :— R(x,y), S(y, z) we have
already shown in Section 5 that direct access by 2w is intractable.
However, given that it has two maximal hyperedges, only one access
(or a constant number of them) is in fact possible in O(nlogn).

Absorbed atoms. We say that an atom (identified by its hyperedge)
V is absorbed by an atom V' if V C V’. As evident from Theorem 6.2,
adding to a query atoms that are absorbed by existing ones does
not affect the complexity of selection. We prove this claim first and
use it later in our analysis in order to treat queries that contain
absorbed atoms.

A query Q’ is a contraction of Q if every atom of Q’ appears in
Q, and all the rest of the atoms of Q are absorbed by some atom of
Q’. Q™ is a maximal contraction of Q if it is a contraction and there
is no Q" that is a contraction of Q" except itself. It is easy to see
that the number of atoms of Q" is mh(Q).

Example 6.4. Consider Q(x,y,z) :— R(x,y),S(y), T(y,z), U(x,y).
Here, S(y) is absorbed by R(x,y) and U(x,y), and the latter two
absorb each other. There are two maximal contractions that we can
obtain from Q: either Q7" .= R(x, y), T(y, z) or Q)" := T (y, 2), U (x, y)).
The number of maximal hyperdges of Q is mh(Q) = 2.

LEMMA 6.5. Selection on a CQ Q is possible in O(Ts(n)) if selection
on a maximal contraction Q™ of Q is possible in O(Ts(n)). The
converse is also true if Q is self-join-free.

PRrRoOF. See Appendix A.7. O

6.2 Tractability Proofs

In this section, we provide tractability results for full CQs with
mh(Q) < 2. First, we consider the trivial case of mh(Q) = 1 where
the maximal contraction of Q has only one atom. The lemma below
is a direct consequence of the linear-time array selection algorithm
of Blum et al. [6].

LEMMA 6.6. For a full CQ Q with mh(Q) = 1, selection by Zw is
possible in (1, n).

ProoF. See Appendix A.8. O

For the mh(Q) = 2 case, we rely on an algorithm by Frederickson
and Johnson [15], which generalizes selection on the X+Y problem.
If the two sets X and Y are given sorted, then the pairwise sums
can be represented as a sorted matrix. A sorted matrix M contains
a sequence of non-decreasing elements in every row and every
column. For the X + Y problem, a cell M[i, j] contains the sum
X[i] + Y[j]. Even though the matrix M has quadratically many
cells, there is no need to construct it in advance given that we can
compute each cell in constant time. Selection on a union of such
matrices {Mj, ..., My} asks for the k™ smallest cell among the cells
of all matrices.

THEOREM 6.7 ([15]). Selection on a union of sorted matrices
{Mji,...,Mp}, where My, has dimension ppy, X qm With pm > qm, is
possible in time O(an:1 qm 1og(2pm/qm))-

Leveraging this algorithm, we provide our next positive result:

LEMMA 6.8. For a full CQ Q with mh(Q) = 2, selection by Zw is
possible in (1,nlogn).

Proor. The maximal contraction of queries with mh(Q) = 2 is
Q()Z',)7) - R()?), S(f’), with X # Y, thus by Lemma 6.5, it is enough
to prove an O(nlogn) bound for this query. As before, we turn the
attribute weights into tuple weights. Since a variable may occur
in both atoms, we make sure to assign each attribute weight to
only one relation to avoid double-counting. Thus, we compute
w(r) = erx wx(r(x)) and w(s) = Zye(f’\f() wy(s(y)) for all
r € Rand s € S, respectively. Since the query is full, the weights
of the query answers are in one-to-one correspondence with the
palrWlse sums of Welghts of tuples from R and S.

Let Z = X N Y. We next group the R and S tuples by their Z
values: we create ¢ buckets of tuples where all tuples ¢t within a
bucket have equal (z) values, z € Z. This can be done in linear
time. If Z = 0, i.e., the query is the Cartesian product, then we
place all tuples in a single bucket. For each assignment of Z values,
the query answers with those values are formed by the Cartesian
product of R and S tuples inside that bucket. Also, if the size of
bucket m is np,, then ny + ...+ ny = |R| + |S|. We sort the tuples in
the buckets according to their weight in O(nlogn) time. Assume
Ry, and Sy, are the partitions of R and S in bucket m and R, [i]
denotes the ith tuple of R, in sorted order (equivalently for Sy, [j]).
We define a union of sorted matrices {Mj, ..., M,} as follows: For
bucket m, we have My, [i, j] = w(Rmnli]) + w(Sm[j]). Selection
on these matrices is equivalent to selection on the query answers
of Q. By Theorem 6.7, if matrix My, has dimension p, X g, with
Pm = qm, we can achieve selection in O(an:1 qm 1og(2pm/qm)) =
O(anzl qm zpm/qm) = O(anzl Pm) = O(anzl nm) = O(n)

