
Tractable Orders for Direct Access to
Ranked Answers of Conjunctive Queries

Nofar Carmeli

snofca@cs.technion.ac.il

Technion, Israel

Nikolaos Tziavelis

tziavelis.n@northeastern.edu

Northeastern University, USA

Wolfgang Gatterbauer

w.gatterbauer@northeastern.edu

Northeastern University, USA

Benny Kimelfeld

bennyk@cs.technion.ac.il

Technion, Israel

Mirek Riedewald

m.riedewald@northeastern.edu

Northeastern University, USA

ABSTRACT
We study the question of when we can provide logarithmic-time

direct access to the 𝑘-th answer to a Conjunctive Query (CQ) with a

specified ordering over the answers, following a preprocessing step

that constructs a data structure in time quasilinear in the size of the

database. Specifically, we embark on the challenge of identifying

the tractable answer orderings that allow for ranked direct access

with such complexity guarantees.

We begin with lexicographic orderings and give a decidable char-

acterization (under conventional complexity assumptions) of the

class of tractable lexicographic orderings for every CQ without

self-joins. We then continue to the more general orderings by the

sum of attribute weights and show for it that ranked direct access

is tractable only in trivial cases. Hence, to better understand the

computational challenge at hand, we consider the more modest task

of providing access to only a single answer (i.e., finding the answer

at a given position) — a task that we refer to as the selection prob-

lem. We indeed achieve a quasilinear-time algorithm for a subset

of the class of full CQs without self-joins, by adopting a solution of

Frederickson and Johnson to the classic problem of selection over

sorted matrices. We further prove that none of the other queries in

this class admit such an algorithm.

CCS CONCEPTS
• Theory of computation → Database theory; Complexity

classes; Database query languages (principles); Database query pro-

cessing and optimization (theory).

KEYWORDS
conjunctive queries, direct access, ranking function, answer order-

ings, query classification

ACM Reference Format:
Nofar Carmeli, Nikolaos Tziavelis, Wolfgang Gatterbauer, Benny Kimelfeld,

and Mirek Riedewald. 2021. Tractable Orders for Direct Access to Ranked

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS ’21, June 20–25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8381-3/21/06. . . $15.00

https://doi.org/10.1145/3452021.3458331

Answers of Conjunctive Queries. In Proceedings of the 40th ACM SIGMOD-

SIGACT-SIGAI Symposium on Principles of Database Systems (PODS ’21),

June 20–25, 2021, Virtual Event, China. ACM, New York, NY, USA, 17 pages.

https://doi.org/10.1145/3452021.3458331

1 INTRODUCTION
When can we allow for direct access to a ranked list of answers to a

database query without (and considerably faster than) materializing

all answers? To illustrate the concrete instantiation of this question,

assume the following simple relational schema for information

about pandemic spread and relevant activity of residents:

Visits(person, age, city) Cases(city, date, #cases)
Here, Visits mentions, for each person, the cities that the person

visits regularly (e.g., for work and relatives) and the age of the

person (for risk assessment); the relationCases specifies the number

of new infection cases in specific cities at specific dates (a measure

that is commonly used for spread assessment albeit being sensitive

to the amount of testing).

Suppose that we wish to efficiently compute the natural join

Visits Z Cases based on equality of the city attribute, so that we

have all combinations of people (with their age), the cities they

regularly visit, and the city’s daily new cases. For example,

(Anna, 72, Boston, 12/7/2020, 179) .
While the number of such answers could be quadratic in the size of

the database, the seminal work of Bagan, Durand, and Grandjean [3]

has established that it can be evaluated using an enumeration al-

gorithm with a constant delay between consecutive answers, after

a linear-time preprocessing phase. This is due to the fact that this

join is a special case of a free-connex Conjunctive Query (CQ). In

the case of CQs without self-joins, being free-connex is a sufficient

and necessary condition for such efficient evaluation [3, 8]. The

necessity requires conventional assumptions in fine-grained com-

plexity
1
and it holds even if we multiply the preprocessing time

and delay by a logarithmic factor in the size of the database.
2

To realize the constant (or logarithmic) delay, the preprocessing

phase builds a data structure that allows for efficient iteration over

the answers in the enumeration phase. Brault-Baron [8] showed that

in the linear-time preprocessing phase, we can build a structurewith

better guarantees: not only log-delay enumeration, but even log-

time direct access: a structure that, given𝑘 , allows to directly retrieve

1
For the sake of simplicity, throughout this section we make all of these complexity

assumptions. We give their formal statements in Section 2.4.

2
We refer to those as quasilinear preprocessing and log delay, respectively.

https://doi.org/10.1145/3452021.3458331
https://doi.org/10.1145/3452021.3458331

the 𝑘th answer in the enumeration without needing to enumerate

the preceding 𝑘 − 1 answers first.
3
Later, Carmeli et al. [10] showed

how such a structure can be used for enumerating answers in a

random order (random permutation)
4
with the statistical guarantee

that the order is uniformly distributed. In particular, in the above

example we can enumerate the answers of Visits Z Cases in a

provably uniform random permutation (hence, ensuring statistical

validity of each prefix) with logarithmic delay, after a linear-time

preprocessing phase. Their direct-access structure also allows for

inverted access: given an answer, return the index 𝑘 of that answer

(or determine that it is not a valid answer). Recently, Keppeler [23]

proposed another direct-access structure with the additional ability

to allow efficient database updates, but at the cost of only supporting

a limited subset of free-connex CQs.

All known direct-access structures [8, 10, 23] allow the answers

to be sorted by some lexicographic order (even if they do not explic-

itly state it). For instance, in our Visits Z Cases the structure could
be such that the tuples are in the (descending or ascending) order

of #cases and then by date, or in the order of city and then by age.

Hence, in logarithmic time we can evaluate quantile queries (find

the 𝑘th answer in order) and determine the position of a tuple inside

the sorted list. From this we can also conclude (fairly easily) that we

can enumerate the answers ordered by age where ties are broken

randomly, again provably uniformly. Carmeli et al. [10] have also

shown how the order of the answers can be useful for generalizing

direct-access algorithms from CQs to UCQs. Note that direct access

to the sorted list of answers is a stronger requirement than ranked

enumeration that has been studied in recent work [7, 11, 31, 32, 34].

Yet, the choice of which lexicographic order is taken is an arte-

fact of the structure construction (e.g., the elimination order [8],

the join tree [10], or the 𝑞-tree [8]). If the application desires a

specific lexicographic order, we can only hope to find a matching

construction. However, this is not necessarily possible. For example,

could we construct in (quasi)linear time a direct-access structure for

Visits Z Cases ordered by #cases and then by age? Interestingly,

we will show that the answer is negative: it is impossible to build in

quasilinear time a direct-access structure with logarithmic access

time for that lexicographic order.

Getting back to the question posed at the beginning of this sec-

tion, in this paper we embark on the challenge of identifying, for

each CQ, the orders that allow for efficiently constructing a direct-

access structure. We adopt the tractability yardstick of quasilinear

construction (preprocessing) time and logarithmic access time. In

addition, we focus on two types of orders: lexicographic orders, and

scoring by the sum of attribute weights.

Contributions. Our first main result is an algorithm for di-

rect access for lexicographic orders, including ones that are not

achievable by past structures. We further show that within the

class of CQs without self-joins, our algorithm covers all the

tractable cases (in the sense adopted here), and we establish a

decidable and easy to test classification of the lexicographic or-

ders over the free variables into tractable and intractable ones. For

instance, in the case of Visits Z Cases the lexicographic order

(#cases, age, city, date, person) is intractable. It is classified as such

3
“Direct access” is also widely known as “random access.” We prefer to use “direct

access” to avoid confusion with the problem of answering “in random order.”

4
Not to be confused with “random access.”

because #cases and age are non-neighbours (i.e., do not co-occur

in the same atom), but city, which comes after #cases and age in

the order, is a neighbour of both. This is what we call a disruptive

trio. The lexicographic order (#cases, age) is also intractable since

the query Visits Z Cases is not {#cases, age}-connex. In contrast,

the lexicographic order (#cases, city, age) is tractable. We also show

that within the tractable side, the structure we construct allows for

inverted access in constant time.

Our classification is proved in two steps.We begin by considering

the complete lexicographic orders (that involve all free variables).

We show that for free-connex CQs without self-joins, the absence of

a disruptive trio is a sufficient and necessary condition for tractabil-

ity. We then generalize to partial lexicographic orders 𝐿 where the

ordering is determined only by a subset of the free variables. There,

the condition is that there is no disruptive trio and that the query

is 𝐿-connex (a similar condition to being free-connex, but for the

subset of the variables that appear in 𝐿 instead of the free ones). In-

terestingly, it turns out that a partial lexicographic order is tractable

if and only if it is the prefix of a complete tractable lexicographic

order.

A lexicographic order is a special case of an ordering by the

sum of attribute weights, where every database value is mapped

to some number. Hence, a natural question is which CQs have

a tractable direct access by the order of sum. For example, what

about Visits Z Cases with the order (𝛼 ·#cases + 𝛽 ·age)? It is easy
to see that this order is intractable because the lexicographic or-

der (#cases, age) is intractable. In fact, it is easy to show that an

order by sum is intractable whenever any lexicographic order is

intractable (e.g., there is a disruptive trio). However, the situation is

worse: the only tractable case is the one where the CQ is acyclic and

there is an atom that contains all of the free variables. In particular,

ordering by sum is intractable already for the Cartesian product

𝑄 (𝑐1, 𝑑, 𝑥, 𝑝, 𝑎, 𝑐2) :−Visits(𝑝, 𝑎, 𝑐1),Cases(𝑐2, 𝑑, 𝑥), even though ev-

ery lexicographic order is tractable (according to our aforemen-

tioned classification). This daunting hardness also emphasizes how

ranked direct access is fundamentally harder than ranked enumer-

ation where, in the case of the sum of attributes, the answers of

every full acyclic CQ can be enumerated with logarithmic delay

after a linear preprocessing time [31].

To understand the root cause of the hardness of sum, we narrow

our question to a considerably weaker guarantee. Our notion of

tractability so far requires the construction of a structure in quasi-

linear time and a direct access in logarithmic time. In particular, if

our goal is to compute just a single quantile, say the 𝑘th answer,

then it takes quasilinear time. Computing a single quantile is known

as the selection problem [6]. The question we ask is to what extent

is selection a weaker requirement than direct access in the case of

CQs. That is, how much larger is the class of CQs with quasilin-

ear selection than that of CQs with a quasilinear construction of a

logarithmic-access structure?

We answer the above question for the class of full CQs without

self-joins by establishing the following dichotomy for the order

by sum (again assuming fine-grained hypotheses): the selection

problem can be solved in O(𝑛 log𝑛) time, where 𝑛 is the size of the

database, if and only if the hypergraph of the CQ contains at most

two maximal hyperedges (w.r.t. containment). The tractable side is

SelectionDirect Access

Free ⊆
atomFull

L-connex
and no

disruptive
trio

Not L-connex
or

disruptive
trio

Free-connex

Maximal
hyperedges ≤ 2

AcyclicAcyclicSJ-free
CQs

Free ⊆
atom

L-connex
and no

disruptive
trio

Not L-connex
or

disruptive
trio

Free-connex

Tractable≡

Both intractable

LEX tractable,
SUM intractable

Both tractable

SUM intractable

Both unexplored

LEX tractable

Explored

Unexplored

Tractable≡

SJ-free
CQs

Figure 1: Overview of our results for lexicographic (LEX) orders and sum-of-weights (SUM) orders. CQs without self-joins (SJ-
free) are classified based on the tractability of the direct access problem (left) and the selection problem (right). Some regions
of the right figure are not explored in this paper. The 𝐿-connex property applies only to lexicographic orders 𝐿 (the precise
definitions are given in Section 2). All tractable cases extend to CQs with self-joins. The sizes of the ellipses are arbitrary and
do not correspond to the size or importance of the classes.

applicable even in the presence of self-joins, and it is achieved by

adopting an algorithm by Frederickson and Johnson [15] originally

developed for selection on sorted matrices. For illustration, the

selection problem is solvable in quasilinear time for the query

Visits Z Cases ordered by sum.

Overview of results. We summarize our results in Figure 1

with different colors indicating the tractability of the studied or-

derings. For direct access, we obtain the complete picture of the

orders and CQs without self-joins that admit O(𝑛 polylog𝑛) pre-
processing and O(polylog𝑛) per access (conveniently denoted as

⟨𝑛 polylog𝑛, polylog𝑛⟩ for ⟨preprocessing, access⟩). For selection,
the present paper explores only some of the possible orders and CQs

that admit an O(𝑛 polylog𝑛) solution (denoted as ⟨1, 𝑛 polylog𝑛⟩).
We depict the unexplored regions (when our results cover only one

or none of the problems) with a grid background pattern. Since sum

orderings are harder than any lexicographic order, there are only

three “Unexplored” cases: (1) SUM is known to be intractable but

LEX is yet unexplored, (2) LEX is known to be tractable but SUM is

yet unexplored, and (3) neither problem has been explored. Beyond

the cases directly covered in the formal statements of our paper,

we additionally infer (in)tractability for some other cases based on

the fact that selection is an easier problem than direct access.

Applicability. It is important to note that while our results are

stated over a limited class of queries (a fragment of acyclic CQs),

there are some implications beyond this class that are immediate

yet significant. In particular, we can use known techniques that re-

duce other CQs to a tractable form and then apply our direct-access

solutions. An example is the common case where the relations are

associated with functional dependencies; in this case, some queries

become easier since we can make assumptions on the internal struc-

ture of the input relations.
5
More specifically, FD-extensions can be

used to transform CQs with an otherwise intractable structure into

queries with a tractable structure [9]. As another example, a hyper-

tree decomposition can be used to transform a cyclic CQ to an acyclic

form by paying a non-linear overhead during preprocessing [20].

Outline. The remainder of the paper is organized as follows.

Section 2 gives the necessary background. In Section 3 we consider

direct access by lexicographic orders that include all the free vari-

ables, and Section 4 extends the results to partial ones. We move

on to the (for the most part) negative results for direct access by

sum orderings in Section 5 and then study the selection problem in

Section 6. Section 7 concludes and gives some directions for future

work. Due to space constraints, some proofs are in the Appendix.

2 PRELIMINARIES
2.1 Basic Notions
Database. A schema S is a set of relational symbols {𝑅1, . . . , 𝑅𝑚}.
We use ar(𝑅) for the arity of a relational symbol 𝑅. A database

instance 𝐼 contains a finite relation 𝑅𝐼 ⊆ domar(𝑅) for each 𝑅 ∈ S,
where dom is a set of constant values called the domain. We use 𝑛

for the size of the database, i.e., the total number of tuples.

Queries. A conjunctive query (CQ) 𝑄 over schema S is an ex-

pression of the form𝑄 (®𝑋𝑓) :−𝑅1 (®𝑋1), . . . , 𝑅ℓ (®𝑋ℓ), where the tuples
®𝑋𝑓 , ®𝑋1, . . . , ®𝑋ℓ hold variables, every variable in ®𝑋𝑓 appears in some

5
Our Visits Z Cases example may also involve functional dependencies, such as

person → age, which could invalidate the lower bounds. Yet, all hardness statements

mentioned about this example in this section can be shown to follow from the results

of this paper.

®𝑋1, . . . , ®𝑋ℓ , and 𝑅1, . . . , 𝑅ℓ ⊆ S. Each 𝑅𝑖 (®𝑋𝑖) is called an atom of

the query 𝑄 , and atoms(𝑄) denotes the set of all atoms. We use

var(𝑒) or var(𝑄) for the set of variables that appear in an atom

𝑒 or query 𝑄 , respectively. The variables ®𝑋𝑓 are called free and

are denoted by free(𝑄). A CQ is full if free(𝑄) = var(𝑄) and
Boolean if free(𝑄) = ∅. Sometimes, we say that CQs that are not

full have projections. A repeated occurrence of a relational symbol

is a self-join and if no self-joins exist, a CQ is called self-join-free.

A homomorphism 𝜇 from a CQ 𝑄 to a database 𝐼 is a mapping of

var(𝑄) to constants from dom, such that every atom of 𝑄 maps to

a tuple in the database 𝐼 . A query answer 𝑞 is such a homomor-

phism followed by a projection of 𝜇 on the free variables, denoted

by 𝜋free(𝑄) (𝜇). The answer to a Boolean CQ is whether such a

homomorphism exists. The set of query answers is 𝑄 (𝐼).
Hypergraphs. A hypergraph H = (𝑉 , 𝐸) is a set 𝑉 of vertices

and a set 𝐸 of subsets of 𝑉 called hyperedges. Two vertices in a

hypergraph are neighbors if they appear in the same edge. A path of

H is a sequence of vertices such that every two succeeding vertices

are neighbors. A chordless path is a path in which no two non-

succeeding vertices appear in the same hyperedge (in particular, no

vertex appears twice). A join tree of a hypergraphH = (𝑉 , 𝐸) is a
tree 𝑇 where the nodes

6
are the hyperedges of H and the running

intersection property holds, namely: for all 𝑢 ∈ 𝑉 the set {𝑒 ∈ 𝐸 |
𝑢 ∈ 𝑒} forms a (connected) subtree in 𝑇 . An equivalent phrasing of

the running intersection property is that given two vertices 𝑒1, 𝑒2
of the tree, for any vertex 𝑒3 on the simple path between them, we

have that 𝑒1 ∩ 𝑒2 ⊆ 𝑒3. A hypergraphH is acyclic if there exists a

join tree forH . We associate a hypergraphH(𝑄) = (𝑉 , 𝐸) to a CQ
𝑄 where the vertices are the variables of 𝑄 , and every atom of 𝑄

corresponds to a hyperedge with the same set of variables. Stated

differently, 𝑉 = var(𝑄) and 𝐸 = {var(𝑒) |𝑒 ∈ atoms(𝑄)}. With a

slight abuse of notation, we identify atoms of𝑄 with hyperedges of

H(𝑄). A CQ 𝑄 is acyclic if H(𝑄) is acyclic, otherwise it is cyclic.
Free-connex CQs. A hypergraph H ′

is an inclusive extension

of H if every edge of H appears in H ′
, and every edge of H ′

is a

subset of some edge in H . Given a subset 𝑆 of the vertices of H , a

tree 𝑇 is an ext-𝑆-connex tree (i.e., extension-𝑆-connex tree) for a

hypergraphH if: (1)𝑇 is a join tree of an inclusive extension ofH ,

and (2) there is a subtree
7 𝑇 ′

of 𝑇 that contains exactly the vertices

𝑆 [3]. We say that a hypergraph is 𝑆-connex if it has an ext-𝑆-connex

tree [3]. A hypergraph is 𝑆-connex iff it is acyclic and it remains

acyclic after the addition of a hyperedge containing exactly 𝑆 [8].

Given a hypergraph H and a subset 𝑆 of its vertices, an 𝑆-path is a

chordless path (𝑥, 𝑧1, . . . , 𝑧𝑘 , 𝑦) inH with 𝑘 ≥ 1, such that 𝑥,𝑦 ∈ 𝐿,

and 𝑧1, . . . , 𝑧𝑘 ∉ 𝐿. A hypergraph is 𝑆-connex iff it has no 𝑆-path [3].

A CQ 𝑄 is free-connex if H(𝑄) is free(𝑄)-connex [3]. Note that

a free-connex CQ is necessarily acyclic.
8
An implication of the

characterization given above is that it suffices to find a join-tree

for an inclusive extension of a hypergraph H to infer that H is

acyclic. To simplify notation, we also say that a CQ is 𝐿-connex

for a (partial) lexicographic order 𝐿 if the CQ is 𝑆-connex for the

6
To make a clear distinction between the vertices of a hypergraph and those of its join

tree, we call the latter nodes.

7
By subtree, we mean any connected subgraph of the tree.

8
Free-connex CQs are sometimes called in the literature free-connex acyclic CQs [3].

As free-connexity is not defined for cyclic CQs, we choose to omit the word acyclic

and simply call these CQs free-connex.

variables 𝑆 that appear in 𝐿. Generalizing the notion of an inclusive

extension, we say that a hypergraphH ′
is inclusion equivalent to

H if every hyperedge of H is a subset of some hyperedge of H ′

and vice versa.

2.2 Problem Definitions
Orders of Answers. For a CQ𝑄 and database instance 𝐼 , a ranking

function rank : 𝑄 (𝐼) ×𝑄 (𝐼) → 𝑄 (𝐼) compares two query answers

and returns the smaller one according to some underlying total

order.
9
We consider two types of orders in this paper. Assuming

that the domain values are ordered, a lexicographic order 𝐿 is an

ordering of free(𝑄) such that rank(𝑞1, 𝑞2) first compares 𝑞1, 𝑞2 on

the value of the first 𝐿 variable, and if they are equal on the value

of the second 𝐿 variable, and so on. A lexicographic order is called

partial if the variables in 𝐿 are a subset of free(𝑄).
The second type of order assumes a given weight function that

assigns a real-valued weight to the domain values of each variable.

More precisely, for a variable 𝑥 , we define 𝑤𝑥 : dom → R and

then the weight of a query answer is computed by aggregating the

weights of the assigned values of free variables. In a sum-of-weights

order, denoted by Σ𝑤 , we have𝑤𝑄 (𝑞) = ∑
𝑥 ∈free(𝑄) 𝑤𝑥 (𝑞(𝑥)), 𝑞 ∈

𝑄 (𝐼) and rank(𝑞1, 𝑞2) compares𝑤𝑄 (𝑞1) with𝑤𝑄 (𝑞2). To simplify

notation, we refer to all𝑤𝑥 and𝑤𝑄 together as one weight function

𝑤 . If two query answers have the same weight, then we break ties

arbitrarily but consistently, e.g., according to a lexicographic order

on their assigned values.

Attribute Weights vs. Tuple Weights. Notice that in the defi-

nition above, we assume that the input weights are assigned to the

domain values of the attributes. Alternatively, the input weights

could be assigned to the relation tuples, a convention that has been

used in past work on ranked enumeration [31]. Since there are sev-

eral reasonable semantics for interpreting a tuple-weight ranking

for CQs with projections and/or self-joins [30], we elect to present

our results for the case of attribute weights. For self-join-free CQs,

attribute weights can easily be transformed to tuple weights in

linear time such that the weights of the query answers remain the

same. This works by assigning each variable to one of the atoms

that it appears in, and computing the weight of a tuple by aggre-

gating the weights of the assigned attribute values. Therefore, our

hardness results for sum-of-weights orders directly extend to the

case of tuple weights. Moreover, note that our positive results on di-

rect access (Section 5) and selection (Section 6.2) rely on algorithms

that innately operate on tuple weights, thus we cover that case too.

Direct Access vs. Selection. In the problem of direct access by

an underlying order, we are given as an input a query 𝑄 , and a

database 𝐼 , and the goal is to construct a data structure which then

allows us to support accesses on the sorted array of query answers.

Specifically, an access asks for the query answer at index 𝑘 on the

(implicit) array containing 𝑄 (𝐼) sorted via rank comparisons, for

a given integer 𝑘 . This data structure is built in a preprocessing

phase, after which we have to be able to support multiple such

accesses. Our goal is to achieve efficient access (in polylogarithmic

time) with a preprocessing phase that is significantly smaller than

𝑄 (𝐼) (quasilinear in the database size).

9
WLOG, we assume that the order is ascending but all results hold if we rank returns

the bigger (max) instead of the smaller (min).

The problem of selection [6, 13, 14] is a computationally easier

task that requires only a single direct access, hence does not make

a distinction between preprocessing and access phases. A special

case of the problem is to find the median query result.

2.3 Complexity Framework and Sorting
We measure asymptotic complexity in terms of the size of the

database 𝑛, while the size of the query is considered constant. If

the time for preprocessing is O(𝑓 (𝑛)) and the time for each access

is O(𝑔(𝑛)), we denote that as ⟨𝑓 (𝑛), 𝑔(𝑛)⟩, where 𝑓 , 𝑔 are functions

from N to R. Note that by definition, the problem of selection asks

for a ⟨1, 𝑔(𝑛)⟩ solution.
The model of computation is the RAM model with uniform cost

measure. In particular, it allows for linear time construction of

lookup tables, which can be accessed in constant time. We would

like to point out that some past works [3, 10] have assumed that in

certain variants of the model, sorting can be done in linear time [21].

Since we consider problems related to summation and sorting [15]

where a linear-time sort would improve otherwise optimal bounds,

we adopt a more standard assumption that sorting is comparison-

based and possible only in quasilinear time. As a consequence, some

upper bounds mentioned in this paper are weaker than the original

sources which assumed linear-time sorting [8, 10].

2.4 Hardness Hypotheses
Denote by sparseBMM the hypothesis that two Boolean matrices

𝐴 and 𝐵, represented as lists of their non-zero entries, cannot be

multiplied in time 𝑚1+𝑜 (1)
, where 𝑚 is the number of non-zero

entries in𝐴, 𝐵, and𝐴𝐵. A consequence of this hypothesis is that we

cannot answer the query 𝑄 (𝑥, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧) with quasilinear

preprocessing and polylogarithmic delay. In more general terms,

any self-join-free acyclic non-free-connex CQ cannot be enumer-

ated with quasilinear
10

preprocessing time and polylogarithmic

delay assuming the sparseBMM hypothesis [3, 5].

A (𝑘+1, 𝑘)-hyperclique is a set of 𝑘+1 vertices in a hypergraph

such that every 𝑘-element subset is a hyperedge. Denote by Hy-

percliqe the hypothesis that for every 𝑘 ≥ 2 there is no

𝑂 (𝑚 polylog𝑚) algorithm for deciding the existence of a (𝑘+1, 𝑘)-
hyperclique in a 𝑘-uniform hypergraph with𝑚 hyperedges. When

𝑘 = 2, this follows from the 𝛿-Triangle hypothesis [1] for any 𝛿 > 0.

When 𝑘 ≥ 3, this is a special case of the (ℓ, 𝑘)− Hyperclique Hy-

pothesis [25]. A known consequence is that Boolean cyclic and

self-join-free CQs cannot be answered in quasilinear
10

time [8].

Moreover, cyclic and self-join-free CQs do not admit enumeration

with quasilinear preprocessing time and polylogarithmic delay as-

suming the Hypercliqe hypothesis [8].

In its simplest form, the 3SUM problem asks for three distinct real

numbers 𝑎, 𝑏, 𝑐 from a set 𝑆 with 𝑛 elements that satisfy 𝑎 + 𝑏 + 𝑐 =
0. There is a simple 𝑂 (𝑛2) algorithm for the problem, but it is

conjectured that in general, no truly subquadratic solution exists

[29]. The significance of this conjecture has been highlighted by

many conditional lower bounds for problems in computational

geometry [17] and within the P class in general [33]. Note that

the problem remains hard even for integers provided that they are

10
Works in the literature typically phrase this as linear, yet any logarithmic factor

increase is still covered by the hypotheses.

sufficiently large (i.e., in the order of𝑂 (𝑛3)) [29].We denote by 3sum

the following equivalent hypothesis [4] that uses three different

sets of numbers: Deciding whether there exist 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵, 𝑐 ∈ 𝐶

from three sets of integers 𝐴, 𝐵,𝐶 such that 𝑎 + 𝑏 + 𝑐 = 0 cannot be

done in time 𝑂 (𝑛2−𝜖) for any 𝜖 > 0. This lower bound has been

confirmed in some restricted models of computation [2, 12].

2.5 Known Results for CQs
Eliminating Projection. We now provide some background that

relates to the efficient handling of CQs. For a query with projections,

a standard strategy is to reduce it to an equivalent one where

techniques for acyclic full CQs can be leveraged. The following

proposition, that is widely known and used [5], shows that this is

possible for free-connex CQs.

Proposition 2.1 (Folklore). Given a database instance 𝐼 , a CQ

𝑄 , a join tree 𝑇 of an inclusive extension of 𝑄 , and a subtree 𝑇 ′
of 𝑇

that contains all the free variables, we can compute in linear time a

database instance 𝐼 ′ over the schema of a CQ 𝑄 ′
that consists of the

nodes of 𝑇 ′
such that 𝑄 (𝐼) = 𝑄 ′(𝐼 ′) and |𝐼 ′ | ≤ |𝐼 |.

This reduction is done by first creating a relation for every node

in 𝑇 using projections of existing relations, then performing the

classic semi-join reduction by Yannakakis [35] to filter the relations

of𝑇 ′
according to the relations of𝑇 , and then we can simply ignore

all relations that do not appear in 𝑇 ′
and obtain the same answers.

Afterwards, they can be handled efficiently, e.g. their answers can

be enumerated with constant delay [3].

Ranked enumeration. Enumerating the answers to a CQ in

ranked order is a special case of direct access where the accessed

indexes are consecutive integers starting from 0. In contrast to

direct access, ranked enumeration by sum orderings (thus also

lexicographic orderings) is possible with logarithmic delay after a

linear-time preprocessing phase for all full acyclic CQs [31]. This

result has also been extended to free-connex CQs [30]. Existing

ranked-enumeration algorithms rely on priority queue structures

that compare a minimal number of candidate answers to produce

the ranked answers one-by-one in order. There is no straightfor-

ward way to extend them to the task of direct access where we may

skip over a large number of answers to get to an arbitrary index 𝑘 .

DirectAccess. Past work on direct access identified the tractable
queries without guarantees on the order of the query answers.

Theorem 2.2 ([8, 10]). Let 𝑄 be a CQ. If 𝑄 is free-connex, then

direct access (in some order) is possible in ⟨𝑛 log𝑛, log𝑛⟩. Otherwise,
if it is also self-join-free, then direct access (in any order) is not possible

in ⟨𝑛 polylog𝑛, polylog𝑛⟩, assuming sparseBMM and Hyperclique.

Even though these algorithms do not explicitly discuss the order

of the answers, a closer look shows that they internally use and

produce some lexicographic order.