Overall, the time spent is O(nlog n) because of sorting. O

6.3 Intractability Proofs

Though selection is a special case of direct access, we show that
for most full CQs tractable time complexity O(n polylog n) is still
unattainable. We start from the cases covered by Lemma 5.7. To
extend that result to the selection problem, note that a selection
algorithm can be repeatedly applied for solving direct access. For
queries with three free and independent variables, an O(n?~¢)
selection algorithm would imply a (n?~€, n?=€) direct-access algo-
rithm, which we showed to be impossible. Therefore, the following
immediately follows from Lemma 5.7:

COROLLARY 6.9. If a full CQ Q is self-join-free and af,.(Q) =
3, then selection by Sw is not possible in (1,n*"€) for any e > 0
assuming 3SUM.

This leaves only a small fraction of full acyclic CQs to be cov-
ered: queries with two or fewer independent variables and three
or more maximal hyperedges. We next show that these queries are
essentially variants of the general three-path query template where
three atoms are organized in a chain.

LEmMMA 6.10. The full acyclic CQs Q that satisfy afree(Q) < 3
and mh(Q) > 2 are Q3g(x Y,Z,U)—R(X,Y),S(Y,2),T(Z,U) for
non- emptyX Y,Z,U, up to atom absorption.

PrOOF. See Appendix A.9. O

Now that we established the precise form of the queries we want
to classify, we proceed to prove their intractability. We approach
this in a different way than the other hardness proofs: instead of
relying on the 3sum hypothesis, we instead show that tractable
selection would lead to unattainable bounds for Boolean cyclic
queries.

LEMMA 6.11. Selection by Zw is not possible in (1, n polylog n) for
Q34(X,Y,Z,U) = R(X,Y),S(Y,Z),T(Z,U) assuming HYPERCLIQUE.

Proor. We will show that if selection for Q3; can be done
in O(npolylogn), then the Boolean triangle query can be eval-
uated in the same time bound, which contradicts the HYPERCLIQUE
hypothesis. Let Qo () =R’ (x",y’), S’ (y’,2"), T’ (z’, x") be a query
over a database I. We will construct a database I’ for Qs4, and
via weight lookups we will be able to answer Q, over I. Let
x e X, y € Y,z € Z,u € U. For I’, we extend relation R’ to
R by assigning x = x’,y = y’ and setting the values of all the
other attributes ()? U 17) \ {x,y} to a fixed domain value L. We
repeat the same process for the other relations: For S we assign
y =y’,z = Z/, and for T we assign z = z’,u = x’. Consider a
query result g € Q34(I"). If 7, (q) = 7x(q), then by our construc-
tion 7y yz (q) satisfy R, S and T and thus, Q» over I. We now assign
weights as follows: If dom C R, then wy (i) = i, wy, (i) = —i, and for
all other attributes t, w; (i) = 0. Otherwise, it is also easy to assign
wy and wy, in a way s.t. wx(i) = wy(j) if and only if i = j and
wy (i) = —wx(i). This is done by maintaining a lookup table for
all the domain values that we map to some arbitrary real number.
Then, we perform a weight lookup for Qs to identify if a query
result with zero weight exists. If it does for some result g, then
wy (71x(q)) + ... + wy (7, (1)) = 0 hence 75 (q) = 7, (q) and Q, is
true, otherwise it is false. Since accessing the sorted array of Qs
answers takes O(npolylog n), by Lemma 5.6, weight lookup also
takes O(n polylog n). |

The negative part of Theorem 6.2 for acyclic queries is proved by
combining Corollary 6.9 and Lemma 6.11 together with Lemma 6.10
and Lemma 6.5 that show we cover all cases. For self-join-free cyclic
CQs, we once again resort to the hardness of their Boolean version
based on HYPERCLIQUE.

7 CONCLUSIONS

We investigated the task of constructing a direct-access data struc-
ture to the output of a query with an ordering over the answers.
We presented algorithms for fragments of the class of CQs for lex-
icographic orders and sum of weights. In these algorithms, the
construction time is quasilinear in the size of the database, and
the access time is logarithmic. We showed that within the class of
CQs without self-joins, our algorithms cover all the cases where
these complexity guarantees are feasible, assuming conventional
hypotheses in the theory of fine-grained complexity. In the case
of sum, where the tractable fragment is limited, we also studied
the restriction of the problem to accessing a single answer (the
selection problem) and established a corresponding classification
for full CQs.

This work opens up several directions for future work, including
the generalization to more expressive queries (CQs with self-joins,
union of CQs, negation, etc.), other kinds of orders (e.g., min/max
over the tuple entries), and a continuum of complexity guarantees
(beyond (quasilinear, logarithmic time)). It would also be impor-
tant to understand how integrity constraints, such as functional
dependencies, change the frontier of tractability as they have in the
case of enumeration [9], deletion propagation [24], resilience [16],
and probabilistic inference [18].

Generalizing the question posed at the beginning of the Intro-
duction, we view this work as part of a bigger challenge that
continues the line of research on factorized representations in
databases [27, 28]: how can we represent the output of a query
in a way that, compared to the explicit representation, is fundamen-
tally more compact and efficiently computable, yet equally useful
to downstream operations?

ACKNOWLEDGMENTS

Nofar Carmeli and Benny Kimelfeld were supported by the Ger-
man Research Foundation (DFG) Project 412400621 (DIP program).
Nofar Carmeli was also supported by a Google PhD Fellowship.
Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald
were supported in part by the National Science Foundation (NSF)
under award number IIS-1956096. Wolfgang Gatterbauer was also
supported by NSF under award number CAREER IIS-1762268.

REFERENCES

[1] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular Conjectures
Imply Strong Lower Bounds for Dynamic Problems. In FOCS. 434-443. https:
//doi.org/10.1109/FOCS.2014.53

[2] Nir Ailon and Bernard Chazelle. 2005. Lower Bounds for Linear Degeneracy
Testing. J. ACM 52, 2 (2005), 157-171. https://doi.org/10.1145/1059513.1059515

[3] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic
Conjunctive Queries and Constant Delay Enumeration. In CSL. 208-222. https:
//doi.org/10.1007/978-3-540-74915-8_18

[4] Ilya Baran, Erik D. Demaine, and Mihai Patragcu. 2005. Subquadratic Algorithms

for 3SUM. In Algorithms and Data Structures. 409-421. https://doi.org/10.1007/

11534273_36

Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. 2020. Constant

delay enumeration for conjunctive queries: a tutorial. SIGLOG 7, 1 (2020), 4-33.

https://doi.org/10.1145/3385634.3385636

Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.

Tarjan. 1973. Time bounds for selection. JCSS 7, 4 (1973), 448 — 461. https:

//doi.org/10.1016/S0022-0000(73)80033-9

Pierre Bourhis, Alejandro Grez, Louis Jachiet, and Cristian Riveros. 2021. Ranked

Enumeration of MSO Logic on Words. In ICDT, Vol. 186. 20:1-20:19. https:

//doi.org/10.4230/LIPIcs.ICDT.2021.20

[8] Johann Brault-Baron. 2013. De la pertinence de I’énumération: complexité en
logiques propositionnelle et du premier ordre. Ph.D. Dissertation. U. de Caen.
https://hal.archives-ouvertes.fr/tel-01081392

[9] Nofar Carmeli and Markus Kroll. 2020. Enumeration Complexity of Conjunctive
Queries with Functional Dependencies. TCS 64, 5 (2020), 828-860. https://doi.
0rg/10.1007/500224-019-09937-9

[10] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole

Schweikardt. 2020. Answering (Unions of) Conjunctive Queries Using Random

Access and Random-Order Enumeration. In PODS. 393-409. https://doi.org/10.

1145/3375395.3387662

Shaleen Deep and Paraschos Koutris. 2021. Ranked Enumeration of Conjunctive

Query Results. In ICDT, Vol. 186. 5:1-5:19. https://doi.org/10.4230/LIPIcs.ICDT.

2021.5

Jeff Erickson. 1995. Lower Bounds for Linear Satisfiability Problems. In SODA.