Recent work by Keppeler [23] suggests another direct-access

solution by lexicographic order, which also supports efficient in-

sertion and deletion of input tuples. Given these additional re-

quirements, the supported CQs are more limited, and are only

a subset of free-connex CQs called 𝑞-hierarchical. This is a sub-

class of the well-known hierarchical queries with an additional

restriction on the existential variables. As an example, the follow-

ing CQs are not 𝑞-hierarchical even though they are free-connex:

𝑄1 (𝑥,𝑦) :−𝑅1 (𝑥), 𝑅2 (𝑥,𝑦), 𝑅3 (𝑦) and 𝑄2 (𝑥) :−𝑅1 (𝑥,𝑦), 𝑅2 (𝑦). For
these queries, direct access is not supported by the solution of

Keppeler [23], even though it is possible without the update re-

quirements.

All previous direct-access solutions of which we are aware have

two gaps compared to this work: (1) they do not discuss which

lexicographic orders (given by orderings of the free variables) are

supported; (2) they do not support all possible lexicographic orders.

We conclude this section with a short survey of existing solutions

and their supported orders.

All prior direct-access solutions use some underlying component

that depends on the query structure and constrains the supported

orders. The algorithm of Carmeli et al. [10, Algorithm 3] assumes

that a join tree is given with the CQ, and the lexicographic order

is imposed by the join tree. Specifically, it is an ordering of the

variables achieved by a preorder depth-first traversal of the tree.

As a result, it does not support any order that requires jumping

back-and-forth between different branches of the tree. In particular,

it does not support 𝑄3 (𝑣1, 𝑣2, 𝑣3, 𝑣4) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣2, 𝑣4) with the

lexicographic order given by the increasing variable indices (we

adopt this convention for all the examples below). We show how to

handle this CQ and order in detail in Example 3.5. The algorithm of

Brault-Baron [8, Algorithm 4.3] assumes that an elimination order

is given along with the CQ. The resulting lexicographic order is

affected by that elimination order, but is not exactly the same. This

solution suffers from similar restrictions, and it does not support𝑄3

either. The algorithm of Keppeler [23] assumes that a 𝑞-tree is given

with the CQ, and the possible lexicographic orders are affected by

this tree. Unlike the previous ones, this algorithm can interleave

variables from different atoms, yet cannot support some orders that

are possible for the previous algorithms. As an example, it does

not support 𝑄4 (𝑣1, 𝑣2, 𝑣3) :−𝑅1 (𝑣1, 𝑣2), 𝑅2 (𝑣2, 𝑣3) as 𝑣2 is highest in
the hierarchy (the atoms containing it strictly subsume the atoms

containing any other variable) and so it is necessarily the first

variable in the q-tree and in the ordering produced.

Finally, we should mention that there are query-ordering pairs

that require both jumping back-and-forth in the join tree and vis-

iting the variables in an order different than any hierarchy. As a

result, these are not supported by any previous solution. Two such

examples are 𝑄5 (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) :−𝑅1 (𝑣1, 𝑣3), 𝑅2 (𝑣3, 𝑣4), 𝑅3 (𝑣2, 𝑣5)
and 𝑄6 (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5) :−𝑅1 (𝑣1, 𝑣2, 𝑣4), 𝑅2 (𝑣2, 𝑣3, 𝑣5). In Section 3,

we provide an algorithm that supports both of these CQs.

3 DIRECT ACCESS BY LEXICOGRAPHIC
ORDERS

In this section, we answer the following question: for which un-

derlying lexicographic orders can we achieve “tractable” direct

access to ranked CQ answers, i.e. with quasilinear preprocessing

and polylogarithmic time per answer?

Example 3.1 (No direct access). Consider the lexicographic or-

der 𝐿 = ⟨𝑣1, 𝑣2, 𝑣3⟩ for the query 𝑄 (𝑣1, 𝑣2, 𝑣3) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣3, 𝑣2).
Direct access to the query answers according to that order would

allow us to “jump over” the 𝑣3 values via binary search and es-

sentially enumerate the answers to 𝑄 ′(𝑣1, 𝑣2) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣3, 𝑣2).
However, we know that𝑄 ′

is not free-connex and that is impossible

to achieve enumeration with quasilinear preprocessing and poly-

logarithmic delay (if sparseBMM holds). Therefore, the bounds we

are hoping for are out of reach for the given query and order. The

core difficulty is that the joining variable 𝑣3 appears after the other

two in the lexicographic order.

We formalize this notion of “variable in the middle” in order to

detect similar situations in more complex queries.

Definition 3.2 (Disruptive Trio). Let 𝑄 be a CQ and 𝐿 a lexico-

graphic order of its free variables. We say that three free variables

𝑢1, 𝑢2, 𝑢3 are a disruptive trio in 𝑄 with respect to 𝐿 if 𝑢1 and 𝑢2 are

not neighbors (i.e. they don’t appear together in an atom), 𝑢3 is a

neighbor of both 𝑢1 and 𝑢2, and 𝑢3 appears after 𝑢1 and 𝑢2 in 𝐿.

As it turns out, when considering free-connex and self-join-

free CQs, the tractable CQs are precisely captured by this simple

criterion. Regarding self-join-free CQs that are not free-connex,

their known intractability of enumeration implies that direct access

is also intractable. This leads to the following dichotomy:

Theorem 3.3. Let 𝑄 be a CQ and 𝐿 be a lexicographic order.

• If 𝑄 is free-connex and does not have a disruptive trio with

respect to 𝐿, then direct access by 𝐿 is possible in ⟨𝑛 log𝑛, log𝑛⟩.
• Otherwise, if 𝑄 is also self-join-free, then direct access by 𝐿 is

not possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩ assuming sparseBMM

and Hyperclique.

Remark 1. On the positive side of Theorem 3.3, the preprocessing

time is dominated by sorting the input relations, which we assume

requires O(𝑛 log𝑛) time. If we assume instead that sorting takes

linear time (as assumed in some related work [8, 10, 21]), then the

time required for preprocessing is only O(𝑛) instead of O(𝑛 log𝑛).

In Section 3.1, we provide an algorithm for this problem for full

acyclic CQs that have a particular join tree that we call layered.

Then, we show how to find such a layered join tree whenever there

is no disruptive trio in Section 3.2. In Section 3.3, we explain how to

adapt our solution for CQs with projections, and in Section 3.4 we

prove a lower bound which establishes that our algorithm applies

to all cases where direct access is tractable.

3.1 Layer-Based Algorithm
Before we explain the algorithm, we first define one of its main

components. A layered join tree is a join tree where each node

belongs to a layer. The layer number matches the position in the

lexicographic order of the last variable that the node contains. Intu-

itively, “peeling” off the outermost (largest) layers must result in

a valid join tree (for a hypergraph with fewer variables). To find

such a join tree for a CQ 𝑄 , we may have to introduce hyperedges

that are contained in those of H(𝑄) (this corresponds to taking

the projection of a relation) or remove hyperedges of H(𝑄) that
are contained in others (this corresponds to filtering relations that

contain a superset of the variables). Thus, we define the layered

join tree with respect to a hypergraph that is inclusion equivalent.

Definition 3.4 (Layered Join Tree). Let𝑄 be a full acyclic CQ, and

let 𝐿 = ⟨𝑣1, . . . , 𝑣 𝑓 ⟩ be a lexicographic order. A layered join tree for

𝑄 with respect to 𝐿 is a join tree of a hypergraph that is inclusion

equivalent to H(𝑄) where (1) every node 𝑉 of the tree is assigned

𝑣1 𝑣3

𝑣2 𝑣4

𝑆

𝑅′

𝑆′

𝑅

(a) A hypergraph that is inclu-
sion equivalent to H(𝑄3) .

𝑣1 𝑅′

𝑣2, 𝑣4

𝑣1, 𝑣3 𝑣2 𝑆′

𝑆

𝑅

1

2

3

4

(b) A layered join tree for 𝑄3

w.r.t. the lexicographic order.

Figure 2: Constructing a layered join tree for the query
𝑄3 (𝑣1, 𝑣2, 𝑣3, 𝑣4) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣2, 𝑣4) and order ⟨𝑣1, 𝑣2, 𝑣3, 𝑣4⟩.

to layermax{𝑖 | 𝑣𝑖 ∈ 𝑉 }, (2) there is exactly one node for each layer,

and (3) for all 𝑗 ≤ 𝑓 the induced subgraph with only the nodes that

belong to the first 𝑗 layers is a tree.

Example 3.5. Consider the CQ

𝑄3 (𝑣1, 𝑣2, 𝑣3, 𝑣4) :−𝑅(𝑣1, 𝑣3), 𝑆 (𝑣2, 𝑣4)
and the lexicographic order ⟨𝑣1, 𝑣2, 𝑣3, 𝑣4⟩. To support that order, we
first find an inclusion equivalent hypergraph, shown in Figure 2a.

Notice that we added two hyperegdes that are strictly contained

in the existing ones. A layered join tree constructed from that

hypergraph is depicted in Figure 2b. There are four layers, one

for each node of the join tree. The layer of the node containing

{𝑣1, 𝑣3} is 3 because 𝑣3 appears after 𝑣1 in the order and it is the

third variable. If we remove the last layer, then we obtain a join tree

for the induced hypergraph where the last variable 𝑣4 is removed.

We now describe an algorithm that takes as an input a CQ 𝑄 , a

lexicographic order 𝐿, and a corresponding layered join tree and

provides direct access to the query answers after a preprocessing

phase. For preprocessing, we leverage a construction from Carmeli

et al. [10, Algorithm 2] and apply it to our layered join tree. For

completeness, we briefly explain how it works below. Subsequently,

we describe the access phase that takes into account the layers

of the tree to accommodate the provided lexicographic order. We

emphasize that the waywe access the structure is different than that

of the past work [10], and that this allows support of lexicographic

orders that were impossible for the previous access routine (e.g. the

order in Example 3.5).

Preprocessing. The preprocessing phase (1) creates a relation
for every node of the tree, (2) removes dangling tuples, (3) sorts

the relations, (4) partitions the relations into buckets, and (5) uses

dynamic programming on the tree to compute and store certain

counts. After preprocessing, we are guaranteed that for all 𝑖 , the

node of layer 𝑖 has a corresponding relation where each tuple par-

ticipates in at least one query answer; this relation is partitioned

into buckets by the assignment of the variables preceding 𝑖 . In each

bucket, we sort the tuples lexicographically by 𝑣𝑖 . Each tuple is

given a weight that indicates the number of different answers this

tuple agrees with when only joining its subtree. The weight of each

bucket is the sum of its tuple weights. We denote both by the func-

tion weight. Moreover, for every tuple 𝑡 , we compute the sum of

𝑅′ 𝑤 𝑠

𝑎1 8 0

𝑎2 8 8

𝑆′ 𝑤 𝑠

𝑏1 3 0

𝑏2 1 3

𝑅 𝑤 𝑠

𝑎1 𝑐1 1 0

𝑎1 𝑐2 1 1

𝑎2 𝑐2 1 0

𝑎2 𝑐3 1 1

𝑆 𝑤 𝑠

𝑏1 𝑑1 1 0

𝑏1 𝑑2 1 1

𝑏1 𝑑3 1 2

𝑏2 𝑑4 1 0

Figure 3: Example 3.6: The result of the preprocessing phase
on𝑄3, the layered join tree (Figure 2b) and an example data-
base. The weight and start index for each tuple are abbrevi-
ated in the figure as𝑤 and 𝑠 respectively.

weights of the preceding tuples in the bucket, denoted by start(𝑡).
We use end(𝑡) for the sum that corresponds to the tuple following

𝑡 in the same bucket; if 𝑡 is last, we set this to be the bucket weight.

If we think of the query answers in the subtree sorted in the order

of 𝑣𝑖 values, then start and end distribute the indices between 0

and the bucket weight to tuples. The number of indices within the

range of each tuple corresponds to its weight.

Example 3.6 (Continued). The result of the preprocessing phase

on an example database for our query 𝑄3 is shown in Figure 3.

Notice that 𝑅 has been split into two buckets according to the values

of its parent 𝑅′
, one for value 𝑎1 and one for 𝑎2. For tuple (𝑎1) ∈ 𝑅′

,

we have weight((𝑎1)) = 8 because this is the number of answers

that agree on that value in its subtree: the left subtree has 2 such

answers which can be combined with any of the 4 possible answers

of the right subtree. The start index of tuple (𝑏1, 𝑑3) ∈ 𝑆 is the

sum of the previous weights within the bucket: start((𝑏1, 𝑑3)) =
weight((𝑏1, 𝑑1)) + weight((𝑏1, 𝑑2)) = 1 + 1 = 2. Not shown in the

figure is that every bucket stores the sum of weights it contains.

Access. The access phase works by going through the tree layer

by layer. When resolving a layer 𝑖 , we select a tuple from its corre-

sponding relation, which sets a value for the 𝑖th variable in 𝐿, and

also determines a bucket for each child. Then, we erase the node of

layer 𝑖 and its outgoing edges.

The access algorithm maintains a directed forest and an assign-

ment to a prefix of the variables. Each tree in the forest represents

the answers obtained by joining its relations. Each root contains

a single bucket that agrees with the already assigned values, thus

every answer agrees on the prefix. Due to the running intersection

property, different trees cannot share unassigned variables. As a

consequence, any combination of answers from different trees can

be added to the prefix assignment to form an answer to 𝑄 . The

answers obtained this way are exactly the answers to 𝑄 that agree

with the already set assignment. Since we start with a layered join

tree, we are guaranteed that at each step, the next layer (which

corresponds to the variable following the prefix for which we have

an assignment) appears as a root in the forest.

Recall that from the preprocessing phase, the weight of each

root is the number of answers in its tree. When we are at layer

𝑖 , we have to take into account the weights of all the other roots

in order to compute the number of query answers for a particular

tuple. More specifically, the number of answers to 𝑄 containing

the already selected attributes (smaller than 𝑖) and some 𝑣𝑖 value

contained in a tuple is found by multiplying the tuple weight with

the weights of all other roots. That is because the answers from all

trees can be combined into a query answer. Let 𝑡 be the selected

tuple when resolving the 𝑖th layer. The number of answers to 𝑄

that have a value of 𝐿[𝑖] smaller than that of 𝑡 and a value of 𝐿[𝑗]
equal to that of 𝑡 for all 𝑗 < 𝑖 is then:∑

𝑡 ′

(
weight(𝑡 ′)

∏
𝑟 ∈roots

weight(𝑟)
)

where 𝑡 ′ ranges over tuples preceding 𝑡 in its bucket. Denote by

factor the product of all root weights. Then we can rewrite as:(∑
𝑡 ′

weight(𝑡 ′)
) (∏

𝑟 ∈roots
weight(𝑟)

)
= start(𝑡) · factor .

Therefore, when resolving layer 𝑖 we select the last tuple 𝑡 such

that the index we want to access is at least start(𝑡) · factor.