388-395. https://dl.acm.org/doi/10.5555/313651.313772

Robert W. Floyd and Ronald L. Rivest. 1975. Expected Time Bounds for Selection.

Commun. ACM 18, 3 (1975), 165-172. https://doi.org/10.1145/360680.360691

[14] Greg N. Frederickson. 1993. An Optimal Algorithm for Selection in a Min-Heap.

Inf. Comput. 104, 2 (1993), 197-214. https://doi.org/10.1006/inc0.1993.1030

[5

G

7

[11

[12

[13

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1145/1059513.1059515
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1007/11534273_36
https://doi.org/10.1007/11534273_36
https://doi.org/10.1145/3385634.3385636
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.4230/LIPIcs.ICDT.2021.20
https://doi.org/10.4230/LIPIcs.ICDT.2021.20
https://hal.archives-ouvertes.fr/tel-01081392
https://doi.org/10.1007/s00224-019-09937-9
https://doi.org/10.1007/s00224-019-09937-9
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://dl.acm.org/doi/10.5555/313651.313772
https://doi.org/10.1145/360680.360691
https://doi.org/10.1006/inco.1993.1030

(15

[16

[17]

[18]

[19

[20]

[21

[22]

[23

[24]

[25]

Greg N. Frederickson and Donald B. Johnson. 1984. Generalized Selection and
Ranking: Sorted Matrices. SIAM J. Comput. 13, 1 (1984), 14-30. https://doi.org/
10.1137/0213002

Cibele Freire, Wolfgang Gatterbauer, Neil Immerman, and Alexandra Meliou. 2015.
The Complexity of Resilience and Responsibility for Self-Join-Free Conjunctive
Queries. Proc. VLDB Endow. 9, 3 (2015), 180-191. https://doi.org/10.14778/2850583.
2850592

Anka Gajentaan and Mark H Overmars. 1995. On a class of O(n2) problems
in computational geometry. Computational Geometry 5, 3 (1995), 165 — 185.
https://doi.org/10.1016/0925-7721(95)00022-2

Wolfgang Gatterbauer and Dan Suciu. 2015. Approximate Lifted Inference with
Probabilistic Databases. Proc. VLDB Endow. 8, 5 (2015), 629-640. https://doi.org/
10.14778/2735479.2735494

Martin Charles Golumbic. 1980. Algorithmic Graph Theory and Perfect Graphs.
Academic Press, Chapter 4, 81 — 104. https://doi.org/10.1016/C2013-0-10739-8

Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016.
Hypertree Decompositions: Questions and Answers. In PODS. 57-74. https:
//doi.org/10.1145/2902251.2902309

Etienne Grandjean. 1996. Sorting, linear time and the satisfiability problem.
Annals of Mathematics and Artificial Intelligence 16, 1 (1996), 183-236. https:
//doi.org/10.1007/BF02127798

Donald B Johnson and Tetsuo Mizoguchi. 1978. Selecting the Kth element in
X+Yand X _1+X 2+..+X m. SIAM J. Comput. 7, 2 (1978), 147-153. https:
//doi.org/10.1137/0207013

Jens Keppeler. 2020. Answering Conjunctive Queries and FO+MOD Queries under
Updates. Ph.D. Dissertation. Humboldt-Universitit zu Berlin, Mathematisch-
Naturwissenschaftliche Fakultat. https://doi.org/10.18452/21483

Benny Kimelfeld. 2012. A dichotomy in the complexity of deletion propagation
with functional dependencies. In PODS. 191-202. https://doi.org/10.1145/2213556.
2213584

Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. 2018. Tight
Hardness for Shortest Cycles and Paths in Sparse Graphs. In SODA. 1236-1252.