Algorithm 1 Lexicographic Direct-Access

1: if 𝑘 ≥ weight(root) then
2: return out-of-bound

3: bucket[1] = root

4: factor = weight(root)
5: for i=1,. . . ,f do
6: factor = factor/weight(bucket[𝑖])
7: pick 𝑡 ∈ bucket[𝑖] s.t. start(𝑡) ·factor ≤ 𝑘 < end(𝑡) ·factor
8: 𝑘 = 𝑘 − start(𝑡) · factor
9: for child 𝑉 of layer 𝑖 do
10: get the bucket 𝑏 ∈ 𝑉 agreeing with the selected tuples

11: bucket[layer(𝑉)] = 𝑏

12: factor = factor · weight(𝑏)
13: return the answer agreeing with the selected tuples

Algorithm 1 summarizes the process we described where 𝑘 is

the index to be accessed and 𝑓 is the number of variables. Iteration

𝑖 resolves layer 𝑖 . Pointers to the selected buckets from the roots

are kept in a bucket array. The product of the weights of all roots is

kept in a factor variable. In each iteration, the variable 𝑘 is updated

to the index that should be accessed among the answers that agree

with the already selected attribute values. Note that bucket[𝑖] is
always initialized when accessed since layer 𝑖 is guaranteed to be a

child of a smaller layer.

Example 3.7 (Continued). We demonstrate how the access algo-

rithm works for index 𝑘 = 12. When resolving 𝑅′
, the tuple (𝑎2)

is chosen since 8 · 1 ≤ 12 < 16 · 1; then, the single bucket in 𝑆 ′

and the bucket containing 𝑎2 in 𝑅 are selected. The next iteration

resolves 𝑆 ′. When it reaches line 7, 𝑘 = 12 − 8 = 4 and factor = 2.

As 0 · 2 ≤ 4 < 3 · 2, the tuple (𝑏1) is selected. Next, 𝑅 is resolved,

which we depict in Figure 4. The current index is 𝑘 = 4 − 0 = 4.

The weights of the other roots (only 𝑆 here) gives us factor = 3.

To make our choice in 𝑅, we multiply the weights of the tuples by

factor = 3. Then, we find that the index 𝑘 we are looking for falls

into the range of (𝑎2, 𝑐3) because 1 ·3 ≤ 4 < 2 ·3. Next, 𝑆 is resolved,

𝑘 = 4 − 1 · 3 = 1, and factor = 1. As 1 · 1 ≤ 1 < 2 · 1, the tuple
(𝑏1, 𝑑2) is selected. Overall, answer number 12 (the 13

th
answer) is

(𝑎2, 𝑏1, 𝑐3, 𝑑2).

𝑅′ 𝑤 𝑠

𝑎1 8 0

𝑎2 8 8

𝑆′ 𝑤 𝑠

𝑏1 3 0

𝑏2 1 3

𝑅 𝑤 𝑠

𝑎1 𝑐1 1 0

𝑎1 𝑐2 1 1

𝑎2 𝑐2 1 0

𝑎2 𝑐3 1 1 𝑆 𝑤 𝑠

𝑏1 𝑑1 1 0

𝑏1 𝑑2 1 1

𝑏1 𝑑3 1 2

𝑏2 𝑑4 1 0

Weight of bucket
= 1 + 1 + 1 = 3

1 ∗ 3 answers

1 ∗ 3 answers

𝑘 = 4

Figure 4: Example 3.7: Illustration of an iteration of the ac-
cess phase where layer 3 corresponding to 𝑅 is resolved.

Lemma 3.8. Let 𝑄 be a full acyclic CQ, and 𝐿 = ⟨𝑣1, . . . , 𝑣 𝑓 ⟩ be a
lexicographic order. If there is a layered join tree for 𝑄 with respect to

𝐿, then direct access is possible in ⟨𝑛 log𝑛, log𝑛⟩.

Proof. The correctness of Algorithm 1 follows from the discus-

sion above. For the time complexity, note that it contains a constant

number of operations (assuming the number of attributes 𝑓 is fixed).

Line 7 can be done in logarithmic time using binary search, while

all other operations only require constant time in the RAM model.

Thus, we obtain direct access in logarithmic time per answer after

the quasilinear preprocessing (dominated by sorting). □

With minor modifications, the algorithm we presented in this

section can be used for the (reverse) task of inverted access. We

describe this variation in Appendix B.

3.2 Finding Layered Join Trees
We now have an algorithm that can be applied whenever we have

a layered join tree. We next show that the existence of such a join

tree relies on the disruptive trio condition we introduced earlier.

In particular, if no disruptive trio exists, we are able to construct a

layered join tree for full acyclic CQs.

Lemma 3.9. Let 𝑄 be a full acyclic CQ, and 𝐿 be a lexicographic

order. If 𝑄 does not have a disruptive trio with respect to 𝐿, then there

is a layered join tree for 𝑄 with respect to 𝐿.

Proof. We show by induction on 𝑖 that there exists a lay-

ered join tree for the hypergraph containing the hyperedges

{𝑉 ∩ {𝑣1, . . . , 𝑣𝑖 } | 𝑉 ∈ atoms(𝑄)} with respect to the prefix of

𝐿 containing its first 𝑖 elements. The induction base is the tree that

contains the node {𝑣1} and no edges.

In the inductive step, we assume a layered join tree with 𝑖 − 1

layers for {𝑉 ∩ {𝑣1, . . . , 𝑣𝑖−1} | 𝑉 ∈ atoms(𝑄)}, and we build a

layer on top of it. Denote by V the sets of {𝑉 ∩ {𝑣1, . . . , 𝑣𝑖 } |
𝑉 ∈ atoms(𝑄)} that contain 𝑣𝑖 (these are the sets that need to be

included in the new layer). First note that V is acyclic. Indeed, by

the running intersection property, the join tree for H(𝑄) has a
subtree with all the nodes that contain 𝑣𝑖 . By taking this subtree

and projecting out all variables that occur after 𝑣𝑖 in 𝐿, we get a join

tree for an inclusion equivalent hypergraph toV , and its existence

proves that V is acyclic.

We next claim that some set inV contains all the others; that is,

there exists 𝑉𝑚 ∈ V such that for all 𝑉 ∈ V , we have that 𝑉 ⊆ 𝑉𝑚 .

Consider a join-tree forV . Every variable ofV defines a subtree

induced by the nodes that contain this variable. If two variables

are neighbors, their subtrees share a node. It is known that every

collection of subtrees of a tree satisfies the Helly property [19]: if

every two subtrees share a node, then some node is shared by all

subtrees. In particular, since V is acyclic, if every two variables of

V are neighbors, then some element ofV contains all variables that

appear in (elements of) V . Thus, if, by way of contradiction, there

is no such 𝑉𝑚 , there exist two non-neighboring variables 𝑣𝑎 and

𝑣𝑏 that appear in (elements of) V . Since 𝑣𝑖 appears in all elements

of V , this means that there exist 𝑉𝑎,𝑉𝑏 ∈ V with {𝑣𝑎, 𝑣𝑖 } ⊆ 𝑉𝑎
and {𝑣𝑏 , 𝑣𝑖 } ⊆ 𝑉𝑏 . Since 𝑣𝑎 and 𝑣𝑏 are not neighbors, these three

variables are a disruptive trio with respect to 𝐿: 𝑣𝑎 and 𝑣𝑏 are both

neighbors of the later variable 𝑣𝑖 . The existence of a disruptive trio

contradicts the assumption of the lemma we are proving, and so

we conclude that there is𝑉𝑚 ∈ V such that for all𝑉 ∈ V , we have

that 𝑉 ⊆ 𝑉𝑚 .

With 𝑉𝑚 at hand, we can now add the additional layer to the

tree given by the inductive hypothesis. By the inductive hypothesis,

the layered join tree with 𝑖 − 1 layers contains the hyperedge 𝑉𝑚 ∩
{𝑣1, . . . , 𝑣𝑖−1} = 𝑉𝑚 \ {𝑣𝑖 }. We insert 𝑉𝑚 with an edge to the node

containing 𝑉𝑚 \ {𝑣𝑖 }. This results in the join tree we need: (1) the

hyperedges {𝑉 ∩ {𝑣1, . . . , 𝑣𝑖 } | 𝑉 ∈ atoms(𝑄)} are all contained
in nodes, since the ones that do not appear in the tree from the

inductive hypothesis are contained in the new node; (2) it is a

tree since we add one leaf to an existing tree; and (3) the running

intersection property holds since the added node is connected to

all of its variables that already appear in the tree. □

Lemmas 3.8 and 3.9 give a direct-access algorithm for full acyclic

CQs and lexicographic orders without disruptive trios.

3.3 Supporting Projection
Next, we show how to support CQs that have projections. A free-

connex CQ can be efficiently reduced to a full acyclic CQ using

Proposition 2.1. We next show that the resulting CQ contains no

disruptive trio if the original CQ does not.

Lemma 3.10. Given a database instance 𝐼 , a free-connex CQ 𝑄 ,

and a lexicographic order 𝐿 with no disruptive trio with respect to

𝐿, we can compute in linear time a database instance 𝐼 ′ and a full

acyclic CQ 𝑄 ′
with no disruptive trio with respect to 𝐿 such that

𝑄 ′(𝐼 ′) = 𝑄 (𝐼), |𝐼 ′ | ≤ |𝐼 |, and 𝑄 ′
does not depend on 𝐼 or 𝐼 ′.

Proof. See Appendix A.1. □

By combining Lemmas 3.8 to 3.10, we conclude an efficient algo-

rithm for CQs and orders with no disruptive trios. The next lemma

summarizes our results so far.

Lemma 3.11. Let 𝑄 be a CQ, and 𝐿 be a lexicographic order. If 𝑄

does not have a disruptive trio with respect to 𝐿, direct access by 𝐿 is

possible in ⟨𝑛 log𝑛, log𝑛⟩.

3.4 Lower Bound for Conjunctive Queries
Next, we show that our algorithm supports all tractable cases (for

self-join-free CQs); we prove that all unsupported cases are in-

tractable.

Lemma 3.12. Let𝑄 be a self-join-free CQ, and 𝐿 be a lexicographic

order. If𝑄 has a disruptive trio with respect to 𝐿, then direct access by

𝐿 is not possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩, assuming sparseBMM.

Lemma 3.12 is a special case of the more general Lemma 4.5 that

we prove later whenwe discuss partial lexicographic orders. Since𝑄

has a disruptive trio, two non-neighboring variables 𝑢1, 𝑢2 are both

neighbors of a later variable 𝑢3 in 𝐿. Thus, 𝑢1, 𝑢3, 𝑢2 is a chordless

path, and Lemma 4.5 implies the correctness of Lemma 3.12.

By combining Lemma 3.11 and Lemma 3.12 together with the

known hardness results for non-free-connex CQs (Theorem 2.2),

we prove the dichotomy given in Theorem 3.3: direct access by a

lexicographic order for a self-join-free CQ is possible with quasilin-

ear preprocessing and polylogarithmic time per answer if and only

if the query is free-connex and does not have a disruptive trio with

respect to the required order.

4 PARTIAL LEXICOGRAPHIC ORDERS
We now investigate the case where the desired lexicographic order

is partial, i.e., it contains only some of the free variables. This

means that there is no particular order requirement for the rest of

the variables. One way to achieve direct access to a partial order is

to complete it into a full lexicographic order and then leverage the

results of the previous section. If such a completion is impossible, we

have to consider cases where tie breaking between the non-ordered

variables is done in an arbitrary way. However, we will show in this

section that the tractable partial orders are precisely those that can

be completed into a full lexicographic order. In particular, we will

prove the following dichotomy which also gives an easy-to-detect

criterion for the tractability of direct access.

Theorem 4.1. Let 𝑄 be a CQ and 𝐿 be a partial lexicographic

order.

• If𝑄 is free-connex and 𝐿-connex and does not have a disruptive

trio with respect to 𝐿, then direct access by 𝐿 is possible in

⟨𝑛 log𝑛, log𝑛⟩.
• Otherwise, if 𝑄 is also self-join-free, then direct access by 𝐿 is

not possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩, assuming sparseBMM

and Hyperclique.

Example 4.2. Consider the CQ 𝑄7 :− (𝑥,𝑦), 𝑆 (𝑦, 𝑧). If the free

variables are exactly 𝑥 and 𝑧, then the query is not free-connex,

and so it is intractable. Next assume that all variables are free. If

𝐿 = ⟨𝑥, 𝑧⟩, then the query is not 𝐿-connex, and so it is intractable.

If 𝐿 = ⟨𝑥, 𝑧,𝑦⟩, then 𝑥, 𝑧,𝑦 is a disruptive trio, thus the query is

intractable. However, if 𝐿 = ⟨𝑥,𝑦, 𝑧⟩ or 𝐿 = ⟨𝑧,𝑦⟩, then the query is

free-connex, 𝐿-connex and has no disruptive trio, so it is tractable.

4.1 Tractable Cases
For the positive side, we can solve our problem efficiently if the CQ

is free-connex and there is a completion of the lexicographic order

to all free variables with no disruptive trio. Lemma 4.4 identifies

these cases with a connexity criterion. To prove it, we first need a

way to combine two different connexity properties. The proof of the

following proposition uses ideas from a proof of the characterization

of free-connex CQs in terms of the acyclicity of the hypergraph

obtained by including a hyperedge with the free variables [5].

Proposition 4.3. If a CQ 𝑄 is both 𝐿1-connex and 𝐿2-connex

where 𝐿2 ⊆ 𝐿1, then there exists a join tree𝑇 of an inclusive extension

of 𝑄 with a subtree 𝑇1 containing exactly the variables 𝐿1 and a

subtree 𝑇2 of 𝑇1 contains exactly the variables 𝐿2.

Proof. See Appendix A.2. □

We are now in position to show the following:

Lemma 4.4. Let 𝑄 be a CQ and 𝐿 be a partial lexicographic order.

If 𝑄 is free-connex and 𝐿-connex and does not have a disruptive trio

with respect to 𝐿, then there is an ordering 𝐿+ of free(𝑄) that starts
with 𝐿 such that 𝑄 has no disruptive trio with respect to 𝐿+.

Proof. According to Proposition 4.3, there is a join tree𝑇 (of an

inclusive extension of 𝑄) with a subtree 𝑇free containing exactly

the free variables, and a subtree𝑇𝐿 of𝑇free containing exactly the 𝐿

variables. We assume that 𝑇𝐿 contains at least one node; otherwise

(this can only happen in case 𝐿 is empty), we can introduce a node

with no variables to all of 𝑇 , 𝑇free and 𝑇𝐿 and connect it to any

one node of 𝑇free. We describe a process of extending 𝐿 while

traversing𝑇free. Consider the nodes of𝑇𝐿 as handled, and initialize

𝐿+ = 𝐿. Then, repeatedly handle a neighbor of a handled node until

all nodes are handled. When handling a node, append to 𝐿+ all of

its variables that are not already there. We prove by induction that

𝑄 has no disruptive trio w.r.t any prefix of 𝐿+. The base case is

guaranteed by the premises of this lemma since 𝐿 (hence all of its

prefixes) have no disruptive trio.

Let 𝑣𝑝 be a new variable added to a prefix 𝑣1, . . . , 𝑣𝑝−1 of 𝐿+. Let
𝑇 +

be the subtree of 𝑇free with the handled nodes when adding 𝑣𝑝
to 𝐿+ and let 𝑉 ∉ 𝑇 +

be the node being handled. Note that, since

𝑣𝑝 is being added, 𝑣𝑝 ∈ 𝑉 but 𝑣𝑝 is not in any node of 𝑇 +
.