[26

[27

[28

[29

[31

(32

[33

[35

]

]
]

https://doi.org/10.1137/1.9781611975031.80

A. Mirzaian and E. Arjomandi. 1985. Selection in X + Y and matrices with
sorted rows and columns. Inform. Process. Lett. 20, 1 (1985), 13 — 17. https:
//doi.org/10.1016/0020-0190(85)90123-1

Dan Olteanu and Maximilian Schleich. 2016. Factorized Databases. SIGMOD Rec.
45,2 (2016), 5-16. https://doi.org/10.1145/3003665.3003667

Dan Olteanu and Jakub Zavodny. 2012. Factorised representations of query
results: size bounds and readability. In ICDT. 285-298. https://doi.org/10.1145/
2274576.2274607

Mihai Patrascu. 2010. Towards polynomial lower bounds for dynamic problems.
In STOC. 603. https://doi.org/10.1145/1806689.1806772

Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and
Xiaofeng Yang. 2019. Optimal Algorithms for Ranked Enumeration of Answers
to Full Conjunctive Queries. CoRR abs/1911.05582 (2019). https://arxiv.org/abs/
1911.05582

Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and
Xiaofeng Yang. 2020. Optimal Algorithms for Ranked Enumeration of Answers
to Full Conjunctive Queries. PVLDB 13, 9 (2020), 1582-1597. https://doi.org/10.
14778/3397230.3397250

Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Optimal
Join Algorithms Meet Top-k. In SIGMOD. 2659-2665. https://doi.org/10.1145/
3318464.3383132

Virginia Vassilevska Williams. 2015. Hardness of Easy Problems: Basing Hardness
on Popular Conjectures such as the Strong Exponential Time Hypothesis (Invited
Talk). In IPEC, Vol. 43. 17-29. https://doi.org/10.4230/LIPIcs.IPEC.2015.17
Xiaofeng Yang, Mirek Riedewald, Rundong Li, and Wolfgang Gatterbauer. 2018.
Any-k Algorithms for Exploratory Analysis with Conjunctive Queries. In Ex-
ploreDB. 1-3. https://doi.org/doi.org/10.1145/3214708.3214711

Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In VLDB.
82-94. https://dL.acm.org/doi/10.5555/1286831.1286840

https://doi.org/10.1137/0213002
https://doi.org/10.1137/0213002
https://doi.org/10.14778/2850583.2850592
https://doi.org/10.14778/2850583.2850592
https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.14778/2735479.2735494
https://doi.org/10.14778/2735479.2735494
https://doi.org/10.1016/C2013-0-10739-8
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1007/BF02127798
https://doi.org/10.1007/BF02127798
https://doi.org/10.1137/0207013
https://doi.org/10.1137/0207013
https://doi.org/10.18452/21483
https://doi.org/10.1145/2213556.2213584
https://doi.org/10.1145/2213556.2213584
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1016/0020-0190(85)90123-1
https://doi.org/10.1016/0020-0190(85)90123-1
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/1806689.1806772
https://arxiv.org/abs/1911.05582
https://arxiv.org/abs/1911.05582
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.1145/3318464.3383132
https://doi.org/10.1145/3318464.3383132
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/doi.org/10.1145/3214708.3214711
https://dl.acm.org/doi/10.5555/1286831.1286840

Figure 6: Example for the construction from Proposition 4.3
for the CQ Q(x,y,z):—Ri(x,y,a),R2(y, 2, b), R3(b, c), Ra(y, 2z, d)
with L; = {x,y,z} and L = {y}.

A ADDITIONAL PROOFS
A.1 Proof of Lemma 3.10

Let Q be a free-connex CQ, and let T be an ext-free(Q)-connex
tree for Q where T’ is the subtree of T that contains exactly the
free variables.

First, we claim that two free variables are neighbors in T iff they
are neighbors in T’. The “if” direction is immediate since T’ is
contained in T. We show the other direction. Let u and v be free
variables of Q that are neighbors in T. That is, there is a node Vr
in T that contains them both. Consider the unique path from V
to any node in T’ such that only the last node on the path, which
we denote Vv, is in T’. Since both variables appear in T” and in V,
by the running intersection property, both variables appear in V7.
Thus, u and v are also neighbors in T’.

Since the definition of disruptive trios depends only on neigh-
boring pairs of free variables, an immediate consequence of the
claim from the previous paragraph is that there is a disruptive trio
in T iff there is a disruptive trio in T’. Next, we can simply use
Proposition 2.1 to reduce Q to the full acyclic CQ where the atoms
are exactly the nodes of T’.