We first claim that every neighbor 𝑣𝑖 of 𝑣𝑝 with 𝑖 < 𝑝 is in

𝑉 . Our arguments are illustrated in Figure 5. Since 𝑣𝑖 and 𝑣𝑝 are

neighbors, they appear together in a node𝑉𝑖,𝑝 outside of𝑇 +
. Let𝑉𝑖

be a node in 𝑇 +
containing 𝑣𝑖 (such a node exists since 𝑣𝑖 appears

before 𝑣𝑝 in 𝐿+). Consider the path from 𝑉𝑖,𝑝 to 𝑉𝑖 . Let 𝑉ℓ be the

last node of this path not in 𝑇 +
. If 𝑉ℓ ≠ 𝑉 , the path between 𝑉ℓ and

𝑉 goes only through nodes of 𝑇 +
(except for the end-points). Thus,

concatenating the path from 𝑉𝑖,𝑝 to 𝑉ℓ with the path from 𝑉ℓ to 𝑉

results in a simple path. By the running intersection property, all

nodes on this path contain 𝑣𝑝 . In particular, the node following 𝑉ℓ
contains 𝑣𝑝 in contradiction to the fact that 𝑣𝑝 does not appear in

𝑇 +
. Therefore, 𝑉ℓ = 𝑉 . By the running intersection property, since

𝑉 is on the path between 𝑉𝑖 and 𝑉𝑖,𝑝 , we have that 𝑉 contains 𝑣𝑖 .

We now prove the induction step. We know by the inductive

hypothesis that 𝑣1, . . . , 𝑣𝑝−1 have no disruptive trio. Assume by

way of contradiction that appending 𝑣𝑝 introduces a disruptive trio.

Then, there are two variables 𝑣𝑖 , 𝑣 𝑗 with 𝑖 < 𝑗 < 𝑝 such that 𝑣𝑖 , 𝑣𝑝
are neighbors, 𝑣 𝑗 , 𝑣𝑝 are neighbors, but 𝑣𝑖 , 𝑣 𝑗 are not neighbors. As

we proved, since 𝑣𝑖 and 𝑣 𝑗 are neighbors of 𝑣𝑝 preceding it, we

have that all three of them appear in the handled node 𝑉 . This is a

contradiction to the fact that 𝑣𝑖 and 𝑣 𝑗 are not neighbors. □

The positive side of Theorem 4.1 is obtained by combining

Lemma 4.4 with Theorem 3.3.

4.2 Intractable Cases
For the negative part, we prove a generalization of Lemma 3.12.

For that, we use the hardness of Boolean matrix multiplication

with a construction that is similar to that of Bagan et al. [3] for the

hardness of enumeration on acyclic CQs that are not free-connex.

Lemma 4.5. Let 𝑄 be a self-join-free CQ and 𝐿 be a partial lexico-

graphic order. If there is a chordless path 𝑢1, 𝑧1, . . . , 𝑧𝑘 , 𝑢2 such that

𝑢1 and 𝑢2 appear in 𝐿 and no variable 𝑧𝑖 appears in 𝐿 before any of

them, then direct access by 𝐿 is not possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩,
assuming sparseBMM.

Proof. Let 𝑈3 = {𝑧1, . . . , 𝑧𝑘 }. We encode Boolean matrix multi-

plication with 𝑄 such that, in the answers to 𝑄 , the assignments

to 𝑢1 and 𝑢2 form the answers to the given matrix multiplication

instance, the assignments to variables of 𝑈3 can be skipped us-

ing binary search (given direct access), and all other variables are

assigned a constant value ⊥.
Let 𝐴 and 𝐵 be Boolean 𝑛 × 𝑛 matrices represented as binary

relations. That is, 𝐴 ⊆ {1, . . . , 𝑛}2, and (𝑎, 𝑏) ∈ 𝐴 means that the

entry in the 𝑎th row and𝑏th column is 1. We define a partition of the

atoms of𝑄 where R𝐴 is the set of all atoms that contain 𝑢1, and R𝐵

holds all other atoms. Note that no atom in R𝐴 contains 𝑢2 (since

𝑢1 and 𝑢2 are not neighbors) and no atom in R𝐵 contains 𝑢1. Given

three values (𝑎, 𝑏, 𝑐), we define a function 𝜏 (𝑎,𝑏,𝑐) : var(𝑄) →
{𝑎, 𝑏, 𝑐,⊥} as follows:

𝜏 (𝑎,𝑏,𝑐) (𝑣) =


𝑎 if 𝑣 = 𝑢1,

𝑏 if 𝑣 ∈ 𝑈3,

𝑐 if 𝑣 = 𝑢2,

⊥ otherwise,

For a vector ®𝑣 , we denote by 𝜏 (𝑎,𝑏,𝑐) (®𝑣) the vector obtained by

element-wise application of 𝜏 (𝑎,𝑏,𝑐) . We define a database instance

𝐼 over 𝑄 as follows: For every atom 𝑅(®𝑣), if 𝑅(®𝑣) ∈ R𝐴 we set

𝑅𝐼 = {𝜏 (𝑎,𝑏,⊥) (®𝑣) | (𝑎, 𝑏) ∈ 𝐴}, and if 𝑅(®𝑣) ∈ R𝐵 we set 𝑅𝐼 =

𝑉𝑖,𝑝

𝑣𝑝

𝑣𝑖

𝑣𝑝

𝑉𝑖
𝑇 +

𝑉 𝑉ℓ

𝑣𝑖 , 𝑣𝑝

𝑣𝑝

We get a contradiction in the

case where 𝑉 ≠ 𝑉ℓ .

𝑉 = 𝑉ℓ

𝑣𝑖 , 𝑣𝑝

𝑣𝑝 , 𝑣𝑖

𝑣𝑖

𝑇 +

𝑉𝑖,𝑝

𝑉𝑖

If 𝑣𝑖 is a neighbor of 𝑣𝑝 with

𝑖 < 𝑛, then 𝑣𝑖 ∈ 𝑉 .

Figure 5: The induction step in Lemma 4.4

{𝜏 (⊥,𝑏,𝑐) (®𝑣) | (𝑏, 𝑐) ∈ 𝐵}. Note that we do not define relations twice
since R𝐴 and R𝐵 are disjoint and 𝑄 is self-join-free.

Since𝑈3 is connected, our construction guarantees that in every

answer to 𝑄 all 𝑈3 variables are assigned the same value. Since

𝑢1 and 𝑧1 ∈ 𝑈3 are neighbors, we are guaranteed that there is an

atom that contains them both in R𝐴 . The same holds for 𝑧𝑘 ∈ 𝑈3

and 𝑢2 in R𝐵 . Therefore, the answers to 𝑄 (𝐼) describe the matrix

multiplication. Consider a query answer 𝑞. We have that 𝑞(𝑢1) = 𝑎,

𝑞(𝑧𝑖) = 𝑏 for all 𝑧𝑖 ∈ 𝑈3 and 𝑞(𝑢2) = 𝑐 for some (𝑎, 𝑏) ∈ 𝐴 and

(𝑏, 𝑐) ∈ 𝐵. All other variables are mapped to the constant ⊥. Note
that the answers projected to 𝑢1 and 𝑢2 are the answers to the

matrix multiplication problem.

Assume, by way of contradiction, that direct access to the an-

swers of 𝑄 by a lexicographic order in which no variable of 𝑢3
occurs before any of 𝑢1 and 𝑢2 is possible with O(𝑛 polylog𝑛) pre-
processing and O(polylog𝑛) delay. We show how to find all the

unique values of 𝑢1 and 𝑢2 in the answers efficiently. Perform the

following starting with 𝑖 = 1 and until there are no more answers.

Access answer number 𝑖 and print its assignment to (𝑢1, 𝑢2). Then,
set 𝑖 to be the index of the next answer which assigns (𝑢1, 𝑢2) to dif-
ferent values and repeat. Finding the next index can be done using

binary search with a logarithmic number of direct accesses, each

taking polylogarithmic time. Overall, we solve Boolean matrix mul-

tiplication in O(𝑛 polylog𝑛) time, contradicting sparseBMM. □

The negative part of the dichotomy has three cases. First, if 𝑄 is

not free-connex, then we know that direct access by any order is

intractable according to Theorem 2.2. Next, if 𝑄 has a disruptive

trio 𝑢1, 𝑢2, 𝑢3 with respect to 𝐿, then 𝑢1, 𝑢3, 𝑢2 is a chordless path

satisfying the conditions of Lemma 4.5. The last case is that 𝑄 is

not 𝐿-connex. In this case, there is an 𝐿-path, and this path satisfies

the conditions of Lemma 4.5. Therefore, we obtain that the last two

cases are hard too, assuming the sparseBMM hypothesis.

5 DIRECT ACCESS BY SUM OF WEIGHTS
We now consider direct access for the more general orderings based

on Σ𝑤 (the sum of attribute weights). As with lexicographic or-

derings, we are able to exhaustively classify the self-join-free CQs,

even those with projections, in terms of tractability. We will show

that direct access for Σ𝑤 is significantly harder and tractable only

for a small class of queries.

5.1 Overview of Results
The main result of this section is a dichotomy for direct access by

Σ𝑤 ordering:

Theorem 5.1. Let 𝑄 be a CQ and𝑤 be a weight function.

• If 𝑄 is acyclic and an atom of 𝑄 contains all the free variables,

then direct access by Σ𝑤 is possible in ⟨𝑛 log𝑛, 1⟩.
• Otherwise, if 𝑄 is also self-join-free, direct access by Σ𝑤 is

not possible in ⟨𝑛 polylog𝑛, polylog𝑛⟩, assuming 3sum and

Hyperclique.

The proof of the negative part of the above theorem requires the

query answers to express certain combinations of weights. If the

query contains independent free variables, then its answers may

contain all possible combinations of their corresponding attribute

weights. We will thus rely on this independence measure to identify

hard cases.

Definition 5.2 (Independent free variables). A set of vertices 𝑉𝐼 ⊆
𝑉 of a hypergraphH(𝑉 , 𝐸) is called independent iff no pair of these

vertices appears in the same hyperedge, i.e., |𝑉𝐼 ∩ 𝑒 | ≤ 1 for all

𝑒 ∈ 𝐸. For a CQ 𝑄 , we denote by 𝛼
free

(𝑄) the maximum number of

variables among free(𝑄) that are independent in H(𝑄).

Intuitively, we can construct a database instance where each

independent free variable is assigned to 𝑛 different domain values

with 𝑛 different weights. By appropriately choosing the assignment

of the other variables, all possible 𝑛𝛼free (𝑄)
combinations of these

weights will appear in the query answers. Providing direct access

then implies that we can retrieve these sums in ranked order.

Example 5.3. For 𝑄8 (𝑥,𝑦, 𝑧) :−𝑅(𝑥, 𝑧), 𝑆 (𝑧,𝑦),𝑇 (𝑦,𝑢), we have

𝛼
free

(𝑄8) = 2, namely for variables {𝑥,𝑦}. If the database instance
is 𝑅 = [1, 𝑛] × {0}, 𝑆 = {0} × [1, 𝑛], 𝑇 = [1, 𝑛] × {0}, then the 𝑛2

query answers are [1, 𝑛] × [1, 𝑛] × {0}. The 𝑛 values of 𝑥 and 𝑦 can

be respectively assigned to any real-valued weights such that direct

access on 𝑄8 retrieves their 𝑖
th
sum in ranked order.

Our independence measure 𝛼
free

(𝑄) is related to the classifica-

tion of Theorem 5.1 in the following way:

Lemma 5.4. For an acyclic CQ 𝑄 , an atom contains all the free

variables iff 𝛼
free

(𝑄) ≤ 1.

Proof. See Appendix A.3. □

Therefore, the dichotomy of Theorem 5.1 can equivalently be

stated using 𝛼
free

(𝑄) ≤ 1 as a criterion. We chose to use the other

criterion (all free variables contained in one atom) in the statement

of our theorem statement as it is more straightforward to check.

In the next section, we proceed to prove our theorem by showing

intractability for all queries with 𝛼
free

(𝑄) > 1.

5.2 Proofs
For the hardness results, we rely mainly on the 3sum hypothesis.

To more easily relate our direct-access problem to 3sum, which asks

for the existence of a particular sum of weights, it is useful to define

an auxiliary problem:

Definition 5.5 (weight lookup). Given a CQ 𝑄 , weight function

𝑤 , and 𝜆 ∈ R, weight lookup by Σ𝑤 returns the first position of a

query answer 𝑞 of weight𝑤 (𝑞) = 𝜆 in the sorted array of answers.

The following lemma associates direct access with weight lookup

via binary search on the query answers:

Lemma 5.6. If the 𝑘 th query answer according to some ranking

function can be directly accessed in O(𝑇𝑑 (𝑛)) time for every 𝑘 , then

weight lookup can be performed in O(𝑇𝑑 (𝑛) log𝑛).

Proof. See Appendix A.4. □

Lemma 5.6 implies that whenever we are able to support efficient

direct access on the sorted array of query answers, weight lookup

increases time complexity only by a logarithmic factor, i.e., it is also

efficient. The main idea behind our reductions is that via weight

lookups on a CQ with an appropriately constructed database, we

can decide the existence of a zero-sum triplet over three distinct sets

of numbers, thus hardness follows from 3sum. First, we consider

the case of three independent variables that are free. These three

variables are able to simulate a three-way Cartesian product in the

query answers. This allows us to directly encode the 3sum triplets

using attribute weights, obtaining a lower bound for direct access.

Lemma 5.7. If a CQ𝑄 is self-join-free and 𝛼
free

(𝑄) ≥ 3, then direct

access by Σ𝑤 is not possible in ⟨𝑛2−𝜖 , 𝑛2−𝜖 ⟩ for any 𝜖 > 0 assuming

3sum.

Proof. Assume for the sake of contradiction that the lemma

does not hold. We show that this would imply an 𝑂 (𝑛2−𝜖)-time

algorithm for 3sum. To this end, consider an instance of 3sum with

integer sets 𝐴, 𝐵, and 𝐶 of size 𝑛, given as arrays. We reduce 3sum

to direct access over the appropriate query and input instance by

using a construction similar to Example 5.3. Let 𝑥 , 𝑦, and 𝑧 be free

and independent variables of 𝑄 , which exist because 𝛼
free

(𝑄) ≥ 3.

We create a database instance where 𝑥 , 𝑦, and 𝑧 take on each value

in [1, 𝑛], while all the other attributes have value 0. This ensures
that 𝑄 has exactly 𝑛3 answers—one for each (𝑥,𝑦, 𝑧) combination

in [1, 𝑛]3, no matter the number of atoms and the variables they

contain. To see this, note that since 𝑥 ,𝑦, and 𝑧 are independent, they

never appear together in an atom. Also, since 𝑄 is self-join-free,

each relation appears once in the query, hence contains at most one

of 𝑥 , 𝑦, and 𝑧. Thus each relation either contains 1 tuple (if neither

𝑥 , 𝑦, nor 𝑧 is present) or 𝑛 tuples (if one of 𝑥 , 𝑦, or 𝑧 is present).

No matter on which attributes these relations are joined (including

Cartesian products), the output result is always the “same” set

[1, 𝑛]3 × {0}𝑓 of size 𝑛3, where 𝑓 is the number of free variables

other than 𝑥 , 𝑦, and 𝑧. (We use the term “same” loosely for the

sake of simplicity. Clearly, for different values of 𝑓 the query-result

schema changes, e.g., consider Example 5.3 with 𝑧 removed from

the head. However, this only affects the number of additional 0s

in each of the 𝑛3 answer tuples, therefore it does not impact our

construction.)

For the reduction from 3sum, weights are assigned to the attribute

values as 𝑤𝑥 (𝑖) = 𝐴[𝑖], 𝑤𝑦 (𝑖) = 𝐵 [𝑖], 𝑤𝑧 (𝑖) = 𝐶 [𝑖], 𝑖 ∈ [1, 𝑛], and
𝑤𝑢 (0) = 0 for all other attributes 𝑢. By our weight assignment,

the weights of the answers are 𝐴[𝑖] + 𝐵 [𝑗] +𝐶 [𝑘], 𝑖, 𝑗, 𝑘 ∈ [1, 𝑛],
and thus in one-to-one correspondence with the possible value

combinations in the 3sum problem. We first perform the prepro-

cessing for direct access in 𝑂 (𝑛2−𝜖), which enables direct access to

any position in the sorted array of query answers in 𝑂 (𝑛2−𝜖). By
Lemma 5.6, weight lookup for a query result with zero weight is pos-

sible in 𝑂 (𝑛2−𝜖 log𝑛). Thus, we answer the original 3sum problem

in 𝑂 (𝑛2−𝜖′) for any 0 < 𝜖 ′ < 𝜖 , violating the 3sum hypothesis. □

For queries that do not have three independent free variables

we need a slightly different construction. We show next that two

variables are sufficient to encode partial 3sum solutions (i.e., pairs of

elements), enabling a full solution of 3sum via weight lookups. This

yields a weaker lower bound than Lemma 5.7, but still is sufficient

to prove intractability according to our yardstick.

Lemma 5.8. If a CQ𝑄 is self-join-free and 𝛼
free

(𝑄) = 2, then direct

access by Σ𝑤 is not possible in ⟨𝑛2−𝜖 , 𝑛1−𝜖 ⟩ for any 𝜖 > 0 assuming

3sum.

Proof. See Appendix A.5. □

A special case of Lemma 5.8 is closely related to the problem of

selection in X+Y [22], where we want to access the 𝑘𝑡ℎ smallest sum

of pairs between two sets 𝑋 and 𝑌 . This is equivalent to accessing

the answers to 𝑄𝑋𝑌 (𝑥,𝑦) :−𝑅(𝑥), 𝑆 (𝑦) by Σ𝑤 ordering. It has been

shown that if 𝑋 and 𝑌 are given sorted, then selection (a single

access) is possible even in linear time [15, 26]. Thus, for𝑄𝑋𝑌 direct

access by Σ𝑤 is possible with O(𝑛 log𝑛) preprocessing (where we

simply sort the input relations) and O(𝑛) per access.
So far, we have covered all self-join-free CQs with 𝛼

free
(𝑄) > 1,

which, by Lemma 5.4, proves the negative part of Theorem 5.1. Next,

we show that the remaining acyclic CQs (those with 𝛼
free

(𝑄) ≤ 1 or

equivalently, an atom containing all the free variables) are tractable.

For these queries, a single relation contains all the answers, and so

direct access can easily be supported by reducing and sorting that

relation.

Lemma 5.9. If a CQ 𝑄 is acyclic and an atom contains all the free

variables, then direct access by Σ𝑤 is possible in ⟨𝑛 log𝑛, 1⟩.

Proof. See Appendix A.6. □

Combining these lemmas with the hardness of Boolean self-

join-free cyclic CQs based on Hypercliqe, gives a proof of Theo-

rem 5.1.

6 SELECTION BY SUM OFWEIGHTS
Given that direct access by Σ𝑤 order with quasilinear preprocessing

and polylogarithmic delay is possible only in very few cases, we

next investigate the tractability of a simpler version of the problem:

When is selection, i.e., direct access to a single query answer, pos-

sible in quasilinear time? We further simplify the problem by not

allowing any projections in the query, i.e., we limit our attention to

full CQs. Our main result is a dichotomy theorem that covers all

full self-join-free CQs.

6.1 Overview of Results
We show that the simplifications move only a narrow class

of queries to the tractable side. For example, the 2-path query

𝑄7 (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧) is tractable for selection (a single direct

access), even though it is not for direct access. Still, the 3-path query

𝑄9 (𝑥,𝑦, 𝑧,𝑢) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧),𝑇 (𝑧,𝑢) remains intractable. Given

that 𝑄7 and 𝑄9 both have two free and independent variables, a

different criterion than 𝛼
free

(𝑄) is needed for classification.

Definition 6.1 (Maximal Hyperedges). For a CQ 𝑄 with hyper-

graphH(𝑄) = (𝑉 , 𝐸), themaximal number of hyperedges w.r.t. con-

tainment is mh(𝑄), i.e., mh(𝑄) = max |{𝑒 ∈ 𝐸 | �𝑒 ′ ∈ 𝑅 ∧ 𝑒 ⊆ 𝑒 ′}|.

Note that for full CQs,𝛼
free

(𝑄) ≤ mh(𝑄) since each independent
variable can be associated with a distinct maximal hyperedge. We

summarize the results of this section in the following theorem,

which classifies full CQs 𝑄 based on mh(𝑄):

Theorem 6.2. Let 𝑄 be a full CQ and𝑤 be a weight function.

• If mh(𝑄) ≤ 2, then selection by Σ𝑤 is possible in ⟨1, 𝑛 log𝑛⟩.
• Otherwise, if𝑄 is also self-join-free, then selection by Σ𝑤 is not

possible in ⟨1, 𝑛 polylog𝑛⟩. assuming 3sum and Hyperclique.

We prove the positive part of the theorem in Section 6.2 and the

negative part in Section 6.3.

Example 6.3. For the query 𝑄7 (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑧) we have
already shown in Section 5 that direct access by Σ𝑤 is intractable.

However, given that it has twomaximal hyperedges, only one access

(or a constant number of them) is in fact possible in O(𝑛 log𝑛).

Absorbed atoms.We say that an atom (identified by its hyperedge)

𝑉 is absorbed by an atom𝑉 ′
if𝑉 ⊆ 𝑉 ′

. As evident from Theorem 6.2,

adding to a query atoms that are absorbed by existing ones does

not affect the complexity of selection. We prove this claim first and

use it later in our analysis in order to treat queries that contain

absorbed atoms.

A query 𝑄 ′
is a contraction of 𝑄 if every atom of 𝑄 ′

appears in

𝑄 , and all the rest of the atoms of 𝑄 are absorbed by some atom of

𝑄 ′
.𝑄𝑚

is a maximal contraction of𝑄 if it is a contraction and there

is no 𝑄 ′′
that is a contraction of 𝑄𝑚

except itself. It is easy to see

that the number of atoms of 𝑄𝑚
is mh(𝑄).

Example 6.4. Consider 𝑄 (𝑥,𝑦, 𝑧) :−𝑅(𝑥,𝑦), 𝑆 (𝑦),𝑇 (𝑦, 𝑧),𝑈 (𝑥,𝑦).
Here, 𝑆 (𝑦) is absorbed by 𝑅(𝑥,𝑦) and 𝑈 (𝑥,𝑦), and the latter two

absorb each other. There are two maximal contractions that we can

obtain from𝑄 : either𝑄𝑚
1
:−𝑅(𝑥,𝑦),𝑇 (𝑦, 𝑧) or𝑄𝑚

2
:−𝑇 (𝑦, 𝑧),𝑈 (𝑥,𝑦).

The number of maximal hyperdges of 𝑄 is mh(𝑄) = 2.

Lemma 6.5. Selection on a CQ𝑄 is possible in O(𝑇𝑆 (𝑛)) if selection
on a maximal contraction 𝑄𝑚

of 𝑄 is possible in O(𝑇𝑆 (𝑛)). The
converse is also true if 𝑄 is self-join-free.

Proof. See Appendix A.7. □

6.2 Tractability Proofs
In this section, we provide tractability results for full CQs with

mh(𝑄) ≤ 2. First, we consider the trivial case of mh(𝑄) = 1 where

the maximal contraction of𝑄 has only one atom. The lemma below

is a direct consequence of the linear-time array selection algorithm

of Blum et al. [6].

Lemma 6.6. For a full CQ 𝑄 with mh(𝑄) = 1, selection by Σ𝑤 is

possible in ⟨1, 𝑛⟩.

Proof. See Appendix A.8. □

For the mh(𝑄) = 2 case, we rely on an algorithm by Frederickson

and Johnson [15], which generalizes selection on the X+Y problem.

If the two sets 𝑋 and 𝑌 are given sorted, then the pairwise sums

can be represented as a sorted matrix. A sorted matrix 𝑀 contains

a sequence of non-decreasing elements in every row and every

column. For the 𝑋 + 𝑌 problem, a cell 𝑀 [𝑖, 𝑗] contains the sum

𝑋 [𝑖] + 𝑌 [𝑗]. Even though the matrix 𝑀 has quadratically many

cells, there is no need to construct it in advance given that we can

compute each cell in constant time. Selection on a union of such

matrices {𝑀1, . . . , 𝑀ℓ } asks for the 𝑘th smallest cell among the cells

of all matrices.

Theorem 6.7 ([15]). Selection on a union of sorted matrices

{𝑀1, . . . , 𝑀ℓ }, where𝑀𝑚 has dimension 𝑝𝑚 × 𝑞𝑚 with 𝑝𝑚 ≥ 𝑞𝑚 , is

possible in time O(∑ℓ
𝑚=1 𝑞𝑚 log(2𝑝𝑚/𝑞𝑚)).

Leveraging this algorithm, we provide our next positive result:

Lemma 6.8. For a full CQ 𝑄 with mh(𝑄) = 2, selection by Σ𝑤 is

possible in ⟨1, 𝑛 log𝑛⟩.

Proof. The maximal contraction of queries with mh(𝑄) = 2 is

𝑄 (®𝑋, ®𝑌) :−𝑅(®𝑋), 𝑆 (®𝑌), with ®𝑋 ≠ ®𝑌 , thus by Lemma 6.5, it is enough

to prove an O(𝑛 log𝑛) bound for this query. As before, we turn the

attribute weights into tuple weights. Since a variable may occur

in both atoms, we make sure to assign each attribute weight to

only one relation to avoid double-counting. Thus, we compute

𝑤 (𝑟) =
∑
𝑥 ∈ ®𝑋 𝑤𝑥 (𝑟 (𝑥)) and 𝑤 (𝑠) =

∑
𝑦∈(®𝑌\ ®𝑋) 𝑤𝑦 (𝑠 (𝑦)) for all

𝑟 ∈ 𝑅 and 𝑠 ∈ 𝑆 , respectively. Since the query is full, the weights

of the query answers are in one-to-one correspondence with the

pairwise sums of weights of tuples from 𝑅 and 𝑆 .

Let ®𝑍 = ®𝑋 ∩ ®𝑌 . We next group the 𝑅 and 𝑆 tuples by their 𝑍

values: we create ℓ buckets of tuples where all tuples 𝑡 within a

bucket have equal 𝑡 (𝑧) values, 𝑧 ∈ ®𝑍 . This can be done in linear

time. If ®𝑍 = ∅, i.e., the query is the Cartesian product, then we

place all tuples in a single bucket. For each assignment of ®𝑍 values,

the query answers with those values are formed by the Cartesian

product of 𝑅 and 𝑆 tuples inside that bucket. Also, if the size of

bucket𝑚 is 𝑛𝑚 , then 𝑛1 + . . . + 𝑛ℓ = |𝑅 | + |𝑆 |. We sort the tuples in

the buckets according to their weight in O(𝑛 log𝑛) time. Assume

𝑅𝑚 and 𝑆𝑚 are the partitions of 𝑅 and 𝑆 in bucket 𝑚 and 𝑅𝑚 [𝑖]
denotes the 𝑖th tuple of 𝑅𝑚 in sorted order (equivalently for 𝑆𝑚 [𝑗]).
We define a union of sorted matrices {𝑀1, . . . , 𝑀ℓ } as follows: For
bucket 𝑚, we have 𝑀𝑚 [𝑖, 𝑗] = 𝑤 (𝑅𝑚 [𝑖]) + 𝑤 (𝑆𝑚 [𝑗]). Selection
on these matrices is equivalent to selection on the query answers

of 𝑄 . By Theorem 6.7, if matrix 𝑀𝑚 has dimension 𝑝𝑚 × 𝑞𝑚 with

𝑝𝑚 ≥ 𝑞𝑚 , we can achieve selection inO(∑ℓ
𝑚=1 𝑞𝑚 log(2𝑝𝑚/𝑞𝑚)) =

O(∑ℓ
𝑚=1 𝑞𝑚 · 2𝑝𝑚/𝑞𝑚) = O(∑ℓ

𝑚=1 𝑝𝑚) = O(∑ℓ
𝑚=1 𝑛𝑚) = O(𝑛).

Overall, the time spent is O(𝑛 log𝑛) because of sorting. □

6.3 Intractability Proofs
Though selection is a special case of direct access, we show that

for most full CQs tractable time complexity O(𝑛 polylog𝑛) is still
unattainable. We start from the cases covered by Lemma 5.7. To

extend that result to the selection problem, note that a selection

algorithm can be repeatedly applied for solving direct access. For

queries with three free and independent variables, an O(𝑛2−𝜖)
selection algorithm would imply a ⟨𝑛2−𝜖 , 𝑛2−𝜖 ⟩ direct-access algo-
rithm, which we showed to be impossible. Therefore, the following

immediately follows from Lemma 5.7:

Corollary 6.9. If a full CQ 𝑄 is self-join-free and 𝛼
free

(𝑄) ≥
3, then selection by Σ𝑤 is not possible in ⟨1, 𝑛2−𝜖 ⟩ for any 𝜖 > 0

assuming 3sum.

This leaves only a small fraction of full acyclic CQs to be cov-

ered: queries with two or fewer independent variables and three

or more maximal hyperedges. We next show that these queries are

essentially variants of the general three-path query template where

three atoms are organized in a chain.

Lemma 6.10. The full acyclic CQs 𝑄 that satisfy 𝛼
free

(𝑄) < 3

and mh(𝑄) > 2 are 𝑄3𝑔 (®𝑋, ®𝑌, ®𝑍, ®𝑈) :−𝑅(®𝑋, ®𝑌), 𝑆 (®𝑌, ®𝑍),𝑇 (®𝑍, ®𝑈) for
non-empty ®𝑋, ®𝑌, ®𝑍, ®𝑈 , up to atom absorption.