A.2 Proof Sketch of Proposition 4.3

We describe a construction of the required tree. Figure 6 demon-
strates our construction. We use two different characterizations of
connexity. Since Q is Ly-connex, it has an ext-Ly-connex tree Tp.
Since Q is Li-connex, there is a join-tree T for the atoms of Q and
its head. Let T [L1]| be T> where the variables that are not in L; are
deleted from all nodes. That is, for every node V € Ty, its variables
are replaced with var(V) N Ly. Denote by V all neighbors of the
head in T, and denote by T;” the graph Tj after the deletion of the
head node. Taking both T>[L1] and T]” and connecting every node
V1 € V with a node V; of T [L1] such that var(Vy) N L; = var(V,)
gives us the tree we want. Such a node exists in T[L1] since every
node of T represents an atom of Q, and every atom of Q is con-
tained in some node of T,. The subtree T[L;] contains exactly V;,

and since this subtree comes from an ext-Lj-connex tree, it has a
subtree containing exactly L;. It is easy to verify that the result is a
tree, and we can show that the running intersection property holds
in the united graph since it holds for Ty and T.

A.3 Proof of Lemma 5.4

The “only if” part is trivial. For agee (Q) = 1 and acyclic query Q,
we prove that there is an atom Ry ()_f f) which contains all the free
variables. First note that for |free(Q)| = 1 this is trivially true.
For |free(Q)| > 1, let V be a node in the join tree (corresponding
to some atom of Q) that contains the maximum number of free
variables and assume for the sake of contradiction that there exists
a free variable y with y ¢ V. We use V), to denote the set of nodes
in the join tree that contain variable y; thus V' ¢ V. From Q being
acyclic follows that the nodes in V,, form a connected graph and
there exists a node V’ that lies on every path from V to a node in
Vy. Since agree(Q) = 1, each variable x € V must appear together
with y in some query atom, implying that x appears in some node
V'" € Vy. From that and the running intersection property follows

that x must also appear in V' since V’ lies on the path from V to
any such V”/. Hence V' contains y and all the V variables, violating

the maximality assumption for V.
For agee(Q) = 0, Q is a Boolean query and any atom trivially
contains the empty set.

A.4 Proof of Lemma 5.6

We use binary search on the sorted array of query answers. Each
direct access returns a query answer whose weight can be computed
in O(1). Thus, in a logarithmic number of accesses we can find the
first occurrence of the desired weight. Since the number of answers
is polynomial in n, the number of accesses is O (log n) and each one
takes O(Ty) time.

A.5 Proof of Lemma 5.8

We show that the contrary contradicts the 3sum hypothesis. Let A,
B, and C be three integer arrays of a 3suM instance of size n. We
construct a database instance with attribute weights like in the proof
of Lemma 5.7, but now with only 2 free and independent variables
x and y. Hence the weights of the n? query results are in one-
to-one correspondence with the corresponding sums A[i] + B[],
i, j € [1,n]. We run the preprocessing phase for direct access in
0(n*7¢€), which allows us to access the sorted array of query results
in O(n'=€). For each value C[k] in C, we perform a weight lookup
on Q for weight —C[k], which takes time O(n!~€ log n) (Lemma 5.6).
If that returns a valid index, then there exists a pair (i, j) of A and B
with sum A[i]+B[j] = —C[k], which implies A[i] +B[j]+C[k] = 0;
otherwise no such pair exists. Since there are n values in C, total
time complexity is O (n-n'~€ log n) = O(n*~€ log n). This procedure
solves 3sum in O(n?~¢) for any 0 < €’ < e, violating the 3sum
hypothesis.

A.6 Proof of Lemma 5.9

Since all free variables appear in one atom R (X), we can apply a
linear-time semi-join reduction by Yannakakis [35] to remove the
dangling tuples, and then compute Q by projecting R on all free
variables. Then, we sort the query answers by Zw, which takes

Algorithm 2 Lexicographic Inverted-Access
1: k=0
2: bucket[1] = root
3: factor = weight(root)
4: fori=1,....fdo
5 factor = factor/weight(bucket[i])

6: select ¢ € bucket[i] agreeing with the answer

7: if no such ¢ exists then

8: return not-an-answer

9 k =k + start(¢) - factor

10: for child V of layer i do

11 get the bucket b € V agreeing with the answer
12: bucket[layer(V)] =b

13: factor = factor - weight(b)

14: return k

total time O(nlog n) for preprocessing and enables constant-time
direct access to individual answers in ranked order.