Proof. See Appendix A.9. □

Now that we established the precise form of the queries we want

to classify, we proceed to prove their intractability. We approach

this in a different way than the other hardness proofs: instead of

relying on the 3sum hypothesis, we instead show that tractable

selection would lead to unattainable bounds for Boolean cyclic

queries.

Lemma 6.11. Selection by Σ𝑤 is not possible in ⟨1, 𝑛 polylog𝑛⟩ for
𝑄3𝑔 (®𝑋, ®𝑌, ®𝑍, ®𝑈) :−𝑅(®𝑋, ®𝑌), 𝑆 (®𝑌, ®𝑍),𝑇 (®𝑍, ®𝑈) assuming Hyperclique.

Proof. We will show that if selection for 𝑄3𝑔 can be done

in O(𝑛 polylog𝑛), then the Boolean triangle query can be eval-

uated in the same time bound, which contradicts the Hypercliqe

hypothesis. Let 𝑄△ () :−𝑅′(𝑥 ′, 𝑦′), 𝑆 ′(𝑦′, 𝑧′),𝑇 ′(𝑧′, 𝑥 ′) be a query

over a database 𝐼 . We will construct a database 𝐼 ′ for 𝑄3𝑔 , and

via weight lookups we will be able to answer 𝑄△ over 𝐼 . Let

𝑥 ∈ ®𝑋,𝑦 ∈ ®𝑌, 𝑧 ∈ ®𝑍,𝑢 ∈ ®𝑈 . For 𝐼 ′, we extend relation 𝑅′
to

𝑅 by assigning 𝑥 = 𝑥 ′, 𝑦 = 𝑦′ and setting the values of all the

other attributes (®𝑋 ∪ ®𝑌) \ {𝑥,𝑦} to a fixed domain value ⊥. We

repeat the same process for the other relations: For 𝑆 we assign

𝑦 = 𝑦′, 𝑧 = 𝑧′, and for 𝑇 we assign 𝑧 = 𝑧′, 𝑢 = 𝑥 ′. Consider a
query result 𝑞 ∈ 𝑄3𝑔 (𝐼 ′). If 𝜋𝑢 (𝑞) = 𝜋𝑥 (𝑞), then by our construc-

tion 𝜋𝑥𝑦𝑧 (𝑞) satisfy 𝑅, 𝑆 and𝑇 and thus, 𝑄△ over 𝐼 . We now assign

weights as follows: If dom ⊆ R, then𝑤𝑥 (𝑖) = 𝑖,𝑤𝑢 (𝑖) = −𝑖 , and for

all other attributes 𝑡 ,𝑤𝑡 (𝑖) = 0. Otherwise, it is also easy to assign

𝑤𝑥 and 𝑤𝑢 in a way s.t. 𝑤𝑥 (𝑖) = 𝑤𝑥 (𝑗) if and only if 𝑖 = 𝑗 and

𝑤𝑢 (𝑖) = −𝑤𝑥 (𝑖). This is done by maintaining a lookup table for

all the domain values that we map to some arbitrary real number.

Then, we perform a weight lookup for 𝑄3𝑔 to identify if a query

result with zero weight exists. If it does for some result 𝑞, then

𝑤𝑥 (𝜋𝑥 (𝑞)) + . . . +𝑤𝑢 (𝜋𝑢 (𝑢)) = 0 hence 𝜋𝑥 (𝑞) = 𝜋𝑢 (𝑞) and 𝑄△ is

true, otherwise it is false. Since accessing the sorted array of 𝑄3𝑔

answers takes O(𝑛 polylog𝑛), by Lemma 5.6, weight lookup also

takes O(𝑛 polylog𝑛). □

The negative part of Theorem 6.2 for acyclic queries is proved by

combining Corollary 6.9 and Lemma 6.11 together with Lemma 6.10

and Lemma 6.5 that showwe cover all cases. For self-join-free cyclic

CQs, we once again resort to the hardness of their Boolean version

based on Hypercliqe.

7 CONCLUSIONS
We investigated the task of constructing a direct-access data struc-

ture to the output of a query with an ordering over the answers.

We presented algorithms for fragments of the class of CQs for lex-

icographic orders and sum of weights. In these algorithms, the

construction time is quasilinear in the size of the database, and

the access time is logarithmic. We showed that within the class of

CQs without self-joins, our algorithms cover all the cases where

these complexity guarantees are feasible, assuming conventional

hypotheses in the theory of fine-grained complexity. In the case

of sum, where the tractable fragment is limited, we also studied

the restriction of the problem to accessing a single answer (the

selection problem) and established a corresponding classification

for full CQs.

This work opens up several directions for future work, including

the generalization to more expressive queries (CQs with self-joins,

union of CQs, negation, etc.), other kinds of orders (e.g., min/max

over the tuple entries), and a continuum of complexity guarantees

(beyond ⟨quasilinear, logarithmic time⟩). It would also be impor-

tant to understand how integrity constraints, such as functional

dependencies, change the frontier of tractability as they have in the

case of enumeration [9], deletion propagation [24], resilience [16],

and probabilistic inference [18].

Generalizing the question posed at the beginning of the Intro-

duction, we view this work as part of a bigger challenge that

continues the line of research on factorized representations in

databases [27, 28]: how can we represent the output of a query

in a way that, compared to the explicit representation, is fundamen-

tally more compact and efficiently computable, yet equally useful

to downstream operations?

ACKNOWLEDGMENTS
Nofar Carmeli and Benny Kimelfeld were supported by the Ger-

man Research Foundation (DFG) Project 412400621 (DIP program).

Nofar Carmeli was also supported by a Google PhD Fellowship.

Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald

were supported in part by the National Science Foundation (NSF)

under award number IIS-1956096. Wolfgang Gatterbauer was also

supported by NSF under award number CAREER IIS-1762268.

REFERENCES
[1] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular Conjectures

Imply Strong Lower Bounds for Dynamic Problems. In FOCS. 434–443. https:

//doi.org/10.1109/FOCS.2014.53

[2] Nir Ailon and Bernard Chazelle. 2005. Lower Bounds for Linear Degeneracy

Testing. J. ACM 52, 2 (2005), 157–171. https://doi.org/10.1145/1059513.1059515

[3] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic

Conjunctive Queries and Constant Delay Enumeration. In CSL. 208–222. https:

//doi.org/10.1007/978-3-540-74915-8_18

[4] Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. 2005. Subquadratic Algorithms

for 3SUM. In Algorithms and Data Structures. 409–421. https://doi.org/10.1007/

11534273_36

[5] Christoph Berkholz, Fabian Gerhardt, and Nicole Schweikardt. 2020. Constant

delay enumeration for conjunctive queries: a tutorial. SIGLOG 7, 1 (2020), 4–33.

https://doi.org/10.1145/3385634.3385636

[6] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and Robert E.

Tarjan. 1973. Time bounds for selection. JCSS 7, 4 (1973), 448 – 461. https:

//doi.org/10.1016/S0022-0000(73)80033-9

[7] Pierre Bourhis, Alejandro Grez, Louis Jachiet, and Cristian Riveros. 2021. Ranked

Enumeration of MSO Logic on Words. In ICDT, Vol. 186. 20:1–20:19. https:

//doi.org/10.4230/LIPIcs.ICDT.2021.20

[8] Johann Brault-Baron. 2013. De la pertinence de l’énumération: complexité en

logiques propositionnelle et du premier ordre. Ph.D. Dissertation. U. de Caen.

https://hal.archives-ouvertes.fr/tel-01081392

[9] Nofar Carmeli and Markus Kröll. 2020. Enumeration Complexity of Conjunctive

Queries with Functional Dependencies. TCS 64, 5 (2020), 828–860. https://doi.

org/10.1007/s00224-019-09937-9

[10] Nofar Carmeli, Shai Zeevi, Christoph Berkholz, Benny Kimelfeld, and Nicole

Schweikardt. 2020. Answering (Unions of) Conjunctive Queries Using Random

Access and Random-Order Enumeration. In PODS. 393–409. https://doi.org/10.

1145/3375395.3387662

[11] Shaleen Deep and Paraschos Koutris. 2021. Ranked Enumeration of Conjunctive

Query Results. In ICDT, Vol. 186. 5:1–5:19. https://doi.org/10.4230/LIPIcs.ICDT.

2021.5

[12] Jeff Erickson. 1995. Lower Bounds for Linear Satisfiability Problems. In SODA.

388–395. https://dl.acm.org/doi/10.5555/313651.313772

[13] Robert W. Floyd and Ronald L. Rivest. 1975. Expected Time Bounds for Selection.

Commun. ACM 18, 3 (1975), 165–172. https://doi.org/10.1145/360680.360691

[14] Greg N. Frederickson. 1993. An Optimal Algorithm for Selection in a Min-Heap.

Inf. Comput. 104, 2 (1993), 197–214. https://doi.org/10.1006/inco.1993.1030

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1145/1059513.1059515
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1007/978-3-540-74915-8_18
https://doi.org/10.1007/11534273_36
https://doi.org/10.1007/11534273_36
https://doi.org/10.1145/3385634.3385636
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.1016/S0022-0000(73)80033-9
https://doi.org/10.4230/LIPIcs.ICDT.2021.20
https://doi.org/10.4230/LIPIcs.ICDT.2021.20
https://hal.archives-ouvertes.fr/tel-01081392
https://doi.org/10.1007/s00224-019-09937-9
https://doi.org/10.1007/s00224-019-09937-9
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.1145/3375395.3387662
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://doi.org/10.4230/LIPIcs.ICDT.2021.5
https://dl.acm.org/doi/10.5555/313651.313772
https://doi.org/10.1145/360680.360691
https://doi.org/10.1006/inco.1993.1030

[15] Greg N. Frederickson and Donald B. Johnson. 1984. Generalized Selection and

Ranking: Sorted Matrices. SIAM J. Comput. 13, 1 (1984), 14–30. https://doi.org/

10.1137/0213002

[16] Cibele Freire,Wolfgang Gatterbauer, Neil Immerman, and AlexandraMeliou. 2015.

The Complexity of Resilience and Responsibility for Self-Join-Free Conjunctive

Queries. Proc. VLDB Endow. 9, 3 (2015), 180–191. https://doi.org/10.14778/2850583.

2850592

[17] Anka Gajentaan and Mark H Overmars. 1995. On a class of O(n2) problems

in computational geometry. Computational Geometry 5, 3 (1995), 165 – 185.

https://doi.org/10.1016/0925-7721(95)00022-2

[18] Wolfgang Gatterbauer and Dan Suciu. 2015. Approximate Lifted Inference with

Probabilistic Databases. Proc. VLDB Endow. 8, 5 (2015), 629–640. https://doi.org/

10.14778/2735479.2735494

[19] Martin Charles Golumbic. 1980. Algorithmic Graph Theory and Perfect Graphs.

Academic Press, Chapter 4, 81 – 104. https://doi.org/10.1016/C2013-0-10739-8

[20] Georg Gottlob, Gianluigi Greco, Nicola Leone, and Francesco Scarcello. 2016.

Hypertree Decompositions: Questions and Answers. In PODS. 57–74. https:

//doi.org/10.1145/2902251.2902309

[21] Etienne Grandjean. 1996. Sorting, linear time and the satisfiability problem.

Annals of Mathematics and Artificial Intelligence 16, 1 (1996), 183–236. https:

//doi.org/10.1007/BF02127798

[22] Donald B Johnson and Tetsuo Mizoguchi. 1978. Selecting the Kth element in

X + Y and X_1 + X_2 + ... + X_m. SIAM J. Comput. 7, 2 (1978), 147–153. https:

//doi.org/10.1137/0207013

[23] Jens Keppeler. 2020. Answering Conjunctive Queries and FO+MOD Queries under

Updates. Ph.D. Dissertation. Humboldt-Universität zu Berlin, Mathematisch-

Naturwissenschaftliche Fakultät. https://doi.org/10.18452/21483

[24] Benny Kimelfeld. 2012. A dichotomy in the complexity of deletion propagation

with functional dependencies. In PODS. 191–202. https://doi.org/10.1145/2213556.

2213584

[25] Andrea Lincoln, Virginia VassilevskaWilliams, and R. RyanWilliams. 2018. Tight

Hardness for Shortest Cycles and Paths in Sparse Graphs. In SODA. 1236–1252.

https://doi.org/10.1137/1.9781611975031.80

[26] A. Mirzaian and E. Arjomandi. 1985. Selection in X + Y and matrices with

sorted rows and columns. Inform. Process. Lett. 20, 1 (1985), 13 – 17. https:

//doi.org/10.1016/0020-0190(85)90123-1

[27] Dan Olteanu and Maximilian Schleich. 2016. Factorized Databases. SIGMOD Rec.

45, 2 (2016), 5–16. https://doi.org/10.1145/3003665.3003667

[28] Dan Olteanu and Jakub Zavodny. 2012. Factorised representations of query

results: size bounds and readability. In ICDT. 285–298. https://doi.org/10.1145/

2274576.2274607

[29] Mihai Patrascu. 2010. Towards polynomial lower bounds for dynamic problems.

In STOC. 603. https://doi.org/10.1145/1806689.1806772

[30] Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and

Xiaofeng Yang. 2019. Optimal Algorithms for Ranked Enumeration of Answers

to Full Conjunctive Queries. CoRR abs/1911.05582 (2019). https://arxiv.org/abs/

1911.05582

[31] Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and

Xiaofeng Yang. 2020. Optimal Algorithms for Ranked Enumeration of Answers

to Full Conjunctive Queries. PVLDB 13, 9 (2020), 1582–1597. https://doi.org/10.

14778/3397230.3397250

[32] Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. 2020. Optimal

Join Algorithms Meet Top-k. In SIGMOD. 2659–2665. https://doi.org/10.1145/

3318464.3383132

[33] Virginia VassilevskaWilliams. 2015. Hardness of Easy Problems: Basing Hardness

on Popular Conjectures such as the Strong Exponential Time Hypothesis (Invited

Talk). In IPEC, Vol. 43. 17–29. https://doi.org/10.4230/LIPIcs.IPEC.2015.17

[34] Xiaofeng Yang, Mirek Riedewald, Rundong Li, and Wolfgang Gatterbauer. 2018.

Any-𝑘 Algorithms for Exploratory Analysis with Conjunctive Queries. In Ex-

ploreDB. 1–3. https://doi.org/doi.org/10.1145/3214708.3214711

[35] Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In VLDB.

82–94. https://dl.acm.org/doi/10.5555/1286831.1286840

https://doi.org/10.1137/0213002
https://doi.org/10.1137/0213002
https://doi.org/10.14778/2850583.2850592
https://doi.org/10.14778/2850583.2850592
https://doi.org/10.1016/0925-7721(95)00022-2
https://doi.org/10.14778/2735479.2735494
https://doi.org/10.14778/2735479.2735494
https://doi.org/10.1016/C2013-0-10739-8
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1145/2902251.2902309
https://doi.org/10.1007/BF02127798
https://doi.org/10.1007/BF02127798
https://doi.org/10.1137/0207013
https://doi.org/10.1137/0207013
https://doi.org/10.18452/21483
https://doi.org/10.1145/2213556.2213584
https://doi.org/10.1145/2213556.2213584
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1016/0020-0190(85)90123-1
https://doi.org/10.1016/0020-0190(85)90123-1
https://doi.org/10.1145/3003665.3003667
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/2274576.2274607
https://doi.org/10.1145/1806689.1806772
https://arxiv.org/abs/1911.05582
https://arxiv.org/abs/1911.05582
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.14778/3397230.3397250
https://doi.org/10.1145/3318464.3383132
https://doi.org/10.1145/3318464.3383132
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/doi.org/10.1145/3214708.3214711
https://dl.acm.org/doi/10.5555/1286831.1286840

𝐿2

𝑇1: 𝑇2:

𝐿2

𝐿1

𝑦𝑧𝑑 𝑏𝑐

𝑦

𝑥𝑦𝑎 𝑦𝑧𝑏

𝑥𝑦𝑧

𝑥𝑦𝑎 𝑦𝑧𝑏

𝑏𝑐

𝑦

𝑥𝑦 𝑦𝑧

𝑦𝑧

𝑥𝑦𝑎 𝑦𝑧𝑏

𝑦𝑧𝑑

𝑦𝑧𝑑𝑏𝑐

Figure 6: Example for the construction from Proposition 4.3
for the CQ 𝑄 (𝑥,𝑦, 𝑧) :−𝑅1 (𝑥,𝑦, 𝑎), 𝑅2 (𝑦, 𝑧, 𝑏), 𝑅3 (𝑏, 𝑐), 𝑅4 (𝑦, 𝑧, 𝑑)
with 𝐿1 = {𝑥,𝑦, 𝑧} and 𝐿2 = {𝑦}.

A ADDITIONAL PROOFS
A.1 Proof of Lemma 3.10
Let 𝑄 be a free-connex CQ, and let 𝑇 be an ext-free(𝑄)-connex
tree for 𝑄 where 𝑇 ′

is the subtree of 𝑇 that contains exactly the

free variables.

First, we claim that two free variables are neighbors in𝑇 iff they

are neighbors in 𝑇 ′
. The “if” direction is immediate since 𝑇 ′

is

contained in 𝑇 . We show the other direction. Let 𝑢 and 𝑣 be free

variables of 𝑄 that are neighbors in 𝑇 . That is, there is a node 𝑉𝑇
in 𝑇 that contains them both. Consider the unique path from 𝑉

to any node in 𝑇 ′
such that only the last node on the path, which

we denote 𝑉𝑇 ′ , is in 𝑇 ′
. Since both variables appear in 𝑇 ′

and in 𝑉 ,

by the running intersection property, both variables appear in 𝑉𝑇 ′ .

Thus, 𝑢 and 𝑣 are also neighbors in 𝑇 ′
.

Since the definition of disruptive trios depends only on neigh-

boring pairs of free variables, an immediate consequence of the

claim from the previous paragraph is that there is a disruptive trio

in 𝑇 iff there is a disruptive trio in 𝑇 ′
. Next, we can simply use

Proposition 2.1 to reduce 𝑄 to the full acyclic CQ where the atoms

are exactly the nodes of 𝑇 ′
.

A.2 Proof Sketch of Proposition 4.3
We describe a construction of the required tree. Figure 6 demon-

strates our construction. We use two different characterizations of

connexity. Since 𝑄 is 𝐿2-connex, it has an ext-𝐿2-connex tree 𝑇2.

Since 𝑄 is 𝐿1-connex, there is a join-tree 𝑇1 for the atoms of 𝑄 and

its head. Let 𝑇2 [𝐿1] be 𝑇2 where the variables that are not in 𝐿1 are

deleted from all nodes. That is, for every node 𝑉 ∈ 𝑇2, its variables

are replaced with var(𝑉) ∩ 𝐿1. Denote byV all neighbors of the

head in 𝑇1, and denote by 𝑇−
1
the graph 𝑇1 after the deletion of the

head node. Taking both 𝑇2 [𝐿1] and 𝑇−
1
and connecting every node

𝑉1 ∈ V with a node𝑉2 of𝑇2 [𝐿1] such that var(𝑉1) ∩ 𝐿1 = var(𝑉2)
gives us the tree we want. Such a node exists in 𝑇2 [𝐿1] since every
node of 𝑇−

1
represents an atom of 𝑄 , and every atom of 𝑄 is con-

tained in some node of 𝑇2. The subtree 𝑇2 [𝐿1] contains exactly 𝑉1,

and since this subtree comes from an ext-𝐿2-connex tree, it has a

subtree containing exactly 𝐿1. It is easy to verify that the result is a

tree, and we can show that the running intersection property holds

in the united graph since it holds for 𝑇1 and 𝑇2.

A.3 Proof of Lemma 5.4
The “only if” part is trivial. For 𝛼

free
(𝑄) = 1 and acyclic query 𝑄 ,

we prove that there is an atom 𝑅𝑓 (®𝑋𝑓) which contains all the free

variables. First note that for |free(𝑄) | = 1 this is trivially true.

For |free(𝑄) | > 1, let 𝑉 be a node in the join tree (corresponding

to some atom of 𝑄) that contains the maximum number of free

variables and assume for the sake of contradiction that there exists

a free variable 𝑦 with 𝑦 ∉ 𝑉 . We use V𝑦 to denote the set of nodes

in the join tree that contain variable 𝑦; thus 𝑉 ∉ V𝑦 . From 𝑄 being

acyclic follows that the nodes inV𝑦 form a connected graph and

there exists a node 𝑉 ′
that lies on every path from 𝑉 to a node in

V𝑦 . Since 𝛼free (𝑄) = 1, each variable 𝑥 ∈ 𝑉 must appear together

with 𝑦 in some query atom, implying that 𝑥 appears in some node

𝑉 ′′ ∈ V𝑦 . From that and the running intersection property follows

that 𝑥 must also appear in 𝑉 ′
since 𝑉 ′

lies on the path from 𝑉 to

any such𝑉 ′′
. Hence𝑉 ′

contains 𝑦 and all the𝑉 variables, violating

the maximality assumption for 𝑉 .

For 𝛼
free

(𝑄) = 0, 𝑄 is a Boolean query and any atom trivially

contains the empty set.

A.4 Proof of Lemma 5.6
We use binary search on the sorted array of query answers. Each

direct access returns a query answer whose weight can be computed

in O(1). Thus, in a logarithmic number of accesses we can find the

first occurrence of the desired weight. Since the number of answers

is polynomial in 𝑛, the number of accesses is O(log𝑛) and each one

takes O(𝑇𝑑) time.

A.5 Proof of Lemma 5.8
We show that the contrary contradicts the 3sum hypothesis. Let 𝐴,

𝐵, and 𝐶 be three integer arrays of a 3sum instance of size 𝑛. We

construct a database instancewith attributeweights like in the proof

of Lemma 5.7, but now with only 2 free and independent variables

𝑥 and 𝑦. Hence the weights of the 𝑛2 query results are in one-

to-one correspondence with the corresponding sums 𝐴[𝑖] + 𝐵 [𝑗],
𝑖, 𝑗 ∈ [1, 𝑛]. We run the preprocessing phase for direct access in

𝑂 (𝑛2−𝜖), which allows us to access the sorted array of query results

in 𝑂 (𝑛1−𝜖). For each value 𝐶 [𝑘] in 𝐶 , we perform a weight lookup

on𝑄 for weight−𝐶 [𝑘], which takes time𝑂 (𝑛1−𝜖 log𝑛) (Lemma 5.6).

If that returns a valid index, then there exists a pair (𝑖, 𝑗) of𝐴 and 𝐵

with sum𝐴[𝑖]+𝐵 [𝑗] = −𝐶 [𝑘], which implies𝐴[𝑖]+𝐵 [𝑗]+𝐶 [𝑘] = 0;

otherwise no such pair exists. Since there are 𝑛 values in 𝐶 , total

time complexity isO(𝑛·𝑛1−𝜖 log𝑛) = O(𝑛2−𝜖 log𝑛). This procedure
solves 3sum in 𝑂 (𝑛2−𝜖′) for any 0 < 𝜖 ′ < 𝜖 , violating the 3sum

hypothesis.

A.6 Proof of Lemma 5.9
Since all free variables appear in one atom 𝑅𝑓 (®𝑋𝑓), we can apply a

linear-time semi-join reduction by Yannakakis [35] to remove the

dangling tuples, and then compute 𝑄 by projecting 𝑅 on all free

variables. Then, we sort the query answers by Σ𝑤 , which takes

Algorithm 2 Lexicographic Inverted-Access

1: 𝑘 = 0

2: bucket[1] = root

3: factor = weight(root)
4: for i=1,. . . ,f do
5: factor = factor/weight(bucket[𝑖])
6: select 𝑡 ∈ bucket[𝑖] agreeing with the answer

7: if no such 𝑡 exists then
8: return not-an-answer

9: 𝑘 = 𝑘 + start(𝑡) · factor
10: for child 𝑉 of layer 𝑖 do
11: get the bucket 𝑏 ∈ 𝑉 agreeing with the answer

12: bucket[layer(𝑉)] = 𝑏

13: factor = factor · weight(𝑏)
14: return 𝑘

total time O(𝑛 log𝑛) for preprocessing and enables constant-time

direct access to individual answers in ranked order.

A.7 Proof of Lemma 6.5
For the “if” direction, we can eliminate absorbed atoms from 𝑄 to

obtain 𝑄𝑚
after making sure that the tuples in the database satisfy

those atoms. Thus, to remove an atom 𝑆 (®𝑌) which is absorbed by

𝑅(®𝑋), we filter the relation𝑅 based on the tuples of 𝑆 . Then,𝑄𝑚
over

the filtered database has the same answers as 𝑄 over the original

one. For the “only if” direction, each atom 𝑆 (®𝑌) that appears in 𝑄

but not 𝑄𝑚
is absorbed by some 𝑅(®𝑋). We create the relation 𝑆 by

copying 𝜋 ®𝑌 (𝑅) into it, essentially making the atom 𝑆 (®𝑌) obsolete.
Note that we are allowed to create 𝑆 without restrictions because

𝑄 has no self-joins, hence the database doesn’t already contain the

relation. Then, 𝑄 over the extended database has the same answers

as 𝑄𝑚
over the original one. The above reductions take linear time,

which is dominated by𝑇𝑆 (𝑛) since𝑇𝑆 (𝑛) is trivially in Ω(𝑛) for the
selection problem.

A.8 Proof of Lemma 6.6
By Lemma 6.5, it suffices to solve selection on the query

𝑄 (®𝑋) :−𝑅(®𝑋), which is a maximal contraction of all queries with

mh(𝑄) = 1. Initially, we turn the attribute weights into tuple

weights. For each tuple 𝑟 ∈ 𝑅, we compute its weight as 𝑤 (𝑟) =

∑
𝑥 ∈ ®𝑋 𝑤𝑥 (𝑟 (𝑥)). Thus, the weights 𝑤 (𝑟) are the weights of the

query answers. This takes O(𝑛) for the O(𝑛) tuples of 𝑅. Then,
applying linear-time selection [6] on 𝑅 gives us the 𝑘th smallest

query result.

A.9 Proof of Lemma 6.10
First, for 𝛼

free
(𝑄) = 1, we have by Lemma 5.4 that an atom contains

all free variables, thus mh(𝑄) = 1 For the case of 𝛼
free

(𝑄) = 2,

let 𝑥 and 𝑢 be the two independent variables. Because they do not

appear together in the same atom, there exist two different atoms

𝑒𝑅, 𝑒𝑇 such that 𝑒𝑅 contains 𝑥 but not 𝑢 and 𝑒𝑇 contains 𝑢 but not 𝑥 .

Without loss of generality, we can further assume that the variable

sets in these atoms are not strictly contained in others (if they are,

we can choose those instead). We can also assume that our choice of

independent variables 𝑥,𝑦 and atoms 𝑒𝑅, 𝑒𝑇 is such that these two

atoms do not have any variables in common, otherwise 𝑄 would

be cyclic. We also have at least one more maximal atom-hyperedge

𝑒𝑆 , that is not absorbed by 𝑒𝑅 or 𝑒𝑇 because mh(𝑄) > 2. For the

variables of 𝑒𝑆 , we claim that var(𝑒𝑆) ⊆ (var(𝑒𝑅) ∪ var(𝑒𝑇)).
Suppose that 𝑒𝑆 contains a variable 𝑠 s.t. 𝑠 ′ ∉ (var(𝑒𝑅) ∪ var(𝑒𝑇)).
Then because 𝑡 cannot be independent, there must exist an atom 𝑒𝑈
that contains 𝑥 and 𝑡 (or 𝑢 and 𝑡). However, in that case, 𝑒𝑅, 𝑒𝑆 , 𝑒𝑈

(or 𝑒𝑇 , 𝑒𝑆 , 𝑒𝑈) create a cycle violating the acylicity of𝑄 . Let ®𝑌 be the

variables in var(𝑒𝑅) ∩ var(𝑒𝑆) and ®𝑍 those in var(𝑒𝑆) ∩ var(𝑒𝑇).
We have ®𝑌 ≠ ∅ and ®𝑍 ≠ ∅, otherwise 𝑒𝑆 would be absorbed by

𝑒𝑅 or 𝑒𝑇 respectively. Conversely, var(𝑒𝑅) ⊄ var(𝑒𝑆) because 𝑒𝑅
would be absorbed by 𝑒𝑆 , and the same is true for 𝑒𝑇 . At this point,

the other atoms of the query can only be absorbed by the existing

ones, otherwise we introduce an independent variable or a cycle.

B INVERTED ACCESS BY LEXICOGRAPHIC
ORDER

A straightforward adaptation of Algorithm 1 can be used to achieve

inverted access: given a query result as the input, we return its index

according to the lexicographic order. Algorithm 2 is almost the same

algorithm as Algorithm 1 except that the choices in each iteration

are made according to the given answer and the corresponding

index is constructed (instead of the opposite). The algorithm runs

in constant time per answer since every operation can be done

within that time (unlike Algorithm 1, there is no need for binary

search here).

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Notions
	2.2 Problem Definitions
	2.3 Complexity Framework and Sorting
	2.4 Hardness Hypotheses
	2.5 Known Results for CQs

	3 Direct Access by Lexicographic Orders
	3.1 Layer-Based Algorithm
	3.2 Finding Layered Join Trees
	3.3 Supporting Projection
	3.4 Lower Bound for Conjunctive Queries

	4 Partial Lexicographic Orders
	4.1 Tractable Cases
	4.2 Intractable Cases

	5 Direct Access by Sum of Weights
	5.1 Overview of Results
	5.2 Proofs

	6 Selection by Sum of Weights
	6.1 Overview of Results
	6.2 Tractability Proofs
	6.3 Intractability Proofs

	7 Conclusions
	References
	A Additional Proofs
	A.1 Proof of lemma:CQ-to-full
	A.2 Proof Sketch of prop:two-connex
	A.3 Proof of lem:freeind
	A.4 Proof of lem:invertedsum
	A.5 Proof of lem:3sumtorra2
	A.6 Proof of lem:rra1
	A.7 Proof of lem:absorbed
	A.8 Proof of lem:selection1
	A.9 Proof of lem:3path

	B Inverted access by lexicographic order