A.7 Proof of Lemma 6.5

For the “if” direction, we can eliminate absorbed atoms from Q to
obtain Q™ after making sure that the tuples in the database satisfy
those atoms. Thus, to remove an atom S (17) which is absorbed by
R()z), we filter the relation R based on the tuples of S. Then, Q™ over
the filtered database has the same answers as Q over the original
one. For the “only if” direction, each atom S(Y) that appears in Q
but not Q™ is absorbed by some R(X). We create the relation S by

copying 7 (R) into it, essentially making the atom 5(57) obsolete.

Note that we are allowed to create S without restrictions because
Q has no self-joins, hence the database doesn’t already contain the
relation. Then, Q over the extended database has the same answers
as Q™ over the original one. The above reductions take linear time,
which is dominated by Ts(n) since Ts(n) is trivially in Q(n) for the
selection problem.

A.8 Proof of Lemma 6.6

By Lemma 6.5, it suffices to solve selection on the query
Q()z) - R()Z), which is a maximal contraction of all queries with
mh(Q) = 1. Initially, we turn the attribute weights into tuple
weights. For each tuple r € R, we compute its weight as w(r) =

er)? wy (r(x)). Thus, the weights w(r) are the weights of the
query answers. This takes O(n) for the O(n) tuples of R. Then,
applying linear-time selection [6] on R gives us the k™ smallest

query result.

A.9 Proof of Lemma 6.10

First, for afyee(Q) = 1, we have by Lemma 5.4 that an atom contains
all free variables, thus mh(Q) = 1 For the case of afee(Q) = 2,
let x and u be the two independent variables. Because they do not
appear together in the same atom, there exist two different atoms
eR, eT such that ep contains x but not and er contains u but not x.
Without loss of generality, we can further assume that the variable
sets in these atoms are not strictly contained in others (if they are,
we can choose those instead). We can also assume that our choice of
independent variables x, y and atoms eg, e is such that these two
atoms do not have any variables in common, otherwise Q would
be cyclic. We also have at least one more maximal atom-hyperedge
es, that is not absorbed by eg or er because mh(Q) > 2. For the
variables of eg, we claim that var(es) C (var(egr) U var(er)).
Suppose that eg contains a variable s s.t. s ¢ (var(eg) U var(er)).
Then because t cannot be independent, there must exist an atom egy
that contains x and ¢ (or u and t). However, in that case, eg, es, ey
(or eT, es, eyy) create a cycle violating the acylicity of Q. Let Y be the
variables in var(eg) N var(es) and Z those in var(es) N var(er).
We have Y # 0 and VA # 0, otherwise es would be absorbed by
er or er respectively. Conversely, var(er) ¢ var(es) because eg
would be absorbed by eg, and the same is true for er. At this point,
the other atoms of the query can only be absorbed by the existing
ones, otherwise we introduce an independent variable or a cycle.

B INVERTED ACCESS BY LEXICOGRAPHIC
ORDER

A straightforward adaptation of Algorithm 1 can be used to achieve
inverted access: given a query result as the input, we return its index
according to the lexicographic order. Algorithm 2 is almost the same
algorithm as Algorithm 1 except that the choices in each iteration
are made according to the given answer and the corresponding
index is constructed (instead of the opposite). The algorithm runs
in constant time per answer since every operation can be done
within that time (unlike Algorithm 1, there is no need for binary
search here).

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Notions
	2.2 Problem Definitions
	2.3 Complexity Framework and Sorting
	2.4 Hardness Hypotheses
	2.5 Known Results for CQs

	3 Direct Access by Lexicographic Orders
	3.1 Layer-Based Algorithm
	3.2 Finding Layered Join Trees
	3.3 Supporting Projection
	3.4 Lower Bound for Conjunctive Queries

	4 Partial Lexicographic Orders
	4.1 Tractable Cases
	4.2 Intractable Cases

	5 Direct Access by Sum of Weights
	5.1 Overview of Results
	5.2 Proofs

	6 Selection by Sum of Weights
	6.1 Overview of Results
	6.2 Tractability Proofs
	6.3 Intractability Proofs

	7 Conclusions
	References
	A Additional Proofs
	A.1 Proof of lemma:CQ-to-full
	A.2 Proof Sketch of prop:two-connex
	A.3 Proof of lem:freeind
	A.4 Proof of lem:invertedsum
	A.5 Proof of lem:3sumtorra2
	A.6 Proof of lem:rra1
	A.7 Proof of lem:absorbed
	A.8 Proof of lem:selection1
	A.9 Proof of lem:3path

	B Inverted access by lexicographic order

